o

=I

Background Questions

- Which year are you in, and what is vour major?

& LoMPOTEE ferpnlCh

3 =

- Rate your knowledge about Java languape.

{a} Never used it.
(L) Beginner (e.g. have taken an introductory course)
(e} Medium (e.g. have done some small projects with Java)

(d} Proficient (e.g. have experience in developing real-life programs with Java)

- What programming language are you most skillful at?

4=t

L

- Rate your knowledge about the language you answered above if it is different from Java.

(a) Never used it,

(b) Beginner (e.g. have taken an introductory course)

(¢} Medium (e.g. have done some small projects with it)

Lgi&/ Proficient (e.g. have experience in developing real-life programs with it)

- Select the ways you specify your program (multiple answers possible).

(a] T write comments that explain my program.
(b) I write assert statements to express my assumption.

{e}) T write formal specification.

. Rate your knowledge about program contract.

(&T Never heard of it.
(b} Heard of it, but has not used it.

{¢) Have written some program contracts.

- Rate your knowledge about JML (Java Modeling Language).

{a} Never heard of it before this course,
(] Heard of it. but has not used it,

(e) Have used it.

Part I

1. |The linked list used in this question is the same as the one used in the sample question.]
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
ext oxt ext t
headjn—» nodel node? 8 node3 [— rear

The head and rear are instances of class Head and Rear, respectively. That is,

L

Head head = new Head(); Rear rear = new Rear();

Meamwhile, nodes in the middle are instances of class NormalMode. All three classes, i.e., Head, Rear
and NormalNode, are subelasses of Node. That is, the following is the class hierarchy for them:

MNode

D™

Head MormalMode Rear

Umly MormalMode has a value field of the integer type as shown in the {ollowing:

public class MormalNode extends MNode {
Mode next; [/ points to the next node and is not null

int value;

public boolean hasConsecutiveZeros() {
if {value = 0) {

if {{(NormalNode) next).value =
return true;

b
b
return next hasConsecutiveZeros();
¥

[+ the rest of the code is omitted =+/
T
We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node2 of the above figure have zeros as their values (i.e., nodel.value == (and node2.value == 0), then
nodel hasConsecutiveZeros() returns true.
However, the above hasConsecutiveZeros method has a bug. For example, if node3.hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because node3.next is cast to
MormalNode despite that node3.next is an instance of Rear.

0) { // may throw ClassCastException

Q. Suppose that we now want to throw a NonNormalNodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceaf expressions in the change contract.

wogrotsd ((o (ont L xtey bioe) pant iwatororof Faal
L R ?‘:’A.Ji"-j} FEVIY S

rappts [Mo rhox s rjeds H

At Ez’

2. Consider the linked list used in the previous question again. We now want to add an additional
method taillist() to class Node. This new taillist() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel tailList()
should return a list consisting of node2, node3, and rear,

Each subclass of Node, i.e., Head, NormalNode and Rear, should override the tailList() method. For
example, the lollowing shows the taillist() of NormalNode.

public class MormalNode extends MNode {
private MNode next; // not null
private int wvalue;

public List taillist(} {
List list = new List(); // make a fresh list
Head head = new Head(): // make a fresh head

list . head head; f/ set the head
head .next = this.next; // the new list starts with the next node

return list ;

}

/# the rest of the code is omitted =/

} —

Similarly, tailList() is overridden in Rear as well:

public class Rear extends MNode {
public List tailList() {
return null;
}

/* the rest of the code is omitted =/

}

However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:

ensured \result = null;
ensures (\result instanceof List) && (\result.isEmpty() == true);

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()".

Q1. Now, explain in English what the above change contract means:

}?nwfg}wiﬂr Ao ol t!g il L "‘;-’I,-VJJ_'

Pl , Uﬂ-}eb value 3 Abdest s Oan Avdleaca .‘»5,
he) P Ao, sebores Liee b

L »

a4 {;'.j, Ao g B g EJ«A,F‘{*_,(Lottt
%

crfea e AR e
Feaudl v Ef""f'

st Hbs feeritend L-' {_:r.ﬂ Leados ot

Q2. Fillin the following blank with a modified statement that respects the given change contract.

