
1

Monitors

Abhik Roychoudhury
CS 3211

National University of Singapore

Modified from Kramer and Magee’s lecture notes.
Reading material: Chapter 5 of Textbook.

1 CS3211 2009-10 by Abhik

monitors & condition synchronization

Concepts: monitors:
encapsulated data + access procedures
mutual exclusion + condition synchronization
single access procedure active in the monitor
nested monitors

Models: guarded actions

Practice: private data and synchronized methods (exclusion).
wait(), notify() and notifyAll() for condition synch.
single thread active in the monitor at a time

2 CS3211 2009-10 by Abhik

The concept of monitors

Brings in the concept of protected or private data.

The protected data is accessed by several threads via operations
Protected data cannot be accessed without invoking the operations.
Each operation is executed atomically.

A monitor thus represents a passive object, whose operations are invoked by

3

A monitor thus represents a passive object, whose operations are invoked by
various active objects --- the threads.

CS3211 2009-10 by Abhik

A schematic monitor

monitor X{
int n = 0;

operation increment{
int tmp;
tmp = n ; n = tmp+1;

}
n

4

}

Process p Process q

X.increment X.increment

0
n

Diagrammatic view of monitor X

The critical section code is encapsulated inside monitor operations, not replicated
inside processes.

CS3211 2009-10 by Abhik

Extending monitors with conditions
Monitor operations may involve waiting on conditions (these are
simple boolean expressions).

When such conditions become true, the waiting threads are notified
(using wait, notify feature of Java).

Thus, each such condition has a waiting queue of blocked processes.
The schematic for conditional wait / notify are:

5

wait_on_cond(Cond)
append p, the current proc. to queue for Cond
p.state = blocked
monitor.lock = released

signal_to_cond(Cond){
if queue for Cond != empty{

remove head of queue, let it be process x;
x.state = ready

}

CS3211 2009-10 by Abhik

Producer consumer problem

…………………….

Finite buffer

ConsumerProducer

6

Producer: blocks if buffer is full.
Consumer: blocks if buffer is empty.

CS3211 2009-10 by Abhik

2

Schematic Producer-Consumer
monitor PC{

buffer = empty;
condition notFull, notEmpty;

operation produce(v){ operation consume(){
if buffer is full{ if buffer is empty{

wait_on_cond(notFull) wait_on_cond(notEmpty);
} }

add v to tail of buffer; remove w from head of buffer;

7

add v to tail of buffer; remove w from head of buffer;
signal_to_cond(notEmpty) signal_to_cond(notFull);

} return w;
}

Producer Consumer

while (1){
d = get_new_item;
PC.produce(d);

}

while (1){
d = PC.consume();
put_item(d);

}

CS3211 2009-10 by Abhik

Monitors in Java
Not a default construct.
Need to be programmed as a new class with private data (the data being
protected) and synchronized methods.

Blocking of processes is supported by wait()
Unblocking of processes is supported by notify(), notifyAll()

i () h i ill dd d h h

8

wait() can throw exceptions, so we will add code to catch them.

CS3211 2009-10 by Abhik

Producer-consumer in Java
class PCMonitor{

final int N = 5;
int Oldest = 0, Newest = 0;
volatile int Count = 0;
int Buffer[] = new int[N];

synchronized void produce(int v){
while (Count == N) try{ wait();} catch(InterruptedException e) {}
Buffer[Newest] = V;

9

[] ;
Newest = (Newest + 1) %N;
Count++; notifyAll();

}

synchronized int consume(){
int tmp;
while (Count == 0) try{ wait();} catch(InterruptedException e) {}
tmp = Buffer[Oldest]; Oldest = (Oldest + 1) % N;
Count--; notifyAll();
return tmp;

}

CS3211 2009-10 by Abhik

Readers-Writers Problem

Several processes accessing a common resource.

Accessing processes grouped into two categories.

Readers: do not exclude other readers, exclude writers.
Writers: exclude all other processes while accessing.

10

How to give a solution using monitors?

