Background Questions

|. Which year are you in, and what is your major?

b Loemmudtigations sl Maale

2. Rate your knowledge about Java language.

(a) Never used it.
(b) Beginner (e.g. have taken an introductory course}
gl
ﬂfﬁ Medium (e.g. have done some small projects with Java)

(d) Proficient (e.g. have experience in developing real-life programs with Java)

3. What programming language are you most skillful at?

Taver

4. Rate your knowledge about the language you answered above if it is different from Java.
{a) Never used it.
(b) Beginner (c.g. have taken an introductory course)
(¢} Medium (e.g. have done some small projects with it)
(d) Proficient (e.g. have experience in developing real-life programs with it)

5. Select the ways you specify your program (multiple answers possible).
@Fj:l I write comments that explain my prograi.
(b) T write assert statements to express my assumnption.

(¢) I write formal specification.

6. Rate your knowledge about program contract.
l{a} Never heard of it.
Heard of it, bul has not used if.

{¢] Have written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).
{;1\} Never heard of it before this course.

(b) \Heard of it, but has not used it.

(c) Have used it

Part 1

same as the one used in the sample question.]

1. [The linked list used in this question is the
and the rear of the list are distinguished from the

Consider the following linked list where the head

rest of the list.
next exl
head ot nodel 1ﬂ3 node? \-»‘anﬂ“——!;mar

The head and rear are instances of class Head and Rear, respectively. That 1s,

Head head = new Head(); Rear rear = new Rear();

in the middle are instances of class NormalNode. All three classes, i.e., Head, Rear

Meanwhile, nodes
hierarchy for them:

and NermalNode, are subclasses of Node. That is, the following is the class

Nodeh_
e gl I s

Head MNormalMede Rear

Only MormalNode has a value field of the inleger type as shown in the following:

: public class NormalNode extends Node {
Node next: // points to the next node and is not null

int value;

public boolean hasConsecutiveZeros{) {
if (value = Q) {
if (({NormalNode) next).value =
return true;
¥
¥
return next.hasConsecutiveZeros (),

}

/+ the rest of the code is omitted =/

o) { // may throw ClassCastException

}

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example. if nodel and
node2 of the above figure have zeros as their values (ie., nodelvalue == 0 and node2.value == 0), then
nodel_hasConsecutiveZeros() returns true,
However, the above hasConsecutiveZeros

is called for node3 of the above figure, ClassCastException is thr
NormalMode despite that node3.next is an instance of Rear.

method has a bug. For example, if node3. hasConsecutiveZ eros()
awn because noded.next is cast to

throw a NonMormalMNodeException instead of a ClassCastException

Q). Suppose that we now want to
If necessary, use “next instanceof Rear”

from hasConsecutiveZeros(). Write a change contract accordingly.
or similar instanceof expressions in the change contract.

Sr'ﬂm[u{ { Non -'u’.:mn.fﬁ.fudb,Exmp'fm} (next istaeceof Rear) ;

Signals [Non Moreal Node Excition) e |

. ¥ \/

2 Consider the linked list used in the previous question again. We now want to add an add.i:tionai
method taillist() to class Node. This new taillist() method is expected to return a list consisting of

the nodes in the tail. Taking the figure used in the previous question as an example, nodel taillist{)

should return a list consisting of node2, node3, and rear.
Each subclass of Mode, i.e., Head, NormalNode and Rear, should override the taillist()
example, the following shows the tailList() of NermalNode.

method. For

public class NormalNode extends Node {

private Node next; f/ not null
private int value;

public List taillist() {
List list = new List(); // make a fresh list

Head head = new Head (). // make a fresh head

list.head = head; // set the head

hesd . mext = this.next: // the new list starts with the next node
return list:

}

/+ the rest of the code is omitted */
b

Similarly, tailList() is overridden in Rear as well:

public class Rear extends Node {
public List taillist() {
return null;

¥
/+ the rest of the code is omitted +/
} '
However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:
ensured \result = null;
ensures (\result instanceof List) &% (} result . isEmpty() == true):

Note that class List has method isEmpty() that returns true if the current List instance represents arn
cmpty list. Also note that an empty list is constructed by calling “new List()".

