Background Questions

1. Which year are you in, and what is your major?

Jf 5,_;*&_-1 1\;\[) : r\:g\“ e f P“‘f}f;«.&{‘r Lursy

2. Rate your knowledge about Java language.

{a) Never used it.
(b) Beginner (e.g. have taken an introductory course)
G}}Mcdium {e.g. have done some small projects with Java)

{(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?

OCom £

4. Rate your knowledge about the language you answered above if it is different from Java.
(a) Never used it.
(b) Beginner (e.g. have taken an introductory course)
rif}‘} Medium (e.g. have done some small projects with it)
(d) Proficient (e.g. have experience in developing real life programs with it)

3. Select the ways you specify your program (multiple answers possible).
@ [write comments that explain my program.
{b} I write assert statements to express my assumption.

(¢} T write formal specification.

6. Rate your knowledge about program contract.

(a) Never heard of it.
({b)) Heard of it, but has not. used it.

(¢) Have written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).
(L&_DN&VEI heard of it before Lhis course.
(b} Heard of it, but has not used it,

() Have used it.

Part 1

L. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
H:xt node? f‘—»ﬂm noded ’_’next rear

head Hnext nodel

The head and rear are instances of class Head and Rear, respectively. That is,

Head head = new Head(); Rear rear = new Rear();

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, i.e., Head, Rear
and NermalNode, are subclasses of Node. That is, the following is the class hierarchy for them:

Mode
Head NormalNode Rear

Omly NormalNode has a value field of the integer type as shown in the following:

public class NormalNode ﬁ-xténds Mode {

Node next: // points to the next node and is not null
int value;

public boolean hasConsecutiveZeros() {
if (value = 0)

if (((MNormalNede) next). value = 0) { /{ may throw ClassCastException
return true:

h
}
return next.hasConsecutiveZeros();
}

/* the rest of the code is omitted +f

}

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node2 of the above figure have zeros as their values (i.c., nodel.value == 0 and node2 value == 0}, then
nodel hasConsecutiveZeros() returns true.

However, the above hasConsecutiveZeros method has a bug, For example, if node3 hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because noded.next is cast to
NormalMode despite that node3.next is an instance of Rear.

Q. Suppose that we now want to throw a MNonMormalModeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

E'xﬁulm&
sigrals (Wow Novia | Node & raphion) trug

(Class {\w,wk_F__/mf-i-u-;} Ul rewt 1nstance o€ Novwal ffode)

2.

Consider the linked list used in the previous question again. We now want o add an additional
pected to return a list. consisting of

method taillist() to class Node. This new tailList() method is ex
the nodes in the tail. Taking the figure used in the previous question as an example, nodel tailList()
should return a list consisting of node2, node3, and rear,

Each subclass of Neode, i.e., Head, NormalNode and Rear, should overri
example, the following shows the tailList() of MormalMode.

de the taillist() method. For

public class MormalMode extends MNode {
private Mode next; [/ not null
private int value;

public List tailList () {
List list = new List(); // make a fresh list
Head head = new Head(); [/ make a fresh head
list .head = head; // set the head
head.next = this.next: [/ the new list starts with the next node
return list;
b

J+ the rest of the code is omitted /

}

Similarly, tailList(} is overridden in Rear as well:

public class Rear extends MNode {
public List taillist() {
return null;

}

/= the rest of the code is omitted #/

}

However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote

a change contract as follows:

ensured \result = null:
ensures (\result instanceof List) && (\result . isEmpty() = true);

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()"

Q1. Now, explain in English what the above change contracl Means:

L pa U €l Lt fho previoss

eV &) an o tai l Lisd (Y ?r'wi'ti 5 woa ll ;

Ul Rew URY §iow refuvns an ins tang o c lass

f]*’;Jk v ek L‘Es gk ¢ 18 E p.-',"‘:f 1) 4 bad

e -I".VL-(\-\ =3 JI,;(-...\,E‘ .

a modified statement that respects the given change contract.

Q2. Fillin the following blank with

public class Rear extends MNode o

public List tailList() { [
cehuvn Lwaw Lisd (V) |

3. We are now going to extend the previous linked list to a doubly linked list like the following.

_'-1-255- next rnext next
head nodel node2 noded rear
prcd pred pred | pred |

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node.

public class NormalNode extends Mode {
private Node pred: // points to the preceding node.
private Node next;
private int value;

public boolean hasConsecutiveZeros(boolean forward) {
// should extend it

¥

/+ the rest of the code is omitted =/

}

The above also shows that method hasConsecutiveZeros now has a parameter forward, Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version Zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be

ahble to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new field pred:Node:
new param forward: boolean;

matches pred = null && forward = E&\iﬂ ; ><-

Q2. Also, explain in English what the above change contract means:

oo - ¥a02d

vk e pred =l

dor HO¥ ci = -:'I‘-@.!&.Q \ Qui:-pm-{ % IV/LA%-{(O
he [l o R for o tin Sov e AV Y ><

4. The following shows a class that implements Iterator. Any Iterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to ilerate over or a non-null value otherwise (ie., items.get{currentindex]).

import java.util.NoSuchElementException;

public class Customlterator implements Iterator 1
private int currentIndex, =zize;
private NonNullList items; // a list with no null item

public Dbject next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);
current Index++:
return result; // return a non-null wvalue
} else {
return null;
1
i

/* the rest of the code is omitted #*/

Now, we want to modify the above next method according to the following change contract.

ensured ‘result == null;
signals (NoSuchElementException) true:

Q1. Explain in English what the above change contract means:
|_ | i 3
(wsdeal 04 pedwming ill When there s

o wowe dew . ko ey bron pusd Ao

r‘,‘|r_-} Smrm EIQHH-E F?’Cﬁ.i’:}'{;“m ,rf

\V/

L

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following AP if necessary.