CS3211 2009-10 by Abhik

Schematic Readers-Writers
monitor RW{

int readers=0, writers=0;
condition OKtoRead, OKtoWrite;

operation StartRead{
if writers !=0 ∨ not empty(OKtoWrite){ wait_on_cond(OKtoRead);}
readers++; signal_to_cond(OKtoRead);

}
operation EndRead{

This is
schematic
code – it
does not
reflect the
solution in
Java

11

readers--; if readers == 0 { signal_to_cond(OKtoWrite);}
}
operation StartWrite{

if writers!=0 ∨ readers != 0 { wait_on_cond(OKtoWrite); }
writers++;

}
operation EndWrite{

writers--;
if empty(OKtoRead){signal_to_cond(OKtoWrite);}

else { signal_to_cond(OKtoRead); }
}

}

Java.

CS3211 2009-10 by Abhik

Correctness of Readers-Writers

R = Number of readers
W = Number of writers

Invariant property

(R > 0 ⇒W == 0) ∧ (W ≤ 1) ∧ (W == 1 ⇒ R == 0)

12

Prove that it is preserved by each of the operations of the RW monitor.

CS3211 2009-10 by Abhik

3

Doing it in Java
Java has no mechanism for waiting on a specific condition.

We can call the wait() method of any Java object, which suspends the current thread.
The thread is said to be "waiting on" the given object.

Another thread calls the notify() method of the same Java object.
This "wakes up" one of the threads waiting on that object.

synchronized method1(){ synchronized method2(){

13

synchronized method1(){ synchronized method2(){
while (x==0) wait(); while (y==0) wait();

} }

synchronized method3(…){
if (…) x = 1 else y = 1;
notifyAll();

}

If wrong process is notified it will return itself to the set of waiting processes.

CS3211 2009-10 by Abhik

Readers-Writers in Java
class RWMonitor{

volatile int readers=0;
volatile boolean writing = 0;

synchronized void StartRead(){
while (writing==1) try{ wait();} catch(InterruptedException e){}
readers++; notifyAll();

}
synchronized void EndRead(){

14

y (){
readers--; if (readers ==0) notifyAll;

}
synchronized void StartWrite(){

while ((writing == 1) || (readers != 0)) try{ wait();} catch(InterruptedException e){}
writing = 1;

}
synchronized void EndWrite(){

writing = 0; notifyAll();
}

CS3211 2009-10 by Abhik

So Far …
A basic idea of what monitor is

-- protected data
-- atomic access via methods

Basic Examples to show usage of monitors
-- Producer-consumer
-- Readers-writers

Encoding of monitors on top of Java

15

Now
More advanced programming with monitors.

CS3211 2009-10 by Abhik

5.1 Condition synchronization

A controller is required for a carpark, which only permits cars
to enter when the carpark is not full and does not permit cars
to leave when there are no cars in the carpark. Car arrival and
departure are simulated by separate threads.
16 CS3211 2009-10 by Abhik

carpark model
♦ Events or actions of interest?

arrive and depart

♦ Identify processes.

arrivals, departures and carpark control

♦ Define each process and interactions (structure).

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

17 CS3211 2009-10 by Abhik

carpark model
CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS).
DEPARTURES = (depart->DEPARTURES).

||CARPARK =
(ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

Guarded actions are used to control arrive and
depart.

LTS?
18 CS3211 2009-10 by Abhik

4

Carpark LTS
CARPARKCONTROL(N=4) = SPACES[N],
SPACES[i:0..N] = (when(i>0) arrive->SPACES[i-1]

|when(i<N) depart->SPACES[i+1]
).

ARRIVALS = (arrive->ARRIVALS).

CS3211 2009-10 by Abhik19

DEPARTURES = (depart->DEPARTURES).

||CARPARK =
(ARRIVALS||CARPARKCONTROL(4)||DEPARTURES).

arrive arrive arrive arrive

depart depart depart depart

0 1 2 3 4

carpark program
♦ Model - all entities are processes interacting by actions

♦ Program - need to identify threads and monitors

♦thread - active entity which initiates (output) actions

♦monitor - passive entity which responds to (input) actions.

