
1

Parallel Programming
and MPI- Lecture 1

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2009-10 by Abhik Roychoudhury1

Sample material: Parallel Programming by Lin and Snyder, Chapter 7.
Made available via IVLE reading list, accessible from Lesson Plan.

Concurrency and Parallelism

A

Time

B

C

Threads

CS3211 2009-10 by Abhik Roychoudhury2

Time

A

Time

B

C

Processors

Why parallel programming?
Performance, performance, performance!
Increasing advent of multi-core machines!!

Homogeneous multi-processing architectures.
Discussed further in a later lecture.

Parallelizing compilers never worked!g p
Automatically extracting parallelism from app. is very hard

Better for the programmer to indicate which parts of the
program to execute in parallel and how.

CS3211 2009-10 by Abhik Roychoudhury3

How to program for parallel machines?
Use a parallelizing compiler

Programmer does nothing, too ambitious !

Extend a sequential programming language
Libraries for creation, termination, synchronization and
communication between parallel processes.
Th b l d it il b dThe base language and its compiler can be used.
Message Passing Interface (MPI) is one example.

Design a parallel programming language
Develop a new language – Occam.

Or add parallel constructs to a base language – High Perf. Fortran.

Must beat programmer resistance, and develop new compilers.

CS3211 2009-10 by Abhik Roychoudhury4

Parallel Programming Models
Message Passing

MPI: Message Passing Interface
PVM: Parallel Virtual Machine
HPF: High Performance Fortran

Shared Memory

5

Automatic Parallelization
POSIX Threads (Pthreads)
OpenMP: Compiler directives

CS3211 2009-10 by Abhik Roychoudhury

The Message-Passing Model
A process is (traditionally) a program counter and address
space
Processes may have multiple threads (program counters and
associated stacks) sharing a single address space. MPI is for
communication among processes, which have separate address
spaces

6

spaces
Interprocess communication consists of

Synchronization
Movement of data from one process’s address space to another’s

CS3211 2009-10 by Abhik Roychoudhury

2

The programming model in MPI
Communicating Sequential Processes

Each process runs in its local address space.
Processes exchange data and synchronize by message passing
Often, but not always, the same code may be executed by all
processes.

CS3211 2009-10 by Abhik Roychoudhury7

Cooperative Operations for
Communication

Message-passing approach makes the exchange of data
cooperative
Data is explicitly sent by one process and received by another
Advantage:

Any change in the receiving process’s memory is made with the
receiver’s active participation

8

receiver s active participation.

Communication and synchronization are combined.

Process 0 Process 1

send (data)
receive (data)

CS3211 2009-10 by Abhik Roychoudhury

Shared Memory communication in Java

Shared heap
Java program compiled into
bytecodes. Bytecodes are
interpreted by the Java Virtual
Machine.

Bytecodes are the assembly
language of the Java Virtual

CS3211 2009-10 by Abhik Roychoudhury9

Thread
Stack

Thread
Stack

Machine (a machine implemented
in software).

Bytecode execution returns in
movements between thread local
stack and the shared heap (which
is shared across threads).

Program to Bytecode

3: public int foo(int j){
4: int ret;
5: if (j % 2 == 1)
6: ret= 2;
7: else
8: ret= 5;

public int foo(int);
46: iload_1
47: iconst_2
48: irem
49: iconst_1
50: if_icmpne 54
51: iconst 2

CS3211 2009-10 by Abhik Roychoudhury10

;
9: return ret;
10: }

51: iconst_2
52: istore_2
53: goto 56
54: iconst_5
55: istore_2
56: iload_2
57: ireturn

Simplified Bytecode format

Stack ↔ Heap movements in Java

public int foo(int);
46: iload_1
47: iconst_2
48: irem
49: iconst_1
50: if_icmpne 54
51: iconst 2

Before 46 After 46 After 47

j loaded
from heap j

Const 2

Const 1

CS3211 2009-10 by Abhik Roychoudhury11

51: iconst_2
52: istore_2
53: goto 56
54: iconst_5
55: istore_2
56: iload_2
57: ireturn

j%2 == 1
ret = 2

After 50 After 49 After 48

Result of
j%2

Result of
j%2

Const 1

Const 2

After 51 After 52

Moved to heap

Communication in MPI

Send

Network

Receive

Sending process Kernel
Kernel

Receiving
Process

CS3211 2009-10 by Abhik Roychoudhury12

Receive

No notion of a shared address space across processes.

