fi.

T

Background Questions

. Which year are you in, and what is your major?

U{ .) M?mkw scieancd

. Rate your knowledge about Java language.

{a) Newver used it.
(b) Beginner (e.g. have taken an introductory course)
@ledium {e.g. have done some small projects with Java]

(d} Proficient (e.g. have experience in developing real-life programs with Java)

. What programming language are you most skillful at?

5 il

. Rate your knowledge about the language you answered above if it is different from Java.

{a) Newver used it.

(b} Beginner (e.g. have taken an introductory course)

(c) Medium (e.g. have done some small projects with it)
)

(d) Proficient (e.z. have experience in developing real-life programs with it)

. Select the ways you specify your program (multiple answers possible).

a)/l write comments that explain my program.
(b} I write assert statements to express my assumption.

{c) 1 write formal specification.

Rate your knowledge about program contract.

(a) Never heard of it.
(5)Heard of it, but has not used it.

(¢) Have written some program condracts.

Rate your knowledge about JML (Java Modeling Language)}.

(a) Never heard of it before this course.
@-[canf of it, but has not used it.

() Have used it.

Part 1

L. [The linked list used in this question is the same as the one used in the sample question.]
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.

head nodel node?

nex next next bm
E noded l = rear

The head and rear are instances of class Head and Rear, respectively. That is,
Head head = new Head(}; Rear rear = new Rear();

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, ie., Head, Rear
and MormalNode, are subclasses of Node. That is, the following is the class hierarchy for them:

MNode

e

Head NormalMNode Rear

Only MarmalMode has a value field of the integer type as shown in the following:

public class MNormalNode extends Node {
Mode next: // points to the next node and is not null

int value:

public boolean hasConsecutiveZeros({]) {
if {value = 0) {
if (((MormalNode) next).value = 0) { // may throw ClassCastException
return true:

}
¥

return next hasConsecutiveZeros (),

}

[+ the rest of the code is omitted +f

+

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, il nodel and
node? of the above figure have zeros as their values (i.e., nodel.value == 0 and node2.value == 0}, then
nodel hasConsecutiveZeros() returns true.

However, the above hasConsecutiveZeros method has a bug. For example, if node3. hasConsecutiveZeras()
is called for node3 of the above figure, ClassCastException is thrown because noded.next is cast to

MNormalNode despite that nede3.next is an instance of Rear.

). Suppose that we now want to throw a MonNormaliodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary. use “next instanceof Rear”
or similar instanceof expressions in the change contract.

Sigralech (Clagsont Pephinn 7) Niext Seaemiech, Bears
(N Nevral Npdt Fxcm{:ﬁ-'.--n D Vet aptonacede Reans))

1 i
T 4
b |;_va.'ﬁ_4.

9. Consider the linked list used in the previous question again. We now want to add an additional
method tailList() to class Node. This new taillist() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist{)
should return a list consisting of node2, node3, and rear.

Each subclass of Node, ie., Head, NormalNode and Rear, should override the taillist() method. For
example, the following shows the taillist() of MormalNode.

public class NormalNede extends MNode {
private Node next; [/ not null
private int wvalue;

public List taillist() {

List list = new List(): // make a fresh list
Head head = new Head(); [/ make a fresh head
list .head = head; // set the head

head .next = this.next; // the new list starts with the next node
return list;

}

/+ the rest of the code is omitted =/

! |

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List taillist() {
return null;

¥

[+ the rest of the code is omitted «/ : _i

}

However, the above taillist() of Rear turns out to be bugey causing NullPointerException. So, we wrote
a change coutract as follows:

ensured Yresult = null;

ensures (\result instanceof List) &k (\result.isEmpty() = true):

MNote that class List has method isEmpty() that returns true il the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()".

Q1. Now, explain in English what the above change contract means:

ookt ad g 18 EwEnivg wall | A i VIR CERnl e Y

i AR, { WL el L “.'-‘\,l 2

@
X

Q2. Fillin the following blank with a modified statement that respects the given change contract.

public class Rear extends Mode {
public List taillist()} {

|_M.Mm Wi -) \ - -) | Vi

! 74

3. We are now going to extend the previous linked list to a doubly linked list like the following.
i niesck next next next
head [, 7| noder [T node? | nodes || rear
: pred pred ___lpred pred

Classes should be extended and modified accordingly. For example, the following shows that class
MarmalMode now contains an extra field pred o point to the preceding node.

—

public class NormalNode extends Node {

private Node pred: // points to the preceding node.
private Node next:

private int wvalye:

public boolean hasConsecutiveZeros(boolean forward) {
// should extend it
}

/* the rest of the code is omitted #f

The above also shows thal method hasConsecutiveZeros now has a parameter forward. Depending an ils
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Fart of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros,

Q1. We ask you te fill in the blank, Note that the following change contract should say that
only il forward is false, hasConsecutiveZeros may hehave differently from before, and otherwise the same
behavior should be preserved.

new field pred:Node:
new_param forward:boolean : y

matchas pred =— null & forward =— I[ﬂmk_]; \/

Q2. Also, explain in English what the above change contract means:

£l 1 Y ' Coh A oA vy
Tw wind RJEM.N.&M‘ Fardt g & i SO womar & o aiin

povovAttins Goarongl |
Losronrngd (L Sk . R EMOAI Tt o ity winbies Olswiol b Baad

For e poga worl pYCol cquaty AN et

an pleuiowd vt o

;

4. The following shows a class that implements Iterator. Any Iterator class must have a next method that
retirns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items get{currentindex)).

import java.util.NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentIndex, size;
private NonNulllist items; // a list with no null item

public Object next() {
if (currentIndex < size} {
Object result = items.get(currentIndex);
current Index++;
return result: // return a non-null wvalne
} else {
return null;
}
F

/* the rest of the code is omitted */

s

Now, we want to modify the above next method according to the following change contract.

ensured ‘result == null;
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

I mleuiened AN | e FERANY wrlag da nuadd L
L]

Tn waw yavgionn s Ao Cuch BPlovass Extaptinn & HIDWN
1

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change.
contract. You can use the following API if necessary.

