Background Questions

1. Which year are you in, and what is your major?

4

P T P

, e e

2. Rate your knowledge about Java language.

(a) Never used it.
(b} Beginner (e.g£.
¢ $Medium (e-g-

have taken an introductory course)

have done some small projects with Java)

(d}) Proficient (e.g. have experience in developing real-life programs with Javva)

3. What programming language are you most skillful at?

£ Socan

4. Rate your knowledge about the language you answered above i it is different from Java.

(a) Never used it.
(

)
(¢} Medium (e.g.
)

b) Beginner (e.g. have taken an introductory course)

have done some small projects with it}

(d) Proficient (e.g. have experience in developing real-life programs with it)

5. Select the ways you specify your program (multiple answers possible).

{ (a)) I write comments that explain my prograt.

(b) T write assert

statements to express my agsumption.

(c) 1 write formal specification.

. Rate your knowle

dge about program contract.

(a) Never heard of it.
( Eh] | Heard of it, but has not used it.

{e) Have written

7. Rate your knowle

some program contracts.

dge about JML (Java Modeling Language).

@Ncwar heard of it before this course.

(b) Heard of it, b
() Have used it.

ut has not used it.







1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.
ext el
head ° nadel H node? Deg node3 L rear |

tively. That is,

L

The head and rear are instances of class Head and Rear, respec

Head head = new Head(); Rear rear = new Rear():

Meanwhile, nodes in the middle are instances of class NormalNode. All three classes, Le., Head, Rear
and NormalNode, are subclasses of Node, That is, the following is the class hierarchy for them:

e

Head MormalMode Rear

Only NormalNode has a value field of the integer type as shown in the following:

public class NormalNode extends Node {
Node next; // points to the next node and is not null

int value;
public boolean hasConsecutiveZeros(]) { (o L
if {value = 0} { il
if (((MormalNode) next).value = @) { // may throw ClassCastException
return true;
}
}
return next. hasConsecutiveZeros (),

}

/+ the rest of the code is omitted +f

}

We are interested in whether or not two conseculive nodes of
hasConsecutiveZeros method shown in the above answers to that
node2 of the above figure have zeros as their values (i.e., nodel .value
nodel hasConsecutiveZeros() returns true.

os method has a bug. For example, if node3. hasConsecutiveZeros()
is thrown because node3.next is cast to

a linked list contain zeros, and the
question. For example, if nedel and
—= 0 and node2.value == 0, then

Hewever, the above hasConsecutiveZer
is called for node3 of the above figure, ClassCastException
NormalNode despite that noded.next is an instance of Rear.

). Suppose that we now want to throw a NonMNermalModeException instead of a ClassCastException
o “next instanceof Rear”

from hasConsecutiveZeros( ). Write a change contract accordingly. If necessary, us
ar similar instanceof expressions in the change contract.

giﬂna!ﬁ&{ﬁ*q'w(m&c.@#@ﬂ) eV B P S g 3

signals [ Mon Moraal Node Bcepfion) deue




2. Consider the linked list used in the previous question again. We now want to add an additional
method tailList() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the figure used in the previous question as an example, nodel tailList()
should return a list consisting of node?, node3, and rear.

Each subelass of Node, ie., Head, NormalNode and Rear, should override the taillist() method. For
example, the following shows the tailList() of NMormalNode.

public class NormalNode extends Node {
private MNode next; [/ not null
private int wvalue;

public List tailList() {
List list = new List(); // make a fresh list
Head head = new Head(); // make a fresh head
list .head = head; [/ set the head
head .next = this.next; // the new list starts with the next node

return list;

}

J+ the rest of the code is omitted =/

}

Similarly, tailList(} is overridden in Rear as well:

public class Rear extends Node {
public List tailList() {
return null;

¥

f+ the rest of the code is omitted «f

}

However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:

ensured Yresult = null;:
ensures (\result instanceof List) && (\result. isEmpty() = true}:

MNote that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List(}".

Q1. Now, explain in English what the above change contract means:

Tasvead of rotawing o aall vals | T yetuns a sesh credted enghy (S

@,
s

Q2. Fill in the following blank with a modified statement thal respects the given change contract.

public class Rear extends Node {
publiec List tailList() {

retors,  ness Liskl( )

} .
} \A




3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next next next '
head nodel |, node2 [, node3 =] e
pred pred pred pred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node.

public class NormalMode extends Mode {
private Node prcd; [/ points to the preceding node.
private Mode next;
private int wvalue;

public boolean hasConsecutiveZeros(boolean forward ) {
[/ should extend it

3

/+ the rest of the code is omitted w

} —

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be

ahle to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same

behavior should be preserved.

new field pred:Node;
new param forward:boolean;
matches pred = null && forward = ;

Q2. Also, explain in English what the ahove change contract means:

Ldd o e Foeld) called Frcd F pE Modes

AL o sew paremtie- ~alied Ferwmed - e Loclenn
dedd ok e oA program bphasicme— WHEBA

Pr'cd ts sl a8 forwosd s 4 \/




4. The following shows a class that implements Iterator. Any Iterator class must have a next method that
returns the next item to iterate over, The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get{currentindex)).

import java.util.NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentlIndex, size;
private NonWullList items; // a list with no null item

public Object next() {
if (currentIndex < size)} {
Object result = items.get(currentIndex);
current Index++;
return result: // return a nom-null wvalue
} else {
return null;
}
}
/* the rest of the code is omitted #*/
}

Now, we want to modify the above next method according to the following change contract,

ensured ‘result == null;
|eignals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

When fue resd s acll | dle rew prograc el teoe a M&Eiﬁm@h_

2
)/

(Continued in the next page)




Q2. Fill in the blank in the below with a modified statement that respects the given change
contract. You can use the following APT if necessary.

