Background Questions

1. Which year are you in, and what is your major?

g- . {ﬂ‘r‘r*!}w‘rw f:;mgl.nfe'r'-ﬁﬁﬂd

2. Rate your knowledge about Java language.

(a) Never used it.

(b) Beginner (e.g. have taken an introductory course)
k/fﬁj_ Medium (e.g. have done some small projects with Java)

(d) Proficient (e.g. have experience in developing real-life programs with Java)
3. What programming language are vou most skillful at?

P i

4. Rate your knowledge about the language you answered above if it is different from Java.

(a) Never used it.

(b) Beginner (eg. have taken an introductory course)

\/f'

(d) Proficient (e.g. have cxperience in developing real-life programs with it)

(c) Medium (e.g. have done some small projects with it)

5. Select the ways you specify your program (multiple answers possible).
{(a) I write comments that explain my program.
(b) I write assert statements to express my assumption. v
(¢} I write formal specification.

6. Rate your knowledge about program contract,

(a) Never heard of it. \L—"
(b) Heard of it, but has not used it.

{¢) Have written some program contracts.

7. Rate your knowledge about JML (Java Modeling Language).
(a) Never heard of it before this course. s
(b) Heard of it, but has not used it.

(¢) Have used it.

Part 1

1. [The linked list used in this question is the same as the one used in the sample question.
Consider the following linked list where the head and the rear of the list are distinguished from the

rest, of the list.
head ned nodel s node? ’ﬂi nodad ot rear I

The head and rear are instances of class Head and Rear, respectively. That is,

3

Head head = new Head(); Rear rear = new Rear();

Meanwhile, nodes in the middle are instances of class Normalilode, All three classes, i.e., Head, Rear
and NormalNode, are subelasses of Node. That is, the following is the class hierarchy for them:

MNade

el ™

Head MNormalMNaode Rear

Only NormalMode has a value field of the integer type as shown in the following:

public class Normallode extends Mode {
Mode next: [/ points to the next node and is not null

int value;

public boclean hasConsecutiveZeros() {
if {(value = 0) {

if ({{MNormalNode) next).value =
return true;

0) { // may throw ClassCastException

b
¥
return next.hasConsecutiveZeros();
}
/+ the rest of the code is omitted #/
}

We are interested in whether or not two consecutive nodes of a linked list contain zeros, and the
hasConsecutiveZeros method shown in the above answers to that question. For example, if nodel and
node? of the above figure have zeros as their values (i.c., nedel.value == 0 and nede2.value == 0), then
nodel.hasConsecutiveZeros() returns true,

However, the above hasConsecutiveZeros method has a bug. For example, if nade3 hasCensecutiveZeros()
is called for node3 of the above figure, ClassCastException is thrown because noded.next is cast to
MormalMode despite that node3.next is an instance of Rear,

Q. Suppose that we now want to throw a NonNormalNodeException instead of a ClassCastException
from hasConsecutiveZeros{). Write a change contract accordingly. If necessary, use “next instanceof Rear”
or similar instanceof expressions in the change contract.

E-}"BT‘\DHH'FC)\ <{A§’_“A}rﬁ{-;—"ﬂ'}'—f4 gl‘:f rhf_qf';'l "')M) F"Iw'f""-'* llﬁk}‘lm'{:":—-d?fr-}fmﬂ/_

-~ 5
cNepmolb (Cloas Canp Eveption Jesdns 1 i V
s ' By | oy .
nynoth ((NMeon Mocmol Mooks ¢ ccypton)
o G

2. Consider the linked list used in the previous question again. We now want to add an additional
method taillist() to class Node. This new tailList() method is expected to return a list consisting of
the nodes in the tail. Taking the fipure used in the previous question as an example, nodel taillist()
should return a list consisting of node2, node3, and rear.

