
1

Concurrent Execution

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2009-10 by Abhik

Modified from Kramer and Magee’s lecture notes.
Reading material: Chapter 3 of Textbook.

1

Concurrent processes
We structure complex systems as sets of simpler
activities, each represented as a sequential process.
Processes can overlap or be concurrent, so as to
reflect the concurrency inherent in the physical world,
or to offload time-consuming tasks, or to manage
communications or other devices.

Designing concurrent software can be complex and Model processes as finite

Concept of a process as a
sequence of actions.

g g p
error prone. A rigorous engineering approach is
essential.

Model processes as finite
state machines.

Program processes as threads
in Java.

CS3211 2009-10 by Abhik2

Definitions
Concurrency

Logically simultaneous processing.
Does not imply multiple processing
elements (PEs). Requires
interleaved execution on a single PE.

Parallelism

A

Time

B

C

Physically simultaneous processing.
Involves multiple PEs and/or
independent device operations.

Both concurrency and parallelism require controlled access to shared
resources . We use the terms parallel and concurrent interchangeably and
generally do not distinguish between real and pseudo-concurrent execution.

Time
C

B

A

3.1 Modeling Concurrency
How should we model process execution speed?

arbitrary speed

(we abstract away time)

How do we model concurrency?
arbitrary relative order of actions from different processes

(interleaving but preservation of each process order)

What is the result?
provides a general model independent of scheduling (asynchronous
model of execution)

parallel composition - action
interleaving

If P and Q are processes then (P||Q) represents the
concurrent execution of P and Q. The operator || is the
parallel composition operator.

ITCH = (scratch->STOP).

think talk scratch
think scratch talk
scratch think talk

Possible traces as a
result of action
interleaving.

ITCH (scratch >STOP).
CONVERSE = (think->talk->STOP).

||CONVERSE_ITCH = (ITCH || CONVERSE).

parallel composition - action
interleaving

2 states
3 states

ITCH

scratch

0 1
CONVERSE

think talk

0 1 2
scratch

scratch

(0,0) (0,1) (0,2) (1,2) (1,1) (1,0)

from CONVERSEfrom ITCH 2 x 3 states

CONVERSE_ITCH
think

scratch

talk scratch

talk think

0 1 2 3 4 5

2

parallel composition - algebraic laws

Commutative: (P||Q) = (Q||P)
Associative: (P||(Q||R)) = ((P||Q)||R)

= (P||Q||R).

Clock radio example:
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

Class Exercise
CLOCK = (tick->CLOCK).
RADIO = (on->off->RADIO).

||CLOCK_RADIO = (CLOCK || RADIO).

LTS? Traces? Number of states?

CS3211 2009-10 by Abhik8

LTS? Traces? Number of states?

The components CLOCK and RADIO
run independently.

modeling interaction - shared actions
If processes in a composition have actions in common, these
actions are said to be shared. Shared actions are the way
that process interaction is modelled. While unshared actions
may be arbitrarily interleaved, a shared action must be
executed at the same time by all processes that participate
in the shared action

MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

MAKER
synchronizes
with USER
when ready.

in the shared action.

LTS? Traces? Number of states?

Class Exercise
MAKER = (make->ready->MAKER).
USER = (ready->use->USER).

||MAKER_USER = (MAKER || USER).

LTS? Traces? Number of states?

CS3211 2009-10 by Abhik10

LTS? Traces? Number of states?

Need to consider the communication
via shared actions.

MAKERv2 = (make->ready->used->MAKERv2).
USERv2 = (ready->use->used ->USERv2).

||MAKER_USERv2 = (MAKERv2 || USERv2).

modeling interaction - handshake
A handshake is an action acknowledged by another:

3 states

3 states

3 x 3
?

Interaction
constrains
the overall
behaviour.

states?

4 states
make ready use

used

0 1 2 3

modeling interaction - multiple
processes

MAKE_A = (makeA->ready->used->MAKE_A).
MAKE_B = (makeB->ready->used->MAKE_B).
ASSEMBLE = (ready->assemble->used->ASSEMBLE).

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

Multi-party synchronization:

makeA

makeB makeA ready assemble

used
makeB

0 1 2 3 4 5

3

composite processes
A composite process is a parallel composition of primitive
processes. These composite processes can be used in the
definition of further compositions.

||MAKERS = (MAKE_A || MAKE_B).

||FACTORY = (MAKERS || ASSEMBLE).

Substituting the definition for MAKERS in FACTORY and applying the
commutative and associative laws for parallel composition results in the
original definition for FACTORY in terms of primitive processes.

||FACTORY = (MAKE_A || MAKE_B || ASSEMBLE).

process labeling

a:P prefixes each action label in the alphabet of P with a.

SWITCH = (on->off->SWITCH).

||TWO_SWITCH = (a:SWITCH || b:SWITCH).