Q1. Now, explain in English what the above change contract means:

This confract Sintes Fhat """QM{ of J.""d l’t—‘fwr‘r;nj a .-Mﬁ vale a3

Per dhe pitwiens verbr sl lieT(y i Rear . e g IS0
fefuing an E‘“Pﬁ List Ovtf}pcf.

Q2. Fill in the following blank with a modified statement thal respects the given change contract.

public class Rear extends Mode {
public List tailList() { - |

I_fE{wn ew Uet()
b

}

3. We are now going to extend the previous linked list to a doubly linked List like the following.

next next next next [
head nodel [, node? | node3 | rear
pred pred pred __|pred

Classes should be extended and modified accordingly. For example, the following shows that class
MormalMNode now contains an extra field pred to point to the preceding node.

public class NormalNode extends Node {

private Node prcd; /ff points to the preceding node.
private MNode next;

private int value;

public boolean hasConsecutiveZeros(boolean forward) {
/! should extend it

}

/* the rest of the code is omitted +/

The above also shows that method hasCansecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for zeros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same
behavior should be preserved.

new field prod: Node;
new param forward:boolean;
matches pred = null && forward — : \/

Q2. Also, explain in English what the above change contract means:

A new el rmJ 0 added fo e fese whilk o pew Pn.rnmtfcr
of boolean ‘pre. : Sl : ¥ odded 4 e pethod
Wos Gonee entive. Zoros

T mefhod il oo check i pred 6 nall oo forwed i Arae %
presene the old behaviw , otherwise # uall beheve d"ﬂfuv\—f& X

—_—

lterator class must have a next method that

4. The following shows a class that implements lterator. Any
returns either null if there is no

returns the next item to iterate over. The next method in the below
more item to iterate over or a non-null value otherwise (ie., itemns. get{currentindex)).

import java.util. NoSuchElementException;

public class Customlterator implements Iterator 1
private int currentIndex, gize;
private NonNullList items; // a list with no null item

public Object mext() {
if (currentIndex < size) {
Object result = items.get (currentIndex);
current Index++;
return result; // return a non-null value
} else {
return null;
}
}

/% the rest of the code is omitted =/

} i =

Now, we want to modify the above next method according to the following change contract.

ensured “result == null;
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

Tnvkad of refumny ol when Ahe Hersfr Teaches The od of a
11;4;4 S T ; W w;ﬁ now Hhrew the Lyerrhien

Mo Sk M&q{ﬂm .

(Continued in the next page)

Q2. TFill in the blank in the below with a modified statement that respects the given change
contract. You can use the following API if necessary.

= NoSuchElementException() of class NoSuchElementException:
* This is the default constructor of class NoSuchElementException.

public class CustomIterator implements Iterator {
private int currentindex, size;
private NonlullList items; // a list with ne null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;
return result; // return a non-null value
} else {

‘F[‘urg,w Bt o Sued Blemg ot E)f»:-‘-nf?‘f-.m £h j '

5. The following shows the Person class that holds information about the first name, the last name, and
so on. We assume that none of these strings is null.

public class Persom {
private String firstName; // non-null
private String lastName; // non-null
private Natiomality nationality; // non-null

public boolean hasSameName (String first, String last) {
return firstMame.equals(first) k¥ lastName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted */

¥

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively. We assume that those two parameters,

first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName(Person person) {
return person.getFirstlame().equals(firstame)
&k person.getLastName () .equals {lastlame) ;

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old_param first:String, last:5tring;
new_param person:Person;

matches Pmm-gt‘fﬁ'iﬁ;';'-'mt} e I\f,rg..yr [fust) && 3 @ ‘
peisen - nef lott Nome £) ==\ prow [fact)

Q1. Fill in the above blank.
Q2. Also, explain in English what the above change confract means:

The above cotmct relacges The hag Game Name e thosd ; from US4

o }'frirj Fﬁrnmmr yi A 5:-?5.|£ Peson Pnfnﬂ-"-‘-‘f y ond -fre

mefhed L-JJ i ,:Jﬂm;,znf acereding 4o The i;:win':'iﬁ St ouf

I Tl mdehes ¢lage X 2N

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle.

