
CS2104 Prog. Lang. Concepts
Operational Semantics

Abhik Roychoudhury

Department of Computer Science

National University of Singapore

Organization

• An imperative language IMP

• Formalizing the syntax of IMP

• Meaning of arithmetic expressions

• Meaning of Boolean Expressions

• Meaning of statements/commands

• Discussion on Axiomatic Semantics

IMP : a toy imperative language

• IMP is an imperative language in the style of PASCAL or C (even

though some of the syntax may be different)

• The language contains arithmetic and boolean expressions as well

as if-then-else, while statements.

• The syntax of the program will be described by BNF grammars.

IMP : a toy imperative language

• During execution of IMP program, the state of execution will be

captured by the values of program variables.

• Operational semantics will be described by rules which specify how

– Expressions in IMP pgm. are evaluated

– Statements in IMP pgm. change the state

Syntax of IMP

• non-negative integers N

• truth values T = {true, false}

• variables V

• arithmetic expressions A

• boolean expressions B

• statements/commands C

Syntax of N

• Regular Grammar:

N → DN | D
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

• Regular Expression

(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)∗

or

(0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9)+

Syntax of T

• Regular Grammar

T → true | false

• Regular Expression

(true|false)

Syntax of V

• Regular Grammar:

V → LV | DV |L
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

L → a | b | . . . | z

• Construct the equivalent regular expression.

Syntax of Arithmetic expressions A

A → N

A → V

A → A+A

A → A ∗A

This grammar is ambiguous but an equivalent unambiguous grammar

of arithmetic expressions can be easily constructed. Try it ?

Syntax of Boolean expressions B

B → T

B → A = A

B → A ≤ A
B → ¬B
B → B ∧B

This grammar is ambiguous but an equivalent unambiguous grammar

of boolean expressions can be easily constructed. Try it ?

Syntax of Commands C

C → skip

C → V := A

C → C;C

C → if B then C else C

C → while B do C

Is there ambiguity in the above grammar ?

Execution model

• Operational semantics of IMP describes how programs in that

language are excuted.

• To describe this, it needs to assume an underlying execution

model.

• The execution model could be thought as a state machine

although not necessarily a finite state machine.

States of Execution Model

• Each state of the execution model is a unique assignment of

values to variables.

• Thus, if {a, b} are the only variables in an IMP program, then

each of the following are states in the execution model

– a = 0, b = 0

– a = 0, b = 1

– a = 0, b = 2

– . . .

– a = 1, b = 0

– . . .

Operational Semantics

Operational Semantics for the IMP language will give rules to describe

the following:

Given a state s

• how to evaluate arithmetic expressions

• how to evaluate boolean expressions

• how the commands can alter s to a new state s′

Meaning of Arith. Expressions A - (1)

• Numbers: 〈n, s〉 ≡ n

Number n in any state s evaluates to n

e.g. 〈0, s〉 ≡ 0, 〈1, s〉 ≡ 1

• Variables: 〈X, s〉 ≡ s(X)
Variable X in state s evaluates to value of X in s.

e.g. 〈a, (a = 5, b = 20)〉 ≡ 5
〈b, (a = 5, b = 20)〉 ≡ 27

Meaning of Arith. Expressions A - (2)

• Sums:

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 + a1, s〉 ≡ n
where n is the sum of n0 and n1

e.g. 〈a+ b, (a = 5, b = 20)〉 ≡ 25

• Products:

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 ∗ a1, s〉 ≡ n
where n is the product of n0 and n1

e.g. 〈a ∗ b, (a = 5, b = 20)〉 ≡ 100

Example arith. expr. evaluation

Evaluating meaning of a complicated arith. expr. will require

• several application of the above rules

• operator precedence

〈a, (a = 5, b = 20)〉 ≡ 5 〈b, (a = 5, b = 20)〉 ≡ 20

〈a ∗ b, (a = 5, b = 20)〉 ≡ 100
〈b, (a = 5, b = 20)〉 ≡ 20

〈a ∗ b+ b, (a = 5, b = 20)〉 ≡ 120

Syntax of Boolean expressions B - Recap

B → T

B → A = A

B → A ≤ A
B → ¬B
B → B ∧B

Meaning of Boolean Expressions B - (1)

• 〈true, s〉 ≡ true

• 〈false, s〉 ≡ false

• Equality Check

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 = a1, s〉 ≡ true
where n0 and n1 are equal

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 = a1, s〉 ≡ false
where n0 and n1 are unequal

Meaning of Boolean Expressions B - (2)

• LEQ check

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 ≤ a1, s〉 ≡ true
where n0 is l.e.q. to n1

〈a0, s〉 ≡ n0 〈a1, s〉 ≡ n1

〈a0 ≤ a1, s〉 ≡ false
where n0 is greater than n1

Meaning of Boolean Expressions B - (3)

• Negation

〈b, s〉 ≡ true

〈¬b, s〉 ≡ false

〈b, s〉 ≡ false

〈¬b, s〉 ≡ true

• Conjunction

〈b0, s〉 ≡ t0 〈b1, s〉 ≡ t1
〈b0 ∧ b1, s〉 ≡ t

where t is logical conjunction of t0, t1

Example of Boolean Expr. meaning

〈a, (a = 5, b = 6)〉 ≡ 5 〈b, (a = 5, b = 6)〉 ≡ 6

〈a = b, (a = 5, b = 6)〉 ≡ false

〈¬a = b, (a = 5, b = 6)〉 ≡ true

〈a, s〉 ≡ 5 〈b, s〉 ≡ 6

〈a ≤ b, s〉 ≡ true

〈a, s〉 ≡ 5 〈b, s〉 ≡ 6

〈a = b, s〉 ≡ false

〈a ≤ b ∧ a = b, s〉 ≡ false

where s is the state (a = 5, b = 6)

Meaning of Expressions

• Expressions evaluate to values in a given state.

