
1

Revision
- Last lecture

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2009-10 by Abhik Roychoudhury1

Summary of previous 12 lectures
Concurrency

As a concept.
Concurrent program execution – inter-leavings
Critical section and ensuring mutual exclusion

Semaphores, Monitors

D dl k S d hDeadlocks, Starvation and preventing them.

Concurrent programming
All of the above concepts as evidenced in multi-threaded Java

Parallel programming
Message passing model studied via MPI

CS3211 2009-10 by Abhik Roychoudhury2

In today’s discussion
Revision

Promela – concurrency concepts
Java – concurrent programming
MPI – parallel programming

CS3211 2009-10 by Abhik Roychoudhury3

Comment on the following protocol
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
d

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
do

CS3211 2009-10 by Abhik Roychoudhury4

do
:: !wantQ -> break;
:: else -> skip
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: !wantP -> break;
:: else -> skip
od;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

… and, the following one?
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

atomic{
!wantQ; wantP = true; }

active proctype Q() {
do
:: printf(“noncritical section\n”);

atomic{
!wantP; wantQ = true; }

CS3211 2009-10 by Abhik Roychoudhury5

printf(“critical section\n”);
wantP = false

od
}

printf(“critical section\n”);
wantQ = false

od
}

Write process equation for:

0 1 2
three

lose

two
one

win

CS3211 2009-10 by Abhik Roychoudhury6

win

P = ((three -> lose) | ((one | two) -> win)) -> P

P = three -> Q | one -> R | two -> R
Q = lose -> P
R = win -> P

OR

2

Concurrent Executions (from textbook)
A roller coaster control system only permits its car to depart when it is

full. Passengers arriving at the departure platform are registered with
the roller-coaster controller by a turnstile. The controller signals the
car to depart when there are enough passengers on the platform (to
fill the car to its capacity of M). The car goes round the roller-coaster
track and waits for another M passengers. A maximum of M
passengers can occupy the platform. Model three processes
TURNSTILE, CONTROL, CAR. TURNSTILE and CONTROL interact
via the arrival of a passenger. CONTROL and CAR interact via the
departure of a car.

CS3211 2009-10 by Abhik Roychoudhury7

Answer:
const M = …
TURNSTILE = (passenger -> TURNSTILE).
CONTROL = CONTROL[0],
CONTROL[i:0..M] = (when (i<M) passenger -> CONTROL[i+1]

| when (i==M) depart -> CONTROL[0]| () p []

).

CAR = (depart -> CAR).

ROLLERCOASTER = (TURNSTILE || CONTROL || CAR).

CS3211 2009-10 by Abhik Roychoudhury8

Monitors – Dining Philosophers
Consider the following schematic code for the Dining
Philosophers’ problem discussed in class.

Recall that

wait_on_cond(Cond){

append p, the current process to queue for Condpp p p q

p.state = blocked

monitor.lock = released

}

signal_to_cond(Cond){

if queue for Cond != empty{

remove head of queue, let it be process x; x.state = ready

}

}

CS3211 2009-10 by Abhik Roychoudhury9

Monitor – Dining Philosophers
monitor Fork{

int array[0..4] fork = [2,2,2,2,2]
condition array[0..4] OKtoEat

operation takeForks(int i){
if (fork[i] != 2){

(O)

operation releaseForks(int i){
fork[i+1] = fork[i+1]+ 1;
fork[i-1] = fork[i-1]+ 1;
if (fork[i+1] == 2){

signal_on_cond(OKtoEat[i+1])
}wait_on_cond(OKtoEat[i])

}
fork[i+1] = fork[i+1] - 1;
fork[i-1] = fork[i-1] – 1;

}

}
if (fork[i-1] == 2){
signal_on_cond(OKtoEat[i-1])
}

}

CS3211 2009-10 by Abhik Roychoudhury10

Philosopher i’s code
loop forever{ takeForks(i); EAT; releaseForks(i); }

Questions
Explain the working of the code.
Does the code suffer from deadlocks?
Does it suffer from starvation?
Can you show any of the following

eating[i] ⇒ (fork[i] == 2)g[] ⇒ ([])
eating[i] is true when philosopher i has executed takeForks(i), and has
not yet executed releaseForks(i).

¬empty(OKtoEat[i]) ⇒ (fork[i] < 2)
∑0

4 fork[i] == 10 – 2 * E,
where E == # of phil. who are eating

CS3211 2009-10 by Abhik Roychoudhury11

No deadlock
Deadlock implies E == 0
Then fork[0] + fork[1] + fork[2] + fork[3]+fork[4] == 10
Also, in a deadlock all philosophers should be enqueued
on OKtoEat.
Thus, for all I, fork[i] < 2, , []

Hence fork[0] + fork[1] + fork[2] + fork[3]+fork[4] < 10

Contradiction!

CS3211 2009-10 by Abhik Roychoudhury12

3

Starvation scenario
phil1 phil2 phil3
take(1)

take(3)
wait(OK[2])

release(1)
take(1)

release(3)
take(3)

CS3211 2009-10 by Abhik Roychoudhury13

forever

Exercise on Parallel Programming
int x, y, z; /* MPI_COMM_WORLD = {0,1,2} */
switch (rank) {

case 0: x = 0; y = 1; z = 2;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Send(&y, 1, MPI_INT, 2, 43, MPI_COMM_WORLD);
MPI_Bcast(&z, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

case 1: x = 3; y = 4; z = 5;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD);
break;

case 2: x = 6; y = 7; z = 8;
MPI_Bcast(&z, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Recv(&x, 1, MPI_INT, 0, 43, MPI_COMM_WORLD, &status);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

}

CS3211 2009-10 by Abhik Roychoudhury14

What are the values of x, y, z when the code terminates?

Run it in class, and see
Rank x y z
1 0 4 5
2 1 4 0
0 0 1 4

Explain the reason behind each of the 9 values!

CS3211 2009-10 by Abhik Roychoudhury15

Matrix-vector mult. in parallel
In class, we discussed dot product computation where
two vectors were multiplied. Now, consider the
multiplication of a matrix with a vector.

-1 15

1 * -1
+ 3 * 0

CS3211 2009-10 by Abhik Roychoudhury16

1 3 2 4
1

0

4

2

*
=

15
+ 2 * 4
+ 4 * 2

A b c

How to divide up the data?
We are performing A*b = c

Assume that rows of the matrix are distributed into proc.
Vector b is replicated into all processes.

Steps
Perform local sum (row i of A) * b = element i of c
Allgather MPI communication to gather all elements of c.

CS3211 2009-10 by Abhik Roychoudhury17

Pictorially

Row i of A

b

Row i of A

b

ci
* =

Local computation

CS3211 2009-10 by Abhik Roychoudhury18

Row i of A

b

* =

c

All-gather
communication

