
1

Shared Objects

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2009-10 by Abhik

Modified from Kramer and Magee’s lecture notes.
Reading material: Chapter 4 of Textbook.

1

Thread Communication

Shared
Object

CS3211 2009-10 by Abhik2

(Passive)
Thread Object
(Active) Thread Object

(Active)

Arbitrary interleaving of accesses possible.

Interference between threads
class Counter {

private int c = 0;
public void increment() {

c++;
}
public void decrement() {

c--;
}
public int value() {

CS3211 2009-10 by Abhik3

p
return c;

}
}

“Correct” operation: One execution of increment adds 1
One execution of decrement subtracts 1

Inter-thread interference from prevent the result from being so. Why?

Interference between Threads – (1)
Shared Memory
Init: c == 0Thread A Thread B

Read c
== 0 Read c ==

0
Incr.,
Get 1

CS3211 2009-10 by Abhik4

Get 1 Decr.,
get -1

Write c = -1

Write c = 1
Executing the
Statement c++;

Executing the
Statement c--;

Interference between Threads – (2)
Shared Memory
Init: c == 0Thread A Thread B

Read c
== 0 Read c ==

0
Incr.,
Get 1

CS3211 2009-10 by Abhik5

Get 1 Decr.,
get -1

Write c = -1

Write c = 1

Executing the
Statement c++;

Executing the
Statement c--;

What do we need?
Mutually exclusive access to the counter
How to do that?

Language level construct – Lock.
Acquire lock prior to any access of counter.
Release lock after any access of counter.

Does it require locking discipline then?
Well, accesses happen through methods of the shared object

In this case, objects of the Counter class
Mark these methods as “synchronized”
Avoid managing locks for each call of these methods !!

CS3211 2009-10 by Abhik6

2

Synchronized Methods
Java programming provides two basic synchronization idioms:
synchronized methods and synchronized statements

public class SynchronizedCounter {
private int c = 0;
public synchronized void increment() {

c++;
}
public synchronized void decrement() {

CS3211 2009-10 by Abhik7

public synchronized void decrement() {
c--;

}
public synchronized int value() {

return c;
}

}

Shared Objects & Mutual Exclusion

Concepts: process interference.
mutual exclusion.

Models: model checking for interference
modeling mutual exclusionmodeling mutual exclusion

Practice: thread interference in shared Java objects
mutual exclusion in Java
(synchronized objects/methods).

Why synchronized methods?
1. It is not possible for two invocations of

synchronized methods on the same
object to overlap.

2. When a synchronized method exits, it
makes the object state visible to all
threads accessing the object subsequently
via synchronized methods.

Lock

y = 1

x = 1

Thread 1

CS3211 2009-10 by Abhik9

Unlock Lock

i = x

j = y

unlock

1

1

Thread 2

4.1 Interference

Garden

People enter an ornamental garden through either of two
turnstiles. Management wish to know how many are in the
garden at any time.

Ornamental garden problem:

West
Turnstile

East
Turnstile

people

The concurrent program consists of two concurrent
threads and a shared counter object.

ornamental garden Program - class
diagram

Applet

init()
go()

Garden

Thread

Turnstile

run()

Counter
increment()

east,west people

The Turnstile thread simulates the periodic arrival of a
visitor to the garden every second by sleeping for 0.5 second and
then invoking the increment() method of the counter object.

setvalue()
NumberCanvas

go()

displaydisplayeastD,
westD,
counterD

ornamental garden program

private void go() {
counter = new Counter(counterD);
west = new Turnstile(westD,counter);
east = new Turnstile(eastD,counter);

The Counter object and Turnstile threads are created
by the go() method of the Garden applet:

(,)
west.start();
east.start();

}

Note that counterD, westD and eastD are objects of
NumberCanvas used in chapter 2.

3

Turnstile class
class Turnstile extends Thread {
NumberCanvas display;
Counter people;

Turnstile(NumberCanvas n,Counter c)
{ display = n; people = c; }

public void run() {
try{

The run()
method exits
and the thread
terminates after
Garden.MAX
visitors havetry{

display.setvalue(0);
for (int i=1;i<=Garden.MAX;i++){
Thread.sleep(500); //0.5 second between arrivals
display.setvalue(i);
people.increment();

}
} catch (InterruptedException e) {}

}
}

visitors have
entered.

