
1

CS3211 – Parallel & Concurrent Programming
Concurrency Concepts

Abhik Roychoudhury
National University of Singapore

abhik@comp.nus.edu.sg

CS3211 2009-10 by Abhik1

Chapter 4 of “Principles of the Spin Model Checker” by Ben-Ari, and

http://spinroot.com/spin/Man/ (lot of online material, including a Manual)

Today’s and next lecture
To discuss concurrency concepts

We use Promela, a low-level modeling language.

We then move to concurrent programming
We then use Java, a multi-threaded programming language.

So far …
Promela as a language
Basic constructs: if, do, …

CS3211 2009-10 by Abhik2

Example: ABP
Alternating Bit Protocol

Reliable channel communication between sender and receiver.
Exchanging msg and ack.
Channels are lossy
Attach a bit with each msg/ack.
Proceed with next message if the received bit matches your expectation.

CS3211 2009-10 by Abhik3

chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };

ABP architecture

datachan

Implemented as Promela processes

CS3211 2009-10 by Abhik4

sender receiver
datachan

ackchan

Sender Receiver
active proctype Sender()
{ bit out, in;

do
:: datachan!out ->

ackchan?in;
if

active proctype Receiver()
{ bit in ;

do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in

CS3211 2009-10 by Abhik5

if
:: in == out

-> out = 1- out;
:: else fi

od
}

:: timeout > ackchan!in
od

}

Timeouts
Special feature of the language

Time independent feature.
Do not specify a time as if you are programming.

True if and only if there are no executable statements in any of
the currently active processes.
True modeling of deadlocks in concurrent systems (and the

CS3211 2009-10 by Abhik6

resultant recovery).

2

Something to think about

Phil. 1

Phil. 5
Chopstick 1

Chopstick 2

Chopstick 5

CS3211 2009-10 by Abhik7

Rice Bowl

Phil. 2

Phil. 3

Phil. 4

Chopstick 2

Chopstick 3

Chopstick 4

The task – Exercise for you
Design the philosopher and the fork processes in Promela
such that

A philosopher eats only when he has both chopsticks – left
and right
No two philosophers hold the same chopstick
simultaneously

CS3211 2009-10 by Abhik8

simultaneously
No deadlock (circular wait among processes) and
No starvation (literally so!)

How will the processes communicate?
Any of the mechanisms learnt today

An approach that does not work
Modeling philosopher[i]
While (true){

wait for fork[i];
wait for fork[i+1];
eateat
release fork[i];
release fork[i+1];

}
Deadlock – each philosopher may pick up their left

fork first, and keep on waiting for the right fork.

CS3211 2009-10 by Abhik9

Asymmetric solution
The first four philosophers execute the same code, but
the fifth philosopher executes the following.

Loop forever
think

it(f k[0])

CS3211 2009-10 by Abhik10

wait(fork[0])
wait(fork[4])
eat
release(fork[0])
release(fork[4])

End loop

Today’s lecture
Dining Philosophers’ problem
To discuss concurrency concepts

We use Promela, a low-level modeling language.

We then move to concurrent programming
We then use Java, a multi-threaded programming language.J p g g g g

CS3211 2009-10 by Abhik11

Concurrent processes
Promela supports multiple communicating processes in a
description.

Default concurrency semantics: Asynchronous composition
At any point, only one process is active.
Also known as interleaving semantics.

CS3211 2009-10 by Abhik12

3

Interleavings

byte n = 0;

active proctype P(){

n = 1;

printf(“Process P, n =%d\n”, n)

Proc. n Stmt. n Output

P 0 n = 1 1
P 1 printf 1 n = 1 printed
Q 1 n = 2 2
Q 2 printf 2 n = 2 printed

}

active proctype Q(){

n = 2;

printf(“Process Q, n =%d\n”, n)

}

CS3211 2009-10 by Abhik13

Proc. n Stmt. n Output

P 0 n= 1 1
Q 1 n = 2 2
P 2 printf 2 n = 2 printed
Q 2 printf 2 n=2 printed

Sequential Consistency
What are all the allowed execs. of a concurrent program?

Each process must proceed in program order.
Statements from across different processes may be arbitrarily
interleaved.

All f h b k All executions satisfying the above two properties make
the exec. model called sequential consistency.

Intuitive understanding of concurrent program execution by
the programmer.
How many executions are there for the concurrent program
given in the previous slide?