Each subclass of Nede, ie., Head, NormalMode and Rear, should override the taillist{) method. For

example, the following shows the tailList() of NermalNode.
public class NormalNode extends MNode {

private Mode next; [/ not null
private int wvalupe:

public List tailList{) {
List list = new List(); f/ make a fresh list
Head head = new Head(); // make a fresh head
list.head = head; [/ set the head
head.next = this.next; [/ the new list starts with the next node
t]

return lis

}

/+ the rest of the code is omitted +/

}

Similarly, taillist() is overridden in Rear as well:

public class Rear extends Nede {
public List tailList{) {
return null;

}

[+ the rest of the code is omitted =/

}
However, the above taillist{) of Rear turns out to be bugey causing MullPointerException. So, we wiote
a change contract as follows:

ensured Yresult = null;
ensures (\result instanceof List) && (\result. isEmpty() = true);

Note that class List has method isEmpty() that returns true if the eurrent List instance represents an
empty list. Also note that an empty list is constructed by calling “new List(}".

Q1. Now, explain in English what the above change contract means:

- . G
(-ﬂ-‘!l\.}t By Hroek T I‘I]rva,:_ Jr'ho_) Nfns B O (e og Th“
SRR T el e WCL

14“_\“, S 2, (T e
1 m%‘l‘j'

J..U'W’hu‘”,i yedurns o- e
Yo sk Cnsdarmce 7S e,mrgﬁra |
JTW ; LIf- WL‘*'E S P ke R#MU

l_

Javd
X

Q2. Till in the following blank with & modified statement thal respects the given change contrac.

public class Rear extends MNode {
public List tailList() {)

lrdwen nwo WY ’"; e
}

}

3. We are now going to extend the previous linked list to a doubly linked list like the following.

next next | next next
head nodel [, 1 riode2 node3 | rear
prod pred prod pred

Classes should be extended and modified accordingly. For example, the following shows that class
NormalNode now contains an extra field pred to point to the preceding node.

public class MNormalNode extends Node {
private MNode pred; // points to the preceding node.
private MNode next;
private int value;

public boolean hasConsecutiveZeros(boolean forward) {
{f should extend it

}

/+ the rest of the code is omitted «f

The above also shows that method hasConsecutiveZeros now has a parameter forward. Depending on its
boolean value, the direction to search for zeros are determined. While in the previous version zeros
are searched for only in the forward direction, we now expect the extended hasConsecutiveZeros to be
able to scarch for zeres in both directions.

Part of the above extension to a doubly linked list can be automated by following a few refactoring
steps. After applying refactoring steps of adding a field and adding a parameter, we get the following
change contract template for method hasConsecutiveZeros.

Q1. We ask you to fill in the blank. Note that the following change contract should say that
only if forward is false, hasConsecutiveZerss may behave differently from before, and otherwise the same
behavior should be preserved.

new _field prcd:Node;
new param forward:boolean; \/

matches pred == null B farward — @I:

Q2. Also, explain in English what the above change contract means:
Rl ey e Vo WAEHEON,

AAheet S e pews vooree Of AYpe

! ! bey ' P rd
i e r“'-‘-“‘_.q_,} {:)g;yﬁm.t__? oy 0 ;

"ot dape bodiam
e L r;‘\.gm’ ¢ \ ¥ j

¢ Moo UVOslon \rpud 3% Corudouveed Sone o4

' ; ™
old vresion G@Bb fnput V[(presh 0 nuid) Bonsd M

(Ao o)

. The following shows a class that implements lterator. Any Iterator elass must have a next method Lthat
returns the next item to iterate over. The next method in the below returns either null if there is no
more item to iterate over or a non-null value otherwise (i.e., items.get{currentindex)).

import java.util.NoSuchElementException;

public class CustomIterator implements Iterator {
private int currentIndex, size;
private WomMNullList items; // a list with no null item

public Object mnext() {
if {currentIndex < size) {
Dbject result = items.get(currentIndex);
current Index++;
return result: // return a non-null value
} else {
return oull;
1
¥
/* the rest of the code is omitted =/

}

Now, we want to modify the above next method according to the following change contract.

ensured ‘“result == null;
gignals (NoSuchElementException) true;

Q1. Explain in English what the above change contract means:

T The proules verpon, e dt wos et o
e dervmea! n e

T = JL"'r\L Qe ? by R iUy {1 h_{ FMCJF'_M‘ Yy Q'rli_ vy L oo

khf::r Seatn §tenmpert Ex cepom)

X

(Continued in the next page)

Q2. Fill in the blank in the below with a modified statement that respects the given change

contract. You can use the following API if necessary.

