Background Questions

1. Which year are you in, and what is your major?

2 - W LeAn{é

2. Rate your knowledge about Java language.
(a) Never used it.

(b) Beginner (e.g. have taken an introductory Course)

edium (e.z. have done some small projects with Java)

(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?

[4va

4. Rate your knowledge about the language you answered above if it. is different from Java.

Never used it.
(b

(a
(¢) Medium (e.z. have done some small projects with it)

)
)} Beginner (e.g. have taken an introductory course)
)
)

(d) Proficient (e.g. have experience in developing real life programs with it)

5. Select the ways you specify your program (multiple answers possible),
write comments that explain my program.
3} T wrile assert statements to express my assumption.

{c) T write formal specification.

ii. Rate vour knowledge about program confract.

MNever heard of it.
b} Heard of it, but has not used it.

{¢) Have written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).

Tal Never heard of it before this course.
E;:: Heard of it, but has not used it.

() Have used it.

1. |The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
head ’_»next nodel = node? '-m??i{ noded 4’{%}:‘! rear '

The head and rear are instances of class Head and Rear, respectively. That is,

Head head = new Head(); Rear rear = new Rear();

Meanwhile, nodes in the middie are instances of class MormalMode, All three classes, ie., Head, Rear
and NormalNode, are subelasses of Node. That is, the following is the class hierarchy for them:

MNode

ST

Head MormalMode Hear

Only NormalMode has a value field of the integer type as shown in the following:

public class NormalNode extends Node {
Mode next; [/ points to the next node and is not null
int value;

public boolean hasConsecutiveZeros() {
if (value = 0] {

if {({{NormalNode) next).value =
return troe;

H
}
return next.hasConsecutiveZeros (),
by

[+ the rest of the code is omitted #/

}

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values (i.e., nodel value == 0 and node2.value == 0}, then

nodel hasConsecutiveZeros() returns true,

However, the above hasConsecutiveZeros method has a bug. For example, if node3.hasConsecutiveZeros()
is called for noded of the above figure, ClassCastException is thrown because nodel.next 13 cast to
MormalMade despite that node3.next is an instance of Rear.

0) { // may throw ClassCastException

(). Suppose that we now want to throw a NonMNormalNodeException instead of a ClassCastException
from hasCensecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”

or similar instanceof expressions in the change contract.

C,I-:?naiec{ (.C{a,ﬁspyﬁg{}w;m}fmgﬁﬁ in<ta 4(.3&][XL’WMWWL;Q{{Q)

& Jj nals ¢ Mon Meernal Moole *ffff‘??r-“** 1) HAext rnftance 'f NMorma(Wonle

\//

R

2 Congider the linked list used in the previous question

again. We now want to add an additional
method taillist() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist()
should return a list consisting of node2, node3, and rear.

Each subeclass of Node, i.e., Head, NormalNode and Rear, should override the taillist
example, the following shows the taillist() of MormalMode. -

{) method. For

public class NeormalNode extends Node {
private Node next; // not null
private int wvalue;

public List taillist() {

List list = new List(); // make a fresh list

Head head = new Head(); // make a fresh head

list .head = head; [/ set the head

head.next = this.next; // the new list starts with the next node
t:

return lis

1

J+ the rest of the code is omitted #/

}

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List taillist() {
return null;

}

/+ the rest of the code is omitted =/

)

However, the above tailList{) of Rear turns out to be buggy causing NullPointerExcept
a change contract as follows:

ion. S0, we wrote

ensured Yresult — null;
ensures (\result instanceof List) && (\result . isEmpty() = true);

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List{)"

Q1. Now, explain in English what the above change contract Means:

1 bhe proviews weréim , the methed vetums o el it

,Lm E A ST il me{:ﬂ‘,a{ T PR - %‘Fpgﬂ {,'d‘!'ﬁ

i

(2. Fill in the following blank with a modified statement that respects the given change contract.

public class Rear extends node {
public List tailList({) {

B@mfﬁ Aew Lavle Yo - L~
/

¥

¥

3. We are now going to extend the previous linked list to a doubly linked list like the following.

nest| next et next
head || nodel | node2 | node3 rear
pred pred pred pred

the following shows that class

(Classes should be extended and modified accordingly. For example,
NormalNode now contains an extra field pred to point to the preceding node.

public class NermalNede extends Node {
private Node pred: [/ points to the preceding node.

