
1

Deadlocks

Abhik Roychoudhury
CS 3211

National University of Singapore

Modified from Kramer and Magee’s lecture notes.
Reading material: Chapter 6 of Textbook.

1 CS3211 2009-10 by Abhik

Deadlock

Concepts: system deadlock: no further progress
four necessary & sufficient conditions

Models: deadlock - no eligible actions

Practice: blocked threads

Aim: deadlock avoidance - to design
systems where deadlock cannot occur.

2 CS3211 2009-10 by Abhik

Deadlock: four necessary and sufficient
conditions
♦ A. Serially reusable resources:
the processes involved share resources which they use under mutual
exclusion.

♦ B. Incremental acquisition:
processes hold on to resources already allocated to them while waiting to
acquire additional resources.

♦ C. No pre-emption:
once acquired by a process, resources cannot be pre-empted (forcibly
withdrawn) but are only released voluntarily.

♦ D. Wait-for cycle:
a circular chain (or cycle) of processes exists such that each process
holds a resource which its successor in the cycle is waiting to acquire.

3 CS3211 2009-10 by Abhik

A. Serially re-usable resources
public class Semaphore {
private int value;

public Semaphore (int initial)
{value = initial;}

synchronized public void up() {
++value;
notify();

A monitor
encapsulates
resources which are
accessed using
mutual exclusion

4

y()
}

synchronized public void down()
throws InterruptedException {

while (value== 0) wait();
--value;

}
}

CS3211 2009-10 by Abhik

B. Incremental acquisition

class SemaBuffer implements Buffer {
…

Semaphore full; //counts number of items

Nested Monitors --- Implement a bounded buffer as a monitor. Use semaphores
(another monitor) to control access when buffer is full or empty.

5

Semaphore empty; //counts number of spaces

SemaBuffer(int size) {
this.size = size; buf = new Object[size];
full = new Semaphore(0);
empty= new Semaphore(size);

}
…
}

CS3211 2009-10 by Abhik

Nested monitors – Incr. acquisition
synchronized public void put(Object o)

throws InterruptedException {
empty.down();
buf[in] = o;
++count; in=(in+1)%size;
full.up();

}

synchronized public Object get()
throws InterruptedException{

full down();

6

full.down();
Object o =buf[out]; buf[out]=null;
--count; out=(out+1)%size;
empty.up();
return (o);

}

synchronized public void down()
throws InterruptedException {

while (value== 0) wait();
--value;

}

CS3211 2009-10 by Abhik

2

What was the deadlock scenario?
Initially buffer does not contain anything,
Integer protected by semaphore full is 0,
And integer protected by semaphore empty is non-zero

Consumer executes get()

Inside get(), the first line is full.down()

7

Inside down, the first line is
while (value == 0) wait()
// value is the integer protected by the semaphore monitor

Since full is 0, wait() is executed
Since wait() is encountered in a method for the full semaphore –

it releases the lock for full

The lock for the buffer whose get() called full.down() is not released!!

CS3211 2009-10 by Abhik

Deadlock scenario in this case

A. Serially re-usable resource: the buffer for example

B. Incremental acquisition of resources: acquire the lock to the buffer, and wait
for items to be placed in the buffer.

C. No pre-emption: All resources are released voluntarily.

8

D. Circular Wait: The producer is waiting for the lock to the buffer to be
released, so that it can insert items. The consumer is waiting for the items to
be inserted, so that it can consume and release the lock to the buffer.

CS3211 2009-10 by Abhik

D. Wait-for cycle

A

BE

Has A awaits B

H B it C

Has E awaits A

B

CD

Has B awaits C

Has C awaits D
Has D awaits E

9 CS3211 2009-10 by Abhik

6.1 Deadlock analysis - primitive
processes
♦ deadlocked state is one with no outgoing transitions

♦ in FSP: STOP process

MOVE = (north->(south->MOVE|north->STOP)).

MOVE
north north

Trace to DEADLOCK:
north
north

♦ animation to produce a trace.

♦analysis using LTSA:

(shortest trace to STOP)

south

0 1 2

10 CS3211 2009-10 by Abhik

A state with no outgoing actions

Note that such a “deadlocked” state will be obvious only when we
construct the state model.

Moreover, even if such a deadlocked state exists, it may a state in the
global state model.

