Background Questions

Which year are you in. and what is your major?

4 U-m;:u‘:tu § Cuonh

. Rate your knowledge about Java language.

(2] Never used it.
(b} Beginner {(e.g. have taken an introductory course)
(c} Medinm (e.g. have done some small projects with Java)

w}/ Proficient {c.g. have experience in developing real-life programs with Java)

. What programming language are you most skillful at?

T, [L&

. Rate your knowledge about the language vou answered above if it is different from Java.

(&) Never used it.
(b) Beginner (e.g. have taken an introductory course)
(¢) Medium (e.g. have done some small projects with it)

{(;l'f Proficient (r.g. have experience in developing real-life programs with it)

. Select the ways you specify your program (multiple answers possible).

[;fj I write comments that explain my program.
(b} I write assert statements to express my assumption.

() 1 write formal specification.

. Rate your knowledge about program contract.

(a) Never heard of it.
1;1’1’}’ Heard of it, but has not used it,

{¢) Have written some program contracts.

. Rate your knowledge about JML {Java Modeling Language).

;,sfj Never heard of it before this course.

(b} Heard of it, but lias not used it

(£} Have used it.

Part 1

1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
i ext
head g nodal e nodea? i naded n—-‘ rear

The head and rear are instances of class Head and Rear, respectively. That is,
Head head = new Head(); Rear rear = new Rear{);

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, i.e., Head, Rear
and NormalNode, are subclasses of Node. That is, the following is the class hierarchy for them:

Mode

]

Head MNormalNode Rear

Only NormalMode has a value field of the integer type as shown in the following:

public class NormalNode extends MNode {
Mode next; [/ points to the next node and is not null

int value;

public boolean hasConsecutiveZeros() {
if (value = 0} {
if (((NormalNode) next). value = 0) { [/ may throw ClassCastException
return true;

}
}

return next_hasConsecutiveZeros();

}

/* the rest of the code is omitted #/

}

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node2 of the above figure have zeros as their values (i.e., nodel.value == 0 and nodel value == 0), then
nodel hasConsecutiveZeros() retirns true.

However, the above hasConsecutiveZeros method has a bug, For example, if node3.hasConsecutiveZeros()
is called for node3 of the ahove figure, ClassCastException is thrown because node3.next is cast 1o
NormalNode despite that node3.next is an instance of Rear.

Q. Suppose that we now want to throw a NonMormalNodeException instead of a ClassCastException
from hasConsecutiveZeros{). Write a change contract accordingly. If necessary, use “next instanceol Rear'
or similar instanceof expressions in the change contract.

fﬁm'ﬂﬂ. | Choss ot gliom) 'k Vnshonced NoDaayNedd),
g".ﬁf\ﬁ“ H.\H‘ rblomehnd sl fc,‘l._(x‘ﬁlﬂn"ﬁ Yo 'Ir \/

2. Consider the linked list used in the previous question again. We now want to add an ad_di‘tiﬂna]
method taillist() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist()
should return a list consisting of node2, node3, and rear.

Each subclass of Node, i.e., Head, NormalNode and Rear, should override the taillist() method. For
example, the following shows the tailList() of NermalNede.

public class MNeormalNode extends Node |

private MNode next; [/ not null
private int value;

public List tailList() {
List list = new List(): f/ make a fresh list
Head head = new Head{); // make a fresh head
list _head = head; [f set the head
head.next = this.next; // the new list starts with the next node
s

return lis

}

[+ the rest of the code is omitted +f

}
Similarly, tailList{) is overridden in Rear as well:

public class Rear extends Node {
public List taillist(} {
return null;

1

/* the rest of the code is omitted */

1

However, the above taillist() of Rear turns out to be buggy causing NullPeinterException. S0, we wrote
a change contract as follows:

ensured ‘\result = null;
ensures {\result instanceof List) && (\result.isEmpty() = true]:

Note that class List has method isEmpty() thal returns true if the eurrent List instance represents an
empty list. Also note that ar empty list is constructed by calling “new List(}".

Q1. Now, explain in English what the above change contract means:

?Tuﬁwﬂ% e ool Poter WOL rgend 0 ey Lokl -
Tt Wy Wit would Tetuen G sk h‘h}jm’g Wit i3 E-Mft%

/N
<

. Q2. Fill in the following blank with a modified statement that respecis the given change contract.

public class Rear extends Node {
public List taillList(] {

TEhugn, oLw L'z\sTL‘a';

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next next | next
head | nodel |, node? node3

prcd pred prod pred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalMode now contains an extra field pred to point to the preceding node.

public class MNormalNode extends Node {
private Node pred; [/ points to the preceding node.

private MNode next;
private int wvalue;

public boolean hasConsecutiveZeros(boolean forward) {
{// should extend it
}

/+ the rest of the code is omitted */

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be

able to search for zeros in both directions.
Part of the above extension to a doubly linked list can be automated by following a few refactoring

steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros,

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same

behavior should be preserved.

new field prcd:Node;
new param forward:boolean;
matches pred = null && forward — Teu :

Q2. Also, explain in English what the above change contract means:

E{wl,h e SHGural ahuu.n{‘:f.g & e B ond Jarem bt pred Gnd Ty ewgned
W‘nqblﬁvm}, Wi ?ml o= nll ped Porward ==Rrug P Are MU e
1b'?-"r~m'murm Chﬁhtﬁt& it e Gd (ede O e wiw G 7

v

4. The following shows a class that implements Iterator. Any Iterator class must have a next method that
returns the next item to iterate over, The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items. get{currentindex)).

impert java.util.NoSuchElementException;

public class Customlterator implements Iterator {
private int currentlndex, size;
private NomNullList items; // a list with no null item

public Object next() {
if (currentIndex < size) {
Ubject result = items.get(currentIndex);
currentIndex++;
return result: // Teturn a non-null value
¥ else {
return null;
}

¥
/* the rest of the code is omitted */

Now. we want to modify the above next method according to the following change contract.

ensured “result == null;
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract nmeans:

ey, iy ?ruﬁuuﬂ 08 Boveawld e el ol Od
Jh"‘" Nnﬁuﬁx'ﬁm@mﬁuuﬁw Wi d bt j‘\‘\fﬂ‘ﬂr\ i ‘P’ht e If.nEI-L-

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following AP if necessary.

