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Summary of previous 12 lectures

» Concurrency

As a concept.

Concurrent program execution — inter-leavings

Critical section and ensuring mutual exclusion

Semaphores, Monitors

Deadlocks, Starvation and preventing them.
» Concurrent programming

All of the above concepts as evidenced in multi-threaded Java
» Parallel programming

Message passing model studied via MPI
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In today’s discussion

» Revision
Promela — concurrency concepts
Java — concurrent programming
MPI — parallel programming
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Comment on the following protocol

ﬂool wantP = false, wantQ = false; \

active proctype Q() {

active proctype P() { do
do o - . a»
e - . " «: printf(*“noncritical section\n”);
«: printf(“noncritical section\n”); wantQ = true;
wantP = true; do ’
do :lwantP -> break;
:'wantQ -> break; - else - ski
:else -> skip ;d' P
od; N ) )

N rintf(“Crit. Section Q\n”);
printf(“Crit. Section P\n”); SvalntC(J = fla|se fon Q)
wantP = false od

od }
NG %
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... and, the following one?

bool wantP = false, wantQ = false;

active proctype P() { active proctype Q() {
do do
:: printf(“noncritical section\n”); :: printf(“noncritical section\n”);

atomic{ atomic{
twantQ; wantP = true; } wantP; wantQ = true; }
printf(“critical section\n”); printf(“critical section\n”);
wantP = false wantQ = false

od od
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Write process equation for:

P = ((three -> lose) | ((one | two) -> win)) -> P

OR

P = three->Q| one->R|two->R
Q=lose->P
R =win->P
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Concurrent Executions (from textbook)

Aroller coaster control system only permits its car to depart when it is
full. Passengers arriving at the departure platform are registered with
the roller-coaster controller by a turnstile. The controller signals the
car to depart when there are enough passengers on the platform (to
fill the car to its capacity of M). The car goes round the roller-coaster
track and waits for another M passengers. A maximum of M
passengers can occupy the platform. Model three processes
TURNSTILE, CONTROL, CAR. TURNSTILE and CONTROL interact
via the arrival of a passenger. CONTROL and CAR interact via the
departure of a car.
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Answer:

» constM = ...

» TURNSTILE = (passenger -> TURNSTILE).

» CONTROL = CONTROL[O0],

» CONTROL[i:0..M] = (when (i<M) passenger -> CONTROL[i+I]
> | when (i==M) depart -> CONTROL[0]
> ).

» CAR = (depart -> CAR).

» ROLLERCOASTER = (TURNSTILE || CONTROL || CAR).

8 (CS3211 2009-10 by Abhik Roychoudhury

Monitors — Dining Philosophers

» Consider the following schematic code for the Dining
Philosophers’ problem discussed in class.
Recall that

wait_on_cond(Cond){
append p, the current process to queue for Cond
p-state = blocked
monitorlock = released
}
signal_to_cond(Cond){
if queue for Cond != empty{
remove head of queue, let it be process x; x.state = ready

}
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Monitor — Dining Philosophers
monitor Fork{
int array[0..4] fork = [2,2,2,2,2]
condition array[0..4] OKtoEat

operation releaseForks(int i){
fork[i+1] = fork[i+1]+ 1;
fork[i-1] = fork[i-1]+ 1;

operation takeForks(int i){ if (fork[i+1] == 2){

if (forkli] 1= 2){ signal_on_cond(OKtoEat[i+1])

wait_on_cond(OKtoEat]i]) }
} if (fork[i-1] == 2){
fork[i+1] = fork[i+1] - 1; signal_on_cond(OKtoEat[i-1])
fork[i-1] = fork[i-1] - 1; }

} }
Philosopher i's code
loop forever{ takeForks(i); EAT; releaseForks(i); }
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Questions

» Explain the working of the code.

» Does the code suffer from deadlocks?

» Does it suffer from starvation?

» Can you show any of the following
eating[i] = (fork[i] == 2)

eating[i] is true when philosopher i has executed takeForks(i), and has
not yet executed releaseForks(i).

—empty(OKtoEat[i]) = (fork[i] < 2)
2ot fork[i] == 10-2*E,

where E == # of phil. who are eating
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No deadlock
» Deadlock implies E == 0
» Then fork[0] + fork[l] + fork[2] + fork[3]+fork[4] == 10

» Also, in a deadlock all philosophers should be enqueued
on OKtokEat.

» Thus, for all I, fork[i] < 2
Hence fork[0] + fork[I] + fork[2] + fork[3]+fork[4] < 10

» Contradiction!
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Starvation scenario

phill phil2 phil3
take(1)
take(3)
wait(OK[2])
release(l)
take(l)
release(3)

take(3) forever
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Exercise on Parallel Programming

intx,y,z /*MPI_COMM_WORLD ={0,1,2} */
switch (rank) {
case 0: x=0;y=1;2=2;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Send(&y, 1, MPI_INT, 2, 43, MPI_COMM_WORLD);
MPI_Bcast(&z, 1, MPLINT, 1, MPI_COMM_WORLD); break;
case 1:x=3;y=4,z=5;
MPI_Bcast(&x, 1, MPI_INT, 0, MP|_COMM_WORLD);
MPI_Bcast(&y, 1, MPI_INT, 1, MP|_COMM_WORLD);
break;
case2: x=6;y=7;z2=8;
MPI_Bcast(&z, 1, MPI_INT, 0, MP|_COMM_WORLD);
MPI_Recv(&x, 1, MPI_INT, 0, 43, MPI_COMM_WORLD, &status);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

What are the values of x, y, z when the code terminates?
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Run it in class, and see

»Rank x 'y z
» 0 45
» 2 I 4 0
» 0 0o 1 4

» Explain the reason behind each of the 9 values!
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Matrix-vector mult. in parallel

» In class, we discussed dot product computation where
two vectors were multiplied. Now, consider the
multiplication of a matrix with a vector.

1%-1

+3*0
+2%4
+4%2
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How to divide up the data?
» We are performing A*b = c

Assume that rows of the matrix are distributed into proc.

Vector b is replicated into all processes.
» Steps

Perform local sum (row i of A) * b = element i of ¢
Allgather MPl communication to gather all elements of c.
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Pictorially

Row i of A Local computation / row i of A

-gather
communication
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