Background Questions

Which year are you in, and what is your major?

5 , CEC

2. Rate your knowledge about Java language.
(a) Never used it.
(b) Beginner (e.g. have taken an introductory course)
(¢) Medium (e.g. have done some small projects with Java)

I)d‘)/meicient- (e.g. have experience in developing real-life programs with Java)
3. What programming language are you most skillful at?

Y

4. Rate your knowledge about the language you answered above if it is different from Java.

(a) MNever used it.

(b) Beginner (e.g. have taken an introductory course)

{¢) Medium (e.g. have done some small projects with it}

(d) Proficient (e.g. have experience in developing real-life programs with it}

5. Select the ways you specify your program (multiple answers possible).

I{y/f write comments that explain my program.
(b} I write assert statements to express my assumplior.

. _/(x’]/ I write formal specification. .['f Tovn GLO"JH)

6. Bate your knowledge about program contract.

L// Mever heard of it.

(b} Heard of it, bui has not used it
() Have written some program Contracts.

7. Rate your knowledge about JML (Java Modeling Language).
(a] Mever heard of it before this course,
(b) Heard of it, but has not used it,

() Have nsed it.

Part 1

1. [The linked list used in this question is the same as the one used in the sample question.|
Consider the following linked list where the head and the rear of the list are distinguished from the

rest of the list.

next next
——= node3 = rear

head Lizet nodel J-ﬂﬂ* node?

The head and rear are instances of class Head and Rear, respectively. That is,
Head head = new Head(); Rear rear = new Rear();

Meanwhile, nodes in the middle are instances uf_ class NormalNode, All three classes, ic., Head, Rear
and NormalNode, are subclasses of Node. That is, the following is the class hierarchy for them:

Mode

e

Head MNormalNode Rear

Only NormalNode has a value field of the integer type as shown in the following:

|_p:blic class NormalNode extends Node {
Mode next: [/ peints to the next node and is not null

int value:

public boolean hasConsecutiveZeros() {
if {value = 0) {
if (((NormalNode) next).value = 0) { // may throw ClassCastException
return true;
}
}
return next. hasConsecutiveZeros();

}

[+ the rest of the code is omitted .

} _—

We are interested in whether or not two consecutive nodes of a linked list contain geros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values (i.e., nodel.value == 0 and node2.value == 0), then
nedel hasConsecutiveZeros() returns true.

However, the above hasConsecutiveZeros method has a bug. For example, if node3.hasConsecutiveZeros()
iz called for node3 of the above figure, ClassCastException is thrown because node3.next is cast to
NormalNode despite that node3.next is an instance of Rear.,

). Suppose that we now want to throw a MNonMormalNodeException instead of a ClassCastException
from hasConsecutiveZeros(). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

Sr'gh&'{ﬂnl (riiwag (ast Eﬂup“h‘) ewnd ing{'ww-'a'%]’ Q{’M "

5”{5 vedt { Mon Nl MNods ?_..“nfspi"f{““h\j Ly 2

want to add an additional

2. Consider the linked list used in the previous question again. We now
return a list consisting of

method taillist() te class Node. This new taillist() method is expected to
the nodes in the tail. Taking the figure used in the previous question as an example, nodel.taillist()
should return a list consisting of node2, node3, and rear.

Each subclass of Node, i.e., Head, NormalNode and Rear, should override the taillist{) method. For

example, the following shows the tailList() of NormalNode.

public class NormalNode extends MNode {
private MNode next; [/ not null
private int value;

public List tailList() {

List list = new List(); // make a fresh list
Head head = new Head():; // make a fresh head
list.head = head: [/ set the head

head . next = this.next; // the new list starts with the next node
return list;

}

[+ the rest of the code is amitted #*/

}

Similarly, taillist() is overridden in Rear as well:

public class Rear extends Node {
public List tailList() {
return null;

}

/+ the rest of the code is omitted #/

}

However, the above tailList() of Rear turns out to be buggy causing NullPointerException. So, we wrote
a change contract as follows:

ensured \result = null;
ensures (\result instanceof List) && (\result.isEmpty() = true):

Note that class List has method isEmpty() that returns true if the current List instance represents an
empty list. Also note that an empty list is constructed by calling “new List()"™.