For the carpark?

ARRIVALS CARPARK
CONTROL

DEPARTURESarrive depart

CARPARK

20 CS3211 2009-10 by Abhik

carpark program - class diagram
Applet Runnable

ThreadPanel Arrivals

Departures

CarPark
arrivals,
departures

carDisplay

carpark

CarParkControl

DisplayCarParkCarParkCanvas

arrive()
depart()

disp
We have omitted
DisplayThread
and
GraphicCanvas
threads managed by
ThreadPanel.

21 CS3211 2009-10 by Abhik

public void start() {

carpark program

Arrivals and Departures implement Runnable, CarParkControl
provides the control (condition synchronization).

Instances of these are created by the start() method of the CarPark applet

p () {
CarParkControl c =

new DisplayCarPark(carDisplay,Places);
arrivals.start(new Arrivals(c));
departures.start(new Departures(c));

}

22 CS3211 2009-10 by Abhik

carpark program - Arrivals and
Departures threads

class Arrivals implements Runnable {
CarParkControl carpark;

Arrivals(CarParkControl c) {carpark = c;}

public void run() {
try {

while(true) {
ThreadPanel.rotate(330);

Similarly Departures
which calls();

carpark.arrive();
ThreadPanel.rotate(30);

}
} catch (InterruptedException e){}

}
}

How do we implement the control of CarParkControl?

which calls
carpark.depart().

23 CS3211 2009-10 by Abhik

Carpark program - CarParkControl
monitor
class CarParkControl {

protected int spaces;
protected int capacity;

CarParkControl(int capacity)
{capacity = spaces = n;}

condition
synchronization?

mutual exclusion
by synch
methods

synchronized void arrive() {
… --spaces; …
}

synchronized void depart() {
… ++spaces; …
}

}

block if full?
(spaces==0)

block if empty?
(spaces==N)

24 CS3211 2009-10 by Abhik

5

condition synchronization in Java
Java provides a thread wait queue per monitor (actually per
object) with the following methods:
public final void notify() Wakes up a single
thread that is waiting on this object's queue.

public final void notifyAll()
W k ll th d th t iti thi bj t'Wakes up all threads that are waiting on this object's queue.

public final void wait()
throws InterruptedException

Waits to be notified by another thread. The waiting thread
releases the synchronization lock associated with the monitor.
When notified, the thread must wait to reacquire the monitor
before resuming execution.

25 CS3211 2009-10 by Abhik

condition synchronization in Java
We refer to a thread entering a monitor when it acquires the
mutual exclusion lock associated with the monitor and exiting
the monitor when it releases the lock.
Wait() - causes the thread to exit the monitor,

permitting other threads to enter the monitor.

Thread A Thread B

wait()
notify()

Monitor

data

26 CS3211 2009-10 by Abhik

wait()

Monitor

data

Thread E
Thread B

Thread F

Thread AThread B

Thread F
Thread E

Thread C

CS3211 2009-10 by Abhik27

wait()

wait

Thread C

notify()

Thread A
Thread A

condition synchronization in Java

FSP: when cond act -> NEWSTAT

Java: public synchronized void act()
throws InterruptedException

{
while (!cond) wait();while (!cond) wait();
// modify monitor data
notifyAll()

}
The while loop is necessary to retest the condition cond to ensure that cond is
indeed satisfied when it re-enters the monitor.

notifyall() is necessary to awaken other thread(s) that may be waiting to
enter the monitor now that the monitor data has been changed.

28 CS3211 2009-10 by Abhik

CarParkControl - condition
synchronization
class CarParkControl {
protected int spaces;
protected int capacity;

CarParkControl(int capacity)
{capacity = spaces = n;}

synchronized void arrive() throws InterruptedException {
while (spaces==0) wait();
--spaces;
notify();

}

synchronized void depart() throws InterruptedException {
while (spaces==capacity) wait();
++spaces;
notify();

}
} Why is it safe to use notify()

here rather than notifyAll()?
29

CS3211 2009-10 by Abhik

Monitors are passive

Each guarded action in the model of a monitor is
implemented as a synchronized method which uses a
while loop and wait() to implement the guard. The while

Active entities (that initiate actions) are implemented as threads.
Passive entities (that respond to actions) are implemented as
monitors.

p () p g
loop condition is the negation of the model guard condition.

