Revision
- Last lecture

Abhik Roychoudhury
CS 3211
National University of Singapore

1 (CS3211 2009-10 by Abhik Roychoudhury

Summary of previous 12 lectures

» Concurrency

As a concept.

Concurrent program execution — inter-leavings

Critical section and ensuring mutual exclusion

Semaphores, Monitors

Deadlocks, Starvation and preventing them.
» Concurrent programming

All of the above concepts as evidenced in multi-threaded Java
» Parallel programming

Message passing model studied via MPI

2 (CS3211 2009-10 by Abhik Roychoudhury

In today’s discussion

» Revision
Promela — concurrency concepts
Java — concurrent programming
MPI — parallel programming

3 (CS3211 2009-10 by Abhik Roychoudhury

Comment on the following protocol

ﬂool wantP = false, wantQ = false; \

active proctype Q() {

active proctype P() { do
do o - . a»
e - . " «: printf(*“noncritical section\n”);
«: printf(“noncritical section\n”); wantQ = true;
wantP = true; do ’
do :lwantP -> break;
:'wantQ -> break; - else - ski
:else -> skip ;d' P
od; N))

N rintf(“Crit. Section Q\n”);
printf(“Crit. Section P\n”); SvalntC(J = fla|se fon Q)
wantP = false od

od }
NG %
4 (€S3211 2009-10 by Abhik Roychoudhury

... and, the following one?

bool wantP = false, wantQ = false;

active proctype P() { active proctype Q() {
do do
:: printf(“noncritical section\n”); :: printf(“noncritical section\n”);

atomic{ atomic{
twantQ; wantP = true; } wantP; wantQ = true; }
printf(“critical section\n”); printf(“critical section\n”);
wantP = false wantQ = false

od od

5 CS3211 2009-10 by Abhik Roychoudhury

Write process equation for:

P = ((three -> lose) | ((one | two) -> win)) -> P

OR

P = three->Q| one->R|two->R
Q=lose->P
R =win->P

6 CS3211 2009-10 by Abhik Roychoudhury

Concurrent Executions (from textbook)

Aroller coaster control system only permits its car to depart when it is
full. Passengers arriving at the departure platform are registered with
the roller-coaster controller by a turnstile. The controller signals the
car to depart when there are enough passengers on the platform (to
fill the car to its capacity of M). The car goes round the roller-coaster
track and waits for another M passengers. A maximum of M
passengers can occupy the platform. Model three processes
TURNSTILE, CONTROL, CAR. TURNSTILE and CONTROL interact
via the arrival of a passenger. CONTROL and CAR interact via the
departure of a car.

7 CS3211 2009-10 by Abhik Roychoudhury

Answer:

» constM = ...

» TURNSTILE = (passenger -> TURNSTILE).

» CONTROL = CONTROL[O0],

» CONTROL[i:0..M] = (when (i<M) passenger -> CONTROL[i+I]
> | when (i==M) depart -> CONTROL[0]
>).

» CAR = (depart -> CAR).

» ROLLERCOASTER = (TURNSTILE || CONTROL || CAR).

8 (CS3211 2009-10 by Abhik Roychoudhury

Monitors — Dining Philosophers

» Consider the following schematic code for the Dining
Philosophers’ problem discussed in class.
Recall that

wait_on_cond(Cond){
append p, the current process to queue for Cond
p-state = blocked
monitorlock = released
}
signal_to_cond(Cond){
if queue for Cond != empty{
remove head of queue, let it be process x; x.state = ready

}

9 (CS3211 2009-10 by Abhik Roychoudhury

Monitor — Dining Philosophers
monitor Fork{
int array[0..4] fork = [2,2,2,2,2]
condition array[0..4] OKtoEat

operation releaseForks(int i){
fork[i+1] = fork[i+1]+ 1;
fork[i-1] = fork[i-1]+ 1;

operation takeForks(int i){ if (fork[i+1] == 2){

if (forkli] 1= 2){ signal_on_cond(OKtoEat[i+1])

wait_on_cond(OKtoEat]i]) }
} if (fork[i-1] == 2){
fork[i+1] = fork[i+1] - 1; signal_on_cond(OKtoEat[i-1])
fork[i-1] = fork[i-1] - 1; }

} }
Philosopher i's code
loop forever{ takeForks(i); EAT; releaseForks(i); }

10 (C€S3211 2009-10 by Abhik Roychoudhury

Questions

» Explain the working of the code.

» Does the code suffer from deadlocks?

» Does it suffer from starvation?

» Can you show any of the following
eating[i] = (fork[i] == 2)

eating[i] is true when philosopher i has executed takeForks(i), and has
not yet executed releaseForks(i).

—empty(OKtoEat[i]) = (fork[i] < 2)
2ot fork[i] == 10-2*E,

where E == # of phil. who are eating

11 CS3211 2009-10 by Abhik Roychoudhury

No deadlock
» Deadlock implies E == 0
» Then fork[0] + fork[l] + fork[2] + fork[3]+fork[4] == 10

» Also, in a deadlock all philosophers should be enqueued
on OKtokEat.

» Thus, for all I, fork[i] < 2
Hence fork[0] + fork[I] + fork[2] + fork[3]+fork[4] < 10

» Contradiction!

12 CS3211 2009-10 by Abhik Roychoudhury

Starvation scenario

phill phil2 phil3
take(1)
take(3)
wait(OK[2])
release(l)
take(l)
release(3)

take(3) forever

13 CS3211 2009-10 by Abhik Roychoudhury

Exercise on Parallel Programming

intx,y,z /*MPI_COMM_WORLD ={0,1,2} */
switch (rank) {
case 0: x=0;y=1;2=2;
MPI_Bcast(&x, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Send(&y, 1, MPI_INT, 2, 43, MPI_COMM_WORLD);
MPI_Bcast(&z, 1, MPLINT, 1, MPI_COMM_WORLD); break;
case 1:x=3;y=4,z=5;
MPI_Bcast(&x, 1, MPI_INT, 0, MP|_COMM_WORLD);
MPI_Bcast(&y, 1, MPI_INT, 1, MP|_COMM_WORLD);
break;
case2: x=6;y=7;z2=8;
MPI_Bcast(&z, 1, MPI_INT, 0, MP|_COMM_WORLD);
MPI_Recv(&x, 1, MPI_INT, 0, 43, MPI_COMM_WORLD, &status);
MPI_Bcast(&y, 1, MPI_INT, 1, MPI_COMM_WORLD); break;

What are the values of x, y, z when the code terminates?
14 (CS3211 2009-10 by Abhik Roychoudhury

Run it in class, and see

»Rank x 'y z
» 0 45
» 2 I 4 0
» 0 0o 1 4

» Explain the reason behind each of the 9 values!

15 (CS3211 2009-10 by Abhik Roychoudhury

Matrix-vector mult. in parallel

» In class, we discussed dot product computation where
two vectors were multiplied. Now, consider the
multiplication of a matrix with a vector.

1%-1

+3*0
+2%4
+4%2

16 (C€S3211 2009-10 by Abhik Roychoudhury

How to divide up the data?
» We are performing A*b = c

Assume that rows of the matrix are distributed into proc.

Vector b is replicated into all processes.
» Steps

Perform local sum (row i of A) * b = element i of ¢
Allgather MPl communication to gather all elements of c.

17 CS3211 2009-10 by Abhik Roychoudhury

Pictorially

Row i of A Local computation / row i of A

-gather
communication

18 CS3211 2009-10 by Abhik Roychoudhury

