Background Questions

1. Which year are you in, and what is your major?

% , {n\u“\ Wat ,ri R o Lu‘rﬂ !-M Uk.f' e

2. Rate your knowledge about Java language.

(a) Never used it.
{b) Beginner (e.g. have taken an introductory course)
d@ Medium (c.g. have done some small projects with Java)
(d} Proficient {e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?
_Eﬁ [

4. Rate your knowledge about the language vou answered above if it is different from Java.

{a) Never used it.
{b) Beginner (e.g. have taken an introductory course)
{¢) Medium {e.g. have done some small projects with it}

(d} Proficient {e.g. have experience in developing real-life programs with it)

5. Select the ways you specify vour program (multiple answers possible).
@ write comments that explain my program.
(b) I write assert statements to express my assumption.

(¢} T write formal specification.

6. Rate yvour knowledge about program contract.

{a) Never heard of it.
@Hem of it, but has not used it.

(¢} Hawve written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).
@Nmrer heard of it before this course,
(b) Heard of it, but has not used it

(e} Hawve used it.

1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distingnished from the

rest of the list.
head e nodel i3 node? L noded - rear

The head and rear are instances of class Head and Rear, respectively. That is,

Head head = new Head(); Rear rear = new Rear(};

Meanwhile, nodes in the middle are instances of class NormalNode, All three classes, Le., Head. Rear
and NormalNode, are subelasses of Nede. That is, the following is the class hierarchy for them:

Mode

N

Head MNormalMade Rear

Only NormalNode has a value field of the integer type as shown in the following:

public class MormalNode extends MNode {
Mode next: // points to the next node and is not null
int value;

public boolean hasConsecutiveZeros() {
if {'H'B‘IJ'E — I:I} {
if (((MNormalNode) next).value = 0) { // may throw ClassCastException
return true;
}

}

return next.hasConsecutivefZeros(]);

¥

[+ the rest of the code is omitted +/

+

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values (i.e., nodel.value == 0 and nodeZ.value == 0}, then
nodel hasConsecutiveZeros() refurns true,

However, the above hasConsecutiveZeros method has a bug. For example, if node3 hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because noded.next is cast to
MormalNode despite that node?.next is an instance of Rear.

Q. Suppose that we now want to throw a NonMormalNodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

;
i s

%‘:L'::*ﬁ-' o\l i 'i"r' AR AR LF'?CL.CN"IUMI

] i I . _ | r':-- [t
Slopva t MowMswie | Noddege f o

i

2. Consider the linked list used in the previous question

again. We now want to add an additional
method taillist() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel tailList()
should return a list consisting of node2, node3, and rear.

Each subclass of Mode, ie., Head, Normalhode and Rear, should override the taillist{) method. For
example, the following shows the taillist() of MormalMade.

public class NormalNode extends MNode {
private Node next; [/ not null
private int value;

public List tailList() {
List list new List()
Head head new Head(); [/ make a fresh head
list .head head; f/ set the head
head . next = this next; ff the new list staets with the mext node

return list;

¥

/+ the rest of the code is omitted «/

. J/ make a fresh list

I

t

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List taillist() {
return null;

¥

/* the rest of the code is omitted xf

}

However, the above taillist{) of Rear turns out to be buggy causing MullPginterException. So, we wrote
a change contract as follows:

ensured \result = null;
ensures (\result instanceof List) &k (\result. isEmpty() = true);

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()".

Q1. Now, explain in English what the above change contract means:

lnshed oh I\ b rebutung o t‘walﬂ'!ﬂ,.- Yornler wuthy Hae
o gn Wk ety wa e \I‘hr \gh
3

Y

O

-

Y

Q2. Fill in the following blank with a modified statement that respects the given change contract.

public class Rear extends Node {
public List tailList() {

1 v
TLVEN pews Lastl)? U

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next next next
head [| nodel | node2z || noded |, rear
pred pred pred _Jpred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node.

public class MormalNode extends Mode {
private Node prcd: // points to the preceding node.
private Mode next:
private int value;

public boolean hasConsecutiveZeros(boolean forward) {
[/ should extend it
¥

[+ the rest of the code is omitted +/

¥

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to scarch for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the sxtended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros,

Q1. We ask you to fill in the blank Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

Md pred : Node;
new param forward:boolean;

‘+matches pred = null && forward = : \/

Also, explain in English what the above change contract means:

= ®
|

| \i{; e r"\ = zw W\ o\q{l} At AT .ri;\ e - \ '{

| \| ¥)}.- LA, e U VG 1 Y-‘ u_&_ \ l_, -\,_ﬂ_‘_L,ﬂ

I'u }\;-Jﬁu "'{ L) \,{\\"t;: v 3,1'-. N UJ} ¢:- "ﬁ_{ e e]r{J\G S b,
1

,
4

4. The following shows a class that implements lterator. Any Iterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get(currentindex)).

import java.util.NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentIndex, size;
private NonNullList items; // a list with no null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;
return result; // return a non-oull value
} else {
return null;
}
}

/* the rest of the code is omitted =/

Now, we want to modify the above next method according to the following change contract.

ensured ‘\result == npull;
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

I gz eader hexk cetvined wol ow Pae et

o, \e puw wraut b Pakew &
)v‘;_;ﬁ';._,r W)'? I'ib‘v\ﬁrﬂ-l“ E}C'E.G‘ﬁllia"'-

Vv

{Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

- MoSuchElementException() of class NoSuchElementExcepticon:
This iz the default constructor of class NeSuchElementException.