• Therefore, the meaning of expressions are given by values.

– boolean values for boolean expressions

– numbers for arithmetic expressions

• Using the meaning of expressions, we can assign meaning to

commands.

Meaning of Commands

• Execution of commands leads to a change of program state.

• Therefore the meaning of a command c is: If c is executed in

some state s, how does it change s to s′.

〈c, s〉 → s′

Syntax of Commands C - recap

C → skip

C → V := A

C → C;C

C → if B then C else C

C → while B do C

Rules for commands - (1)

• Skip

〈skip, s〉 → s

• Sequencing

〈c0, s〉 → sint 〈c1, sint〉 → s′

〈c0; c1, s〉 → s′

Rules for commands - (2)

• Assignment

〈a, s〉 ≡ n

〈X := a, s〉 → s[X = n]

where s[X = n] is a state which is same as state s, except that

the value of varible X in s[X = n] is n.

Thus:

(a = 5, b = 20, c = 2)[a = 7] is the state (a = 7, b = 20, c = 2)

(a = 5, b = 20, c = 2)[a = 5] is the state (a = 5, b = 20, c = 2)

Rules for commands - (2)

• If-then-else

〈b, s〉 ≡ true 〈c0, s〉 → s′

〈if b then c0 else c1, s〉 → s′

〈b, s〉 ≡ false 〈c1, s〉 → s′

〈if b then c0 else c1, s〉 → s′

Rules for commands - (3)

• While

〈b, s〉 ≡ false

〈while b do c, s〉 → s

〈b, s〉 ≡ true 〈c, s〉 → sint 〈while b do c, sint〉 → s′

〈while b do c, s〉 → s′

Summary of rules

• The meaning of each commands specifies how an execution of the

command chnages state.

• Roughly speaking, this is done by simulating the execution of the

commands.

• For example, the rule for while essentially unfolds the iterations of

the while loop.

What we did consider

• We studied the syntax and semantics of a toy language which

models many of the language features we are comfortable with.

• Our language IMP contains:

– program variables

– arithmetic and boolean expressions

– choice (if-then-else)

– loops (while)

• Studying the formal semantics of the language features allows:

– pinpointing the precise meaning of a program

– reasoning about programs

. . . and what we did not

• IMP does not contain many language features we are comfortable

with. For example:

– different data types (not just integers)

– arrays of data types

– pointers

– objects

– procedures/functions

– recursion

• Formally reasoning about programs with all these features is still

an active topic of research.

AXIOMATIC SEMANTICS

• Operational semantics lets us understand the meaning of a

program.

• Axiomatic semantics allows us to also prove correctness of

programs.

• The central idea in axiomatic semantics is that of an assertion:

some property of program state at a particular control location

Assertions: Example

{true }
if (a >= b)

m := a ;

else

m := b

{ m = max(a,b) }

If we can prove the assertions above, we have proved correctness of

the above code fragment !!

Hoare Triple

• A tool for reasoning about code fragments.

• Of the form {Pre} C {Post}

• Pre and Post are assertions. C is a program.

• Proving such a Hoare triple amounts to proving

– if we start in a state where Pre holds

– then execution of C in such a state produces

– a state where Post holds

– provided the program C terminates

• Previous slide contained a triple for the max program.

Proving Hoare Triples

• Proving correctness of a program amounts to setting appropriate

pre- and post-conditions and then proving the corresponding

Hoare Triple.

• To prove a Hoare Triple, we will use certain rules, based on the

structure of the program under question.

• These rules are stated in the same manner as operational

semantics rules.

Rule for if-then-else

{P ∧B}c0{Q} {P ∧ ¬B}c1{Q}

{P} if B then c0 else c1 {Q}

{a >= b}m := a{m = max(a, b)} {a < b}m := b{m = max(a, b)}

{true} if a >= b then m := a else m := b {m = max(a, b)}

Now prove {a >= b}m := a{m = max(a, b)} and

{a < b}m := b{m = max(a, b)}

Rule for assignment

true

{Q[x\e]}x := e{Q}

We need to prove {a >= b}m := a{m = max(a, b)}

Using the above rule we can only prove:

{a = max(a, b)}m := a{m = max(a, b)}

Rule of Consequence

P ⇒ P’ {P’} C {Q’} Q’ ⇒ Q

{P} C {Q}

Set P = (a >= b),

P ′ = (a = max(a, b))

Q = Q′ = (m = max(a, b))

Then P ⇒ P ′

Therefore {a >= b}m := a{m = max(a, b)} holds.

Other rules

• Rule of sequences

{P} C1 {R} {R} C2 {Q}

{P} C1 ; C2 {Q}

• Rule of loop invariants

{Cond ∧ P} Body {P}

{P} while Cond do Body{¬ Cond ∧ P}

P is a loop invariant : true after every iteration of the loop.

Exercise

Reading : Chapter 3.3 of textbook (for axiomatic semantics)

Study the correctness of the factorial function to get yourself familiar

with reasoning about while loops. More about this to follow in the

tutorial.

