SOLUTIONS TO HW 4

Question 1

If the language is statically scoped, then 5 will be printed.

This is because the print statement appears inside sub1, and

sub1 is nested inside program main. Therefore, the static link of

sub1's activation record points to main. Since the value of

main's x variable is 5 , therefore 5 will be printed.

If the language was dynamically scoped, then 10 would have been

printed. This is because, x is then searched using the dynamic

link of sub1's activation record. Since the dynamic link of

sub1 points to sub2 (sub1 is called from sub2), therefore the

value of sub2's x variable (which is 10) will be printed.

Question 2

(a) Passing by name

After doing the macro-expansion (of Parameter with List[Globvar]) we get:

List[Globvar] := 3;

Globvar := Globvar + 1;

List[Globvar] := 5;

The first assignment assigns 3 to List[1] and the second assignment

assigns 5 to List[2]. Thus 3,5 will be printed.

(b) Passing by value

In this case, List[1] = 1 and List[2] = 2 when Subprogram is invoked.

These values are not changed by the execution of Subprogram. Thus

1,2 will be printed.

(c) Passing by reference

In this case, the address of List[1] is passed. The value of

Parameter when the Subprogram exits is 5. The value of List[2] is

unchanged from the time of Subprogram invocation. Thus 5,2 will be

printed.

(d) Passing by value result

Here the value of List[1] is copied to Parameter. The value of

Parameter is copied back to List[1] when Subprogram returns. Here

also 5,2 will be printed.

Question 3

[image: image1.png]53 Suppose the main program issues the statement g=gcd (24, 10) ; Then the ged method
will issue the call ged (10, 4) , which will issue the call ged (4, 2) , which will issue the
callged (2, 0). Now this last call will return 2, which will be dutifully retumed to all the
other calls that wait, and so the value 2 is finally assigned to ¢ in the main program. Below
is a picture of the series of calls at the moment the last call is about to return 2 o its caller.
Notice that the return value for all the calls that wait at that point are currently undef.

[image: image2.png]idef”

main—m [¢ il | [ke || o wnder” | [7 der

first —gw [x_ 24

ed call ouiiintnt f Sciutuluinil qo-7
A | b e
second —p] x
sedall 3

third — g
gedcall

-
e~

fourth —pem
d call

Question 3

[image: image3.png]s For the loop structure:
for (1=0; iem; i44)
for (307 jen; 3+4)
ClI) - 3
the calculation of the address of CI][j] can be defined using recurrence relations, since the
order in which elements are referenced is the same is the order in which they are stored.
“Thus, the calculation of the address y(Clil[i)) can be expressed as a function of the address
A1
For each new value of i in the outer loop, we can calculate:
AU = K- 11GD +en
which has no multiplications (since en can be precalculated from the dope vector at the
time memory is allocated for C). Moreover, for each new value of j in the inner loop, we
have:
HCHD = Wl 1) + e

which also has no multiplications (since the elements in each row are stored in adjacent
‘memory locations).

Question 4

[image: image4.png]11 The record map rm for the two record types point and employee

{ Cpoint, { {x,int), (y, in)), }
{employee, { {id, int), (name, string[251), (age. int), (salary, float), (dept, char) })

‘Technically, the type st ring [25] isn’t possible for the syntax of records given in
this chapter. A good follow-on exercise would be to extend the syntax and semantics
of record types so that record elements could be arrays, and strings could be treated

like arrays of type char.

