
Introduction to Software Change Contract by Examples

Jooyong Yi

jooyong@comp.nus.edu.sg

National University of Singapore

1 About this document

The purpose of this document is to help readers understand software change contract at an intuitive level.
To achieve it, we explain change contract mainly by examples. The examples we use are deliberately
simple for the exposition purpose. Extending the application of change contract to more sophisticated
programs would not be difficult.

Each change contract example we will show deals with a distinct common pattern of program changes.
We will combine a few keywords such as ensured, ensures, signaled and signals in different ways to
express different changes. It can be viewed that each combination forms a phrasal verb that describes a
different kind of program changes.

In this tutorial, we introduce a specification language to describe change contracts for Java programs.
Other languages should be able to be dealt with similarly. Currently, change contracts focus on method-
level changes. Some changes are restricted to method bodies, some are restricted to method signatures,
and some involve both kinds of changes. We will consider those changes one by one.

2 Basics of change contracts for purely behavioral changes

A change contract mainly specifies behavioral changes of a Java method of two different consecutive
versions. As a concrete example of such changes, consider the Cls class in the following box. In its
previous version, method getStr simply returns the str field of String type. However, returning a string
as it is can be risky sometimes. A caller of getStr may assume that the returned string does not start
or end with whitespace, not expecting a return value like “ SoC ”.

[Previous version]

public class Cls {
private String str;

public String getStr() {
return str;

}
}

[Change contract for getStr]

ensured !\result.equals(\result.trim());
ensures \result.equals(\result.trim());

[New version]

public class Cls {
private String str;

public String getStr() {
return str.trim();

}
}

So we want to tell the developer of method getStr to modify the code appropriately. Our requirement
can be expressed as a change contract shown in the middle of the above box. In a nutshell, a change
contract specifies how the behavior of getStr should change. To do that, a change contract typically
compares the behavior of the previous version method with the behavior of the new version method.

The overall meaning of the above change contract is as follows. If there is an input I to getStr – in
this example, an input to method getStr is simply an instance of class Cls because getStr does not take
a parameter – that ensured in the previous version the given condition following the ensured keyword,
“!\result.equals(\result.trim())”, then the same input I should ensure in the new version the next
given condition following ensures keyword, “\result.equals(\result.trim())”. We say that an input I

ensured a condition C when the following three conditions are met.



1. when given input I, the method associated with a change contract (in our example, getStr) terminates
without throwing an exception in the previous version,

2. the given condition C (e.g., “!\result.equals(\result.trim())”) is interpreted right before the method
terminates, and

3. the above interpretation result of C is true.

Similarly, we also say that an input I ensures a condition C when the following three conditions are
satisfied. The second and the third conditions are identical to before.

1. when given input I, the method associated with a change contract terminates without throwing an
exception in the new version,

2. the given condition C is interpreted right before the method terminates, and
3. the above interpretation result of C is true.

The \result keyword. In the above example, we use a special keyword \result to refer to the return
value of getStr. Recall that the given condition is interpreted right before a method terminates. Thus, we
can access the return value of a method through \result. Expression “\result.equals(\result.trim())”
compares the return string of getStr with its trimmed string.

You may wonder, what if an input I does not ensure “!\result.equals(\result.trim())” in the
previous version in the first place? For example, imagine I is an instance of Cls whose str field is “SoC”.
If the new version is also given the same input I, then what kind of output should we expect from the
new version? The answer is not explicitly specified in the given change contract. However, it is natural to
assume that unless specified otherwise, the new version should behave in the same way as the previous
version does when given the same input. Therefore, given the same input I, the new-version getStr should
return the same output “SoC” as was returned in the previous version. While the notion of behaving in
the same way ought to be formally defined, in this lightweight tutorial we will simply mean that return
values of the previous-version and the new-version methods are the same.

3 More examples of change contracts for purely behavioral changes

We provide three more examples of change contracts. They will show how change contracts can deal with
the diversity of Java method behaviors.

3.1 Removing an unexpected exception

A Java method can throw an exception. Yet, some of them are thrown unexpectedly. For example, in the
following previous-version method getStr, a NullPointerException is thrown when str is null. However,
a caller of getStr usually does not expect to get a NullPointerException.