private Node next;
private int wvalue;

public boolean hasConsecutiveZeros{ boolean forward) {
// should extend it

¥

[+ the rest of the code is omitted =/

} o

ccutiveZeros now has a parameter forward. Depending on its
zeros are determined. While in the previous version zeros
ow expect the extended hasConsecutiveZeros to be

The above also shows that method hasCons
boolean value, the direction to search for
are searched for only in the forward direction, we n
ahle to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, We get the following
change contract template for method hasConsecutiveZeros,

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same

behavior should be preserved.

new field prcd:Node;
new param forward:boolean; -.\/

matches pred = null && forward = ;

Q2. Also, explain in English what the above change contract means:

j-r-h. fi‘ﬁf_ IT.W b’@rg"m 7
theve > & Pav- IC‘H&{J?"”{ .'P](r’jf‘? N’WCE,
o phere s o0 e praam i c@ ,f{,,._,._pv't a{ﬁr& boslERN
LW e F’-’"cs}'{ Pa hakf ﬂ,,,.,pf ,ll.qu-;._m.}'ﬂ" s trad , e frop LESALE

pad Latpe cted 4o behrve bte fame. o
Ao

4. The following shows a class that implements Iterator, Any Iterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.c., iterns. get{currentindesx)).

R
import java.util.NDSuchElamentExcaption;

Public class CustomIterator implements Iterator {
Private int currentindex, size;
Private NonNulllList items; // a list with no null item

public Object next() {
if (currentlIndex < size) {
Ubject result = items.get (currentIndex);
currentIndex++:
return result; // return a non-null value
} else {
return null];
3
T
/* the rest of the code is omitted */

}

Now, we want to modify the above next method according to the following change contract.

ensured ‘\result == pull:
signals (HoSuchElementException} true;

Q1. Explain in English what the above change contract means:

[_l-f‘ e M“ms v s T M"ﬁb’krﬂﬁ i T '!‘/[‘*L Pl WLl *,f;;u;-{fo(

*ﬁ";’lfﬂ"’l}g Mo Conh Glpmets G t‘e{}t{-‘a-’?

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following AP if necessary.

— NoSuchElementException() of class NoSuchElementException:
e This is the defanlt constructor of class NoSuchElementException.

public class CustomIterator implements Iterator {
private int currentIndex. size;
private NonNullList items; // a list with mno null item

public Object next(} {
if (currentIndex < size) {
Dbject result = items.get{currentIndex);
currentIndex++;

return result; // returm a non-null value
} elge {

Cheod new Mybuchiloment E,irgf?tfh) ; —[

2. The following shows the Person class that holds information about, the first name, the
50 on. We assume that none of these strings

last name, and
is null.

Publie class Persop (i _ —-[
Private String firstName; // non-nuli
Private String lastWName: // non-null
private Hationality natienality; // non-null

Public boolean hasSameName (String first,

String last) {
ame.equals(first) & lasty
¥

ame . equals (last);

public String getFirstName () { return
Public String getlastName() { return t
/* the rest of the code is omitted ®/

__—-—-——-—-__._______________ §
The above class has & boolean method hasSameName th

at returns true if given two parameters first
and last mateh the fields firstMame and lastName, respectively. We assume that those two parameters,
first and last, cannot be nyi|,

this. firstName: }
his.lastName; }

Now, we want to shorten the Jpar.

ameter list of hasSameName as follows. Again, we assume that the
Person parameter cannot be null,

Name () . equals (firstName)

kb person.getLastName (). equals(lastName) 3

—_—

When we shorten the parameter list,
template:

an accompanying tool generated the following change contract

old_param first :Btring,
Dev_param persaon: Person:

Uit Namel). efuals A pred (£ 7ret)
Lon. &ﬁi%/{hwc} .E?ﬂafg EMIPrm clesg 3), \\/

last:String;

QL. Fill in the above blank.

Q2. Also, explain in English what the above change contract means:
e
o

Tt e veso e

e trz Ve

&y 14 Cﬁﬂ.iq‘j{"ﬂ‘! o

g e;-fuﬁw(T hedaue i

|'u.5'_.4’éx_#{;?.rp in L Casig at fﬂ
Pﬁrj@’;ﬁef-‘iﬂf—‘-ﬂf%mﬂ) s the o

Pt of tipe sy,

'-":'ﬂi.'l,f' bt oy
Pﬁ'fjga _:?!,ﬂﬁf'.'

renf S IHw‘z"-.'f'.r"l-r-:. el P T TR
€ AL Losk i Py

3

PR W -{11{),-.

