Background Questions

i. Which year are you in, and what is your major?

Vaar Y , Mty 2 meliild

2. Rate your knowledge about Java language.
(a) Never used it.
(p; Beginner (e.g. have taken an introductory course)
(¢} Medium (e.g. have done some small projects with Java)

(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?

v p i'lli"x':_l]

4. Rate your knowledge about the language you answered above if it is different from Java.

(a) Never used it.

(b} Beginner (e.g. have taken an introduciory course)

(¥l Medium (e.g. have done some small projects with it}

(d) Proficient (e.g. have experience in developing real-life programs with it}

5. Select the ways you specify your prograin (multiple answers possible).

(3 I write comments that explain my program.
(b) 1 write assert statements to express my assumption.

(¢) T write formal specification.

6. Rate your knowledge about program contract.

{a) Never heard of it.
(#) Heard of it, but has not used it.

(¢) Have written some program contracts.

. Rate vour knowledge about JML (Java Modeling Language)}.

=T

(%) Never heard of it hefore this course.
(b) Heard of it, but has not used it.

(¢) Have used it.

1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
ext
head et nodel i‘){neﬂ node? et noded T2 rear]

The head and rear are instances of class Head and Rear, respectively. That is.
Head head = new Head(); Rear rear = new Rear(]:

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, i.e., Head, Rear

and MormalNede, are subclasses of Node. That is, the following is the class hierarchy for them:

e T‘\

Head MarmalMNode Rear

Only NormalNode has a value field of the integer type as shown in the following:

public class NormalNede extends Node {
Node next; // points to the next node and is not null
int value;

public boolean hasConsecutiveZeros() {
if (value = o) {
if (((NormalNode) next).value = 0) { // may throw ClassCastException
return true;
1

¥

return next.hasConsecutiveZeros():

}

/+ the rest of the code is omitted £f

}

We are interested in whether or not two consecutive nodes of a linke
hasConsecutiveZeros method shown in the above answers to that question. For
node2 of the above figure have zeros as their values (i.e., nodelvalue == 0 and node2.value == 0}, then
nodel hasConsecutiveZeros() returns true,

However, the above hasConsecutiveZeros method has a bug. For example, if nade3 hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because noded.next is cast to
NormalNode despite that node3.next is an instance of Rear.

d list contain zeros, and the
example, if nodel and

Q. Suppose that we now want to throw a NonNormalNodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

i] £ Ty [; .
y-alind (Clanslay Excephitn) qod ipfaet Redr

I:Ir-h'! i '1'I~ § [: f'll]-"rf-" 1 ;Ma’ﬂliiﬁ"‘h!'-i.. E:ﬂ i'_r]{'rl:"l) {';""‘li'- J,r.

2. Consider the linked list used in the previous question again. We now want to add an additional
method tailList() to class Nede. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist()
should return a list consisting of node2, node3, and rear.

Each subelass of Node, i.e., Head, NormalNode and Rear, should override the tailList{) method. For
example, the following shows the tailList() of NormalMode,

public class NormalNode extends MNode {
private Node next; // not null
private int value;

public List tailbist() {

List list = new List(); // make a fresh list

Head head = new Head(): // make a fresh head

list.head = head: [/ set the head

head .next = this.next; f/ the new list starts with the next node
L

return lis

}

[+ the rest of the code is omitted =/

I

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node { _|
public List tailList() {
return null;
}

[+ the rest of the code is omitted =/

¥

However, the above taillist() of Rear turns out to be bugey causing NullPeinterException. So, we wrote
a change contract as follows:

ensured \result = null;
ensures (\result instanceof List) &k (\result isEmpty() = true);

Mote that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()"

Q1. Now, explain in English what the ahove change coniract means

cor i {-"L.nn"tu.b\t pruIt) Lingy, Yuwt ol 4 awull-Po(il: [Thtkw#”}hh 4
i A i bf

Fgr mﬁ‘ lﬂ.!!»‘.g _tl\vi- M e LHFLEMP"II‘#L[“.’%\{. 15M%{/ {,LH ks f"‘.f,.h:llwr:ﬁ