Changes in the state of the monitor are signaled to
waiting threads using notify() or
notifyAll().

30 CS3211 2009-10 by Abhik

6

5.2 Semaphores
Semaphores are widely used for dealing with inter-process
synchronization in operating systems. Semaphore s is an integer
variable that can take only non-negative values.

down(s): if s >0 then
decrement s

else

The only
operations
permitted on s

block execution of the calling process

up(s): if processes blocked on s then
awaken one of them

else
increment s

permitted on s
are up(s) and
down(s).
Blocked
processes are
held in a FIFO
queue.

31 CS3211 2009-10 by Abhik

modeling semaphores

const Max = 3
range Int = 0..Max

To ensure analyzability, we only model semaphores that
take a finite range of values. If this range is exceeded
then we regard this as an ERROR. N is the initial value.

SEMAPHORE(N=0) = SEMA[N],
SEMA[v:Int] = (up->SEMA[v+1]

|when(v>0) down->SEMA[v-1]
),

SEMA[Max+1] = ERROR.

LTS?
32 CS3211 2009-10 by Abhik

modeling semaphores
up up

down

up

down down

-1 0 1 2 3

Action down is only accepted when value v of the
semaphore is greater than 0.

Action up is not guarded.

Trace to a violation:
up up up up

up

33 CS3211 2009-10 by Abhik

semaphore demo - model

LOOP = (mutex.down->critical->mutex.up->LOOP).

||SEMADEMO = (p[1..3]:LOOP
||{p[1 3]}::mutex:SEMAPHORE(1))

Three processes p[1..3] use a shared semaphore
mutex to ensure mutually exclusive access (action
critical) to some resource.

||{p[1..3]}::mutex:SEMAPHORE(1)).

For mutual exclusion, the semaphore initial value is 1.
Why?
Is the ERROR state reachable for SEMADEMO?
Is a binary semaphore sufficient (i.e. Max=1) ?
LTS?

34 CS3211 2009-10 by Abhik

semaphore demo - model
p.1.mutex.down

p.2.mutex.down

p.3.mutex.down p.3.critical p.2.critical p.1.critical

0 1 2 3 4 6

p.3.mutex.up

p.2.mutex.up

p.1.mutex.up

0 1 2 3 4 5 6

35 CS3211 2009-10 by Abhik

semaphores in Java
Semaphores are
passive objects,
therefore
implemented as
monitors.
(In practice,

public class Semaphore {
private int value;

public Semaphore (int initial)
{value = initial;}

synchronized public void up() {
++value;
notify();(In practice,

semaphores are a
low-level mechanism
often used in
implementing the
higher-level monitor
construct.)

y()
}

synchronized public void down()
throws InterruptedException {

while (value== 0) wait();
--value;

}
}

36 CS3211 2009-10 by Abhik

7

SEMADEMO display

current
semaphore
value

thread 1 is
executing
critical
actions.

thread 2 is
blocked
waiting.

thread 3 is
executing
non-critical
actions.

37 CS3211 2009-10 by Abhik

SEMADEMO

What if we adjust the time that each thread spends in its
critical section ?

♦large resource requirement - more conflict?

(eg. more than 67% of a rotation)?

♦ small resource requirement - no conflict?

(eg. less than 33% of a rotation)?

Hence the time a thread spends in its
critical section should be kept as short as
possible.