[Previous version]

public class Cls {
private String str;

public String getStr() {
return str.trim();

}
}

[Change contract for getStr]

signaled (NullPointerException) str == null;
signals (NullPointerException) false;

or equivalently,

signaled (NullPointerException) str == null;
not_signals NullPointerException;

[New version]

public class Cls {
private String str;

public String getStr() {
if (str != null) {
return str.trim();

} else {
return str;

}
}

}

2



The simplest fix for this problem is not to throw a NullPointerException. Such a behavioral change can
be expressed with the change contract shown in the middle of the above box. The overall meaning of the
above change contract is as follows. If there is an input I to getStr that signaled a NullPointerException
in the previous version under the condition, “str == null”, then the same input I should not signal
a NullPointerException. The latter then clause is a paraphrase of the direct interpretation of “signals
(NullPointerException) false;”. The same meaning can be conveyed more directly by using “not_signals
NullPointerException”. We say that an input I signaled (or signals) an exception E under a condition
C when the following three conditions are met.

1. when given input I, the method associated with a change contract (in our example, getStr) throws
exception E in the previous version (or in the new version),

2. the given condition C (e.g., “str == null”) is interpreted right before E is thrown, and
3. the above interpretation result of C is true.

3.2 Suggesting an alternative exception

In the previous example, we applied a very simple fix. After the fix, method getStr returns null if the
str field is null. Although a NullPointerException is not thrown, returning null is likely to cause an
another unexpected NullPointerException in other places of a program.

[Previous version]

public class Cls {
private String str;

public String getStr() {
return str.trim();

}
}

[Change contract for getStr]

signaled (NullPointerException) str == null;
signals (NoStrException) true;

[New version]

public class Cls {
private String str;

public String getStr()
throws NoStrException {
if (str != null) {
return str.trim();

} else {
throw new NoStrException();

}
}

}

A better solution would be to throw a checked exception. For example, the above updated change
contract specifies that a custom checked exception NoStrException should be thrown in the new version.
Accordingly, the new-version getStr throws a NoStrException when str is null. Also, notice that the
signature of getStr now ends with “throws NoStrException” indicating that NoStrException is a checked
exception.

The above code change can be expressed with the change contract in the middle that means the
following. If there is an input I to getStr that signaled a NullPointerException in the previous version
under the given condition, “str == null”, then the same input I should signal a NoStrException under
the condition of true.

3.3 Directly constraining the input domain of interest

Recall the meaning of the following change contract:

ensured !\result.equals(\result.trim()); ensures \result.equals(\result.trim());

It means that if there is an input I to getStr that ensured in the previous version the condition appearing
after “ensured”, then the same input I should ensure in the new version the condition appearing after
“ensures”. Notice that the above change contract constrains the input I only indirectly. It does not
directly constrain a component of input, e.g., the str field.

3



It is handy in many cases to constrain the input indirectly. Programmers usually decide to modify
a program when they see a method returning an unexpected or outdated result, and throwing an unex-
pected exception. It would be a hassle if programmers have to figure out themselves the input condition
that causes unexpected or outdated behaviors in order to write a change contract.

[Previous version]

public class Cls {
private boolean ignoreWS;
private String str;

public String getStr() {
return str;

}
}

[Change contract for getStr]

requires ignoreWS == true;
ensured !\result.equals(\result.trim());
ensures \result.equals(\result.trim());

[New version]

public class Cls {
private boolean ignoreWS;
private String str;

public String getStr() {
if (ignoreWS) {
return str.trim();

} else {
return str;

}
}

}

Despite the above fact, there are some cases where it is necessary to constrain input domain directly.
In those situations, you can directly constraint the input using the requires keyword. An example is
shown in the above. Now class Cls has an additional field ignoreWS in the both versions. The intention of
this field is to ignore whitespace only if ignoreWS is true. We can express such an intention in a change
contract with “requires ignoreWS == true;”, resulting in a change contract shown in the above box.