public class Rear extends MNode {
public List taillList{) {

Lish lind = www Llaf0); Adberr Lot _

3. We are now going to extend the previous linked list to a doubly linked list like the following.
next next | nesxt nesxt

head |, nodel || node2 | noded | rear
pred pred pred prod

Classes should be extended and modified accordingly. For example, the following shows that class
Normaliode now contains an extra field pred to point to the preceding node.
i

public class NormalNode extends Node {
private Nede pred; // peoinls to the preceding node,
private Mode next:
private int value,

public boolean hasConsecutiveZeros(boolean forward} {
/{ should extend it
}

[+ the rest of the code is omitted =/

}

The above also shows that method hasConsecutiveZeros now has a parameter forward, Diepending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new field prod:Node;
new param forward:boolean;: \/

matches pred = null && forward = E:;E:

Q2. Also, explain in English what the above change contract means:

Ttz & & P %’aﬁa" Wf,aﬁ‘pred}@ ’ij" rJocl s

Thip KL L aacor, olso s A A fa.m.,«ﬂiu_ '.Fom)md

D) Leoloas D Pe
Tt Ex,,-_m bep A z;:ﬁf'_). e F"i» wd Ll g Al e FALE A ,-"_..; '
(R 22 SErat MR v ba ol e, A ol O s

pranhin formard’ b L, 7

pred= ruil '

b b g F)

. The following shows a class that implements Iterator. Any Iterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get{currentindesx)).

import java.util.NoSuchElementException;

publie class CustomIterator implements Iterater {
private int currentIndex, size;
private NonNulllist items; // a list with no null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentlIndex);
current Index++;
return result; // return a non-null value
} else {
return null;
}
}
/* the rest of the code is omitted =*/
1

Now, we want to modify the above nea method according to the following change contract.

ensured ‘result == null;
signals (NeSuchElementException) true;

Q1. Explain in English what the above change contract means:

T Gl W WA LEOr, Jha Ariddt a rpaddd, |
Tn Ca o vAALow b Laapnrt o NoLuch Elercert £ xeopleon

—

Lpflead.

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following APT if necessary.

- MNoSuchElementException{) of class NoSuchElementException:
¢ This is the default constructor of class NoSuchElementException.

public class CustomIterator implements Iterater {
private int currentlndex, size;
private NonNulllist items; // a list with no null item

public Object next(} {
if (currentIndex < siza) {
Dbject result = items.get(currentIndex);

currentIndex++;
return result; // return a non-null value

} else {
| tHoow revs Moloel Elowertxtepliond W;

iy

} v

}

5. The following shows the Person class that holds information about the first name, the last name, and
so on. We assume that none of these strings is nuoll,

public class Person {
private String firstName; // non-null
private String lastName; // non-null
private Nationality nationality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) &k lastName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getLastName{) { return this.lastName; }
/* the rest of the code is omitted =/

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the felds firsthlame and lastName, respectively. We assume that those two parameters,

first and last, cannol be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be noll.

public boolean hasSamelName (Person person) {
return person.getFirstName(}.equals(firstName)
k& person.getLastName().equals(lastName);

!

When we shorten the parameter hst, an accompanying tool generated the following change contract
template:

0ld_param first:5tring, last:String;
new_param person:Person;
matches Siapk == LA ,aas,,u?ﬂ{nmm:“} § 5.9 ..
\ 4 4 F L
fash == PM{.?«J Last Flosae U)

1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

hoont ery Peplaced By | perron’ 4 ‘Poson' Aupt pe e
. 0

oo 7 (PR EELE L

Tee diom o

Liost bas At Adnae ba dies 04 DL L gt Eryel Bsaar 0

1 ;

t !
Dy_pn J.’J l.i'?-’.'.-'} oA m‘,

; 26t Latf Mowrasr 00
Aok g p.ﬂ..{f.ff_.-r' et IF—(-"’--V‘"?‘"- '€’ "j

Te Hboe P‘ﬂu;ﬂki yaAsLON fine foAss s #‘WA "o Alrond Lo

varsiors wortdd okl o 'j*Lf 1{ \/

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

[The previous version]

It:n.li.':!i':: class InterTypeMethodBinding extends MethodBinding {
| private MethodBinding syntheticMethod;

public MethodBinding getAccessMethod () {
return syntheticMethod:

}

/% the rest of the code is omitted =/

}

I

[Change contract for getAccessMethod]

new field postDispatchMethod: MethodBinding;
new param staticReference:boolean;
matches staticReference = false;