Two instances of a switch process:

||SWITCHES(N=3) = (forall[i:1..N] s[i]:SWITCH).
||SWITCHES(N=3) = (s[i:1..N]:SWITCH).

An array of instances of the switch process:

a:SWITCH
a.on

a.off

0 1
b:SWITCH

b.on

b.off

0 1

process labeling by a set of prefix labels

{a1,..,ax}::P replaces every action label n in the alphabet of
P with the labels a1.n,…,ax.n. Further, every transition
(n->X) in the definition of P is replaced with the
transitions ({a1.n,…,ax.n} ->X).

Process prefixing is useful for modeling shared resources:
RESOURCE = (acquire->release->RESOURCE).
USER = (acquire->use->release->USER).

RESOURCE_SHARE = (a:USER || b:USER
|| {a,b}::RESOURCE).

process prefix labels for shared
resources

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

Does the Resource ensure
that the user that acquires
the resource is the one to
release it?

a.release
b.release

0 1

process prefix labels for shared
resources

How does the model ensure
that the user that acquires

a:USER
a.acquire a.use

a.release

0 1 2
b:USER

b.acquire b.use

b.release

0 1 2

{a,b}::RESOURCE
a.acquire
b.acquire

the resource is the one to
release it?

a.release
b.release

0 1

RESOURCE_SHARE

a.acquire

b.acquire b.use

b.release

a.use

a.release

0 1 2 3 4

action relabeling

Relabeling functions are applied to processes to change the
names of action labels. The general form of the relabeling
function is:

/{newlabel_1/oldlabel_1,… newlabel_n/oldlabel_n}.

Relabeling to ensure that composed
processes synchronize on particular actions.

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

4

Client – Server (Port View)

Cli t S

call requestcall

CS3211 2009-10 by Abhik19

Client Server
wait reply

These “connections” hint at action relabeling.

We will discuss it more formally when we capture “Structure Diagrams”.

reply

Action relabeling
CLIENT_SERVER = (CLIENT || SERVER)

/{call/request, reply/wait}.

CLIENT
call reply

0 1 2
SERVER

call service

0 1 2

requestwait

continue reply

CLIENT_SERVER call service reply

continue

0 1 2 3

Action relabeling - prefix labels

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call request

An alternative formulation of the client server system is
described below using qualified or prefixed labels:

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

action hiding - abstraction to reduce
complexity

When applied to a process P, the hiding operator \{a1..ax}
removes the action names a1..ax from the alphabet of P and
makes these concealed actions "silent". These silent actions
are labelled tau. Silent actions in different processes are not
shared.

When applied to a process P, the interface
operator @{a1..ax} hides all actions in the
alphabet of P not labelled in the set a1..ax.

Sometimes it is more convenient to specify the set of
labels to be exposed....

action hiding

USER = (acquire->use->release->USER)
\{use}.

USER = (acquire->use->release->USER)
@{acquire,release}.

The following definitions are equivalent:

{ q , }

acquire tau

release

0 1 2

Minimization removes
hidden tau actions to
produce an LTS with
equivalent observable
behavior. acquire

release

0 1

Class Exercise

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

CLIENT_SERVERv3 = ((CLIENT || SERVER)
/{ ll/ l / i }

CS3211 2009-10 by Abhik24

/{call/request, reply/wait}
)\{call, reply}

Construct the LTS for CLIENT_SERVERv3

5

structure diagrams

P a

b
Process P with
alphabet {a,b}.

P a b Qm
Parallel Composition

dc p
(P||Q) / {m/a,m/b,c/d}

P Qa

c dc

x xx

S

yx
Composite process
||S = (P||Q) @ {x,y}

structure diagrams
We use structure diagrams to capture the structure
of a model expressed by the static combinators:
parallel composition, relabeling and hiding.

range T = 0..3
BUFF = (in[i:T]->out[i]->BUFF).

||TWOBUF = ?

a:BUFF b:BUFFa.out

TWOBUFF

outin
inoutin out

structure diagrams
Structure diagram for CLIENT_SERVER ?

CLIENT call request SERVERcall

replywait reply servicecontinue

Structure diagram for CLIENT_SERVERv2??

SERVERv2 = (accept.request
->service->accept.reply->SERVERv2).

CLIENTv2 = (call.request
->call.reply->continue->CLIENTv2).

CLIENT_SERVERv2 = (CLIENTv2 || SERVERv2)
/{call/accept}.

CS3211 2009-10 by Abhik28

Structure diagram for CLIENT_SERVERv2 ?

CLIENTv2 call accept SERVERv2call

servicecontinue

Structure diagram for CLIENT_SERVERv3??

CLIENT = (call->wait->continue->CLIENT).
SERVER = (request->service->reply->SERVER).