Q1. Now, explain in English what the above change confract means:

Tb means Hot when e llit() rabhod oA Roov

© caled T weld vebeen an Q/V\-Fl"ﬂ Lat w e
OB e A Tﬁ.}t&w "'h‘i.ﬂ"w Tﬁ;}ru/w._ir‘xg. ru,ufu—'

act.

Q2. Fill in the following blank with a modified stalement that respects the given change contr

public class Rear extends Node {
public List tailList() {

Lvﬂu—:m ner Lick () A

}

}

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next next next
head | nodel node?2 | | nodel rear
pred pred pred pred |

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra, field pred to point to the preceding node.

public class NormalNode extends Nede {
private Node pred; // points to the preceding node.
private MNode next;
private int wvalue,

public boolean hasConsecutiveZeros({boolean forward) {
[/ should extend it

}

/#* the rest of the code is omitted +/

} .

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to scarch for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to search for seros in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring

steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZeros may behave differently from before, and otherwise the same

behavior should be preserved.

new field prcd:Mode;
new param forward:boaolean; Vi

matches prcd =— null && forward = I é I:

Q2. Also, explain in English what the above change contract means:

o Jitdd (mombe vertable) naeed pred” o tupe Nod ¢
hats boos miahfj : ‘ e wdd \

—& row porome ey "df.rwucl | d’f 4‘5{]“ booleor I-ﬁ»ﬁ aon Betde

—New- persion x‘ncr-Jr;L\“}ﬁ eld ST t{* pwsﬁ: el and
C'J[owhmﬂf‘f - ol N

4. The following shows a class that implements lterator. Any Iterator class must have a next mc*.thf:d_that
returns the next item to iterate over. The nest method in the below returns either null if there is no
more itemn to iterate over or a non-null value otherwise (Le., items. get{currentindex)).

import java.util.NoSuchElementException;

public class Customlterator implements Iterator {

private int currentIndex, size;
private NomNullList items; // a list with no null item

public Object next() {
if {(currentIndex < size} {
Object result = items.get(currantIndex);
current Index++;
return result; // return a non-null value
1 elze {
return null;
}

}
/* the rest of the code is omitted */

Now, we want to modify the above net method according to the following change contract.

ensured “result == null:
signals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

L int Hue {uMl}Qwﬁg&.\ %M#ﬁﬂi W Tk r\LLl_L ; PR My S
will Haw a NoSuel Blamerd Brgpdion inslead,

{Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that
contract. You can use the following APT if NEeCEssary,

= NaSuchEiementExcEptim{} of class NuSuchEJermntExceptFon:
® This is the defaylt constructor of class NoSuchElementException.

respects the given change

Public class CustomIterator implements Iterator {
Private int currentIndex, gize;
Private NonNullList items; // a list with no null item

Public Object next() {
if (currentIndex « size) {
Object result = items.getfcurrentlndﬁxj;
currentIndex++;
return result; // return a non-onull walpe

} else {

| Hhveu e~ NoGugh Elamand Exezphira) :

—

+
}

}

5. The following shows the Person class that holds information about the first name, the last name, and
so o We assume that none of these strings is null,

public class Person {
private String firstName; // non-null
private String lastName; // non-null
private Nationality nationality; // non-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastWName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getLastName() { return this.lastName; }
/* the rest of the code is omitted #/

The above class has a boolean method hasSameName that returns true if given two parameters first
and last match the fields firstName and lastName, respectively, We assume that those two parameters,
first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName (Person person) {
return person.getFirstName().equals{(firstName}
ki person.getLastName().equals{lastName);

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old_param first:String, last:String;
I‘LEIU_P&I&H] pEISﬂ]l :PETSOH;

matches Porsore %ﬂtrtﬁm{.leﬁuﬂiyg\}&g J’Xng;rv‘l.se-ﬂim1 HM[\},E’%.‘“?% (Eﬂé-tj; //"
B A

Q1. Fill in the above blank.

Q2. Also, explain in English what the above change contract means:

The rew paramn which o objeck tersm ghoilel h,:;-ldxrrlq_
He gant JretNome morbee oniakls asfhe fyrst
paroim oo in the previows persion Qorrs should be

: i v whieh ol be
troa 17 “last! pﬂ“ﬂ‘“'&” 7 "‘J“"I’ cheuld >

e o BL- | Tt b
; érsovs 0D L g UM
P I) e'mﬁ M f-:l persa g '\

% |) '-I e ot 2
W ond 4o bf'rmt e~ ’f’fﬂﬂ, A 1

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new

version at the bottom according to the change contract in the middle.

