
1

Parallel Programming
and MPI- Lecture 2

Abhik Roychoudhury
CS 3211

National University of Singapore

CS3211 2009-10 by Abhik Roychoudhury1

Sample material: Parallel Programming by Lin and Snyder, Chapter 7.

Summary of previous lecture
MPI as a programming interface
Message passing communication

Communicating sequential processes

Entering and Exiting MPI
MPI_Init, MPI_Finalize

Point-to-point communication
Blocking & Non-blocking
MPI_Send, MPI_Recv, MPI_Isend, MPI_Irecv
Wait and test operations to complete communication.

CS3211 2009-10 by Abhik Roychoudhury2

In today’s lecture
Collective communication

Communicate between multiple processes simultaneously.
Substantially differs from send-receive based point-to-point
communication studied earlier.
What are the communication primitives?

CS3211 2009-10 by Abhik Roychoudhury3

Collective communication in MPI
Barrier communication across a set of processes.
Global communication functions

Broadcast to a set of processes.
Gather data from all members for a member.
Scatter data to all members

Global reduction operations
Possible reduction functions include sum, max, min etc
Accumulating return values from a set of processes, and
employ a reduction function to obtain a result.
Result may be returned to all members, or only to a selected
process.

CS3211 2009-10 by Abhik Roychoudhury4

Collective communication features
In MPI, they have the following features

Amount of data sent must exactly match the amount of data
specified by receiver.
No message tags are used.
Only blocking communication is allowed.

CS3211 2009-10 by Abhik Roychoudhury5

Communicators
A scoping mechanism to define a set of processes,
communicating with each other.

e.g. define a separate communicator for libraries, to keep
messages from library routines distinct from appl. level
routines.
A group of processes assigned with a globally unique idA group of processes, assigned with a globally unique id.

A group is an ordered set of processes.
Each process in the group has a unique rank.

Previous lecture!

A process can, of course, belong to multiple groups.
We can assume that the communicators we deal with, have its
own group as well.

CS3211 2009-10 by Abhik Roychoudhury6

2

Barrier synchronization
int MPI_Barrier(MPI_Comm comm)

Blocks the caller, until all group members have called it.
Returns at any process, only after all group members have
entered the call.

CS3211 2009-10 by Abhik Roychoudhury7

Global communication
Broadcast
Scatter
Gather
Allgather
…

CS3211 2009-10 by Abhik Roychoudhury8

Broadcast
Int MPI_Bcast(buffer, count, datatype, root, comm)

Starting address of buffer
of entries in buffer
Data type of buffer
Rank of the broadcasting process
The communicator capturing the group of processes.

Example:
MPI_Comm comm;
int array[100], root = 0;
…
MPI_Bcast(array, 100, MPI_INT, root, comm);

CS3211 2009-10 by Abhik Roychoudhury9

Broadcast

A0 A0

A0

A0

data

P
R
O
C
E
S

CS3211 2009-10 by Abhik Roychoudhury10

A0

A0

A0

S
E
S

MPI_Gather
int MPI_Gather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,
root, comm)

Starting addr, # of elem., datatype of send buffer
Starting addr, # of elem., datatype of receive buffer
Rank of receiving process
Communicator

Each process (root process also) sends contents of its
send buffer to root process.
Root process receives messages, and stores them in rank
order, in the receive buffer.

CS3211 2009-10 by Abhik Roychoudhury11

Gather

A0

A1

A2

A0 A1 A2 A3 A4 A5

A1

A2

data

P
R
O
C
E
S

CS3211 2009-10 by Abhik Roychoudhury12

A3

A4

A5

A3

A4

S
E
S

A5

3

Effect of Gather
As if

All N processes in the group (including root) execute
MPI_send(sendbuf, sendcount, sendtype, root, …)

Root executes N receives
MPI_recv(recvbuf+I, …)

E lExample:
MPI_Comm comm;
int gsize, sendarray[100];
int root, *rbuf;
…
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray,100,MPI_INT, rbuf,100,MPI_INT, root, comm)

CS3211 2009-10 by Abhik Roychoudhury13

More on Gather
MPI_Comm comm;
int gsize, sendarray[100];
int root, myrank, *rbuf;
…
MPI_Comm_rank(comm, &myrank);
if (myrank == root){

MPI Comm size(comm &gsize);MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof(int));

}
MPI_Gather(sendarray, 100, MPI_INT, rbuf,100,MPI_INT, root, comm);

CS3211 2009-10 by Abhik Roychoudhury14

Gather
We ensure that only root process allocates memory for
receive buffer.