38 CS3211 2009-10 by Abhik

SEMADEMO program - revised
ThreadPanel class

public class ThreadPanel extends Panel {
// construct display with title and rotating arc color c
public ThreadPanel(String title, Color c) {…}
// hasSlider == true creates panel with slider
public ThreadPanel
(String title, Color c, boolean hasSlider) {…}
// rotate display of currently running thread 6 degrees
// return false when in initial color, return true when in second color
public static boolean rotate()public static boolean rotate()

throws InterruptedException {…}
// rotate display of currently running thread by degrees
public static void rotate(int degrees)

throws InterruptedException {…}
// create a new thread with target r and start it running
public void start(Runnable r) {…}
// stop the thread using Thread.interrupt()
public void stop() {…}

}

39 CS3211 2009-10 by Abhik

SEMADEMO program - MutexLoop
class MutexLoop implements Runnable {
Semaphore mutex;

MutexLoop (Semaphore sema) {mutex=sema;}

public void run() {
try {

while(true) {
while(!ThreadPanel.rotate());

Threads and
semaphore are
created by the
applet
start()
method.

mutex.down(); // get mutual exclusion
while(ThreadPanel.rotate()); //critical actions
mutex.up(); //release mutual exclusion

}
} catch(InterruptedException e){}

}
}

ThreadPanel.rotate() returns false
while executing non-critical actions (dark
color) and true otherwise.

40 CS3211 2009-10 by Abhik

5.3 Bounded Buffer

A bounded buffer consists of a fixed number of slots. Items
are put into the buffer by a producer process and removed by
a consumer process. It can be used to smooth out transfer
rates between the producer and consumer.

41 CS3211 2009-10 by Abhik

bounded buffer - a data-independent
model

PRODUCER BUFFER CONSUMERput get

BOUNDEDBUFFER

The behaviour of BOUNDEDBUFFER is independent of the

LTS:

The behaviour of BOUNDEDBUFFER is independent of the
actual data values, and so can be modelled in a data-
independent manner.

put put

get

put

get

put

get

put

get get

0 1 2 3 4 5

42 CS3211 2009-10 by Abhik

8

bounded buffer - a data-independent
model

BUFFER(N=5) = COUNT[0],
COUNT[i:0..N]

= (when (i<N) put->COUNT[i+1]
|when (i>0) get->COUNT[i-1]
).

PRODUCER = (put->PRODUCER).
CONSUMER = (get->CONSUMER).

||BOUNDEDBUFFER =
(PRODUCER||BUFFER(5)||CONSUMER).

43 CS3211 2009-10 by Abhik

bounded buffer program - buffer
monitor

public interface Buffer {…}

class BufferImpl implements Buffer {
…

public synchronized void put(Object o)
throws InterruptedException {

while (count==size) wait();
buf[in] = o; ++count; in=(in+1)%size;
notify();

}

We separate the
interface to
permit an
alternative
implementation
later.

}
public synchronized Object get()

throws InterruptedException {
while (count==0) wait();
Object o =buf[out];
buf[out]=null; --count; out=(out+1)%size;
notify();
return (o);
}

}

44 CS3211 2009-10 by Abhik

bounded buffer program - producer
process

class Producer implements Runnable {
Buffer<Character> buf;
String alphabet= "abcdefghijklmnopqrstuvwxyz";

Producer(Buffer<Character> b) {buf = b;}

public void run() {
try {

int ai = 0;
while(true) {

Similarly Consumer
which calls buf.get().

while(true) {
ThreadPanel.rotate(12);
buf.put(new Character(alphabet.charAt(ai)));
ai=(ai+1) % alphabet.length();
ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}
}

45 CS3211 2009-10 by Abhik

bounded buffer program - consumer
process

class Producer implements Runnable {
Buffer<Character> buf;

Consumer(Buffer<Character> b) {buf = b;}

public void run() {
try {

while(true) {
Similarly Consumer
which calls buf.get().while(true) {

ThreadPanel.rotate(180);
Character c = buf.get();
ThreadPanel.rotate(348);

}
} catch (InterruptedException e){}

}
}

g ()

46 CS3211 2009-10 by Abhik

Suppose that, in place of using the count variable and
condition synchronization directly, we instead use two
semaphores full and empty to reflect the state of the buffer.