CS3211 2009-10 by Abhik14

Atomicity
Statements in Promela are atomic.

if
:: a!= 0 -> c = b/a
:: a ==0 -> c = b
fi

a is global
(shared across processes,
including this one)

CS3211 2009-10 by Abhik15

Is division by zero impossible?

No, because another process may set
a= 0

between the evaluation of a !=0 and the execution of c = b/a

Concurrent Execution

chan data, ack = [1] of bit;

proctype node1() { proctype node2() {
do do
:: data!1; :: ack!1;
:: ack?1; :: data?1;
od od

data

ack

node1 node2

CS3211 2009-10 by Abhik16

od od
} }

init{ atomic{
run node1(); run node2();

}
} …..

ack

data

ack

Concurrent Execution

chan data, ack = [1] of bit;

proctype node1() { proctype node2() {
do do
:: data!1; :: ack!1;
:: ack?1; :: data?1;
od od

data ack

node1 node2

CS3211 2009-10 by Abhik17

od od
} }

init{ atomic{
run node1(); run node2();

}
}

data ack

….

Interference across processes
Main challenge in concurrent programming

Interleaving semantics across processes, and
Sharing of variables across processes.

Different interleavings modify shared variables differently
Causing various unpredictable interference across processes.

CS3211 2009-10 by Abhik18

4

A simple example to show interference

byte n = 0;

active proctype P() {
byte temp;
temp = n + 1;
n = temp;
printf(“P, %d”, n)

}

Proc. Stmt. n P:temp Q:temp Output

P temp=n+1 0 0 0
Q temp=n+1 0 1 0
P n=temp 0 1 1
Q n=temp 1 1 1
P printf(“P ”) 1 1 1 P1

CS3211 2009-10 by Abhik19

by
}

active proctype Q() {
byte temp;
temp = n + 1;
n = temp;
printf(“Q, %d”, n)

}

P printf(P..) 1 1 1 P,1
Q printf(“Q..”) 1 1 1 Q,1

Incrementing n twice we expect 2,
Yet the terminal values are 1.

More on interference

byte n = 0;

active proctype P() {
byte temp;
atomic{

temp = n + 1; n = temp;
}
printf(“P %d” n)

What are the possible pairs of
printed values in the two
processes?

CS3211 2009-10 by Abhik20

by
printf(P, %d , n)

}

active proctype Q() {
byte temp;
atomic{

temp = n + 1; n = temp;
}
printf(“Q, %d”, n)

}

Even more on interference
byte n;

proctype P(byte id;) {
byte temp;
atomic{ temp = n +1; n = temp;}
printf(“Process P%d, n = %d\n”, id, n)

}

CS3211 2009-10 by Abhik21

init{
n = 0;
atomic{ run P(1); run P(2) }
(_nr_pr ==1) -> printf(“final value of n=%d”, n)

}

What are the possible terminal values of n?

Synchronization
Processes implicitly communicate via shared variables.
However, for other reasons

Processes may need to explicitly synchronize.

What reasons?
e.g. Mutually exclusive access to shared variables.

How to synchronize?
Busy waiting
Acquiring and releasing locks.

CS3211 2009-10 by Abhik22

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
d

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
do

CS3211 2009-10 by Abhik23

do
:: !wantQ -> break;
:: else -> skip
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: !wantP -> break;
:: else -> skip
od;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
d

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
do

CS3211 2009-10 by Abhik24

do
:: !wantQ -> break;
od;
printf(“Crit. Section P\n”);
wantP = false

od
}

:: !wantP -> break;
od;
printf(“Crit. Section Q\n”);
wantP = false

od
}

What is the effect of removing the else choice ?

5

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
! Q

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
!wantP;

CS3211 2009-10 by Abhik25

!wantQ;
printf(“Crit. Section P\n”);
wantP = false

od
}

;
printf(“Crit. Section Q\n”);
wantQ = false

od
}

No need to loop, the process blocks if condition is false

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

wantP = true;
! Q

active proctype Q() {
do
:: printf(“noncritical section\n”);

wantQ = true;
!wantP;

CS3211 2009-10 by Abhik26

!wantQ;
printf(“critical section\n”);
wantP = false

od
}

;
printf(“critical section\n”);
wantP = false

od
}

Mutual exclusion is preserved, what about deadlock and non-starvation?

Common “mistakes”
Non mutually exclusive access to shared variables.

“Unexpected” states due to certain sequences of statements
involving multiple processes.

Deadlock
Reach a state where no process can progress.

Starvation
A process wanting to access a shared variable (say entering a
critical section) should be able to do so “eventually”

In finite time
In bounded time.