100 100 100 All processes

CS3211 2009-10 by Abhik Roychoudhury15

100 100 100 Root process

Gather, Vector variant
MPI_Gatherv(sendbuf, sendcount, sendtype,

recvbuf, recvcounts, displs, recvtype,
root, comm)

recvcounts --- is an array of integersy g
Different counts from different sending processes

displs --- is an array of integers
Provides flexibility of where the data is placed in the root.
Root process places the data of process i at the location

recvbuf + displs[i]

CS3211 2009-10 by Abhik Roychoudhury16

Example
Each process sends 100 integers to the root process.
Each set of 100 integers is placed stride integers apart.
Assume stride ≥ 100

100 100 100

CS3211 2009-10 by Abhik Roychoudhury17

stride

The solution
MPI_Comm comm;
int gsize, sendarray[100], root, *rbuf, stride, *displs, i, *rcounts;
…
MPI_Comm_size(comm, &gsize);
rbuf = (int *)malloc(gsize*stride*sizeof(int));

displs = (int *)malloc(gsize*sizeof(int));p () (g ());
rcounts = (int *)malloc(gsize*sizeof(int));
for (i=0; i < gsize; i++){

displs[i] = i* stride; rcounts[i] = 100;
}
MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,

root, comm);

CS3211 2009-10 by Abhik Roychoudhury18

4

MPI_Scatter

A0 A1 A2 A3 A4 A5

A1

A2

A0 A1 A2 A3 A4 A5

data

P
R
O
C
E
S

CS3211 2009-10 by Abhik Roychoudhury19

A3

A4

A5

S
E
S

The inverse operation of MPI_Gather.

MPI_Scatter
int MPI_Scatter(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,
root, comm)

Starting addr, # of elem., datatype of send buffer
Starting addr, # of elem., datatype of receive bufferg yp
Rank of receiving process
Communicator

CS3211 2009-10 by Abhik Roychoudhury20

A simple example
100 100 100

sendbuf

MPI_Scatter(sendarray, 100, MPI_INT,
rbuf, 100, MPI_INT,
root, comm)

CS3211 2009-10 by Abhik Roychoudhury21

MPI_Scatterv, vector variant.
Inverse operation of MPI_Gatherv
Extends MPI_Scatter by

Allowing variable amount of data to be sent to each process.
Also, allows flexibility about where the data is taken from the
root – by allowing a displs argument (similar to MPI_Gatherv)

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype,
recvbuf, recvcount, recvtype,
root, comm)

sendcounts is an array of integers
displs is an array if integers

CS3211 2009-10 by Abhik Roychoudhury22

Example
Each process receives 100 integers from root process.
Each set of 100 integers are stride integers apart, in the
send buffer.
Assume stride ≥ 100

CS3211 2009-10 by Abhik Roychoudhury23

100 100 100

stride
sendbuf

At Root process

Other processes

The solution
MPI_Comm comm;
int gsize, *sendbuf,root,stride, rbuf[100], i, *displs, *scounts;
…
MPI_Comm_size(comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof(int));

…
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *) malloc(gsize*sizeof(int));
for(i = 0; i < gsize; i++){

displs[i] = i*stride; scounts[i] = 100;
}

MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
root, comm);

CS3211 2009-10 by Abhik Roychoudhury24

5

Gather to All
MPI_Allgather(sendbuf, sendcount, sendtype,

recvbuf, recvcount, recvtype,
comm)

There is no root processThere is no root process.
All-to-all communication.
All processes receive the gathered result, rather than only
the root process.
As if all the N processes executed N calls to MPI_Gather
with root = 0,1,…, N-1.

CS3211 2009-10 by Abhik Roychoudhury25

Gather to All – Vector variant
MPI_Allgatherv(sendbuf, sendcount, sendtype,

recvbuf, recvcounts, displs, recvtype,
comm)

There is no root processThere is no root process.
All processes receive the gathered result, rather than only
the root process.
As if all the N processes executed N calls to
MPI_Gatherv with root = 0,1,…, N-1.