3

Message Passing Interface (MPI)
A message-passing library specification

Extended message-passing model
Not a language or compiler specification
Not a specific implementation or product

For parallel computers, clusters, and heterogeneous networks
Designed to provide access to parallel hardware for

13

End users
Library writes
Tool developers

Provides a powerful, efficient, and portable way to express
parallel programs

CS3211 2009-10 by Abhik Roychoudhury

MPI (Contd.)
The processes in a parallel program are written in a
sequential language (e.g., C or Fortran)
Processes communicate and synchronize by calling
functions in MPI library
Single Program, Multiple Data (SPMD) style

14

Processors execute copies of the same program
Each instance determines its identity and takes different actions

CS3211 2009-10 by Abhik Roychoudhury

MPI History
Message Passing Interface Forum

Representative from over 40 organizations

Goal
Develop a single library that could be implemented efficiently
on the variety of multiprocessors

15

MPI-1 accepted in 1994
MPI-2 accepted in 1997
MPI is a standard
Several implementations exist

CS3211 2009-10 by Abhik Roychoudhury

Some Basic Concepts
Processes can be collected into groups

An ordered set of processes.
A group and context together form a communicator

A scoping mechanism to define a group of processes.
For example define separate communicators for
application level and library level routines

16

application level and library level routines.
A process is identified by its rank in the group
associated with a communicator
There exists a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

CS3211 2009-10 by Abhik Roychoudhury

MPI Datatypes
Data in a message is described by a triple

<address, count, datatype> where

MPI datatype is recursively defined as
Predefined corresponding to a data type from the language (MPI_INT,
MPI_DOUBLE)
A contiguous array of MPI datatypes

17

A contiguous array of MPI datatypes
A strided block of datatypes
An indexed array of blocks of datatypes
An arbitrary structure of datatypes

MPI functions can be used to construct custom datatypes

CS3211 2009-10 by Abhik Roychoudhury

Why datatypes?
Since all data is labeled by type, an MPI implementation can
support communication between processes on machines with
very different memory representations and lengths of
elementary datatypes (heterogeneous communication)
Specifying application-oriented layout of data in memory

Reduces memory-to-memory copies in the implementation

18

Reduces memory-to-memory copies in the implementation
Allows the use of special hardware (scatter/gather) when available

CS3211 2009-10 by Abhik Roychoudhury

4

MPI Tags
Messages are sent with an accompanying user-defined
integer tag, to assist the receiving process in identifying
the message
Messages can be screened at the receiving end by
specifying a tag or not screened by specifying
MPI ANY TAG h

19

MPI_ANY_TAG as the tag in a receive

CS3211 2009-10 by Abhik Roychoudhury

Basic MPI Functions
MPI_Init(int *argc, char ***argv)

Initializes MPI
Must be called before any other MPI functions

MPI_Comm_rank(MPI_Comm comm,
int *rank)

Find my rank within specified communicator

20

MPI_Comm_size (MPI_Comm comm,
int *size)

Find number of group members within specified communicator

MPI_Finalize ()
Called at the end to clean up

CS3211 2009-10 by Abhik Roychoudhury

Getting started
#include "mpi.h"
#include <stdio.h>
int main(argc, argv)
int argc;
char **argv; { char argv; {

MPI_Init(&argc, &argv);
printf("Hello world\n"); /* run on each process */
MPI_Finalize();
return 0;

}

CS3211 2009-10 by Abhik Roychoudhury21

MPI_Comm_size and MPI_comm_rank
Two of the first questions asked in a parallel program are:

How many processes are there? and
Who am I?