Suppose Sys = P1 || P2

11

Suppose Sys = P1 || P2

There might be no deadlocked state in the state models of P1, P2.

But in the state model of Sys, we can encounter deadlocked states.

CS3211 2009-10 by Abhik

deadlock analysis - parallel composition
♦ in systems, deadlock may arise from the
parallel composition of interacting processes.

RESOURCE = (get->put->RESOURCE).
P = (printer.get->scanner.get

->copy
->printer.put->scanner.put

P)

printer:
RESOURCE
get
put

SYS
p:P

printer

scanner
->P).

Q = (scanner.get->printer.get
->copy

->scanner.put->printer.put
->Q).

||SYS = (p:P||q:Q
||{p,q}::printer:RESOURCE

||{p,q}::scanner:RESOURCE
).

put

scanner:
RESOURCE
get
put

q:Q
printer

scanner

Deadlock Trace?

Avoidance?

12 CS3211 2009-10 by Abhik

3

Deadlock Trace
p.printer.get
q.scanner.get

The problem meets all the four conditions of deadlock

A. Serial re-use: The printer and scanner are serially re-used.

13

B. Incremental acquisition: each process holds on to acquired
resource (scanner/printer), while waiting for the other resource
(printer/scanner).

C. No pre-emption: All resources are released voluntarily.

D. Wait for cycle: Process p has printer, waits for scanner from q
Process q has scanner, waits for printer from p.

CS3211 2009-10 by Abhik

deadlock analysis - avoidance
♦ all processes acquire resources in the same order.

♦ Introduce Timeouts:
P = (printer.get-> GETSCANNER),
GETSCANNER = (scanner.get->copy->printer.put

->scanner.put->P
|timeout -> printer.put->P|timeout > printer.put >P
).

Q = (scanner.get-> GETPRINTER),
GETPRINTER = (printer.get->copy->printer.put

->scanner.put->Q
|timeout -> scanner.put->Q
).

Deadlock?
Progress?

14 CS3211 2009-10 by Abhik

Deadlock avoidance - timeouts
♦B. Incremental acquisition:
processes hold on to resources already allocated to them
while waiting to acquire additional resources.

Having timeouts --- violates the above condition for deadlock, thereby
avoiding deadlock.

CS3211 2009-10 by Abhik15

Violates progress

Acquire the first resource, Fail to acquire second resource, Timeout …
(repeated forever).

6.2 Dining Philosophers
Five philosophers sit around a circular
table. Each philosopher spends his
life alternately thinking and eating. In
the centre of the table is a large bowl
of spaghetti. A philosopher needs two
forks to eat a helping of spaghetti.

23

1

2

3

0

14
04

One fork is placed between each
pair of philosophers and they agree that
each will only use the fork to his immediate
right and left.

16 CS3211 2009-10 by Abhik

Dining Philosophers - model structure
diagram

phil[4]:
PHIL

phil[1]:
PHIL

phil[0]:
PHILFORK FORK

lef tright

rightlef t

Each FORK is a
shared
resource with
actions get and
put.

phil[3]:
PHIL

phil[2]:
PHIL

FORK

FORK FORK

right

right

lef t

right

lef t

lef t

p

When hungry,
each PHIL
must first get
his right and
left forks
before he can
start eating.

17 CS3211 2009-10 by Abhik

Dining Philosophers - model

FORK = (get -> put -> FORK).
PHIL = (sitdown ->right.get->left.get

->eat ->right.put->left.put
->arise->PHIL).

||DINERS(N=5)= forall [i:0..N-1]
(phil[i]:PHIL ||
{phil[i].left,phil[((i-1)+N)%N].right}::FORK
).

Table of philosophers:

Can this system deadlock?
18 CS3211 2009-10 by Abhik

4

Dining Philosophers - model analysis

Trace to DEADLOCK:
phil.0.sitdown
phil.0.right.get
phil.1.sitdown
phil.1.right.get
phil 2 sitdown

This is the situation
where all the philosophers
become hungry at the
same time, sit down at the
table and each
philosopher picks up the phil.2.sitdown

phil.2.right.get
phil.3.sitdown
phil.3.right.get
phil.4.sitdown
phil.4.right.get

philosopher picks up the
fork to his right.