= MoSuchElementException() of class NoSuchElementException:
¢ This is the default constructor of class NeSuchElementException.

public class Customlterator implements Iterator {
private int currentIndex, size;
private NonNulllist items; // a list with ne null item

public Object next() {
if (currentIndex < size) {
Object result = items.get(currentIndex);
currentIndex++;

return result; // return a non-null value
} elze {

r/]\h‘r‘tﬁw Mo Sueh £ lowe ord Eu coplion .

5. The following shows the Person class that holds information about the first name, the lust name, and
so on. We assume that none of these strings is null,

public claszs Perszen {
private String firstName; // non-null
private String lastName; // nom-null
private Natiomality matiomality; // nom-null

public boolean hasSameName(String first, String last) {
return firstName.equals(first) && lastName.equals(last);

}

public String getFirstName() { return this.firstName; }
public String getlastName() { return this.lastName; }
/* the rest of the code is omitted */

}

The above class has a boolean method hasSameMame that returns true if given two parameters first
and last mateh the fields firstName and lastName, respectively. We assume that those two parameters,

first and last, cannot be null.

Now, we want to shorten the parameter list of hasSameName as follows. Again, we assume that the
person parameter cannot be null.

public boolean hasSameName(Person person) {
return person.getFirstName(}.equals(firstName)
L% person.getLastName().eguals(lastName);

}

When we shorten the parameter list, an accompanying tool generated the following change contract
template:

old _param first:String, last:String;
new_param person:Person;)
matches e foe - i Morrg = = \prew Q_J"a'rt-"f} ; &.&\ \/

pexson. lodNomee = =\ preev(lask)

1. Fill in the above blank.
Q2. Also, explain in English what the above change contract means:

- C“h\'{ C?‘trﬂ '-,_/I"\('}--T[Jﬂ h@(}l pﬂhrwc_,ﬁb-({: /f»‘!_,{\.*- &— M U#—* Pﬁ(-{-i
~ T Ao b Aon l'f‘lﬂu’_-;. (L PO AV perion Uﬂ J"“H"(- 'Pﬂ‘rkm.
sorsens e ootldiy te) Sorcee an VO pod
e lentNomn ottnbad e e prwr Leciron

- Qhe tepat (0 ol d
g PP S T R { i

1L Loveed ok J“la—tr]r“ dm ald v sen preel ?&rwﬁ-»@s"r*«"[_ Newea 19

L

: i Ly 3
™0 umal'}r‘; YA © G, 'Jf}b‘f—& it i fd'(‘y‘* Yy ,5:,1() 'UL"‘fgr__;h"!.

Vi

&

Part 11

1. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle.

—

[The previous version|

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;

public MethodBinding getAccessMethod () {
return synthetieMethad ;

}

/# the rest of the code is omitted #/

J

[Change contract for getAccessMethod|

}

new _field postDispatchMethod : MethodBinding ;
new param staticReference: boolean;
matches staticReference = false:

I

[The new version]

public class InterTypeMethodBinding extends MethodBinding {
private MethodBinding syntheticMethod ;
private MethodBinding postDispatchMethed;

public MethodBinding getAccessMethod(boolean staticReference) {
if (staticReference) return postDispatchMethod ;

else return !_E%ﬂJher\lgﬂhgd ;

;
/+ the rest of the code is omitted »/

}

Q1. Explain in English what the above change contract means:

b The @ rec vevsion Posy o N maerhs potd B pod N M o) L
Hyne Medtod) Brnab)! .
- S o s pononneder labie Badane 9 Hype
2. newr otsion o o

g C?h-i ﬂ}‘-‘f‘pgﬁ A ole] Ly uibe
Do e\t ron ,,i shechi ﬂ—{,’rtff'

Ceeole o
"IL {m{:‘”rjl"'.l'ff_'_‘gl' Scrtie. gk 'f_'r{:uu-* Ao

ore buvonseder T e
verusyy 1t Lelee. N\

Q2. Also, fill in the blank of the new version.

