
1

CS 3211 – Parallel & Concurrent Programming
Introduction

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

CS3211 2009-10 by Abhik1

http://www.comp.nus.edu.sg/~abhik/CS3211/index.html
Also see IVLE Lesson Plan (updated every week)

Sequential Programming
Single thread of control flow.
One program counter.

Advances by executing an instruction.

Standard programming languages
C, Java.

CS3211 2009-10 by Abhik2

J
Sequential Java program may have many passive objects

Only one active flow of control.

Why Concurrent Programming?
Wide rise of multi-cores

Machines with 4 or more cores are common.
Intel already has a research processor with 80 cores !!
Why so ?

Processor speeds have enabled more complex programming languages
and tasks

CS3211 2009-10 by Abhik3

and tasks.
But, is this not self-sustaining?

The cycle [Larus, MSR-TR 08]

Increased processor
performance

CS3211 2009-10 by Abhik4

Larger, more
feature-full software

Larger
development
teams

High-level
languages &
Programming
Abstractions

Slower
Programs

Free lunch must end!
`` For the past three decades, improvements in semiconductor fabrication and

processor implementation produced steady increases in the speed at which
computers executed existing sequential programs. The architectural
changes in multicore processors benefit only concurrent applications and
therefore have little value for most existing mainstream software. For the
foreseeable future, today’s desktop applications will not run much faster
than they do now. In fact, they may run slightly slower on newer chips, as

CS3211 2009-10 by Abhik5

individual cores become simpler and run at lower clock speeds to reduce
power consumption on dense multicore processors ….

Free lunch must end!
… That brings us to a fundamental turning point in software development, at

least for mainstream software. Computers will continue to become more
and more capable, but programs can no longer simply ride the hardware
wave of increasing performance unless they are highly concurrent. Although
multicore performance is the forcing function, we have other reasons to
want concurrency: notably, to improve responsiveness by performing work
asynchronously instead of synchronously. For example, today’s applications

CS3211 2009-10 by Abhik6

must move work off the GUI thread so it can redraw the screen while a
computation runs in the background.”

- from “Software and the Concurrency Revolution”, ACM Queue 05.

2

On concurrency

Being integrated into mainstream languages
Java, C#

Harder to program and understand
Many inter-leavings even when each thread has one path.

CS3211 2009-10 by Abhik7

Cyclic debugging not possible – cannot reproduce an observable
error !

Thread 1 Thread 2

X = 1; // should be 0 X = 2;

Y = X;
printf(“%d”, y);

Possible runs
X = 1;
X = 2;
Y = X;
Print Y Error not exhibited.

X = 2;
X= 1;
Y = X;
Print Y Error is exhibited.

CS3211 2009-10 by Abhik8

In this course
Concurrent Programming (primarily)

Principles, rather than tricks
Sometimes high-level modeling languages used to convey principles.
Java is used to illustrate concrete issues.

Parallel Programming (approx 3-4 lectures)
M i l ill b i

CS3211 2009-10 by Abhik9

Material will be given.

Textbook (closely followed for Concurrent Programming, but
no coverage of parallel programming)

Concurrency: State Models & Java Programs by Jeff Magee and
Jeff Kramer

Publisher: Wiley
ISBN 0-471-98710-7

Topics (1)
Concurrency as a concept

Threads/Processes
Interleaving among threads
Communication mechanisms among threads

Shared Objects
M P i

CS3211 2009-10 by Abhik10

Message Passing

A glimpse of these concepts today

Topics (2)
Thread Communication in details

Shared obj. & Mutual exclusion
Monitors
Properties to preserve

No deadlock, Safety, Liveness

D Th d C

CS3211 2009-10 by Abhik11

Dynamic Thread Creation

Multi-threaded Java will be used in these assignments.

Topics (3)
Parallel Programming

Libraries to extend a sequential programming language
Message Passing Interface (MPI) on top of C

Parallel programming constitutes about 1/3 of course.

CS3211 2009-10 by Abhik12

Assignment will have to involve C programming.
No tutorial on C programming will be given.

You are expected to learn it on your own.