CLIENT_SERVERv3 = ((CLIENT || SERVER)
/{ ll/ l / i }

CS3211 2009-10 by Abhik29

/{call/request, reply/wait}
)\{call, reply}

Exercise: Can you now construct the Structure
diagram for CLIENT_SERVERv3??

structure diagrams - resource sharing

a:USER
printer

b:USER

printer:
RESOURCE

acquire
release

PRINTER_SHARE

printer

RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER).

||PRINTER_SHARE
= (a:USER||b:USER||{a,b}::printer:RESOURCE).

6

Exercise
RESOURCE = (acquire->release->RESOURCE).
USER = (printer.acquire->use

->printer.release->USER).

||PRINTER_SHARE
= (a:USER||b:USER||{a,b}::printer:RESOURCE).

CS3211 2009-10 by Abhik31

1. Draw the LTS of the composed process defined above.

2. Could you avoid process re-labeling in the above
definitions ? Use action re-labeling instead to get an
equivalent composition of two user processes and one
printer process.

3.2 Multi-threaded Programs in Java
Concurrency in Java occurs when more than one thread is
alive. ThreadDemo has two threads which rotate displays.

ThreadDemo Example
Two threads in the program A, B

--- (do not forget the main thread of course)

Lifecycle of thread A, B
Running – display associated with it rotates (background = green)
Paused – Rotation stops (background = red)

Communication

CS3211 2009-10 by Abhik33

Thread A with main thread.
Thread B with main thread.

pause run,
rotate

pause

interrupt
interruptrun

0 1 2

The two descriptions
ROTATOR = PAUSED,
PAUSED = (run->RUN | pause->PAUSED

|interrupt->STOP),
RUN = (pause->PAUSED |{run,rotate}->RUN

|interrupt->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

/{stop/{a b} interrupt}

CS3211 2009-10 by Abhik34

pause run,
rotate

pause

interrupt
interruptrun

0 1 2

/{stop/{a,b}.interrupt}.

ThreadDemo – Structure Diagram

b:ROTATOR

a.run

a.pause

a.rotate

b.run

b.pause

b.rotate

THREAD_DEMO

a:ROTATOR
stop

Interpret
run, pause,
interrupt
as inputs,
rotate as
an output.

ROTATOR = PAUSED,
PAUSED = (run->RUN | pause->PAUSED

|interrupt->STOP),
RUN = (pause->PAUSED |{run,rotate}->RUN

|interrupt->STOP).

||THREAD_DEMO = (a:ROTATOR || b:ROTATOR)

/{stop/{a,b}.interrupt}.

ThreadDemo implementation in Java -
class diagram
ThreadDemo creates two ThreadPanel displays when initialized.
ThreadPanel manages the display and control buttons, and delegates calls to
rotate() to DisplayThread. Rotator implements the runnable interface.

Applet

ThreadDemo ThreadPanelA,B

GraphicCanvas
Panel

displayThreadDemo ead a e

rotate()
start()
stop()

init()
start()
stop()

Runnable

Rotator

run()

Thread

DisplayThread

thread

target

rotate()

7

Rotator class

class Rotator implements Runnable {

public void run() {
try {

while(true) ThreadPanel.rotate();
} catch(InterruptedException e) {}

}
}}

Rotator implements the runnable interface, calling
ThreadPanel.rotate() to move the display.

run()finishes if an exception is raised by Thread.interrupt().

ThreadPanel class
public class ThreadPanel extends Panel {

// construct display with title and segment color c
public ThreadPanel(String title, Color c) {…}

// rotate display of currently running thread 6 degrees
// return value not used in this example
public static boolean rotate()

throws InterruptedException {…}

ThreadPanel
manages the display
and control buttons for
a thread.

Calls to rotate()
are delegated to
DisplayThreadp p

// create a new thread with target r and start it running
public void start(Runnable r) {

thread = new DisplayThread(canvas,r,…);
thread.start();

}

// stop the thread using Thread.interrupt()
public void stop() {thread.interrupt();}

}

DisplayThread.

Threads are created by
the start() method,
and terminated by the
stop() method.

ThreadDemo class
public class ThreadDemo extends Applet {
ThreadPanel A; ThreadPanel B;

public void init() {
A = new ThreadPanel("Thread A",Color.blue);
B = new ThreadPanel("Thread B",Color.blue);
add(A); add(B);

}
ThreadDemo creates two

public void start() {
A.start(new Rotator());
B.start(new Rotator());

}

public void stop() {
A.stop();
B.stop();

}
}

ThreadPanel displays
when initialized and two
threads when started.

ThreadPanel is used
extensively in later
demonstration programs.

Summary
Concepts

concurrent processes and process interaction

Models

Asynchronous (arbitrary speed) & interleaving (arbitrary order).

Parallel composition as a finite state process with action p p
interleaving.

Process interaction by shared actions.

Process labeling and action relabeling and hiding.

Structure diagrams

Practice
Multiple threads in Java.