- NoSuchElementExceptiun{} of class NoSuchElementException:
This is the default constructor of class MNoSuchElementException.

public class CustomIterator implements Iterator {
private int currentIndex, size:
private NonWulllist items; // a list with no null item

public Object next() {
if (currentIndex < size) {
-Object result = items.get{currentIndex);
currentIndex++;
return result; // return a non-null value
} else {

etumia wews Molie\ Blavwnan E‘ﬁ:‘e.ﬁkf;m(\} y

5. The following shows the Person class thai holds information about the first name, the last name, and
s0 on. We assume that none of these strings is null.

public class Perscn {
private String firstName; // non-null
private String lastName; // non-null
private Nationality natiomality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted */

The ahove class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively, We assume that those two parameters,
first and last, cannaot be null,

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName(Person person) {
return person.getFirstName().equals(firstName)
k& person.getLastWame().equals(lastName);

1

When we shorten the parameter list, an accmﬁpanying tool generated the following change contract
template:

old_param first:3tring, last:String;
new_param person:Person;

matches .ﬁ,{.r-., LTS [' P - 0t FppMoanl 3" I8 i \/’
Lok -Ealu-r?«-!-&. (ot Bt M-H"'JM\ 3

Q1. Fill in the above blank.

Q2. Also, explain in English what the above change contract means:

TN Han W dml{-rn,u_a1 oleh poansA bl | Dims sael Lo suve

1"{-.;.'|m:_d~ 'v:'-«} o flow PeRWELS | PwWlou A 'rTu,p{ bovioan .
EREE LN ER LN &

po ;
Do Han (BRI Ty Gy) 1o Jouton T B loaats i
B AT RN T R i

| &) 5 : L
M eaaly parton - gak Yard Nowad () o Man at\remlow ghinatel lad v

& opand

]

Part 11

. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

|The previous version|

public' class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod

public MethodBinding getAccessMethod () {
return syntheticMethod ;

}

[+ the rest of the code is omitted =*f

|

[Change contract for getAccessMethod|

new field postDispatchMethod: MethodBinding:
new param staticReference:boolean;
matches staticReference =— false;

l

[The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod:
private MethodBinding postDispatchMethod

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod;

else return r Cypaduatic Metnoel : .
} 1 \/

[+ the rest of the code is omitted =/

}

1. Explain in English what the above change contract means:

T ey vostion | adeteel pew Eidld part Dirgaecta Medvoe) A dupc MeHaooh Rinality

At RO W‘*M Tvadie Pel panne g M e Bonleon) . e B fekdt
rivtn® ook leQedetinct ;_’?4[“} Biss e ousaieh o ikion Bl

o

Q2. Also, fill in the blank of the new version.

B

= e <R e TR RN R,)

Consider the following LazyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass,
if (Im.isAbstract() && m.getCode() =— null} {
throw new RuntimeException(®bad non—abstract method with no code:
m- " on " + enclosingClass);

II+

¥
MethadGen gen = new MethodGen(m, enclosingClass.getName(],

enclosingClass. getConstantPoolGen{));
this.memberView = new BeelMethod(enclosingClass . getType(], m);
- this.accessFlags = gen.getAccessFlags(); this.returnType = gen.getReturnType(),

_this.name = gen._getMame(}; this.argumentTypes = gen.getArgument Types();
this.declaredExceptions = gen.getExceptions(); this. attributes = gen getAttributes();
this maxlecals = gen, getMaxlocals();

if (gen.isAbstract({) || gen.isNative()) {

body = null:

} else {
body = gen.getinstructionblist(); wunpackHandlers{gen);

unpackLineMumbers(gen}: unpacklocals(gen});

assertGoodBody (),
3

The above constructor creates a custom object representing a Java method, This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (sce “m.getCode() == null" at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies

are not provided for the methods,

public abstract void foo();
public native void bar();

The problem of 1he above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, 4 RuntimeException should not

b thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.
~ boolean isMative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen

constructor:
e This method determines whether the method is declared as native or not.

AT (Dunbinns Ter Pien) VW whNoAnL () == 4V |

(PR | g
ni) - Clevioly Busadioa Eveeprtion |
| .

3. Consider the following program changes where the previous version at the top is-changed to the new

version at the bottom according to the change contract in the middle. Notice that the new version
has an additional field droppingBack TeFullBuild.

| N

[The previous version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist();
private boolean reportedErrors:

public void beforetompiiing{ICompiiationUnit[] sourcellnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false;

¥

[+ the rest of the code is omitted /

}

[Change contract for beforeCompiling and the other methods]

matches droppingBackToFullBuild :f —fa\ye_ - ;

new field droppingBackToFullBuild - boolean; /
X J
Vi

!

[The new version]

public ¢lass AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave — new ArrayList ()
Private boolean reportedErrors:

private boolean droppingBack ToFullBuild : [oa new field

public veid beforecompiiing{FCompi!atiunUnit[] sourcellnits) |
resultsPendingWeave = new ArrayList (),
reportedErrors = false!

droppingBackToFullBuild = false: /] a new statement

[+ the rest of the code is omitted =f

&
E |
Depending on the boolean value of the new field droppingBackToFullBuild, the behaviors of the methods

in AjPipeliningCompilerAdapter are either preserved or changed. Ounly if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does,

Q. Fill in the Llank of the above change contract.

