Monitors
and Condition Synchronization

Abhik Roychoudhury
CS 3211
National University of Singapore

Reading material: Chapter 5 of Textbook.

1 CS3211 2012-13

In previous class

» Shared objects and mutual exclusion
Various threads trying to compete for access to shared object
Mutual exclusion ensured via Java synchronized statements and
synchronized methods.

» Threads are Active Objects

» Shared Object being competed for is a passive object
Cannot change control flow on its own.
State change via (synchronized) method calls by threads.

Higher level concurrency concept

Java thread-safe shared object access essentially implements a
Monitor - a fundamental concurrency concept invented in
1974-75 by C.A.R. Hoare and Per Brinch Hansen.

2 CS3211 2012-13

monitors & condition synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor
nested monitors

Process equations: guarded actions
Practice: private data and synchronized methods (exclusion).

wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

3 €S3211 2012-13

The concept of monitors

Brings in the concept of protected or private data.
The protected data is accessed by several threads via operations
Protected data cannot be accessed without invoking the operations.

Each operation is executed atomically.

A monitor thus represents a passive object, whose operations are invoked by
various active objects --- the threads.

4 €S3211 2012-13

A schematic monitor

[4
. (4
monitor X{
intn=0; E——
operation increment{
int tmp;
RSO . [
tmp =n;n =tmp+l;
} " Lo]
Process p Process q
Diagrammatic view of monitor X
X.increment X.increment

The critical section code is encapsulated inside monitor operations, not replicated
inside processes.

5 CS3211 2012-13

Extending monitors with conditions

Monitor operations may involve waiting on conditions (these are
simple boolean expressions).

When such conditions become true, the waiting threads are notified
(using wait, notify feature of Java).

Thus, each such condition has a waiting queue of blocked processes.
The schematic for conditional wait / notify are:

wait_on_cond(Cond)
append p, the current proc. to queue for Cond
p.state = blocked
monitor.lock = released

signal_to_cond(Cond){
if queue for Cond != empty{
remove head of queue, let it be process x;
x.state = ready

6 CS3211 2012-13

Implement semaphores using monitor

monitor Sem{
integer s = 1 // initial value
condition notZero

operation acquire{
if (s == 0) wait_on_cond(notZero)

s=s-1;
}
operation release{
s=s+1;
signal_on_cond(notZero)
¥
¥
7

USER PROCESS

while(1){
non-critical section

Sem.acquire();
critical section

Sem.release();

CS3211 2012-13

Producer consumer problem

Producer -‘ ‘ ‘

-

Finite buffer
Producer: blocks if buffer is full.
Consumer: blocks if buffer is empty.
8 CS3211 2012-13

Schematic Producer-Consumer

monitor PC{
buffer = empty;
condition notFull, notEmpty;

operation produce(v){
if buffer is full{
wait_on_cond(notFull)

operation consume(){
if buffer is empty{
wait_on_cond(notEmpty);

add v to tail of buffer;
signal_to_cond(notEmpty)

remove w from head of buffer;
signal_to_cond(notFull);

return w;
¥
Producer Consumer
while (1){ while (I){
d = get_new_item; d = PC.consume();
PC.produce(d);) put_item(d);
9 CS3211 2012-13

Monitors in Java

Not a default construct.
Need to be programmed as a new class with private data (the data being
protected) and synchronized methods.

Blocking of processes is supported by wait()
Unblocking of processes is supported by notify(), notifyAll()

wait() can throw exceptions, so we will add code to catch them.

10 CS3211 2012-13

Producer-consumer in Java

class PCMonitor{
final int N = 5;
int Oldest = 0, Newest = 0;
volatile int Count = 0;
int Buffer[] = new int[N];

synchronized void produce(int v){
while (Count == N try{ wait();} catch(InterruptedException e) {}
Buffer[Newest] =V;
Newest = (Newest + |) %N;
Count++; notifyAll();

)

synchronized int consume(){
int tmp;
while (Count == 0) try{ wait();} catch(InterruptedException e) {}
tmp = Buffer[Oldest]; Oldest = (Oldest + 1) % N
Count-<; notifyAll();
return tmp;

11 CS3211 2012-13

Readers-Writers Problem

Several processes accessing a common resource.
Accessing processes grouped into two categories.

Readers: do not exclude other readers, exclude writers.
Writers: exclude all other processes while accessing.

How to give a solution using monitors?

