Background Questions

- 1. Which year are you in, and what is your major?

Al

Ai- . LoV Pty Lo nepyrY -
| j _/

2. Rate your knowledge about Java language.

(a)/Never used it,
(Ib) Beginner (eg. have taken an introductory course)
{¢) Medium (e.g. have done some small projects with Java)

(d) Proficient (e.g have experience in developing real-life programs with Java)
3. What programming language are you most skillful at?
Ot

4. Rate your knowledge about the language you answered above if il is different from Java.

{a) MNewer used it
(b} Beginner (e.g. have taken an introductory course)
' \[-_.{j/ﬂ-lcdium {e.g. have done some small projects with it)

(d) Proficient {e.g. have experience in developing real-life programs with it)

5. Select the ways you specify your program (multiple answers possible).

(a) X write comments that explain my program.

(b) T write assert statements to express my assumption.

(c) 1 write formal specification.
. Rate your knowledge aboul program confract.
{a) Meyer heard of it.
L{%Zﬂ of it, but has not used it.
{¢) Have written some program contracts.

7. Rate vour knowledge about JML (Java Modeling Language).

er heard of it before this course.

(a) Mg
{b¥ Heard of it. but has not used it.

(¢) Have used it.

Part 1

is the same as the one used in the sample question.]

1. [The linked list used in this question
the rear of the list are distinguished from the

Consider the following linked list where the head and

rest of the list.
head ‘iﬂ" nodel ‘E"

The head and rear are instances of class Head and Rear, respectively. That is,

next
o rear

Head head = new Head(); Rear rear = new Rear():

instances of class MormalNode. All three classes, i.e., Head, Rear

Meanwhile, nodes in the middle are
following is the class hierarchy for them:

and NormalNode, are subclasses of Node. That is, the

Naode

el

Head MormalMode Rear

Only Normaliode has a value field of the integer type a5 shown in the following:

public class MNormalNode extends Node {
Mode next: f/ points te the next node and is not null

int wvalue;

public boolean hasConsecutiveZeros() {
if (value = 0) {
if ({(NormalNode) next}.value =
return true
}
b

return next.hasConsecutiveZeros(};

0} { // may throw ClassCastException

¥

[+ the rest of the code is omitted #/

'

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values (Le., nodelvalue == 0 and node? value == 0}, then

nodel hasConsecutiveZeros() returns true.

However, the above hasConsecutiveZeros method has a bug. For example, if node3 hasConsecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because node3.next is cast to
MormalNode despite that node3.next is an mstance of Rear.

stException

(). Suppose that we now want to throw a NonNormalNodeException instead of a ClassCa
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”

or similar instanceof expressions in the change contract.

9'. j e ‘;;t (_ (8 lﬂi{ Cpkg.\l' E;Tf{"‘rf'l'r“) ‘Ii’“‘:ﬂ'} s bowee C’f .
/‘L/IC*}'J""""A/E&&’-’ \/,’

i = 1 lorfpe Fins s M Exd :..P"' ‘!':'-‘-M-!"P
Cir a 1ot I-j { AMep Mgy el Mo de LT F : * f'j
Wl

ke povy

2. Consider the linked list used in the previous question again. We now want to add an additional
method taillist() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist(}
should return a list consisting of node2, noded, and rear,

Each subclass of Node, i.e., Head, NormalNede and Rear, should override the tailList() method. For
example, the following shows the tailList() of MermalMode.

public class NormalNode extends Node {
private Node next; [/ not null
private int value;

public List taillist() {
List list = new List{); // make a fresh list
Head head = new Head(): // make a fresh head
list . head head; // set the head
head .next = this.next; // the new list starts with the next node

return list;

}

/+ the rest of the code is omitted */

}

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List taillist()} {
return null;
1

/+ the rest of the code is omitted +/
}

However, the above tailList() of Rear turns out to be buggy causing MullPointerException. So, we wrote
a change contract as follows:

ensured \result = null;
ensures (\result instanceof List) && (\result.isEmpty() = true);

Note that class List has method sEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()"

Q1. Now, explain in English what the above change contract means:

Lo beod ¢ 4 ("rz"-”'.*j Ao resuld Teorull

ST cobrat R ppouier bl tre FPsud

deld be gl ~ el ek e

ok

,.’.L, " r.i L pL““"\.?jﬂ . A
X

Q2. Fill in the following blank with a modified statemen! that respects the given change contract.

public class Rear extends Mode {
public List tailList{) {

[veborn vew Da(l —]

i —

}

}

3. We are now going to extend the

previgus linked lList to a doubly linked list like the following.

next next | next next =
head [, nodel node2 [| node3 | pear
prod i pred pred prcd

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node.

i

public class MNormalNode extends Node {

private Mode pred: // peints to the preceding node.
private Mode next;

private int value;

public boolean hasConsecutiveZeros(boclean forward) {
/] should extend it
1

/+ the rest of the code is omitted */

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on ils
boolean value, the direction to scarch for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros Lo be

able to search for zeros in both directions.

following a few refactoring

Part of the above extension to a doubly linked list can be automated by
we get the following

steps. After applying refactoring steps of adding a field and adding a parameter,
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved. '

new field prod:Node;
new param forward : boolean .

matches pred = null && forward = 'E-"'—“-E__]' \/

Q2. Also, explain in English what the above change contract means:

fﬂ’!P -EPDY'U*I&'-V&[be ¢ et - ?tJ}ﬂw{ Loy & ire (‘_ttni!__
o rew Mede .'=r-’r.JI i odded olio. The beswls
'&'r\ n‘[! pod pew VRwel o j aye o te }“"”‘J
% 3 ¢
Lt Y B € d 15 hul o '{(O]’ o d \/ﬂ

4 yue

4. The following shows a class that implements Iterator. Any lterator class must have a next method that
returns the next item to iterate over. The next method in the below returns either pull if there s no
more item Lo iterate over or a non-null value otherwise (i.e., items. get(currentindex)).

impert java. util.NoSuchElementException;

public class Customlterater implements Iterator {
private int currentIndex, Size;
private NonNullList items; /{ a list with no null item

public Object next() {
if (currentIndex < size) {
Object result = items .get (currentIndex):
currentIndex++;
return result; // return a nonm-null value
T else {
return null;
}
t

/* the rest of the code i= omitted =/

Now. we want to modify the above next method according to the following change eontract.

ensured ‘\result == oull;
signals (HoEuchElamentExceptian} trua;

Q1. Explain in English what the above change contract mMeans:

The Pw,;puS ey geer Frony®) b rd|

¥
|__.n.1:|‘ o Heerr e b 1 Levin
Llap e

B./\‘I’ P'i." Ir ,-";l'.ri i J.'iﬂ f_‘ r,p.i"l.ﬂ,Pn -I‘ -| w r.F-PJ’fr.-
VB by i
LA L‘Pv ;

il Lo Ahesn 7
;’"VPIPP'p; \/

|

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

MoSuchElementException() of class NoSuchElementException:
» This is the default constructor of class NoSuchElementException.

public class Customlterator implements Iterator {
Private int currentlndex, size;
private NonMulllist items; // a list with no nmll item

public Object next() {
if (currentindex < size) {
Object result = items.get(currentIndex):
currentIndex++;
return result: // return a non-null wvalue
} else {

threr My Sucln € ererd Extoplin)

9. The following shows the Person class that holds information about the first name, the last name, and
50 0. We assume that none of these strings is null.

I;lblic class Person {

private String firstName: // non-null
private String lastName; // nom-null
private Nationality nationality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

¥

}

public Btring getFirstName() { return this.firstName; }
public String getlastName() { return this.lastName: }
/* the rest of the code is omitted */

The above class has a boolean method hasSameName that returns true if given two parameters first

and last match the fields firstName and lastName, respectively. We assume that those two parameters,
first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot he null.

public boolean hasSameName(Person person) {
return person.getFirstName (). egquals(firstName)

k& person.getLastName().equals(lastName);
}

When we shorten the parameter list. an accompanying tool generated the following change contract
template:

old_param first:String, last:String;
new_param person:Perszon;

matches ;Y;,_Jl‘h-:rﬁi_- Mawe == N pwv [FEPT) |
Poan(asd Apmp = = N |r;:-+Vf(w:+J r@ |

Q1. Fill in the above blank.