CS3211 2009-10 by Abhik27

Deadlock scenario
bool wantP = false, wantQ = false;

active proctype P() {
do
:: wantP = true;

!wantQ;
P f l

active proctype Q() {
do
:: wantQ = true;

!wantP;
wantQ = false

CS3211 2009-10 by Abhik28

wantP = false
od

}

Q
od

}

wantP = true; wantQ = true;
Both processes are now blocked.

Busy waiting
bool wantP = false, wantQ = false;

active proctype P() {
do
:: printf(“noncritical section\n”);

atomic{
!wantQ; wantP = true; }

active proctype Q() {
do
:: printf(“noncritical section\n”);

atomic{
!wantP; wantQ = true; }

CS3211 2009-10 by Abhik29

printf(“critical section\n”);
wantP = false

od
}

printf(“critical section\n”);
wantQ = false

od
}

Synchronization
Processes implicitly communicate via shared variables.
However, for other reasons

Processes may need to explicitly synchronize.

What reasons?
e.g. Mutually exclusive access to shared variables.

How to synchronize?
Busy waiting
Acquiring and releasing locks.

CS3211 2009-10 by Abhik30

6

Locking
byte sem = 1;

active proctype P() {
do
:: printf(“Noncritical section P\n”);

atomic{ sem > 0; sem--; }
printf(“Critical section P\n”);

active proctype Q() {
do
:: printf(“Noncritical section Q\n”);

atomic{ sem > 0; sem--; }
printf(“Critical section Q\n”);

++

CS3211 2009-10 by Abhik31

sem++;
od

}

sem++;
od

}

When we program in Java, we do not program in the protocols for ensuring
mutual exclusion. Instead, we assume a locking mechanism and program the
non-critical / critical sections.

Locking
byte sem = 1;

active proctype P() {
do
:: printf(“Noncritical section P\n”);

atomic{ sem == 1; sem--; }
printf(“Critical section P\n”);

init{
atomic{ run P(); run P(); }

}

CS3211 2009-10 by Abhik32

sem++;
od

}

atomic{ sem == 1; sem--; } Implementation of lock acquire
sem++ Implementation of lock release

Communication among processes
Shared variables

(same as concurrent prog. in Java)

Message Passing
(we will later use MPI for parallel programming)
At the application level, the issue of locking does not arise.

Seemingly, no shared variables !
So, we do not need to worry about this now!

However, in reality, the message buffers or channels are shared
global variables and the programmer will need some
mechanism to mutually ensure exclusive access

Two processes cannot read/write to the channel at the same time.

CS3211 2009-10 by Abhik33

Client Server Example
chan request = [0] of { byte} ;

active proctype Server() {
byte client;

do
:: request? client->

f(“Cl %d\ ” l)

active proctype Client(){
request! _pid;

}

CS3211 2009-10 by Abhik34

printf(“Client %d\n”, client)
od

}

Send and receive of message is a handshake.
Both sender and receiver block until the other process is ready.

Client Server Example
chan request = [1] of { byte} ;

active proctype Server() {
byte client;

do
:: request? client->

printf(“Client %d\n”, client)

active proctype Client(){
request! _pid;

}

CS3211 2009-10 by Abhik35

p (,)
od

}

The receiver blocks until the message is sent.

Message passing: recall ABP problem

sender receiver
datachan

CS3211 2009-10 by Abhik36

ackchan

Alternating Bit Protocol
Reliable channel communication between sender and receiver.
Exchanging msg and ack. Channels are lossy .
Attach a bit with each msg/ack. Proceed with next message if the received bit
matches your expectation.

7

ABP modeling: Once again
active proctype Sender()
{ bit out, in;

do
:: datachan!out ->

ackchan?in;
if

active proctype Receiver()
{ bit in ;

do
:: datachan?in -> ackchan!in
:: timeout -> ackchan!in

CS3211 2009-10 by Abhik37

if
:: in == out

-> out = 1- out;
:: else fi

od
}

:: timeout > ackchan!in
od

}

chan datachan = [2] of { bit };
chan ackchan = [2] of { bit };

How Message Passing occurs in real-life
Interrupt-driven communication

An interrupt happens to the CPU, whenever data is ready to
be read.

To ensure mutually exclusive access of message buffers, disable
interrupts while servicing the current interrupt.
Not captured at the application level send receive we are studying!p pp y g

Or, the CPU polls (via certain sensors) at regular intervals
to check whether data is available

Check whether data is available on the channel and then perform
receive action, popularly known as polling.
Instead of being blocked at request?client as if the server checks
periodically if the client has sent its data.