12 CS3211 2012-13

Schematic Readers-Writers

monitor RW{
int readers=0, writers=0;
condition OKtoRead, OKtoWrite; This is

schematic
operation StartRead{ code — it
if writers 1=0 v not empty(OKtoWrite){ wait_on_cond(OKtoRead)}} | 4oes not
) readers++; signal_to_cond(OKtoRead); reflect the
operation EndRead{ solution in
readers--; if readers == 0 { signal_to_cond(OKtoWrite);} Java.

operation StartWrite{
if writers!=0 v readers != 0 { wait_on_cond(OKtoWrite); }
writers++;

operation EndWrite{
writers--;

if empty(OKtoRead){signal_to_cond(OKtoWrite);}
\L else { signal_to_cond(OKtoRead); }
}

13

CS3211 2012-13

Correctness of Readers-Writers

R = Number of readers
W = Number of writers

Invariant property
R>0=W==0) A (W< I)A(W==1=R==0)

Prove that it is preserved by each of the operations of the RW monitor.

CS3211 2012-13

Doing it in Java
Java has no mechanism for waiting on a specific condition.

We can call the wait() method of any Java object, which suspends the current thread.
The thread is said to be "waiting on" the given object.

Another thread calls the notify() method of the same Java object.
This "wakes up" one of the threads waiting on that object.

synchronized method | (){

synchronized method2(){
while (x==0) wait();

while (y==0) wait();

synchronized method3(...){
if(.)x=lelsey=1I;
notifyAll();

[If wrong process is notified it will return itself to the set of waiting processes. J

15 CS3211 2012-13

So Far ...

A basic idea of what monitor is
-- protected data
-- atomic access via methods
Basic Examples to show usage of monitors
-- Producer-consumer
-- Readers-writers

Now

More advanced / detailed examples with monitors.

CS3211 2012-13

5.1 Condition synchronization

CarPark

PP

A controller is required for a carpark, which only permits cars
to enter when the carpark is not full and does not permit cars
to leave when there are no cars in the carpark. Car arrival and
departure are simulated by separate threads.

17 CS3211 2012-13

carpark model

+ Events or actions of interest?
arrive and depart
+ Identify processes.
arrivals, departures and carpark control

+ Define each process and interactions (structure).

ARRIVALS | CARPARK
O

DEPARTURES
CONTROL O

(CS3211 2012-13

carpark model

CARPARKCONTROL (N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]
| when (i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS) .

DEPARTURES = (depart->DEPARTURES) .

| |CARPARK =
(ARRIVALS | | CARPARKCONTROL (4) | | DEPARTURES) .

Guarded actions are used to control arrive and
depart.

LTS?
19

CS3211 2012-13

Carpark LTS

CARPARKCONTROL (N=4) = SPACES[N],

SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]
| when (i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS) .

DEPARTURES = (depart->DEPARTURES) .

CARPARK =
(ARRIVALS | | CARPARKCONTROL (4) | | DEPARTURES) .

@) arrive (1) arrive (2) arrive (3:;2}?\565:7®

depart depart depart

depart
20 (CS3211 2012-13

carpark program

¢ Model - all entities are processes interacting by actions
¢ Program - need to identify threads and monitors

¢ thread - active entity which initiates (output) actions

4 monitor - passive entity which responds to (input) actions.

For the carpark?

ARRIVALS CARPARK DEPARTURES
Q O CONTROL Q) O

21 CS3211 2012-13

carpark program

Arrivals and Departures implement Runnable, CarParkControl
provides the control (condition synchronization).

Instances of these are created by the start () method of the CarPark applet

public void start() {
CarParkControl c =
new DisplayCarPark (carDisplay, Places) ;
arrivals.start(new Arrivals(c));
departures.start(new Departures(c));

22 CS3211 2012-13

carpark program - Arrivals and
Departures threads

class Arrivals implements Runnable {
CarParkControl carpark;

Arrivals (CarParkControl c) {carpark = c;}

public void run() {
try {
while (true) {
ThreadPanel.rotate(330);
carpark.arrive() ;
ThreadPanel.rotate (30) ;

Simifarly: Departures
which calls
carpark.departi),

} catch (InterruptedException e){}
}
}

How do we implement the control of CarParkControl?

23 CS3211 2012-13

Carpark program - CarParkControl
monitor

class CarParkControl {
protected int spaces;
protected int capacity;

CarParkControl (int capacity) Condition

{spaces = capacity;} synchrlon/'zat/bn?
synchronized void arrive() { plock jf full?
.. ——-spaces; (spaces==0)

} |
synchronized void depart() { block if empty?
.. ++spaces; .. (spaces==N)

}

24 (CS3211 2012-13

condition synchronization in Java

Java provides a thread wait queue per monitor (actually per
object) with the following methods:

condition synchronization in Java

We refer to a thread entering a monitor when it acquires the
mutual exclusion lock associated with the monitor and exiting
the monitor when it releases the lock.
Wait() - causes the thread to exit the monitor,

permitting other threads to enter the monitor.