Course outline in course webpage
http://www.comp.nus.edu.sg/~abhik/CS3211/index.html

3

Assessment
Mark distribution

Midterm: 20% [on the 7th week, in class, 4th March 2010]
Programming Assignments: 30%

Concurrent Programming: 4 assignments, 5 marks each = 20 marks
Parallel Programming: 1 bigger assignment, 10 marks = 10 marks

Fi l 50%

CS3211 2009-10 by Abhik13

Final : 50%

Pre-requisites: CS2106

IVLE Lesson Plan will be updated every week

The people
My e-mail: abhik@comp.nus.edu.sg, Off: COM1 #03-20
Your TA [responsible for tutorials]

Qi Dawei dawei@comp.nus.edu.sg
Seth Normand Hetu seth.hetu@gmail.com

Guest lecture on multi-threaded Java programming

CS3211 2009-10 by Abhik14

J p g g
Ju Lei julei@comp.nus.edu.sg

Queries, and help with assignments
Post your queries to the IVLE Discussion forum, please.
Email Ju Lei julei@comp.nus.edu.sg and
me abhik@comp.nus.edu.sg
You can also ask your queries to the TAs during tutorials.

A Concurrent Modeling Language

Abhik Roychoudhury
CS 3211

Department of CS, NUS

CS3211 2009-10 by Abhik15

Reading for this portion appears in E-reserves, see Lesson Plan.

We now discuss …
SPIN --- a tool for modeling complex concurrent and
distributed systems.
Provides:

Promela, a protocol meta language
A checker

CS3211 2009-10 by Abhik16

A random simulator for system simulation

Why discuss it now?
To introduce the concepts in concurrency …
Without getting into full-scale multi-threaded Java
programming at the very beginning.

What is this modeling language?
Describes concurrent systems

Depicts common concepts in concurrency
Threads / processes
Interleaving among threads/processes
Inter-process communication via shared variable updates
Inter-process communication via message passingInter-process communication via message passing

… and also other features such non-determinism within a
process

Only in a modeling language.

Yet, is higher-level than a programming language
Focus on concurrency concepts first, rather than details of Java

Our Usage
Learn Promela, a modeling language.

Higher-level than a programming language.

Use it to model simple concurrent system protocols and
interactions.
Gives a feel (at a small scale)

Wh h d fi d i i ?

CS3211 2009-10 by Abhik18

What are hard-to-find errors in concurrent programming?
Supported by a back-end checker which can show the
errors to you as a UML Sequence Diagram!

4

Our primary usage

Requirements (English)

Manual step
Manual step

Desirable
Properties

User

CS3211 2009-10 by Abhik19

Promela

Code

Tests
Testing

Debug

Alternate models??
Sequence Diag.

??
Automated

Verification

Only use as guide

Why Promela ?
Specification language to model finite state systems

Side remark: What is finite state?

Models finite state concurrent processes which
compute and communicate.
Different flavors of concurrency & communication

CS3211 2009-10 by Abhik20

Different flavors of concurrency & communication
Via global shared variables.
Via message channels

Synchronous communication (hand-shake)
Asynchronous communication (buffers)

Example 0

byte state = 0;

proctype A()

{ byte tmp;

state : Global Variable

tmp : Local Variable

(state==0) -> tmp = state is a
guarded command (blocked if the

CS3211 2009-10 by Abhik21

{ y p;

(state==0) -> tmp = state;

tmp = tmp+1;

state = tmp;

}

init { run A() ; }

guard is false).

Only one process created.

Final value of state is 1

Concepts in Example 0
byte state = 0;

proctype A()
{ byte tmp;

(0) >

Plain sequential programming.

Use of guarded commands.

(state==0) -> tmp = state;
tmp = tmp+1;
state = tmp;

}

init { run A() ; }

Only one active thread of control.

Looking inside a process
Data Structures

Basic types : int, bool, bit, byte
Arrays
Structures (through typedef declarations)

Just as in C/Java, not much going on here !