Q2. Also, explain in English what the above change contract means:

The werulls of pew (BsEr ond L1

¥ Er S

ol | 1 e E-r'if-F":f ik o Peres s ‘(.‘.”" b.xye e \/

J‘H? glxr..-! Lpptree & el

2C

Part 11

|. Consider the following program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle.

[The previous version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod () {
return syntheticMethod;
}

/+ the rest of the code is omitted #f

I

[Change contract for getAccessMethod]

new field postDispatchMethod: MethodBinding.
new param staticReference:hboolean:
matches staticReference = false;

I

|The new version]

public class InterTypeMethodBinding exterds MethodBinding {
private MethodBinding syntheticMethod:
private MethedBinding postDispatchMethod ;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod

else return | f[iﬂ"lhf‘"ﬁf{ ,I«l?l'}\,-,‘-‘l _:] : /
} i /
/+« the rest of the code is omitted «/ H\/

¥

()1. Explain in English what the above change contract means:

pdd & vew MHM:’”‘LWJ-E-J: .--"'Iru-;] D1 ¢ ja-fckg"”n-t-]nwf
J

éul‘o)l - R]‘:-,g_';r'.:i\"}' 5I'-Fr.nl-|r k '"-{ﬂ.‘rhr'{"
' A beoorly padded (beth ol Yt hatir
o ; : Mepdhod)

i [sian i ”
I_,\,'TE"H 0 bea i B pl ar [P 5 {-r.xll,j[.s \/

Q2. Also, fill in the blank of the new version.

-II—:"F‘ :'p.'l'J‘t'Ih |t

o]

16

21

Consider the following LazyMethodGen constructor.

public LazyMethodGen{Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass;
if (Ym.isAbstract() && m.getCode() = null) {
throw new RuntimeException("bad non—abstract method with no code: " +
| m-+ " on " + enclosingClass);
|
}
| MethodGen gen = new MethodGen{m, enclosingClass.getName().
enclosingClass. getConstantPoolGen() }:
this_memberView = new BeelMethod(enclosingClass.getType(). m};
| this.accessFlags = gen.getAccessFlags(): this. returnType = gen.getReturnType():
| this_name = gen.getName(); this.argumentTypes = gen. getArgumentTypes();
| this.declaredExceptions = gen.getExceptions(): this,attributes = gen.getAttributes();

this_maxlocals = gen. getMaxlocals():

if (gen.isAbstract() || gen.isNative())} {
body = null;

T else {

body = gen.getinstructionList(): uwnpackHandlers{gen]:
unpackLineMumbers(gen); unpackLocals{gen);

assertGoodBody () ;

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
cxpected to have a body. Otherwise, an objeet should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Motice that hodies
are not provided for the methods.

public abstract veoid foo();
public native wvoid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor-should create an object successfully. In other words, a RuntimeException should not
be thrown.

Q). PBased on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.
boolean isMativel) of class Method, i.e., the class of the first formal parameter of the LazyMethodGen

constrictor:
e This method determines whether the method is declared as native or not,

—

P 4 e rﬂ"' = EE""? ilpr" n _..-'
new - Pnymﬂ" £ .“l’?‘ i J

poa

Lr"l?{'? T L'F'S {‘; _{_—'Igr: e) = = ’| I']"xlj- £

3. Conmder the following program changes where the previous version at the top is changed to the new
wersson &t the bottom according to the chanpe contract in the middle. Notice that the new version
has an additional field droppingBack ToFullBuild.

| |The previous version|

|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayLlist();

private boolean reportedErrors;

public void beforeCompiling(l1CompilationUnit]] sourceUnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

}

[+ the rest of the code is omitted =/

}

|

|Change contract for beforeCompiling and the other methods|
g

new_field droppingBackToFullBuild: boolean;
matches droppingBackToFullBuild = {11 :
[{false N\ /

I

[The new version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist();
private boolean reportedErrors:
private boolean droppingBackToFullBuild; /7 a new field

public void beforeCompiling(ICompilationUnit[] sourceUnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false;
droppingBackToFullBuild = false; // a new statement

/* the rest of the code is omitted +/

'

Depending on the boolean value of the new field droppingBack ToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are cither preserved or changed. Ouly if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

C¢. Fill in the blank of the above change contract.