— NoSuchElementException() ol class NoSuchElementException:
& This is the default constructor of class NoSuchElementException.

public class CustomIterater implements Iterator {
private int currentIndex, size;
private NopNullList items; // a list with no null item

public Object mext(} {
if (currentIndex < size) {
Object result = items.get{currentIndex);
currentIndex++;
return result; // return a non-null value
} else {

' Fatiw view N SudnElinent Briatonly, E
} v

)’ o

&n

"

5. The following shows the Person class that holds information about the first name, the last name, and
=0 on. We assume that none of these strings is null.

public class Persomn {
private String firstName; // non-null
private String lastName; // non-null
private Nationality natiomality; // non-null

public boolean hasSameName{(String first, String last) {
return firstName.equals(first) k& lastlName.eguals(last);

}

public String getFirstName() { return this.firstName; }
public String getlastName() { return this.lastName; }
/* the rest of the code is omitted */

}

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those two parameters,

first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName (Person person} {
return person.getFirstName () .equals(firstName)
k& person.getLastName().equals(lastName);

} ———r—

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

0ld_param first:String, last:String;
fevw_param- person:Person;
v

/matchas r?umﬂ . Byt '.,‘-‘l.,ﬁ'cﬂmnt__k;j —= \{:..'r-bl.-' Fwst) gy \\/
= M\proy Uask)

peAson - fetiaciNoac\\ ==

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

Thtre would b2 o Denonpuen) th«mwhus brhwitn e o\ &ed wed Code
¢ Ahl faost ano Yok PATUNA h s kil e ?wg-\.c&n\"fwg‘:ﬂqun G O

pasion . []FE'LM“:NHM L) rugediy L"u-'h~ /K

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ,

public MethodBinding getAccessMethod() {
return syntheticMethod ;

}

f* the rest of the code is omitted #/

}

!

[Change contract for getAccessMethad|

new field postDispatchMethod : MethodBinding ;
new_ param staticReference: boolean;
matches staticReference — false;

I

[The new version|

public class InterTypeMethodBinding extends MethodBinding {

private MethodBinding syntheticMetheod ;
private MethodBinding postDispatchMethod

public MethodBinding getAccessMethod(boclean staticReference]) {
if (staticReference) return postDispatchMethod:

else returnf S W e :
B F

¥
/+* the rest of the code is omitted / X

Q1. Explain in English what the above change contract means:

Rte oo gddfion & new Fidd aed Ruishatier DO pulinbictned tnd
St Ukefpiente resgactivdy | thue wilh be v Y e’ g L"Nﬂ‘ﬁt‘ﬁ v

£

MoticRefrerae 13 folce - 1//

Q2. Also, fill in the blank of the new version.

2. Consider the following LazyMethodGen constructor.

1 | public LazyMethodGen(Method m, LazyClassGen enclosingClass) {

2 this. enclosingClass = enclosingClass:

3 if (Im.isAbstract() & m.getCode() = null) {

4 throw new RuntimeException("bad non—abstract method with no code: ® 4

5 m+ " on " + enclosingClass);

6| }

7 MethodGen gen = new MethodGen(m, enclosingClass.getName(),

8 enclosingClass. getConstantPoolGen ());

9 this . memberView = new BcelMethod(enclosingClass.getType(). m);
10 this. accessFlags = gen.getAccessFlags(): this.returnType = gen.getReturn Type(),
11 this_ name = gen.getName(): this._argumentTypes = gen.gotArgument Types();
12 this.declaredExceptions = gen.getExceptions(); this.attributes = gen. getAttributes();

13 this.maxLocals = gen. getMaxLocals():
14 if (gen.isAbstract() || gen.isNative()) {

13 body = null:

16 }oelse {

17 body = gen. getlnstructionList(); unpackHandlers{gen),
18 unpackLineNumbers(gen); unpacklLocals{gen);

19

20 assertGeodBody ()

21 |}

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does

- not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract void foo();
public native void bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

Q). DBased on the above description, write a change contract for the above construclor. You can
use the following APIs if necessary.

— boolean isNative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen
constructor:
s This method determines whether the method is declared as pative or not.

g,l%mu& | B 0 Exeegion) Cm. g hidve (1 =7 Srwe VU wnogph Cotle= mull)
ﬁﬁamh Whundone Brccption) fole

3 Cumsiier e Sullow-me program changes where the previous version at the top is changed to the new
e s e Bettom according to the change contract in the middle. Notice that the new version

b= an S wesl Seld droppingBackToFullBuild.

—y

[The previous version|

siic class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist(]: -
private boolean reportedErrors;

public void beforeCompiling(lCompilationUnit[] sourcellnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false;

}

[+ the rest of the code is omitted =f

¥

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boolean;

matches droppingBackToFullBuild = Iiuﬁ"!"" j: /\ / :

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList(): '
private boolean reportedErrors;
private boolean droppingBackToFullBuild: [/ a new field

public void beforeCompiling(ICompilationUnit[] sourcelnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = false;
droppingBackToFullBuild = false; [/ 3 new statement

/+ the rest of the code is omitted */

+

Depending on the boolean value of the new feld droppingBackToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does,

(). Fill in the blank of the above change contract.