CS3211 2009-10 by Abhik Roychoudhury26

Recall: Collective comm. in MPI
Barrier communication across a set of processes.
Global communication functions

Broadcast to a set of processes.
Gather data from all members for a member.
Scatter data to all members.

Global reduction operations
Possible reduction functions include sum, max, min etc
Accumulating return values from a set of processes, and
employ a reduction function to obtain a result.
Result may be returned to all members, or only to a selected
process.

CS3211 2009-10 by Abhik Roychoudhury27

MPI_reduce

A0 B0 C0

A1 B1 C1

A0+A1+
A2

B0 + B1
+ B2

C0 + C1
+ C2

data

P
R
O
C
E
S

CS3211 2009-10 by Abhik Roychoudhury28

A2 B2 C2

S
S
E
S

MPI_Reduce using MPI_SUM as the reduction operation.

MPI_Reduce
MPI_Reduce(sendbuf, recvbuf, count, datatype,

op, root, comm)
Addr of send, recv buffer
count is Number of elements in send buffer
Datatype of elements in send buffer
Reduction operation to be performed.
The root process who receives the reduced result
The communicator.

CS3211 2009-10 by Abhik Roychoudhury29

So, what does MPI_Reduce do?
Combine the elements in the sendbuf of each process

Use operation op to combine them.

Place the combined value in recvbuf
Recvbuf accessed by root process.

Predefined reduction operationsp
MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD
MPI_LAND, MPI_LOR, MPI_LXOR

Logical operations

MPI_BAND, MPI_BOR, MPI_BXOR
Bitwise operations

MPI_MAXLOC, MPI_MINLOC
Max value and location, Min value and location.

CS3211 2009-10 by Abhik Roychoudhury30

6

More on MPI_Reduce
Predefined reduction operations

MPI_MAXLOC, MPI_MINLOC
Max value and location, Min value and location.

Requires new types at the receiver’s end
Say the values are integers

Receiver’s type will be MPI 2INTReceiver s type will be MPI_2INT

Or, say the values are floating point numbers
Receiver’s type will be MPI_FLOAT_INT

CS3211 2009-10 by Abhik Roychoudhury31

Using MPI_Reduce
The dot product is an algebraic operation that takes
two equal-length sequences of numbers and returns a
single number obtained by multiplying corresponding
entries and adding up those products. The name is
derived from the dot that is often used to designate this
operation; the alternative name is scalar productoperation; the alternative name is scalar product.
Compute the dot product of two vectors that are
distributed across a group of processes, and return
the answer at process zero.

CS3211 2009-10 by Abhik Roychoudhury32

Code template
/* perform local sum first */
sum = 0;
for (i=0; i < m; i ++){ sum = sum + a[i] * b[i]; }

/* Use MPI Reduce to perform global sum *// Use MPI_Reduce to perform global sum /
MPI_Reduce(sum, c, 1, MPI_INT, MPI_SUM, 0, comm);

CS3211 2009-10 by Abhik Roychoudhury33

A note about the above code template:
The final result appears in variable c of process 0.

MPI_Allreduce
MPI_Allreduce(sendbuf, recvbuf, count, datatype,

op, comm)
Same as MPI_Reduce, except

The result appears in receive buffer of all processes.

data

CS3211 2009-10 by Abhik Roychoudhury34

A0 B0 C0

A1 B1 C1

A2 B2 C2

A0+A1+
A2

B0 + B1
+ B2

C0 + C1
+ C2

A0+A1+
A2

B0+B1+
B2

C0 + C1
+ C2

A0 + A1
+ A2

B0 + B1
+ B2

C0 + C1
+ C2

P
R
O
C
E
S
S
E
S

Exercise
A routine that computes the product of a vector and an
array that are distributed across a group of processes and
returns the answer in all nodes.

CS3211 2009-10 by Abhik Roychoudhury35

X
=

Code template
for (j=0; j < N; j++){

tmp = 0;
for (i=0; I < M; i++){ tmp = tmp + a[i] * b[j][i]; }
sum[j] = tmp;

}}

MPI_Allreduce(sum, c, N, MPI_INT, MPI_SUM).

CS3211 2009-10 by Abhik Roychoudhury36

7

Reduce-Scatter

A0 B0 C0

A1 B1 C1

A0+A1+
A2

B0+B1+
B2

data

P
R
O
C
E

CS3211 2009-10 by Abhik Roychoudhury37

A2 B2 C2

B2

C0 + C1
+ C2

S
S
E
S

Reduce-Scatter
MPI_Reduce_Scatter(sendbuf, recvbuf, recvcounts,

datatype, op, comm)
recvcounts is an array of integers.