/ Monito|

Thre - Thread B
wait()

6

ad A
°
notify()

b2 CS3211 2012-13

b 25 €S3211 2012-13

Monitor

Thread B v
Wait() st
notify()

Thread A
wait
b 27 (CS3211 2012-13

condition synchronization in Java

FSP: when cond act -> NEWSTAT

Java: public synchronized void act()
throws InterruptedException
{
while ('cond) wait();
// modify monitor data
notifyAll()
}

The while loop is necessary to retest the condition cond to ensure that cond is
indeed satisfied when it re-enters the monitor.

notifyall () is necessary to awaken other thread(s) that may be waiting to
enter the monitor now that the monitor data has been changed.

b 28 CS3211 2012-13

CarParkControl - condition
synchronization

class CarParkControl {
protected int spaces;
protected int capacity;

CarParkControl (int capacity)
{capacity = spaces = n;}

synchronized void arrive() throws InterruptedException {
while (spaces==0) wait():;
--spaces; . N .
notify () ; when(i>0) arrive ->SPACES[i-1]

}

synchronized void depart() throws InterruptedException {
while (spaces==capacity) wait();
++spaces; . .
notify () : when(i<N) depart ->SPACES[i+1]
}
}

29

CS3211 2012-13

Monitors are passive

Active entities (that initiate actions) are implemented as threads.
Passive entities (that respond to actions) are implemented as
monitors.

» 30 (CS3211 2012-13

5.2 Semaphores

Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is an integer
variable that can take only non-negative values.

The only operations permitted on s are up(s) and down(s)

down(s): when s>0 decrement(s)

up(s): increment(s)

Does this mean there will be busy waiting?

31 CS3211 2012-13

modeling semaphores

To ensure analyzability, we only model semaphores that
take a finite range of values. If this range is exceeded
then we regard this as an ERROR. 1\ is the initial value.

const Max

3
range Int 0..Max

SEMAPHORE (N) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]
| when (v>0) down->SEMA[v-1]
),
SEMA [Max+1] = ERROR.

LTS?

32 CS3211 2012-13

semaphore demo - model

Three processes p[1..3] use a shared semaphore
mutex to ensure mutually exclusive access (action
critical) to some resource.

LOOP = (mutex.down->critical->mutex.up->LOOP) .

| ISEMADEMO = (p[1..3]:LOOP
| 1{p[1..3]}: :mutex:SEMAPHORE (1)) .

SEMAPHORE (N) = SEMA[I],

SEMA[v:Int] = (up->SEMA[v+1]
|when (v>0) down->SEMA[v-1]
),

SEMA [Max+1]

ERROR.

CS3211 2012-13

Semaphore

For mutual exclusion, the semaphore initial value is 1.
Why?

Is the ERROR state reachable for SEMADEMO ?
Is a binary semaphore sufficient (i.e. Max=1) ?

34 CS3211 2012-13

semaphores in Java

Semaphores are
passive objects,
therefore
implemented as
monitors.

(In practice,
semaphores are a
low-level mechanism
often used in
implementing the
higher-level monitor
construct.)

public class Semaphore {
private int value;

public Semaphore (int initial)
{value = initial;}

synchronized public void up() {
++value;
notify();

}

synchronized public void down ()
throws InterruptedException {
while (value== 0) wait();
--value;
}
}

CS3211 2012-13

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots. Items
are put into the buffer by a producer process and removed by
a consumer process. It can be used to smooth out transfer
rates between the producer and consumer.

Buffer
[
bl ||

36 (CS3211 2012-13

bounded buffer - a data-independent
model

The behaviour of BOUNDEDBUFFER is independent of the
actual data values, and so can be modelled in a data-
independent manner.

LTS: put put put put put
get get get get get
37 CS3211 2012-13

bounded buffer - a data-independent
model

BUFFER (N=5) = COUNT[O],
COUNT[i:0..N]
= (when (i<N) put->COUNT[i+1]
|when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER) .
CONSUMER = (get->CONSUMER) .

| | BOUNDEDBUFFER =
(PRODUCER | | BUFFER (5) | | CONSUMER) .

38 CS3211 2012-13

bounded buffer program - buffer

monitor
public interface Buffer {..}

class BufferImpl implements Buffer {

public synchronized void put(Object o)
throws InterruptedException {
while (count==size) wait();
buf[in] = o; ++count; in=(in+1)%size;
notify();

public synchronized Object get()
throws InterruptedException {
while (count==0) wait();
Object o =buf[out];
buf[out]=null; --count; out=(out+l)%size;
notify();
return (o) ;
}

39 CS3211 2012-13

bounded buffer program - producer
process

class Producer implements Runnable {
Buffer<Character> buf;
String alphabet= "ab ijkl tuvwxyz";

Producer (Buffer<Character> b) {buf = b;}

public void run() { Simifarly: Consumer
try { which calls buf get
int ai = 0;

while (true) {

buf.put (new Character (alphabet.charAt(ai)));
ai=(ai+l) % alphabet.length();