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle.

|[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod() {
return syntheticMethod

}

/# the rest of the code is omitted s/

}

[Change contract for getAccessMethad)

new field postDispatchMethod : MethodBinding;
new param staticReference: boolean:
matches staticReference = false:

[The new version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod:
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod;

else return Iﬂ_ﬂﬁﬁﬁrtﬁﬂﬁﬁﬂﬂ ; \/
} L=

[+ the rest of the code is omitted +/

}

Q1. Explain in English what the above change contract means:

1., tne A8 ey haw -F-‘@*’t Fﬂﬁ,f-p,l'_'fﬂ.'tﬁ,‘fjmmﬂf ¢F %jrﬂ Met ool Boindin L3

Hew PRGBSty ﬁlef.:rmrf a.{ iy pe. bovfean > aeleef
" Statichefevence is false , blew the oo versons will beboit the,

Same. AV,

Q2. Also, fill in the blank of the new version.

e

2. Comsides the following LazyMethodGen constructor.

=

U W™

13
14
15
16
17
15
19

21

petie LanMechodGen(Method m, LazyClassGen enclosingClass) {
s eaclosingClass = enclosingClass;
* (5= sAbstract() && m.getCode() = null) {
Hwow mew RuntimeException("bad non—abstract method with no code: " +

=+ ® on " + enclosingClass);

M=thodGen gen = new MethodGen(m, enclosingClass , getName()
enclosingClass. getConstantPoolGen());
this.memberView = new BcelMEthM[enclnsingCEass.getType{}, m};
this. accessFlags = gen.getAccessFlags(); this.returnType = gen. getReturnType();
this.name = gen getName(); this.argumentTypes — gen . getArgument Types();
this. declaredExceptions = gen. getExceptions(); this.attributes = gen. getAttributes():
this. maxLocals = gen.getMaxLocals();
if (gen.isAbstract() || gen.isMative()) {
body = aull;
} else {
bedy = gen. getlnstructionList(); unpackHandlers{gen);
unpackLineMumbers(gen): unpacklLocals{gen);

}
assertGoodBody (),

The above constructor creates a custom abject representing a Java method. This constructor raises
& RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs, Notice that bodies

are nol provided for the methods.

|

public abstract void foo (): J

public native void bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
Lecause a native method does not have to have body code. Thus, instead of raising a RuntimeException.
ne constructor should create an object successfully. In other words, a RuntimeException should not

be thrown.

Q. Based on the above description, wrile a change contract for the above constructor. You can
use the following APIs if necessary.
— boolean isNative() of class Method, i.e.. the class of the first formal parameter of the LazyMethodGen

constructor:
* This method determines whether the method is declared as native or not,

Sr5rated Cﬂ-mwefwhmﬁm@ Clm.ishbstrmo g YR M Jeblede () zznul()
L

} Ry | .r'tﬁ-l!llf,.- f .&J.E a1, .{;4\‘1 6-_',[Cer—fﬁ:‘; 1 :j TE&{SE"
[ratekes 1 Mhmtiel) - - true
4

¢ X

[I Mot i e

3. Consider the following DTOgT

version at the bottom according to the change contract in the middle. N
has an additional field droppingBack ToFullBuild.

-

public class AjPipeliningCumpiierﬂdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList(): '
private boolean reportedErrors;

[The previous version|

public veoid bEfﬂFECompiHng“Cﬂmp“ah’onUnit[] sourcellnits) {
resultsPendingWeave = naw Arraylist();
reportedErrors = false:

{* the rest of the code is omitted +/

}

am changes where the previous version at the top is changed to the new
otice that the new version

l

[Change contract for beforeCompiling and the other methods|
new field droppingBackToFu“Bqu: boolean ; f
matches droppingBackToFullEqu —_ L{_'{L{_g& —]; \

[The new version|

public class .ﬂ.jPipeIfningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors

pPrivate boalean droppingBack ToFullBuild - [l a new field

public vaid befnreCompiling{ICompf[ationUnit
resultsPendingWeave = naw ArrayList();
reportedErrors = false:
droppingBack ToFullBuild = false;

[] sourcelinits) {

[/ 3 new statement

/+ the rest of the code is omitted «+/

}

Depending on the boolean value of the new field droppingBack ToFullBuild, i he behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value js false, the new version behave in the same

a5 the previous version does.
Q. Fill in the blank of the above change contract.