How many is answered with
MPI_Comm_size

Who am I is answered with
MPI_Comm_rank.
The rank is a number between zero and size-1.

CS3211 2009-10 by Abhik Roychoudhury22

What does this program do?
#include "mpi.h"
#include <stdio.h>

int main(argc, argv)
int argc;

char **argv; { g ; {
int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

printf("Hello world! I'm %d of %d\n", rank, size);
MPI_Finalize();

return 0;

}

CS3211 2009-10 by Abhik Roychoudhury23

Embarrassingly simple MPI program
#include <mpi.h>

#include <stdio.h>

int main (int argc, char *argv[]) {

int i, id, p;

void unit_task(int, int); // no return value

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Comm_size(MPI_COMM_WORLD, &p);

for (i=id; i < 65536; i+=p) unit_task(id, i);

printf(“Process %d is done\n”, id);

fflush(stdout); MPI_Finalize();

return 0;

}

Compile: mpicc –o simple simple.c
Run: mpirun –np 2 simple (creating 2 processes)

CS3211 2009-10 by Abhik Roychoudhury24

5

Organization
So Far

What is MPI
Entering and Exiting MPI
Creating multiple processes

Now
Message Passing

CS3211 2009-10 by Abhik Roychoudhury25

Inter-process comunication

Via point-to-point message passing.
Messages are stored in message buffers.

CS3211 2009-10 by Abhik Roychoudhury26

Basic Blocking Communication
int MPI_Send (void *buff, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

Send contents of a variable (single or array) to specified PE
within specified communicator

When this function returns, the data has been delivered
d h b ff b d Th h

27

and the buffer can be reused. The message may not have
been received by the target process

CS3211 2009-10 by Abhik Roychoudhury

More on blocking send
int MPI_Send (void *buff, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

The address of data to be sent
of data elements to be sent
Type of data elements to be sent
ID of processes that should receive the message
A message tag to distinguish the message from other messages
which may be sent to the same process.

Wild cards allowed, we can say MPI_ANY_TAG

A communication context capturing groups of processes
working on the same sub-problem

By default MPI_COMM_WORLD captures the group of all processes.

CS3211 2009-10 by Abhik Roychoudhury28

Basic Blocking Communication (contd.)
int MPI_Recv(void *buff, int count, MPI_Datatype datatype, int
source, int tag, MPI_Comm comm, MPI_Status *status)

Receive contents of a variable (single or array) from specified PE within
specified communicator

Waits until a matching (on source and tag) message is received
Source is rank in communicator specified by comm or

29

p y
MPI_ANY_SOURCE
Receiving fewer than count occurrences of datatype is OK, but
receiving more is an error
The status field captures information about

Source , Tag, How many elements were actually received

CS3211 2009-10 by Abhik Roychoudhury

Simple Sample Program
#include <mpi.h>

main(int argc, char *argv[]) {

………

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &size);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid == 0)

30

{ otherid = 1; myvalue = 14;}

else

{ otherid = 0; myvalue = 25;}

MPI_Send (&myvalue, 1, MPI_INT, otherid, 1, MPI_COMM_WORLD);

MPI_Recv (&othervalue, 1, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &status);

printf(“ process %d received %d\n”, myid, othervalue);

MPI_Finalize();

}

CS3211 2009-10 by Abhik Roychoudhury

6

Another example
char msg[20]; int myrank, tag =99;
MPI_status status;
…
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0){

strcpy(msg, “Hello there”);py(g,);
MPI_send(msg, strlen(msg)+1, MPI_CHAR,1, MPI_COMM_WORLD);

} else if (myrank == 1){
MPI_recv(msg, 20, MPI_CHAR,0, tag, MPI_COMM_WORLD, status);

}

…

CS3211 2009-10 by Abhik Roychoudhury31

status tells us how many elements were actually received!