public class Customlterator implements Iterator {
private int currentlndex, size:
private NomNullList items; // a list with no null item

public Object mext() {
if (currentIndex < size) {
Object result = items.get(currentlndex);
currentIndex++;
return result: // return a non-null valus
} else {

F‘a‘a‘{\hw wae Mg 'E-uc"um';ti 1.-'-~..Lw-'l'1. E}ft.ﬂﬁ ()
L]

5. The following shows the Person class that holds information about the first name, the last name, and
s0 o, We assume that none of these strings is null.

public class Person {
private String firstName; // non-null
private String lastWame; // non-null
private Nationality natiomality; // non-null

public beolean hasSameName(String first, String last) {
return firstName.equals(first} &% lastName.equals(last);

i

public String getFirstName() { return this.firstName; }
public String getlastWame() { return this.lastName; }
/* the rest of the code is omitted =/

}

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastMame, respectively. We assume that those two parameters,
first and last, cannot he null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
persan parameter cannol be null

public boolean hasSameName(Person person} {
return person.getFirstName () .equals(firstName)

kk person.getLastName().equals(lastName);
}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old_param first:String, last:String;
e .
new_param person:Person;

matches | geisen ackbic ek Maval) =- ;"{‘Hvl:h'['ﬂ':; & .5-(' -
DN, gk Lo Abverl T = ,f!)_wu{ ‘.Lwﬂ; \/
(Q1. Fill in the above blank.

Q2.

Also, explain in English what the above change contract means:

L owageem s Bk W]rw;:
i ok v P '
P {-M r:_ ‘i !'._1_-_; "T"f 4 AN et
| b
\ \ L :
\y g et o '.I' Cind ‘.. g FRTA

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;

public MethodBinding getAccessMethod() {
return syntheticMethod

¥

f# the rest of the code is omitted =/

}

|Change contract for getAccessMethod|

new field postDispatchMethod : MethodBinding ;
new param staticReference:boolean:
matches staticReference — false:

[The new version)|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod
private MethodBinding postDispatchMethod ;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod;

else return [ounbine iy Melloll : \

¥

[+ the rest of the code is omitted =*/

Q1. Explain in English what the above change contract means:

1 ! o § \ f b
2% long 2y shnleNerertige | (let Fne Gebay g
- m (! L1 i y r
? 'II'. dea Mocess J '”\I.r-%"l._":r:.-fi. "'_1" ".,bl._.-l'xfi‘ A " LAD a e | f— ._ctln,L 50
e B L E et

¢ I I |
ity deear av e Pded ol w0 auwe ooy \/

Q2. Also, fill in the blank of the new version.

=0 | R - S L A KB

bl
R U R P e T I s N

15
16
17
18
19
20
21

. Consider the following LazyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass;
if (im.isAbstract() && m.getCode() == null) {
throw new RuntimeException("bad non—abstract method with no code: "+
m+ " on " + enclosingClass).
}
tethodGen gen = new MethodGen(m, enclosingClass . getName(),
enclosingClass. getConstantPoolGen ()}
this . memberView = new BcelMethod(enclosingClass.getType(). m);
this.accessFlags = gen.getAccessFlags(); this returnType = gen.getReturnType():
this_name = gen.getName(); this.argumentTypes = gen.getArgument Types();
this.declaredExceptions = gen.getExceptions () this_ attributes = gen.getAttributes():
this maxlocals = gen.getMaxLocals();
if (gen.isAbstract() || gen.isMative (]} {
body = null:
} else {
body = gen.getlnstructionlist(); unpackHandlers{gen);
unpackLineMumbers{gen) unpacklLocals{gen);

b
assertGoodBody [):
s

The above constructor creates a custom ohject representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies

are not provided for the methods.

public abstract void foo();
public native void bar():

The problem of the above LazyMethodGen constructor :« that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,

~ the constructor should ereate an object successfully. In other words, a RuntimeException should not

be thrown.

(). Based on the above description, write a change contract for the above constructor. Yon can

use the following APIs il necessary.
_ boolean isNative() of class Method, i.¢., the class of the first formal parameter of the LazyMethodGen

constructor:
¢ This method determines whether the method is declared as native or not.

2 —— T . : - & i = oy
SN f_tu‘i’\'\ Aag B e flion pasMabhive == Tove

i

; i) - v
ot o sl el @._w Wil T ¥re riL..; {a\ W e Mg =< J: ot 2

3. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new version
has an additional field droppingBack ToFuliBuid.

§ - 1

[The previous version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList(};
private boolean reportedErrors:

public void before(‘.ompiling[ICnmpl’IationUnit[] sourcellnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

/+ the rest of the code is omitted =f

}

I

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild boolean;
matches droppingBackToFullBuild :’ Fﬂl'\"z.f_ I;

|

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList(};
private boolean reportedErrors:
private boolean droppingBackToFullBuild [/ a new field

public void befureiompiiing{lﬂﬂmpilation!_lnit[] sourcelnits) {
resultsPendingWeave = new Arraylist ():
reportedErrors = false;
droppingBackToFullBuild = false: f/ a new statement

{* the rest of the code is omitted #f

}

Depending on the boolean value of the new field droppingBack ToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are cither preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