Counter class
class Counter {
int value=0;
NumberCanvas display;

Counter(NumberCanvas n) {
display=n;
display.setvalue(value);

}

Hardware interrupts can occur
at arbitrary times.

The counter simulates a
hardware interrupt during an
increment(), between
reading and writing to the

void increment() {
int temp = value; //read value
Simulate.HWinterrupt();
value=temp+1; //write value
display.setvalue(value);

}
}

reading and writing to the
shared counter value.
Interrupt randomly calls
Thread.yield() to force a
thread switch.

class Simulate {
public static void HWinterrupt(){

if (Math.random() < 0.5) Thread.yield();
}

ornamental garden program - display

After the East and West turnstile threads have each
incremented its counter 20 times, the garden people
counter is not the sum of the counts displayed.
Counter increments have been lost. Why?

concurrent method activation
Java method activations are not atomic - thread
objects east and west may be executing the code for
the increment method at the same time.

eastwest
PC

shared code

increment:

read value

write value + 1

program
counter program

counter

PC PC

ornamental garden Model

value:VAR
display

write

GARDEN

end
go

i

east:
TURNSTILE

value
end
go

arrive

go
end

read

Process VAR models read and write access to the shared counter
value.

Increment is modeled inside TURNSTILE since Java method
activations are not atomic i.e. thread objects east and west may
interleave their read and write actions.

west:
TURNSTILE

valuearrive

ornamental garden model
const N = 4
range T = 0..N
set VarAlpha = { value.{read[T],write[T]} }

VAR = VAR[0],
VAR[u:T] = (read[u] ->VAR[u]

|write[v:T]->VAR[v]).

TURNSTILE = (go -> RUN),

The alphabet of
process VAR is
declared explicitly
as a set constant,
VarAlpha.

The alphabet of(g),
RUN = (arrive-> INCREMENT

|end -> TURNSTILE),
INCREMENT = (value.read[x:T]

-> value.write[x+1]->RUN
)+VarAlpha.

||GARDEN = (east:TURNSTILE || west:TURNSTILE
|| { east,west,display} ::value:VAR)
/{ go /{ east,west} .go,

end/{ east,west} .end} .

The alphabet of
TURNSTILE is
extended with
VarAlpha to ensure
no unintended free
actions in VAR ie. all
actions in VAR must
be controlled by a
TURNSTILE.

4

State Model for Turnstile

0 1 2 3 4 5

go arrive

value.read.0

value.read.1

value.read.2

CS3211 2009-10 by Abhik19

end value.write.1

value.write.2

value.write.3

checking for errors - animation

Scenario checking
- use animation to
produce a trace.

Is this traceIs this trace
correct?

checking for errors - exhaustive
analysis

TEST = TEST[0],
TEST[v:T] =

(when (v<N){east.arrive,west.arrive}->TEST[v+1]

Exhaustive checking - compose the model with a TEST
process which sums the arrivals and checks against the
display value:

|end->CHECK[v]
),

CHECK[v:T] =
(display.value.read[u:T] ->

(when (u==v) right -> TEST[v]
|when (u!=v) wrong -> ERROR
)

)+{display.VarAlpha}.

TESTGARDEN = (GARDEN || TEST)

Like STOP, ERROR is
a predefined FSP local
process (state),
numbered -1 in the
equivalent LTS.

ornamental garden model - checking for
errors

||TESTGARDEN = (GARDEN || TEST).

Use LTSA to perform an exhaustive search for ERROR.

Trace to property violation in TEST:
go
east.arrive
east.value.read.0east.value.read.0
west.arrive
west.value.read.0
east.value.write.1
west.value.write.1
end
display.value.read.1
wrong

LTSA produces
the shortest path
to reach ERROR.

Interference and Mutual Exclusion

Destructive update, caused by the arbitrary
interleaving of read and write actions, is termed
interference.

Interference bugs are extremely difficult to locate.
The general solution is to give methods mutually
exclusive access to shared objects.

Methods with mutually exclusive access can be
modeled as atomic actions.

