 SOLUTIONS for HW 2

Question 1

(a) Grammar for arith. Expr. is ambiguous. The expression

 2 + 3*4

 has two parse trees.

(b) Grammar for boolean expression is ambiguous. The expression

 not true and true

 has two parse trees.

(c) Grammar for commands is ambiguous. The command

 if true then skip else skip ; skip

 has two parse trees.

Question 2

The new operational semantics rules can be as follows:

<b0, s> = false

<b0 and b1, s> = false

<b1, s> = false

<b0 and b1, s> = false

<b0, s> = true, <b1, s> = true

<b0 and b1, s> = true

Note that in this case the rules support efficient evaluation but

their application is no longer mutually exclusive. When both b0 and b1

are false both the first and the second rules are applicable, even

though the result of their application is the same.

If you want to stick to rules whose application is mutually exclusive,

the best you can do is :

<b0, s> = false

<b0 and b1, s> = false

<b0, s> = true, <b1, s> = false

<b0 and b1, s> = false

<b0, s> = true, <b1, s> = true

<b0 and b1, s> = true

But note that you will then evaluate b0 even when b1 is false.

Question 3

[image: image1.png]6 The first three statements leave the state o = {(fib0, 0), (fibl, 1), (k. 4] , by three applica-
tions of the execution rule for assignments and two applications of the rule for sequent
Since k>0, the first loop rule gives us the following

olk>0)= true__o(sbody) = 0o (while(k > 0)body) = o
SRS T BTy 5 6

with . body = temp-fb0; Hb0-fibl; ibl-TbD-emp; k-ke1;. Applying the current state o 1o the
body of this while loop leaves o, = (b0, 1), (b1, 1), (k.3). (temp,0)}. Now we need to
repeat the application of the first loop rule to this new state, in order to complete the
premise o, (while(i > 0)s body) =, for the original application of the rule. Three applica-
tions of the first loop rule leads to the following sequence of states

oy = [{b0. 1), (61.2), (k. 2. (temp, 1)}

oy = ({60, 2). (b1,), (k. 1), {temp, 1))

o0 = [{6b0. 3. (b1,). (k.0). temp, 2}

Now the second loop rue comes into use, since &> 0 is fulse

[image: image2.png](k> 0)= fulve
STVRIE (3160 3 body =5
This terminates the interpretation process, leaving the final state as shown above.