Message ordering
MPI_Send and MPI_Recv are blocking

MPI_Send blocks until send buffer can be reclaimed.
MPI_Recv blocks until receive is completed.
When MPI_Send returns we cannot guarantee that the receive
has even started.

If the sender sends 2 messages to same destination which
match the same receive, the receive cannot match the 2nd

msg, if the 1st msg is still pending.
If a receiver posts 2 receives, and both match the same
msg, the 2nd receive cannot get the msg, if the 1st receive
is still pending.

CS3211 2009-10 by Abhik Roychoudhury32

Order preservation in messages

dest = 1 dest = 1
tag = 1 tag = 4

Process 0
(sends)

src = * src = * src = 2 src = 2 src = *
t = 1 t = 1 t = * t = * t = *

Process 1
(receives)

These

2

Messages

Can be
Received

CS3211 2009-10 by Abhik Roychoudhury33

tag = 1 tag = 1 tag = * tag = * tag = *

dest = 1 dest = 1 dest =1
Tag = 1 tag = 2 tag = 3

Process 2
(sends)

Received

In Any

Order

Order preservation in messages
Messages are non-overtaking

Successive messages sent by a process p to another process q
are ordered in sequence.

Receives posted by a process are also ordered.
Each incoming message matches the first matching receive.
Matching defined by tags and source/destination.

CS3211 2009-10 by Abhik Roychoudhury34

Send to 2

Send to 1

Order preservation is not transitive

Rcv from 0

CS3211 2009-10 by Abhik Roychoudhury35

Send to 2

Rcv from *

Rcv from *

Order preservation is not transitive

Send send
dest = 2 dest = 1

Receive Send

Process 0

Between any pair of processes,
messages flow in order.
However, across pairs of processes
we cannot guarantee a consistent
total order on the comm. Events.

CS3211 2009-10 by Abhik Roychoudhury36

src = * src = *

Src = 0 dest = 2

Process 2

Process 1

This message may arrive earlier.

7

Wrapping up
Blocking sends and receives

A blocking send completes when the send buffer can be re-
used
A blocking receive completes, when the data is available in the
receive buffer.
Each incoming message matches the first matching receiveEach incoming message matches the first matching receive.

CS3211 2009-10 by Abhik Roychoudhury37

Organization
So Far

What is MPI
Entering and Exiting MPI
Creating multiple processes
Blocking Message Passing (point-to-point)

Now
Non-blocking point to point communication
Collective communication

CS3211 2009-10 by Abhik Roychoudhury38

Non-blocking Communication
MPI_Recv is blocking

It does not return until the message is received AND it is safe
to modify the function arguments

MPI_Send is blocking
It does not return until the message is buffered OR received by
h d i i i il i i f dif h

39

the destination processor, i.e., until it is safe to modify the
function arguments

Non-blocking primitives allows useful computation while
waiting for send/receive to complete

CS3211 2009-10 by Abhik Roychoudhury

Non-blocking Communication (Contd.)
Non-blocking send or receive simply starts the operation
A different function call will be required to complete the
operation
An additional request parameter is needed in non-
blocking calls

40

The parameter is used in subsequent operation to
reference this message in order to complete the call

CS3211 2009-10 by Abhik Roychoudhury

Nonblocking Functions
int MPI_Isend (void *buff, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm,
MPI_Request *req)

Begins a standard non-blocking message send
Returns before msg. is copied out of send buffer of sender

41

process.

int MPI_Irecv (void *buff, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Request *req)

Begins a standard non-blocking message receive.
Returns before message is received.