4.2 Mutual exclusion in Java

We correct COUNTER class by deriving a class from it
and making the increment method synchronized:

Concurrent activations of a method in Java can be made
mutually exclusive by prefixing the method with the
keyword synchronized.

class SynchronizedCounter extends Counter {

SynchronizedCounter(NumberCanvas n)
{Counter(n);}

synchronized void increment() {
Counter.increment();

}
}

and making the increment method synchronized:

5

mutual exclusion - the ornamental
garden

Java associates a lock with every object. The Java compiler
inserts code to acquire the lock before executing the body of
the synchronized method and code to release the lock before
the method returns. Concurrent threads are blocked until the
lock is released.

Java synchronized statement
Access to an object may also be made mutually exclusive by
using the synchronized statement:

synchronized (object) { statements }

A less safe way to correct the example would be to modify the
Turnstile.run() method:

synchronized(counter) {counter.increment();}

Why is this “less safe”?

To ensure mutually exclusive access to an object,
all object methods should be synchronized.

A “less safe” way
class Turnstile extends Thread {
NumberCanvas display;
Counter people;

Turnstile(NumberCanvas n,Counter c)
{ display = n; people = c; }

public void run() {
try{

CS3211 2009-10 by Abhik27

y{
display.setvalue(0);
for (int i=1;i<=Garden.MAX;i++){
Thread.sleep(500); //0.5 second between arrivals
display.setvalue(i);
synchronized(people){ people.increment();}

}
} catch (InterruptedException e) {}

}
}

Why is it less safe?

The lock is not embedded in the counter object itself.

Every “user” of the counter object (in this case the turnstile threads)
will have to take the responsibility of imposing the lock, prior to
manipulating the shared counter object.

This is an issue we will always face while programming mutually

CS3211 2009-10 by Abhik28

exclusive access to shared objects in Java.

Recursive locking in Java
If a thread t acquires a lock on an object o, t can repeatedly lock o.

The lock counts how many times it has been acquired by the same
thread, and does not allow another thread to access object o.

This allows the synchronized methods to be recursive, e.g. consider

p blic s nchroni ed oid increment(int n){

CS3211 2009-10 by Abhik29

public synchronized void increment(int n){
if (n>0){

++value;
increment(n-1);

} else return;
}

What would happen on a call to increment(5) if recursive locking was
not allowed in Java?

To add locking to our model, define a LOCK, compose it with
the shared VAR in the garden, and modify the alphabet set :

4.3 Modeling mutual exclusion

LOCK = (acquire->release->LOCK).
||LOCKVAR = (LOCK || VAR).

set VarAlpha = {value.{read[T],write[T],
acquire, release}}

TURNSTILE = (go -> RUN),
RUN = (arrive-> INCREMENT

|end -> TURNSTILE),
INCREMENT = (value.acquire

-> value.read[x:T]->value.write[x+1]
-> value.release->RUN
)+VarAlpha.

Modify TURNSTILE to acquire and release the lock:

6

Revised ornamental garden model -
checking for errors

go
east.arrive
east.value.acquire
east.value.read.0
east.value.write.1
east.value.release
west.arrive
west.value.acquire

A sample animation
execution trace

Use TEST and LTSA to perform an exhaustive check.
Is TEST satisfied?

west.value.read.1
west.value.write.2
west.value.release
end
display.value.read.2
correct

COUNTER: Abstraction using action
hiding

To model shared objects
directly in terms of their
synchronized methods, we can
abstract the details by hiding.

For SynchronizedCounter
we hide read, write,
acquire, release actions.

const N = 4
range T = 0..N

VAR = VAR[0],
VAR[u:T] = (read[u]->VAR[u]

| write[v:T]->VAR[v]).

LOCK = (acquire->release->LOCK).

INCREMENT = (acquire->read[x:T]
-> (when (x<N) write[x+1]

->release->increment->INCREMENT
)

)+{read[T],write[T]}.

||COUNTER = (INCREMENT||LOCK||VAR)@{increment}.

COUNTER: Abstraction using action
hiding

Minimized
LTS:

We can give a more abstract, simpler description of a
COUNTER which generates the same LTS:

increment increment increment increment

0 1 2 3 4

COUNTER which generates the same LTS:

This therefore exhibits “equivalent” behavior i.e. has the
same observable behavior.

COUNTER = COUNTER[0]
COUNTER[v:T] = (when (v<N) increment -> COUNTER[v+1]).

Summary
Concepts

process interference

mutual exclusion

Models
model checking for interferencemodel checking for interference

modeling mutual exclusion

Practice
thread interference in shared Java objects

mutual exclusion in Java (synchronized objects/methods).