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;

public MethodBinding getAccessMethod() {
return syntheticMethod ;

}

J# the raest of the code is omitted =/

I

[Change contract for getAccessMethod|

new field postDispatchMethod: MethodBinding;
new param staticReference:boolean;
matches staticReference = false;

l

|The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod;
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod

else return ’ H:{Luﬁi’.m“{

¥

/# the rest of the code is omitted =*/

}

Fxplain in English whal the above change contract means:

The cobract adls o new Feld postDiptoh Method o,
1o gethecess Flethy i also

Q1.

md A vger pasabmgtes

-H‘(5‘[‘4 J:lt)*nv:mr it F.r:;m.rm’

thod F Sttt Refeseng, 18 et Fhe pue [kl is rgﬁ-‘rugfj (R
!

— e —
e

A

Jhe clage
&

qm.:;&'cf

A

Q2. Also, fill in the blank of the new version.

=

o
D0 00 =] O LD RS =

—_ e el
i L3 B3 =

15
16
17
I8
19
20
21

Consider the following | azyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {

this.enclosingClass = enclosingClass;
if {lm.isAbstract() &f m.getCode() = null) {

throw new RuntimeException("bad non—abstract method with no code: ™ +

m+ " on " + enclosingClass };

}
MethodGen gen = new MethodGen(m, enclosingClass.getName().

enclosingClass getConstantPoolGen ());
this.memberView = new BeelMethod(enclosingClass getType(), m).
this.accessFlags = gen.getAccessFlags(): this.returnType = gen . getReturnType():
this_name = gen_getName(); this.argumentTypes = gen.getArgumentTypes(}:
this.declaredExceptions = gen. getExceptions{); this.attributes = gen.getAttributes():

this.maxLocals = gen. getMaxlocals();

if (gen_isAbstract(} || gen.isNative()) {
boady = null;

T oelse {

body = gen.getinstructionList(); unpackHandlers(gen};
unpackLineMumbers(gen); unpackLocals{gen);

H
assertGoodBody [)
I

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated eode for its body (see “m getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when il is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies
are not provided for the methods.

public abstract veoid foo();
public native woid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is bugey
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not

be thrown.

(). Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.

— boolean isNative()} of class Method, 1.e., the class of the first formal parameter of the LazyMethodGen

constructor:
s This method determines whether the method is declared as native or not.

flesr - Fcnmm

\

3 Comsder the fllowing program changes where the previous version at the top is changed to the new
we=sem &t the bottom according to the change contract in the middle. Notice that the new version
bee an additional field droppingBack ToFullBuild.

|The previous version|

sublic class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private boolean reportedErrors;

public void beforeCompiling{ICompilationUnit[] sourceUnits) {
resultsPendingWeave = new Arraylist():
reportedErrors = false;

}

[+ the rest of the code is omitted «/

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boalean:
matches droppingBackToFullBuild 21 -Ig.J'.-.L.

|

[The new version|

public class AjPipeliningCampilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new Arraylist(}):
private boolean reportedErrors;
private boolean droppingBackToFullBuild; [/ a new field

public void beforeCompiling(1CompilationUnit [] sourceUnits) {
resultsPendingWeave = new Arraylist{),
reportedErrors = false;
droppingBackToFullBuild = false; [/ a new statement

}

[+ the rest of the code is omitted +/

i

Depending on the boolean value of the new field droppingBack TeFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

). Fill in the blank of the above change contract.