This updated change contract means the following. If there is an input I to getStr that satisfies
“ignoreWS == true” and at the same time ensured in the previous version the condition appearing after
“ensured”, then the same input I should ensure in the new version the condition appearing after “ensures”.

4 Change contracts for purely structural changes

In the previous examples, we assumed that the program structure does not change; class name remains
the same, and the fields and method signatures (i.e., the method name and the list of the method
parameters) of the class remain the same over the two versions. Changes are by and large given to the
method body to modify the behavior of the method.

While developers commonly modify the behavior of a method, that is not the only kind of changes
they make. Another common code change is to modify the structure of a method or a class. For example,
programmers often switch a field to a parameter or vice versa. The following is such a case where the
ignoreWS field of the previous version is replaced with the parameter of the getStr method of the new
version.

[Previous version]

public class Cls {
private boolean ignoreWS;
private String str;

public String getStr() {
if (ignoreWS) {
return str.trim();

} else {
return str;

}
}

}

[Change contract for getStr]

old_field ignoreWS:boolean;
new_param ignoreWS:boolean;
matches ignoreWS == \prev(ignoreWS);

[New version]

public class Cls {
private String str;

public String
getStr(boolean ignoreWS) {
if (ignoreWS) {
return str.trim();

} else {
return str;

}
}

}

4



When this kind of structural changes are made, programmers need to be sure that the applied
structural changes do not change the behavior of the program. In the above example, regardless of
whether ignoreWS is a field or a parameter, we want the getStr method to return the same result if the
value of ignoreWS is the same.

We earlier mentioned that a change contract assumes that given the same input, the same behavior
should be observed between two versions of a method unless otherwise specified. Unlike before, however,
we now need to specify when two inputs are deemed the same because the input structure changes across
versions. This necessity is fulfilled by the above change contract shown in the middle. It specifies the
following three things:

1. the previous version had a field ignoreWS of boolean type. (the old_field part)
2. the new-version getStr has a parameter ignoreWS of boolean type. (the new_param part)
3. we deem that the new-version input is the same as the previous-version input only if the ignoreWS

parameter of the new-version input has the same value as the ignoreWS filed of the previous-version
input. It is implicitly assumed that the variables shared between the inputs of the two versions such
as str have the same values across the versions. (the matches part)

We used the \prev keyword in the above change contract to distinguish between the two ignoreWS
variables. Keyword \prev means “previous”. Expression \prev(ignoreWS) refers to the ignoreWS of the
previous version, which is a field. Meanwhile, ignoreWS without \prev refers to the ignoreWS of the new
version.

Meanwhile, one may conversely want to switch a parameter to a field. In the above example, this
corresponds to the change from the right-hand-side program to the left-hand-side one. This change can
be expressed as a change contract similarly. Instead of old_field and new_param, one can use old_param
and new_field, respectively. The matches part can be used without a change although \prev(ignoreWS)
will this time refer to the ignoreWS parameter of the previous version.

5 Change contracts involving structural and behavioral changes

By now we showed how purely behavioral changes and purely structural changes can be expressed as
change contracts. Now it is time to consider the cases both kinds of changes take place at the same time.
For example, the following is a case to add an additional field ignoreWS to the previous version to obtain
the new version whose getStr method may behave differently depending on the value of ignoreWS.

[Previous version]

public class Cls {
private String str;

public String getStr() {
return str.trim();

}
}

[Change contract for getStr]

new_field ignoreWS:boolean;
matches ignoreWS == true;

[New version]

public class Cls {
private boolean ignoreWS;
private String str;

public String getStr() {
if (ignoreWS) {
return str.trim();

} else {
return str;

}
}

}

When such multiplex changes occur, programmers at least need to be sure that the applied changes
do not break the existing code. In other words, things that used to work should keep working well. In
the case of the above example, the previous version was working fine when ignoring whitespace. Thus,
the new version should keep the same way as the previous version when ignoreWS is true. The change
contract shown in the middle describes that requirement. It specifies when two inputs of the previous
and the new versions are deemed the same. If in the new version, the ignoreWS field is true and the rest
of variables shared between the two versions have the same values, then we consider it to be the same
as the previous-version input.

5


	Introduction to Software Change Contract by Examples