CS3211 2009-10 by Abhik Roychoudhury

Nonblocking Functions (Contd.)
int MPI_Wait (MPI_Request *request, MPI_Status *status)

Blocking call that completes MPI_Isend or MPI_Irecv function
call

int MPI_Test (MPI_Request *request,
int *flag, MPI_Status *status)

42

Nonblocking call that tests the completion of MPI_Isend or
MPI_Irecv function call
flag is TRUE is operation is complete

CS3211 2009-10 by Abhik Roychoudhury

8

Multiple producers, one consumer
typedef struct{

char data[MAXSIZE];
int datasize;
MPI_Request req;

} Buffer;

Buffer *buffer;;
MPI_Status status;
…
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
/* producer code … */

/* consumer code … */

CS3211 2009-10 by Abhik Roychoudhury43

Producer code
if (rank != size – 1){

/* producer allocates one buffer */
buffer = (Buffer *) malloc(sizeof(Buffer));
while(1) {

/* fill buffer, and return # of bytes stored in the buffer */

produce(buffer->data, &buffer->datasize);p (,);
/* send the data*/
MPI_Send(buffer->data,buffer->datasize,MPI_CHAR, size-1,

tag, comm)
}

}

CS3211 2009-10 by Abhik Roychoudhury44

Consumer code
else{ /* rank == size – 1 */

buffer = (Buffer*)malloc(sizeof(Buffer)*size-1));

for (i=0; i<size-1;i++) /* post a nonblocking receive from each producer */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

for (i=0; ; i=(i+1)%(size-1)) {

MPI_Wait(&(buffer[i].req), &status);

* */* find number of bytes actually received */

MPI_Get_count(&status, MPI_CHAR, &(buffer[i].datasize));

/*consumer empties data buffer */

consume(buffer[i].data, buffer[i].datasize);

/* post new receive */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

}

}

CS3211 2009-10 by Abhik Roychoudhury45

More on the consumer
Employs a strict round-robin discipline among the
producers for receiving messages from them.
Can we do first-come first-serve?

Consume a message from a producer who has produced its
message.
Note that these messages may not be received at the
consumer’s end in exactly the same order in which they are
produced !!

CS3211 2009-10 by Abhik Roychoudhury46

Alternative Consumer code
else{ /* rank == size – 1 */

buffer = (Buffer*)malloc(sizeof(Buffer)*size-1));

for (i=0; i<size-1;i++) /* post a nonblocking receive from each producer */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

i= 0;

while(1){

{for (flag=0; !flag; i = (i+1)%(size-1)){
MPI_Test(&(buffer[i].req), & flag, &status);

}
MPI_Get_count(&status, MPI_CHAR, &(buffer[i].datasize));

consume(buffer[i].data, buffer[i].datasize);

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

}

}

CS3211 2009-10 by Abhik Roychoudhury47

What is happening in this program?

Difference in the two consumers
MPI_Wait is blocking
MPI_Test is not

Usually employed for busy-waiting.

Using MPI_Wait, the consumer employs a round-robin g p y
schedule among the producers.

Using MPI_Test, the consumer employs a first-come-first-
serve discipline among the producers.

HOW?

CS3211 2009-10 by Abhik Roychoudhury48

9

Message ordering in non-blocking
communication

Isend(…,1, …,r1)
…
Isend(…,1,…,r2)
…
Wait(r2,…)
Wait(r1,…)

Irecv(…,0, …,r1)
…
Irecv(…,0,…,r2)
…
Wait(r2,…)
Wait(r1,…)

Both Isend can complete before either receive.
Still, first Isend matches with first Irecv

Second 1send matches with second Irecv

CS3211 2009-10 by Abhik Roychoudhury49

Process 0 Process 1

Message ordering
The first Isend matches with first Irecv
However, this does not fix the order of completion of
operations.
In non-blocking communication

Each send or recv is split into two parts
Start of the operation: Isend / Irecv
Completion of the operation.

CS3211 2009-10 by Abhik Roychoudhury50

Order preservation in non-blocking
communication

Process 0 Process 1

Isend(dest=1) Irecv(src=0)
Isend(dest=1) Irecv(src=0)
Waitall WaitallWaitall Waitall

CS3211 2009-10 by Abhik Roychoudhury51

Suppose – (i) all the send/recv operations have the same tag
(ii) all sends happen before any receive.