}
} catch (InterruptedException e){}
}
}

40 CS3211 2012-13

bounded buffer program - consumer
process

class Producer implements Runnable {
Buffer<Character> buf;

Consumer (Buffer<Character> b) {buf = b;}
public void run() { s
try { Siniilarly - Consumer

Character ¢ = buf.get();

} catch (InterruptedException e){}

41 CS3211 2012-13

while (true) { which calls buf iget ()

5.4 Nested Monitors

Suppose that, in place of using the count variable and
condition synchronization directly, we instead use two
semaphores full and empty to reflect the state of the buffer.

class SemaBuffer implements Buffer {

Semaphore full; //counts number of items
Semaphore empty; //counts number of spaces

SemaBuffer (int size) {
this.size = size; buf = new Object[size];
full = new Semaphore (0) ;
empty= new Semaphore (size);

}

42 (CS3211 2012-13

nested monitors - bounded buffer
program

synchronized public void put(Object o)
throws InterruptedException ({
empty.down () ;
buf[in] = o;
++count; in=(in+l)%size;
full.up();

synchronized public Object get()
throws InterruptedException{

full.down() ;

Object o =buf[out]; buf[out]=null; i

--count; out=(out+l)%size; Doey this

empty.up() ;

return (o); behflve a5
! desired?

empty is decremented during a put operation, which is
blocked if empty is zero; full is decremented by a get
operation, which is blocked if full is zero.

43 CS3211 2012-13

Deadlock scenario

1. Initially buffer does not contain anything

2. Consumer wants to execute get() operation
// This should block since buffer is empty.

3. Inside get() --- full.down() is executed
// since full is 0 --- this causes Java wait()
// the execution of wait() releases the lock for full
// the execution of wait() does not release the lock for SemaBuffer

4. Producer cannot acquire the lock for Semabuffer

5. Consumer also keeps on waiting since the producer does not get a
chance to insert anything in the buffer.

44 CS3211 2009-10 by Abhik

nested monitors - bounded buffer
program

synchronized public void put(Object o)
throws InterruptedException {
empty.down () ;
buf[in] = o;
++count; in=(in+l)%size;
full.up();
}

synchronized public Object get()
throws InterruptedException{
full.down() ;

Object o =buf[out]; buf[out]=null;

--count; out=(out+l)%size; Does this
empty.up(); behave as
return (o); :

} destiei?:

synchronized public void down()
throws InterruptedException {
while (value== 0) wait();
--value;

}
45 €S3211 2012-13

Going through it one more time

Initially buffer does not contain anything,
Integer protected by semaphore fu//is 0,
And integer protected by semaphore empty is non-zero
Consumer executes get()
Inside get(), the first line is full.down()
Inside down, the first line is
while (value == 0) wait()
// value is the integer protected by the semaphore monitor
Since fullis 0, wait() is executed
Since wait() is encountered in a method for the fu// semaphore —
it releases the lock for ful/
The lock for the buffer whose get() called full.down() is not released!!

46 CS3211 2009-10 by Abhik

nested monitors - revised bounded
buffer program

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the
monitor lock for the buffer is not acquired until after
semaphores are decremented.

nested monitors - revised bounded
buffer model

public void put(Object o)
throws InterruptedException {
empty.down () ;
synchronized(this) {
buf[in] = o; ++count; in=(in+1l)%size;
}
full.up();

BUFFER = (put -> BUFFER
|get -> BUFFER
).

PRODUCER = (empty .down->put->full.up->PRODUCER) .
CONSUMER = (full.down->get->empty.up->CONSUMER) .

47 CS3211 2012-13

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where the
semaphore actions are outside the monitor .

Does this behave as desired?
Minimized LTS?

48 CS3211 2012-13

5.5 Monitor invariants

An invariant for a monitor is an assertion concerning the variables it
encapsulates. This assertion must hold whenever there is no thread
executing inside the monitor i.e. on thread entry to and exit from a
monitor. They are useful for us to gain understanding of a given monitor.

CarParkControl Invariant: 0 < spaces <N
Semaphore Invariant: 0 < value

Buffer Invariant: 0 < count < size
and 0<in<size
and 0 < out<size
and in = (out + count) modulo size

Entry to monitor: acquisition of the lock for the monitor.

Exit from monitor: wait(), or exit from synchronized method call

49 CS3211 2012-13

Summary

@ Concepts
monitors: encapsulated data + access procedures
mutual exclusion + condition synchronization
nested monitors
@ Process Equations
guarded actions
@ Practice (Java)
private data and synchronized methods in Java
wait(), notify() and notifyAll() for condition synchronization

single thread active in the monitor at a time

50 CS3211 2012-13