CS3211 2009-10 by Abhik23

Check SPIN manual for details
http://spinroot.com/spin/Man/Manual.html

Statements
Assignments
Boolean expressions

If true, then no-op else block

Guarded commands
(state == 1) -> tmp = state;

CS3211 2009-10 by Abhik24

(state 1) -> tmp state;
Guard and body evaluated separately, be careful !!
If you want to evaluate them together
atomic { (state == 1) -> tmp = state; }

Effect of a test-and-set instruction

5

Example 1

byte state = 0;

proctype A()
{ byte tmp;

What will happen here ?

CS3211 2009-10 by Abhik25

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

We need to define how
processes are scheduled
to determine behaviors.

Process scheduling
All processes execute concurrently
Interleaving semantics

At each time step, only one of the “active” processes will execute (non-
deterministic choice here)
A process is active, if it has been created, and its “next” statement is not
blocked.

CS3211 2009-10 by Abhik26

Each statement in each process executed atomically.
Within the chosen process, if several statements are enabled, one of
them executed non-deterministically.

We have not seen such an example yet !

Example 1 - Revisited

byte state = 0;

proctype A()

Final val. of state can
still be 1 ??

CS3211 2009-10 by Abhik27

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

Problem of arbitrary
shared variable access
by several threads.

Concepts in Example 1

byte state = 0;

proctype A()

Several threads of control.

Interleaved execution among
threads.

CS3211 2009-10 by Abhik28

{ byte tmp;

(state==0) -> tmp = state;
tmp = tmp+1; state = tmp;

}

init { run A() ; run A(); }

Shared variables for inter-thread
communication.

Surprising results due to
unforeseen interleavings !!

Example 2

bit flag; init {

byte sem; atomic{

proctype myprocess(bit i) run myprocess(0));

{ (flag != 1) -> flag = 1; run myprocess(1));

CS3211 2009-10 by Abhik29

sem = sem + 1; run observer();

sem = sem – 1; }

flag = 0; }

}

proctype observer() {

assert(sem != 2);

}

All three processes

Instantiated together

Concepts in Example 2
Interleaved execution among threads.
Shared variable communication
Unintended shared variable values

Due to unforeseen interleavings

And, a mechanism for
Specifying the unintended behavior
Producing the interleaving that produces this unintended
behavior.
We only do this in our modeling environment – hard to do this
for real programs!

6

Concepts in Example 2
Initial values of sem, flag not given

All possible initial values are considered.
The system being verified is the asynchronous
composition

myprocess(0) || myprocess(1)
Th h

CS3211 2009-10 by Abhik31

The property is the invariant
always sem ≠ 2

Local & global invariants can be specified inside code
via assert statements.

More on assert
Of the form assert B

B is a boolean expression
If B then no-op else abort (with error).

Can be used inside a process (local invariants)
proctype P(…) { x = … ; assert(x != 2); …. }

CS3211 2009-10 by Abhik32

Or as a separate observer process (global invariants)
proctype observer(){ assert(x != 2); }

Used to specify intended (and unintended) behaviors
resulting from interleavings among threads.

Example 3

bit flags[2]; init() {

byte sem, turn; atomic{

proctype myprocess(bit id) { run myprocess(0);

flags[id] = 1; run myprocess(1);

CS3211 2009-10 by Abhik33

flags[id] = 1; run myprocess(1);

turn = 1 – id; run observer(); }

flags[1-id] == 0 || turn == id; }

sem++; proctype observer() {

sem--; assert(sem != 2);

flags[id] = 0; }

}

Issues
Can you prove mutual exclusion ?

What purpose does turn serve ?
Arrays have been used in this example.

Flags is global, but each element is updated by only one
process in the protocol

CS3211 2009-10 by Abhik34

Not enforced by the language features.
Processes could alternatively be started as:

active proctype myprocess(…) {
Alternative to dynamic creation via run statement

So far …
Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
NOW

CS3211 2009-10 by Abhik35

NOW …
Guarded IF and DO statements

Within a process, if several statements are enabled, one of
them executed non-deterministically!

Channel Communication between processes

Non-deterministic choice
Choice of statements within a process

if
:: condition1 -> … ; … ; …
…
:: conditionk -> … ; … ; …
fi;

CS3211 2009-10 by Abhik36

fi;

If several conditions hold, select and execute any one
(more behaviors for verification).
If none hold, the statement blocks.