[The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod:
private MethodBinding postDispatchMethod:

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod:

else returnm | gqhi-;‘.,fj:!’-.)?ymd J :
“_l

}

/+ the rest of the code is omitted &/

}

Q1. Explain in English what the above change contract means:

Ton Hoe rgwl werdes, , s 2 Ly 2 A éﬂ’d’ﬁ aolpled Lo "i'-"ﬁ“"’. ’
olose - 13';'&2{3}&?&.}-"&- padtod :.g’ 15}?&‘_“1;;;-“3{;@1;,;-?‘ ,b._,]rF.c j";"u D’-«,u Y3
gelh creae Muthod hos 2 P FM;?H:)_J,'. ' gdodio P—ft{b’u‘#cf 5}; Lonlos.s
i,;{}t;p b Dt Ateo Worstma. The Lwm orsceps WY beho e
kfu Lowss H a2 ¥ o lnns j, ‘et Lolrreets' 8 Jolis \/

Q2. Also, fill in the blank of the new version.

2. Consider the following LazyMethodGen constructor.

o B - TR S e

.

w

10
11
12
13
14
15
16
1T
18
19
20
21 |}

L

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this. enclosingClass = enclosingClass;
if (Im.isAbstract() & m. getCode () = null) {
throw new RuntimeException("bad non—abstract method with no code: Y 4+
m+ " on " + enclosingClass):
}

MethodGen gen = new MethodGen(m, en closingClass . getName()
ent:!usingClass.getConstantPaoiGen{)};

this. memberView = new EceiMethodI[em:!osingCiass.getType[}. m);

this.accessFlags = gen.getAccessFlags(): this.returnType = gen.getReturnType();

this.name = gen.getName(); this.argumentTypes = gen . getArgument Types ();

this. declaredExceptions = gen.getExceptions{); this.attributes = gen. getAttributes()
this. maxLocals = gen.getMaxLocals ()

if (gen.isAbstract() || gen.isMative()) {
body = null;

} oelse {
body = gen. getlnstructionList (); unpackHandlers(gen);
unpackLineNumbers(gen): unpacklocals(gen);

assertGoodBody ();

The above constructor creates a custom object representing a Jav
a RuntimeException (sec line 4-5) if method m (Le., the
not have its associated code for its body (see “m.get
expected to have a body. Otherwise, an object shoul
method does not have

are not provided for the methods.

a method, This constructor raises
first formal parameter of the constructor) does
Code() == null” at line 3) when this method is
d be created successfully. Remember that a Java
its ‘body only when it is declared as either an abstract method or & native
method. That is, the following method declarations are legal in Java programs. Notice that bodies

public abstract wvoid foo ();
public native veid bar();

The problem of the above Laz
the given first parameter m

the

be thrown.

Q.

Based on the above description. write a change contract for the above constructor. You can

use the following APIs if NECeSEATy.

boolean isMative() of class Method, ie., the class of the first formal
constructor:

» This method determines whether the method is declared as native or not.

yMethodGen constructor is that a RuntimeException is raised even when
represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
constructor should create an object successfully. In other words, a RuntimeException should not

parameler of the LazyMethodGen

:r;"ll] -il i—.!‘_,!_,:":'

g . . - i
WA . MF'JS'.?..IR! fig i) kg

b4

3 Comsades the Sliowing program changes where the previous version at the top is changed to the new
weesim % “he bottom according to the change contract in the middle. Notice that the new version

Lo wn w0 womal field droppingBackToFullBuild.

[The previous version|

—u5lic class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList():
private boolean reportedErrors:

public void beforeCompiling(ICompilationUnit[] sourcellnits) {
resultsPendingWeave = new Arraylist():
reportedErrors = false;

1

[+ the rest of the code is omitted =/

}

I

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boolean; _
matches droppingBackToFullBuild = [fal2f B A

I

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArraylList():

private boolean reportedErrors;
private boolean droppingBackToFullBuild; [/ a new field

public void beforeCompiling(ICompilationUnit [] sourcelnits) {
resultsPendingWeave = new Arraylist();

reportedErrars = false;
droppingBackToFullBuild = false; // a new statement

h

/+ the rest of the code is omitted */

}

of the new field droppingBackToFullBuild, the behaviors of the methods

Depending on the boolean value
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