30 ety iI'. s |-"L_'5‘|-[I\'HL u{' L{}L ﬂﬂr{ ,t.f' r!—g i&Em-f?h;{,

-mgthod [thyy | o1 Ay
zi‘-f L'fl rin

o At ['
-ls,hﬁ.{t'h r{lu;\: ‘ll"'r'-_.\E__ . r

RIT Rt =
st sl A : -
Q2. Fillin 1.qu] following blank with a modified statement {hat respeets the given change contract. — "L

public class Rear extends Node {
public List taillist() {

Alun Ay Lt _ |

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next next next
head [| nodel |, node? node3 rear
pred | pred prod pred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node,

public class MNormalNode extends Node E
private Node pred; // points to the preceding node.
private Node next;
private int wvalue;

public boolean hasConsecutiveZeros(boolean forward) {
[/ should extend it

}

[+ the rest of the code is omitted =/

} -

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to scarch for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able Lo search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring

steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
chanpe contract template for method hasConsecutiveZeros.

Q1. We ask vou to fill in the blank. Note that the following change contract should say that

only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.
new field pred:Node;
new param forward:boolean;
matches pred = null && forward = :
Q2. Also, explain in English what the above change contract means:
The At (A plemenbi® hap g atw s
" : {
) 1 : ;
Ftd‘ EL’ {ﬂﬂi. J'LJL'I:L CRRL %ﬁ-'hﬂﬂ-’ll! -E:'IE {Lf"d'L ‘{":"“Hj_

. Ilr'- " ;r..
TL‘"‘- T, g""“uﬂitgmtxfﬂi{é- rﬁ‘JU‘Hr[ul{ "D I("LIL

old oae f F(['Lrg. Rty p:m‘-lﬁ {-'-'9 aull ety o

{ormaal bt - \/ |

4. The following shows a class that implements Iterator, Any Iterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get(currentindex)).

import java.util.NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentIndex, size;
private NonNulllList items; // a list with no null item

public Object mext(} {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;
return result; // return a non-null value
} else {
return null;
}
+
/# the rest of the code is omitted */

}

Now, we want to modify the above next method according to the following change confract.
ensured ‘result == null;

signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

Thi Ffw.'mq Vaey Pl @ vy

ahle fo "L'['-"-*" 4,-,1“ ;351"‘1#1'-’}& {fo: Lome {f_r?ul(J.

For fhL Game '[rt!r.r'vl‘{l!f'h{- Aan uee fheow

["'Iif('.- Ill-‘l.'tL'\ '[-_:[r-‘txl;k1t:q{i.l: } \/

{Continued in the nexl page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

— NoSuchElementException() of class NoSuchElementException:
This 15 the default constructor of class NaSuchElementException.

public class CustomIterator implements Iterator {
private int currentIndex, size;
private NonWulllist items; // a list with no null item

public Object mext() {
if (currentIndex < size} {
Object result = items.get(currentIndex);
currentIndex++;
return result: // return a nom-null value
T else {

thow, B aw Mobul EGaok praotios)]

5. The fallowing shows the Person class that holds information about the first name, the last name, and
s0 o We assume that none of these strings is null.

public class Persen {
private String firstName; // non-null
private String lastHame; // non-null
private Natienality natiomality; // non-null

public boolean hasSamelame (String first, String last) {
return firstName.equals(first) && lastName.equals(last};

}

public String getFirstName() { return this.firstHame; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted */

The above class has a boolean method hasSameMame that returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those bwo parameters,
first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as [ollows. Again, we assume that the
person parameter cannot be noll,

public boolean hasSameName(Person person) {
return person.getFirstName().equals(firstlName)
&% person.getLastName().equals(lastlame);

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

0ld _param first:String, last:String;
DE'E*_P&I'EIIII PBISDD & PE‘IEGE;

mikelss AT }-'-’3"4")-111“. = '\F{EV ffr-'}if XE Presen. Caaf =i~ ':I\ Ilﬂ.'{u{{ﬂjlfr J

1R

Thi g, -"t'l.ll';\:"l. A I{Vv{) fﬂ!ﬂmc{“ feab e Layf
of Fypl & £1vg-
Tal "wobig, hey o atw Pyamehis @