7

Loops
Similar to the if-fi statement, we have a do-od
statement.
Repeat the choice selection forever.

Useful for modeling infinite loops pre-dominant in control
software.

CS3211 2009-10 by Abhik37

Control can transfer out of the loop via a break
statement in the flavor of the C language.

A loop which may terminate

byte count;

proctype counter()
{

do

CS3211 2009-10 by Abhik38

:: count = count + 1
:: count = count - 1
:: (count == 0) -> break
od;

}

Enumerate the reasons for non-termination in this example

Concepts in previous example
Non-determinism within a process

Not normal for threads in programs!!
A model is often, less detailed than a program.

Possibility of programming non-terminating control
software

See next example too.

A loop which will not terminate

active proctype TrafficLightController() {

byte color = green;

do

:: (color == green) -> color = yellow;

CS3211 2009-10 by Abhik40

:: (color == green) -> color = yellow;

:: (color == yellow) -> color = red;

:: (color == red) -> color = green;

od;

}
green yellow red

s0 s1

s2

So far …
Process creation and interleaving.
Process communication via shared variables.
Standard data structures within a process.
Assignment, Assert, Guards.
G d d IF d DO t t tGuarded IF and DO statements
NOW …

Channel Communication between processes

Channels
Processes in our modeling language can communicate by
exchanging messages across channels.
Channels are typed.
Any channel is a FIFO buffer.
Handshakes supported when buffer is null.

CS3211 2009-10 by Abhik42

chan ch = [2] of bit;
A buffer of length 2, each element is a bit.

Array of channels also possible.
Talking to different processes via dedicated channels.

8

Handshake or not?

1

2
3

Sender Receiver
Handshake communication

<!1, ?1>, <!2, ?2>, <!3, ?3>, …
(only possible interleaving)

Buffer of length 2
!1, !2, ?1, !3, ?2, …
(also possible)

CS3211 2009-10 by Abhik43

4

What is the minimum sized buffer needed to allow this interleaving?

!1, !2, ?1, ?2, !3, !4, ?3, ?4, …

Value-passing

chan ch = [0] of bit;

active proctype sender() active proctype receiver()

{ { bit x;

ch!1; ch?x;

CS3211 2009-10 by Abhik44

} printf(“%d”, x);

}

The value 1 is passed into local var. x via message passing.

In this example, the message passing was via a handshake

! is output, ? is input

Message retrieval

ch ? X
Retrieve the earliest received (note: FIFO) message from
the buffer for ch and store it into the local var. X on the
receiver side.

CS3211 2009-10 by Abhik45

Receiving is always blocked if the corresponding channel
buffer is empty.
Similarly for sending.

An example with channels

chan name = [??] of byte; init { atomic { run A(); run B() } }

proctype A() {

name!124;

name!121; E t th b h i

CS3211 2009-10 by Abhik46

name!121;

}

proctype B() {

byte state;

name?state

}

Enumerate the behaviors
when:

?? is 0

?? is 1

?? is > 1

Another (more famous) example

#define p 0

#define v 1

chan sema = [0] of { bit };

proctype dijkstra_semaphore() {

1

proctype user()

{

do

:: sema?p; /* critical section */

sema!v; /* non-critical section */

CS3211 2009-10 by Abhik47

byte count = 1;

do

:: (count == 1) -> sema!p; count = 0

:: (count == 0) -> sema?v; count = 1

od

}

od

}

init {

run dijkstra_semaphore();

run user(); run user(); run user()

}

Readings for today’s lecture
Basic SPIN manual

http://spinroot.com/spin/Man/Manual.html
Promela is the front end of the SPIN tool, a model checker.
We will concern ourselves mostly about the modeling in
cs3211.

Ch t 3 f “Th SPIN M d l Ch k ” b G d J

CS3211 2009-10 by Abhik48

Chapter 3 of “The SPIN Model Checker” by Gerard J.
Holzmann.

Scanned version made available from IVLE Lesson Plan (E-reserves).

Lot of other material available online at
http://spinroot.com/spin/Man/index.html