- MoSuchElementException() of class NoSuchElementException:
s This is the default constructor of class NoSuchElementException.

public class CustomIterator implements Iterator {
private int currentlndex, size; .
private NonNunlllist items; // a list with no null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);

currentIndex++;
return result; // return a mon-null wvalue

} else {
Hneows NeSadhElenedrBcepion()




a. The following shows the Person class that holds information about the first name, the last name, and
s0 on. We assume that none of these strings is null.

public elass Person {
private String firstName; // non-null
private String lastName; // non-nulld
private Natiopality nmatiomality; // non-null

public boolean hasSameName (String first, String last) {
return firstName.equals(first) && lastName.equals(last);

iz

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted #*/

—

The above class has a boolean method hasSameName thai returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those two parameters,
first and last. cannot he noll.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName(Person person) {
return person.getFirstName().equals(firstName)

&k person.getLastName().equals{lastName):
}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old_param first:String, last:String;

new_param person:Person; P

matches | person . rfirsNane() == “prev (Brsty g g
fersen . getlat-Namel )= = \ grew (last)

Q1.  Fill in the above blank.
Q2.  Also, explain in English what the above change contract means:

Replace = dd  pareustes P and ot wit Cparsen F e erson |
T raw pregramasd old progrom  fRhades mtacs when P, gt Aome! )

od garson golakhave() 5 e s as "Brost” oud Tl A b S program




Part 11




1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

=

[The previous version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod () {
return syntheticMethed;

¥

/+ the rest of the code is omitted +f

|

[Change contract for getAccessMethod)|

¥

new field postDispatchMethed : MethodBinding :
new param staticReference:beolean;
matches staticReference = false:

I

[The new version|

public class InterTypeMethodBinding extends MethodBinding {

private MethodBinding syntheticMethod;
private MethodBinding postDispatchMethod

public MethodBinding getAccessMethod (boolean staticReference) {
if (staticReference) return postDispatchMethod
else return[ ;ch ]

} N

/= the rest of the code is omitted »/

}

Q1. Explain in English what the above change contract means:

Titodue & o oo fdd called post Prspat datletned  of 1R Mebinod Binding
Tibodwe a Ao qu‘ﬂ,-«-&."i:m" called  hadi Befereaee oF b Loatema

T new pregran {edraad St shedd  tadech eld progreas behauioe whan
s fats2 \//

St Refeeare

Q2. Also, fill in the blank of the new VErsiorn.




2

—
=l =T = B - S R L L

i
—

12
13
14
15
16
17
18
19
20
21

Consider the following LazyMethodGen constructor.

public LazyMethodGen{Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass;
if (Im.isAbstract() &8 m.getCode() = null) {
throw new RuntimeBException("bad non—abstract method with no code: " +
m+ " on " + enclosingClass ),
H
MethodGen gen = new MethodGen(m, enclosingClass.getName( ),
enclosingClass. getConstantPoolGen () );
this_ memberView = new BcelMethod(enclosingClass . getType(), m);
this.accessFlags = gen. getAccessFlags(): this.returnType = gen.getReturnType( );
this_name = gen_gethame(); this.argumentTypes = gen.getArgument Types();
this.declaredExceptions = gen,getExceptions(); this.attributes = gen.getAttributes();
this.maxLocals = gen . getMaxLocals(};
if (gen.isAbstract() || gen.isNative()) {
body = null;
¥ else {
body = gen.getlnstructionlist(); unpackHandlers(gen);
unpackLineMumbers(gen); wunpackLocals(gen);

}
assertGoodBody ()

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4 5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m. getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract void foo()};
public native woid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does nol have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not

be thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.

— boolean isNative() of class Method, i.e, thie class of the first formal parameter of the LazyMethodGen

constructor:
¢ This method determines whether the method is declared as native or nof.

5’5#’!&‘1&& {MQ_E.L;@;JEM} N_‘i;p"\h’m‘ﬂ'{ } E;& m‘ﬂﬁ-!‘{_ngefs == nul"k 3
ek _sigaals Runtine Bucegtion




3 Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new VErsion

has an additional field droppingBack ToFullBuild.

[

1. [The previous version|

public class AjF‘ipeliningt’,‘ompilemdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist(); :
private boolean reportedErrors;

public veoid beforeCompiling ( ICompilationUnit ] sourceUnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

}

[+ the rest of the code is omitted +/

: ]
|

[Change contract for beforeCompiling and the other methods]

new _field drappingBackTﬂFuliBuild: boaolean;
matches droppingBackToFuliBuiid = i Pake J: ;\/ -

l

[The new version|

public class .ﬂ-.jPipeliningCompi!erAdapter implements AbstractCompilerAdapter {

List resultsPendingWeave = new ArrayList ()

private boolean reportedErrors;
private hoolean droppingBackToFullBuild: [/ a new field

public void beforeCompiling (1CompilationUnit [] sourcelnits) {
resultsPendingWeave = new ArrayList{);
reportedErrors = false;
droppingBackToFullBuild = false; // a new statement

}

/+ the rest of the code is omitted */

}

oFullBuild, the behaviors of the methods
Omly if its value is true, the behaviors
the previous version does,

Depending on the boolean value of the new field droppingBackT
in AjPipeliningCompilerAdapter arc cither preserved or chanpged.
are changed. If its value is false, the new version behave in the same as

Q. Fill in the blank of the above change contract.