2.

Lr= e R B - -, QS B

Consider the following LaryMethodGen constructor.
[

public LazyMethodGen(Method m, LazyClassGen enclosingClass) {
this_enclosingClass = enclosingClass;
if (im.isAbstract() && m.getCode() = null) {
throw new RuntimeException(®bad non-abstract method with no code: ® +
m+ " on " 4+ enclosingClass);

3
MethodGen gen = new MethodGen{m, enclosingClass.getName(),
enclosingClass. getConstantPoolGen ()):

this .memberView = new BcelMethod{enclosingClass . getType(). m):
this.accessFlags = gen_gethccessFlags(): this_returnType = gen. getReturnType():
this.name = gen.getName(); this.argumentTypes = gen .petArgumentTypes();
this.declaredExceptions = gen.getExceptions(); this.attributes = gen. getAttributes();
this . maxlLocals = gen.getMaxlocals();
if (gen.isAbstract() || gen.isMNative(}) {

body = null;
¥ else {

body = gen.getinstructionList(); unpackHandlers(gen};

unpackLineMumbers(gen): unpacklocals(gen);

assertGoodBaody();

h

The above constructor creates a custom object representing a Java method. This constructor raises
a RuntimeException (see line 4-5) if method m (i.e., the first formal parameter of the constructor) does
not have its associated code for its body (see “m.getCode{) == null® at line 3) when this method is
expected to have a body. Otherwise, an object should be created successfully. Remember that a Java
method does not have its body only when it is declared as either an abstract method or a native
method. That is, the following method declarations are legal in Java programs. Notice that bodies

are not provided for the methods.

public abstract wvoid fool();
public native wvoid bar():

The problem of the above LazyMethodGen constructor is that a RuntimeException is raised even when
the given first parameter m represents a native method. Such behavior of the constructor is buggy
because a native method does not have to have body code. Thus, instead of raising a RuntimeException,
the constructor should create an object successfully. In other words, a RuntimeException should not
be thrown.

Q. Based on the above description, write a change contract for the above constructor. You can
use the following APIs if necessary.
~ boolean isNative() of class Method, i.e., the class of the first formal parameter of the LazyMethodGen

constructor:
s This method determines whether the method is declared as native or not.

E«bjm}.ﬁfﬂj 51 t}r-;-f*"wc,.'t_'ﬁm_pjﬂuh : o sNehid = Ave.

starods (RemrdimeSaption) Jet y

3. Consider the following program changes where the previous version at the top is changed to the new
version at the bottom according to the change contract in the middle. Notice that the new version

has an additional field droppingBack ToEullBuild,

[The previous version|

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArraylList();
private boolean reportedErrors:

public void beforeCompiling{1CompilationUnit[] sourceUnits) {
resultsPendingWeave = new ArrayList();
reportedErrors = false:

}

/# the rest of the code is omitted =/

}

[Change contract for beforeCompiling and the other methods]
new field droppingBackToFullBuild: boolean; /
h i i —_— y :
matches droppingBackToFullBuild |cf;:.r./f-‘tff- 1.

!

[The new version]

public class AjPipeliningCompilerAdapter implements AbstractCompilerAdapter {
List resultsPendingWeave = new ArrayList();

private boolean reportedErrors;
private boolean droppingBackToFullBuild: // a new field

public veid beforeCompiling(lCompilationUnit[] sourceUnits) {
resultsPendingWeave = new Arraylist();
reportedErrors = false;
droppingBackToFullBuild = false; [f a new statement

/* the rest of the code is omitted «/

}

Depending on the boolean value of the new field droppingBack ToFullBuild, the behaviors of the methods
in AjPipeliningCompilerAdapter are either preserved or changed. Only if its value is true, the behaviors
are changed. If its value is false, the new version behave in the same as the previous version does.

Q. Fill in the blank of the above change contract.