CS3211 2009-10 by Abhik38

Let us finish with a real-life situation
July 4, 1997

NASA’s Pathfinder landed on Mars.
Tremendous engineering feat.
Hard to design the control software with concurrency and
priority driven scheduling of threads.
Th S R ld l i h h i The SpaceRover would lose contact with earth in
unpredictable moments.

CS3211 2009-10 by Abhik39

Mars PathFinder Problem
“But a few days into the mission, not long after Pathfinder

started gathering meteorological data, the spacecraft began
experiencing total system resets, each resulting in losses of
data. The press reported these failures in terms such as
"software glitches" and "the computer was trying to do too
many things at once".” …

CS3211 2009-10 by Abhik40

y g

Essence of the problem in our modeling
language

mtype = { free, busy, idle, waiting, running };

mtype H = idle; mtype L = idle; mtype mutex = free;

active proctype high();

{end: do

:: H = waiting;

active proctype low() provided (H == idle)

{ end: do

:: L = waiting;

CS3211 2009-10 by Abhik

41

atomic { mutex == free ->

mutex = busy };

H = running;

atomic{ H=idle; mutex=free }

od

}

g;

atomic{ mutex== free->

mutex = busy};

L = running;

atomic{ L=idle; mutex = free }

od

}

State Space Graph

i,i,f

w,i,f
w w f

i,w,f

CS3211 2009-10 by Abhik42

, ,
w,w,f

i,w,b

i,r,b

w,r,b

w,w,b

w,w,b

r,w,b

w,i,b

r,i,b

w ≡waiting

i ≡idle

r ≡running

b ≡busy

f ≡ free

8

Deadlock
Counterexample

Low priority thread acquires lock
High priority thread starts
Low priority process cannot be scheduled
High priority thread blocked on lock

CS3211 2009-10 by Abhik43

Actual error was a bit more complex with three
threads of three different priorities

Timer went off with such a deadlock resulting in a system
reset and loss of transmitted data.

The actual problem
“Pathfinder contained an "information bus", which you can think of as a

shared memory area used for passing information between different
components of the spacecraft.”

A bus management task ran frequently with high priority to move
certain kinds of data in and out of the information bus. Access to the bus
was synchronized with mutual exclusion locks (mutexes).”

The meteorological data gathering task ran as an infrequent low priority The meteorological data gathering task ran as an infrequent, low priority
thread, … When publishing its data, it would acquire a mutex, do writes
to the bus, and release the mutex.
The spacecraft also contained a communications task that ran with
medium priority.”

CS3211 2009-10 by Abhik44

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

The actual problem
“Most of the time this combination worked fine. However, very infrequently
it was possible for an interrupt to occur that caused the (medium priority)
communications task to be scheduled during the short interval while the
(high priority) information bus thread was blocked waiting for the (low
priority) meteorological data thread. In this case, the long-running
communications task, having higher priority than the meteorological task,
would prevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed, a watchdog
timer would go off, notice that the data bus task had not been executed for
some time, conclude that something had gone drastically wrong, and initiate
a total system reset.”

CS3211 2009-10 by Abhik45

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

Priority Inversion
In a real-life concurrent system

Concurrently executing processes are assigned priorities.
If 2 processes are ready, the higher priority process is allowed
to execute (non-preemptive execution).

A higher priority process can delay a lower priority process.
The reverse situation should not be allowedThe reverse situation should not be allowed

[Such decisions are enforced by the scheduler in OS or JVM]

How priority inversion may occur
A lower priority process acquires the lock on a shared var.
The higher priority process appears later, tries to acquire the
same lock, but has to wait until the lock is released by the
lower priority process.

CS3211 2009-10 by Abhik46

Summary
Concurrent processes (threads in Java)
Interleaving semantics

Asynchronous composition
Scheduled by a OS/JVM scheduler in practice.

Communication among processesg p
Shared variables (same as concurrent prog. in Java)
Message Passing (we will later use MPI for parallel
programming)

Explicit Synchronization
Busy Waiting
Locks – acquire and release.

CS3211 2009-10 by Abhik47

Now …
Demo of Promela usage (by Ju Lei)

Use the SPIN tool, Promela is its front-end.

http://spinroot com/spin/whatispin htmlhttp://spinroot.com/spin/whatispin.html

SPIN is actually a checker (which checks all interleavings
of a program), but we primarily use it as a programming
environment to understand concurrency concepts, in our
CS3211 module.

CS3211 2009-10 by Abhik48