CS3211 2009-10 by Abhik Roychoudhury38

X
=

Use MPI_Reduce_Scatter to compute the product of a vector with an
array. All of the vectors and arrays are distributed across processes, as
shown (the local slices are shown).

Scan

A0 B0 C0

A1 B1 C1

A0 B0 C0

A0 + A1 B0 + B1 C0 + C1

data

P
R
O
C
E

CS3211 2009-10 by Abhik Roychoudhury39

A2 B2 C2 A0 + A1
+ A2

B0 + B1
+ B2

C0 + C1
+ C2

S
S
E
S

MPI_Scan
MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm)

Count is the number of elements in input buffer.

Returns in the receive buffer of the process with rank i,
the reduction of the values in the send buffers of
processes with ranks 0,1, …,i

CS3211 2009-10 by Abhik Roychoudhury40

So far
MPI_Bcast
MPI_Gather

MPI_Gatherv

MPI_Scatter
MPI_Scatterv

MPI_Reduce
A very general operation with variants

MPI_Allreduce
MPI_Reduce_Scatter

MPI_Scan

CS3211 2009-10 by Abhik Roychoudhury41

Possible errors in programming
switch(rank){

case 0:
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Bcast(buf2, count, type, 1, comm);
break;

case 1:case 1:
MPI_Bcast(buf2 count, type, 1, comm);
MPI_Bcast(buf1, count, type, 0, comm);
Break;

}

CS3211 2009-10 by Abhik Roychoudhury42

8

Explanation
Group of comm. here is {0,1}
Two processes execute broadcasts in reverse order.
MPI matches the first calls

Error, since root processes do not match.

Collective operations must be executed in the same p
order at all members of the communication group.

What if broadcast is a synchronizing operation?

CS3211 2009-10 by Abhik Roychoudhury43

Possible errors in programming
switch(rank) {

case 0:
MPI_Bcast(buf1, count, type, 0, comm0);
MPI_Bcast(buf2, count, type, 2, comm2); break;

case 1:
MPI_Bcast(buf1, count, type, 1, comm1);
MPI Bcast(buf2 count type 0 comm0); break;MPI_Bcast(buf2, count, type, 0, comm0); break;

case 2:
MPI_Bcast(buf1, count, type, 2, comm2);
MPI_Bcast(buf2, count, type, 1, comm1); break;

}

Assume comm0={0,1}, comm1={1,2}, comm2 = {2,0}
Collective operations must be executed in an order so that no
cyclic dependencies exist – avoid deadlocks!

CS3211 2009-10 by Abhik Roychoudhury44

Possible errors in programming
switch(rank){

case 0:
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm); break;

case 1:
MPI Recv(buf2 count type 0 tag comm &status);MPI_Recv(buf2, count, type, 0, tag, comm, &status);
MPI_Bcast(buf1, count, type, 0, comm); break;

}

What is the error in this one?

CS3211 2009-10 by Abhik Roychoudhury45

Possible ambiguity in programming
switch(rank){

case 0:
MPI_Bcast(buf1, count, type, 0, comm);
MPI_Send(buf2,count,type,1,tag,comm);
break;

case 1:
MPI Recv(buf2 count type MPI ANY SOURCE tag comm &status);MPI_Recv(buf2,count,type,MPI_ANY_SOURCE,tag,comm,&status);
MPI_Bcast(buf1,count, type, 0, comm);
MPI_Recv(buf2, count,type, MPI_ANY_SOURCE,tag,comm,&status);
break;

case 2:
MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(buf1, count, type, 0, comm);
break;

}

CS3211 2009-10 by Abhik Roychoudhury46

Possible Executions

Broadcast broadcast broadcast

Recv from any

Recv from any

Send to 1

Send to 1

Process 0 Process 1 Process 2

CS3211 2009-10 by Abhik Roychoudhury47

Broadcast
Recv from any

Recv from any Send to 1

Send to 1

Process 0 Process 1 Process 2

Broadcast

Broadcast

Broadcast
may not be
synchronizing.

To disallow this
execution,
sources of
receives should
be stated clearly.