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

,'f— T!{Jﬂi AU

T e T i]ﬂu.'! r";' fhi Sy mL af '”lﬂ,

oMd o vryiony it M oty F fae Hidud
u.-”frlmf't ot fhy Atw, (,“Mh{f-r‘.; pUese, Lat L um
Valut . pae il "Farm\fﬁr ok fae old _L’[’Jll‘“” o]
N sl Muamg ‘ﬂtH‘nlﬁqiL ot AL new pq,,{ﬁf';.{r Frese
Awp o BRC ume talyg tht (s ~ guedmebi of fh¢

I'{'-'a-'._b' _,.'!rjl.'k . _,'/

i \/

Part 11

|. Consider the fullowins program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle.

[The previous version]

public class InterTypeMethodBinding extends MethodBinding {
| private MethodBinding syntheticMethod

public MethodBinding getAccessMethod () {
return syntheticMethod;

r
J+ the rest of the code is omitted #f

I

[Change contract for getAccessMethod|

new field postDispatchMethod : MethodBinding |
new param staticReference:boolean:
matches staticReference = false;

I

[The new version|

public class InterTypeMethodBinding extends MethodBinding {

private MethodBinding syntheticMethod:
private MethodBinding postDispatchMethod ;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod ;

else return !j j'i_('l.“llui! M{L{Lxlalll, f j :

}
[+ the rest of the code is omitted =/ \//

(1. Explain in English what the above change contract means:

T“L AW Wt “l i Al 1[1-”'-1-{1';(Wr !lf{{
7

P~ e~ QR AN N SH A post
anbw U ol {‘"iﬁi _.-*VE_L{:HGLE 'lhl“"'“"f

u,

il o atw f"‘f—lﬂu.i‘-’ ot Qefrat oF Tyot o
T pld aad Alw, vl havi {6 Stf i LY
& Ci)E Habd Qb bar pre wdlue falbe S

Q2. Also, fill in the blank of the new version.

2, Consider the following LazyMethodGen constructor.
1 | public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
2 this.enclosingClass = enclosingClass;
3 if (!m.isAbstract() & m.getCode() = null} {
4 throw new RuntimeException("bad non—abstract method with no code: " +
5 m+ " on " + enclosingClass);
61 }
7 MethodGen gen = new MethodGen{m. enclosingClass.getName(),
8 enclosingClass. getConstantPoolGen ())
49 this memberView = new BeelMethod(enclosingClass . getType(). m);
10 this.accessFlags = gen.getAccessFlags(); this.returnType = gen.getReturnType():
11 this name = gen.getName(); this._argumentTypes = gen.getArgumentTypes();
12 this.declaredExceptions = gen.getExceptions(); this.attributes = gen.getAttributes();
13 this. maxlocals = gen. getMaxLocals();
14 if (gen.isAbstract() || gen.isNative()) {
15 body = null;
Ifi } oelse {
i body = gen.getinstructionList(); unpackHandlers(gen);
13 unpackLineMumbers(gen); unpackLocals{gen);
19
20 assertGoodBady [);
21 |}

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract veid foo();
public native wvoid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus. instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.

~ boolean isNative() of class Method, i.c., the class of the first formal parameter of the LazyMethodGen
constructor:
+ Thizs method determines whether the method is declared as native or not.

Aiyn aliy EP\“'*{IL-L\,EMEP;{‘:") m mﬁ ’ém ™ !.;, Niﬂ‘-ww 'f)J.l

3o viuls [Awbing Ex{L:JH-*\J f-'-{t-"{r |

3. Consider the following program changes whese the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new version
has an additional field droppingBack ToF ullBuild

|The previous version)]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors;

public void beforeCompiling(ICompilationUnit[] sourcelnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

}

/* the rest of the code is omitted #/

}

[Change contract for beforeCompiling and the other methods)

new field droppingBackToFullBuild: boolean;

matches droppingBackToFullBuild _'—_“'E{IJL]: \/

I

[The new version)

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors:
private boolean droppingBackToFullBuild; [/ a new field

public void beforeCompiling(ICompilationUnit[] sourceUnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = false;
droppingBackToFullBuild = false; [/ a new statement

[+ the rest of the code is omitted +f

¥

L

Depending on the boolean value of the new field droppingBack ToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