The system can make no
further progress since
each philosopher is
waiting for a fork held by
his neighbour i.e. a wait-
for cycle exists!

19 CS3211 2009-10 by Abhik

Dining Philosophers

Deadlock is easily
detected in our
model.

How easy is it to
d l detect a potential
deadlock in an
implementation?

20 CS3211 2009-10 by Abhik

Dining Philosophers - implementation
in Java

♦philosopher
s: active
entities -
implement as
threads

Applet

Diners

Thread

Philosopher
1 n

1display

view

♦forks:
shared passive
entities -
implement as
monitors

♦display

Forkn

PhilCanvascontroller

display

21 CS3211 2009-10 by Abhik

Dining Philosophers - Fork monitor
class Fork {
private boolean taken=false;
private PhilCanvas display;
private int identity;
Fork(PhilCanvas disp, int id)

{ display = disp; identity = id;}

synchronized void put() {
taken=false;

taken
encodes the
state of the
fork

ta e a se;
display.setFork(identity,taken);
notify();

}
synchronized void get()

throws java.lang.InterruptedException {
while (taken) wait();
taken=true;
display.setFork(identity,taken);

}
}

22 CS3211 2009-10 by Abhik

Dining Philosophers - Philosopher
implementation

class Philosopher extends Thread {
...
public void run() {

try {
while (true) { // thinking

view.setPhil(identity,view.THINKING);
sleep(controller.sleepTime()); // hungry
view.setPhil(identity,view.HUNGRY);
right.get(); // gotright chopstick
i hil(id i i)view.setPhil(identity,view.GOTRIGHT);

sleep(500);
left.get(); // eating
view.setPhil(identity,view.EATING);
sleep(controller.eatTime());
right.put();
left.put();

}
} catch (java.lang.InterruptedException e){}

}
}

Follows
from the
model
(sitting
down and
leaving the
table have
been
omitted).

23 CS3211 2009-10 by Abhik

Dining Philosophers - implementation
in Java

for (int i =0; i<N; ++i)
fork[i] = new Fork(display,i);

for (int i =0; i<N; ++i){

Code to create the philosopher
threads and fork monitors:

for (int i =0; i<N; ++i){
phil[i] = new Philosopher(this,i,fork[(i-1+N)%N],fork[i]);
phil[i].start();

}

24 CS3211 2009-10 by Abhik

5

Deadlock-free Philosophers
Deadlock can be avoided by ensuring that a wait-for cycle cannot
exist. How?

PHIL(I=0)
= (when (I%2==0) sitdown

->left.get->right.get
->eat

->left put->right put

Introduce an
asymmetry into our
definition of
philosophers.

U th id tit I f >left.put >right.put
->arise->PHIL

|when (I%2==1) sitdown
->right.get->left.get
->eat

->left.put->right.put
->arise->PHIL

).

Use the identity I of a
philosopher to make
even numbered
philosophers get their
left forks first, odd
their right first.

Other strategies?

25 CS3211 2009-10 by Abhik

Maze example - shortest path to
“deadlock” (in tutorials next week)

0 1 2

STOP

north

We can exploit the shortest path trace produced by the
deadlock detection to find the shortest path out of a maze to
the STOP process!

We must first
model the MAZE.

0 1 2

3 4 5

6 7 8

north

south

west east
Each position can
be modelled by
the moves that it
permits. The
MAZE parameter
gives the starting
position.eg. MAZE(Start=8) = P[Start],

P[0] = (north->STOP|east->P[1]),...

26 CS3211 2009-10 by Abhik

Maze example - shortest path to
“deadlock”

||GETOUT = MAZE(7).

STOP

Shortest path
escape trace
from position 7 ?

Trace to
DEADLOCK:

0 1 2

3 4 5

6 7 8

north

south

west east

DEADLOCK:
east
north
north
west
west
north

27 CS3211 2009-10 by Abhik

Summary
Concepts

deadlock: no futher progress

four necessary and sufficient conditions:

serially reusable resources

incremental acquisition
Aim: deadlock avoidance no preemption

wait-for cycle

Models
no eligible actions (analysis gives shortest path trace)

Practice
blocked threads

Aim: deadlock avoidance
- to design systems where
deadlock cannot occur.

28 CS3211 2009-10 by Abhik