NoSuchElementException{) of class NeSuchElementException:
« This is the default constructor of class NoSuchElementException.

public class Customlterator implements Iterator {

private int currentIndex., size;
private NonNullList items; // a list with no null item

public Object mext() {
if (currentIndex < size) {
Object result = items.get(currentIndex);

currentIndex++;
return result; // return a non-null value
} else {
{WGW { L ”0 S\RLL‘ Ele v X E\,{@ﬁ'uﬂw (\L\ L
i
;

5. The following shows the Person class that holds information about the first name, the last name, and
50 0. We assume that none of these strings is null.

public class Persom {
private String firstWName; // non-null
private String lastName; // non-null
private Natiomality natiomality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted #*/

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those two parameters,

first and last, cannot be null

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be noll.

public boolean hasSameName (Person person) {
return person.getFirstName().equals{firstName)
k& person.getlastName().equals(lastName);

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

_?@ram first:String, last:String;
/ ew_param person:Person; ,.-/
/ Twdiched [praw [FU5FT = = parsen. gud Fie<d Marel] JE N%
N prev (lest) == povtor ged Lest Mowa ()

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

I dhre pars ghoed w o pRreov ahjecH 15
[iest a=d lagH oS

frta

; s
Cor-. 6.5 | ks v ¥l ge

- . harn G
e previons VR Yg! o , ond g4 Q
pe ke canae.)(

£

Part 11

. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethad () {
return syntheticMethod ;

}

f# the rest of the code is omitted #/

l

[Change contract for getAccessMethod|

new field postDispatchMethod : MethodBinding;

new param staticReference:boolean;
matches staticReference = false;

I

[The new versiﬂn]

public class InterTypeMethedBinding extends MethodBinding {
private MethodBinding syntheticMethod ;
private MethodBinding postDispatchMetheod
public MethodBinding getAccessMethod{boolean staticReference) { \/
if (staticReference) return postDispatchMethod:

else return | ‘:-'ﬁh‘il-kf-‘k."nﬁ e Lo & _i ;

}

/# the rest of the code is omitted =/

}

Explain in English what the above change contract means:
bonoS quﬁxu.im g-{(.&—{nf_ QJE\:&V{!"\‘Q

Fleld posk Dispateh g 4o & ﬂ
PRVE: l 2o Goaded [£ S‘Pﬁ“i"f Doleren e - - ¢alse

Klen T .

Q1.

< he Ake oar2,
\/'f

Q2. Also, fill in the blank of the new version.

2.

Consider the following LazyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this_enclosingClass = enclosingClass;
if [Im.isAbstract({) && m.getCode() = null) {
throw new RuntimeException("bad non—abstract method with no code: " +
m+4+ " on " + enclesingClass);

¥
MethodGen gen = new MethodGen(m, enclosingClass.getName().
enclosingClass. getConstantPoolGen()];
this. memberView = new BeelMethod(enclosingClass. getType(), m);
this.accessFlags = gen.getAccessFlags(): this,returnType = gen.getReturnType(}:
this.name = gen.getMame(); this.argumentTypes = gen. getArgumentTypes();
this.declaredExceptions = gen.getExceptions(): this.attributes = gen.getAttributes();
this. maxLocals = gen. getMaxlocals();
if (gen.isAbstract() || gen.isMNative()) {
body = null;
1 oelse {
body = gen.getlnstructionlist(); wunpackHandlers{gen):
unpackLineMumbers(gen); wunpacklocals(gen};

b
assertGoodBody ():

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.c., the first formal parameter of the constructor) does
not have its associated code for its body (see “m_ getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract void foo();
public native wvoid bar(};

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
hecause a native method does not have to have body eode. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

(). Based on the above description, write a change contract for the above constructor. You can
uze the following APIs if necessary.
- boolean isNative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen

constructor:
* This method determines whether the method is declared as native or not.

E'lhfﬂmﬁl'@i & (R line Tya pliom \ m ts Nad w2 ()

p Uit R EYE-Q/P tiom

ok ‘i'ufﬁl,u:ai‘)

3

- Consider the following program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle. Notice that the new version

has an additional field droppingBack ToFullBuild.

e

[The previous version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors;

public void beforeCompiling{ICompilationUnit [] sourceUnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = false:

}

[+ the rest of the code is omitted =/

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boolean:

matches dreppingBackToFullBuild -——[EES!E, J:
L

[The new version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList{);
private boolean reportedErrors -
private boolean droppingBackToFullBuild - [/ a new field

public void heforeCompiIing[JCompF[atiunUn-‘t” sourcelnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = falge:
droppingBackToFullBuild = false: [a new statement

/* the rest of the code is omitted wf

¥

Depending on the boolean value of the new field droppingBackToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

	page 1
	page2
	Copy of 14