Even then, order preservation rules ensure that the first send matches with the
first receive (each incoming message matches the first matching receive).

Deadlocks in MPI
An MPI implementation is not required to implement
message buffering.

Process 0 Process 1

CS3211 2009-10 by Abhik Roychoudhury52

Send(1) Send(0)

Recv(1) Recv(0)

For blocking communication, the above communication
pattern may cause the system to “hang”.

Use non-blocking communication
The deadlock can be avoided by a programming level
solution instead

Use non-blocking communication primitives

Process 0 Process 1

CS3211 2009-10 by Abhik Roychoudhury53

ISend(1) ISend(0)

IRecv(1) IRecv(0)

Waitall Waitall

Multiple Completions
The MPI_Wait completes one specific communication.
We may want to complete some or all communications,
rather than a specific communication.

MPI_Waitany(count, array_of_req, index, status)
Count is the list length
Array of request handled
Index of the request handle that completed
Status

MPI_Waitall(count, array_of_req, array_of_status)
All of the communication events should complete.

CS3211 2009-10 by Abhik Roychoudhury54

10

Consumer code with MPI_Wait
else{ /* rank == size – 1 */

buffer = (Buffer*)malloc(sizeof(Buffer)*size-1));

for (i=0; i<size-1;i++) /* post a nonblocking receive from each producer */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

for (i=0; ; i=(i+1)%(size-1)) {

MPI_Wait(&(buffer[i].req), &status);

* */* find number of bytes actually received */

MPI_Get_count(&status, MPI_CHAR, &(buffer[i].datasize));

/*consumer empties data buffer */

consume(buffer[i].data, buffer[i].datasize);

/* post new receive */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

}

}

CS3211 2009-10 by Abhik Roychoudhury55

Consumer code with MPI_Waitany
MPI_Request *req;
….

else{ /* rank == size – 1 */

buffer = (Buffer*)malloc(sizeof(Buffer)*size-1));

for (i=0; i<size-1;i++) /* post a nonblocking receive from each producer */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

{while (1){

MPI_Waitany(size-1, req, &i, &status);
MPI_Get_count(&status, MPI_CHAR, &(buffer[i].datasize));

consume(buffer[i].data, buffer[i].datasize);

/* post new receive */

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &req[i]);

}

}

CS3211 2009-10 by Abhik Roychoudhury56

Consumer can repeatedly consume from 1 process, starving other processes.

Multiple completions
The most general version is MPI_Waitsome

MPI_Waitsome(count, array_of_req, outcount,
array_of_indices, array_of_statuses)

Outcount is the number of completed communications.
Waits until at least one of the pending communications is

l dcompleted.
More flexible than MPI_Waitany and MPI_Waitall.

CS3211 2009-10 by Abhik Roychoudhury57

Consumer code with MPI_Waitsome
else{

buffer = (Buffer*)malloc(sizeof(Buffer)*size-1));

for (i=0; i<size-1;i++)

MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm, &(buffer[i].req));

while (1){

MPI_Waitsome(size-1, req, &count, index, &status);
{

CS3211 2009-10 by Abhik Roychoudhury58

for (i=0; i < count; i++){
j= index[i];
MPI_Get_count(&status[i], MPI_CHAR, &(buffer[j].datasize));

consume(buffer[j].data, buffer[j].datasize);

MPI_Irecv(buffer[j].data, MAXSIZE, MPI_CHAR, j, tag, comm, &req[j]);

}

}

}

58

Starvation is avoided, receives all posted sends. Less comm. calls too.

Summary
MPI as a programming interface
Message passing communication

Communicating sequential processes

Entering and Exiting MPI
MPI_Init, MPI_Finalize

Point-to-point communication
Blocking & Non-blocking
MPI_Send, MPI_Recv, MPI_Isend, MPI_Irecv
Wait and test operations to complete communication.

CS3211 2009-10 by Abhik Roychoudhury59