[The previous version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod() {
return syntheticMethod;

}

/# the rest of the code is omitted +/

}

|

|Change contract for getAccessMethod|

new field postDispatchMethod: MethodBinding ;
new param staticReference: boolean;
matches staticReference — false;

l

[The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;
private MethodBinding postDispatchMethod;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod;

else return | Bpﬂshafnﬁiwf

}

f#* the rest of the code is omitted =/

rd

#

7

Explain in English what the above change contract means:

Q1.

Theve v 4 pewr :fadd H{.{}bﬁ:‘fﬂ:’spa.'i{).ﬁ et

-That 5@ pamr orivn @ Mo

e e gﬂ} A okt -ﬂ“'aﬁ“'”f{ (} :

u%Laié._rR?};—;{wnﬂq o Hmﬂé h

B “ L Bl Oy 44 " & J/#‘?'ﬁ P f’%’_”_"_-‘-“ _:{J-'f
\/.

'*‘GJM ‘?‘[1 ‘%ﬁiﬁ P%Pmodlgr'mlmfj-

I
o=l 3 S

Also, fill in the blank of the new version.

Q2.

2,

-t
DD 00 =1 o b GO BD e

—
Pt =

13
14
15
16
17
15
19
20
21

Consider the following LazyMethodGen constructor.

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this.enclosingClass = enclosingClass;
if (Im.isAbstract{) && m.getCode() = null) {
throw new RuntimeException("bad non—abstract method with no code: " +
m+4+ " on " 4 enclosingClass);
}

MethodGen gen = new MethodGen{m, enclosingClass.getMame(),
enclosingClass. getConstantPoolGen ());

this . memberView = new BcelMethod(enclosingClass getType(), m);
this.accessFlags = gen.getAccessFlags(); this.returnType = gen. getReturnType(};
this.name = gen.getName(); this.argumentTypes = gen. getArgumentTypes();
this.declaredExceptions = gen.getExceptions(); this. attributes = gen.getAttributes();
this maxlocals = gen, getMaxlocals();
if (gen.isAbstract() || gen.isNative()} {

body = null;
T else {

body = gen. getlnstructionlist(); unpackHandlers{gen);

unpackLineMumbers{gen); unpacklocals{gen);

b
assertGoodBody (};
1

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode() == null” at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs, Notice that bodies
are not provided for the methods.

[publfc abstract void fool():
public native wvoid bar();

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

(). Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.

— boolean isMative() of class Method, i.e., the classof the first formal parameter of the LazyMethodGen

constructor:
This method determines whether the method is declared as native or not.

EE%waJ..&rl {R@ME:{@HM\} (Jm,,utyggm,%i'aﬂei nﬁ-fﬂdﬂﬂ{;_{;::m&\];
sigrde (Runbione Exeaghion) (1mishboshad() 35 o jeliebive () B3 on 4 ade) = =vadl) 2

v

3 Chmmsiees tie ollowing program changes where the previous version at the top is changed to the new
e #¢ the bottom according to the change contract in the middle. Notice that the new version

" wn siditional field droppingBack ToFullBuild.

[The previous version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();
private hoolean reportedErrors;

public void befureﬂompiling{lCumpiFatiunUnit[] sourcelnits) {
resultsPendingWeave = new ArrayList{);
reportedErrors = false;

h

J+ the rest of the code is omitted +/

[Change contract for beforeCompiling and the other methods|

new field droppingBackToFullBuild: boolean; /

matches droppingBackToFullBuild = Fﬂgﬂc N |

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();

private boolean reportedErrors;
private boolean droppingBackToFullBuild: /] a new field

public void beforciﬂmpiling{IEumpiIatinnUnit[1 sourcellnits) {
resultsPendingWeave = new Arraylist{}):
reportedErrors = false;
droppingBackToFullBuild = false; /] a new statement

}

/= the rest of the code is omitted =/

kToFullBuild, the behaviors of the methods
uly if ils value s true, the behaviors
he previous version does.

Depending on the boolean value of the new field droppingBac
in AjPipeliningCompilerAdapter are cither preserved or changed. O
are changed. If its value is false, the new version behave in the same as i

Q. Fill in the blank of the above change contract.