5.4 Nested Monitors

class SemaBuffer implements Buffer {
…

Semaphore full; //counts number of items
Semaphore empty; //counts number of spaces

SemaBuffer(int size) {
this.size = size; buf = new Object[size];
full = new Semaphore(0);
empty= new Semaphore(size);

}
…
}

47 CS3211 2009-10 by Abhik

nested monitors - bounded buffer
program

synchronized public void put(Object o)
throws InterruptedException {

empty.down();
buf[in] = o;
++count; in=(in+1)%size;
full.up();

}

synchronized public Object get()
throws InterruptedException{

full down();full.down();
Object o =buf[out]; buf[out]=null;
--count; out=(out+1)%size;
empty.up();
return (o);

}

empty is decremented during a put operation, which is
blocked if empty is zero; full is decremented by a get
operation, which is blocked if full is zero.

Does this
behave as
desired?

48 CS3211 2009-10 by Abhik

9

nested monitors - bounded buffer
model

const Max = 5
range Int = 0..Max

SEMAPHORE ...as before...

BUFFER = (put -> empty.down ->full.up ->BUFFER
|get -> full.down ->empty.up ->BUFFER
).

PRODUCER (t > PRODUCER)PRODUCER = (put -> PRODUCER).
CONSUMER = (get -> CONSUMER).

||BOUNDEDBUFFER = (PRODUCER|| BUFFER || CONSUMER
||empty:SEMAPHORE(5)
||full:SEMAPHORE(0)

)@{put,get}.

Does this
behave as
desired?

49 CS3211 2009-10 by Abhik

nested monitors - bounded buffer
model

LTSA analysis predicts a possible DEADLOCK:
Composing
potential DEADLOCK

States Composed: 28 Transitions:32 in 60ms
Trace to DEADLOCK:

getget

The Consumer tries to get a character, but the buffer is
empty. It blocks and releases the lock on the semaphore
full. The Producer tries to put a character into the
buffer, but also blocks. Why?

This situation is known as the nested monitor problem.

50 CS3211 2009-10 by Abhik

nested monitors - revised bounded
buffer program

The only way to avoid it in Java is by careful design. In this
example, the deadlock can be removed by ensuring that the
monitor lock for the buffer is not acquired until after
semaphores are decremented.

public void put(Object o)
throws InterruptedException {

empty.down();
synchronized(this){

buf[in] = o; ++count; in=(in+1)%size;
}
full.up();

}

51 CS3211 2009-10 by Abhik

nested monitors - revised bounded
buffer model
BUFFER = (put -> BUFFER

|get -> BUFFER
).

PRODUCER =(empty.down->put->full.up->PRODUCER).
CONSUMER =(full.down->get->empty.up->CONSUMER).

The semaphore actions have been moved to the producer and
consumer. This is exactly as in the implementation where the
semaphore actions are outside the monitor .

Does this behave as desired?

Minimized LTS?

52 CS3211 2009-10 by Abhik

5.5 Monitor invariants
An invariant for a monitor is an assertion concerning the variables it
encapsulates. This assertion must hold whenever there is no thread
executing inside the monitor i.e. on thread entry to and exit from a monitor
.

CarParkControl Invariant: 0 ≤ spaces ≤ N

Semaphore Invariant: 0 ≤ value

B ff I i t 0 ≤ ≤ iBuffer Invariant: 0 ≤ count ≤ size
and 0 ≤ in < size
and 0 ≤ out< size
and in = (out + count) modulo size

Invariants can be helpful in reasoning about correctness of monitors using a
logical proof-based approach. Generally we prefer to use a model-based
approach amenable to mechanical checking .

53 CS3211 2009-10 by Abhik

Summary
Concepts

monitors: encapsulated data + access procedures

mutual exclusion + condition synchronization

nested monitors

Model
guarded actions

Practice
private data and synchronized methods in Java

wait(), notify() and notifyAll() for condition synchronization

single thread active in the monitor at a time

54 CS3211 2009-10 by Abhik

