
 CS 3211

1

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING

EXAMINATION FOR

Semester 2 AY2012/2013

CS3211 – PARALLEL AND CONCURRENT PROGRAMMING

March 2013 Time Allowed: 1 Hour

INSTRUCTIONS TO CANDIDATES

1. This examination contains four (4) questions and comprises SEVEN (7) printed pages, including this page.

2. Answer ALL questions within the space in this booklet

3. This is an Open Book examination.

4. Please write your Matriculation Number below.

MATRICULATION NO: ___________________________________

This portion is for examiner’s use only

Question Marks Remarks

1 / 6

2 / 4

3 / 5

4 / 5

Total / 20

 CS 3211

2

Question 1 [6 marks]

Consider the following multi-threaded program where x is an integer variable initialized to
zero. You may assume that any assignment statement is executed atomically. Any condition evaluation
is also executed atomically. The printf statement is also executed atomically.

Thread 1 | Thread 2
--
 |
while (x < 2){ | x = x + 1;
 printf("%d", x);} | x = x + 1;
 |
Which of the following output sequences may be printed? For each, if it may be printed by the program,
construct an interleaving that can print it. Also, if any sequence cannot be printed – give a reason why it cannot be
printed.
(i) 012 (ii) 021 (iii) 12

Answer:

(i) This is possible, as shown by the following interleaving

 while (x < 2)
print x // print 0
 x = x + 1 // x== 1

 while (x <2)
 print x // print 1
 while (x < 2)
 x = x + 1 // x == 2
 print x // print 2

(ii) Not possible since the value of x is monotonically increasing with any execution of this program. Thus, prints
in the left hand thread of the program should be printing higher values in later iterations of the loop (as
compared to the earlier iterations).

(iii) This is possible, as shown by the following interleaving.

 x = x + 1 // x == 1
while (x < 2)
 print x // print 1
while (x < 2)
 x = x + 1 // x == 2
 print x // print 2

 CS 3211

3

Question 2 [4 marks]

Consider the following encoding in Promela for the critical section problem. Processes are trying to access critical
section, and we should ensure mutual exclusion of access, no deadlock, and eventual entry to critical section for
each process. Comment on the following solution. You may assume that a false statement always blocks.

byte turn = 1;
active proctype P(){ active proctype Q(){
 do do
 :: if :: turn == 2;
 :: true // critical section
 :: true -> false turn = 1;
 fi od
 turn == 1; }
 // critical section
 turn = 2;
 od
}

Answer:

The only challenge comes from the following structure

if
 :: true
 :: true -> false
fi

Otherwise – it is simply a round-robin scheme which satisfies all the three properties.

Due to this if structure – the process P may block.
This will prevent process Q’s attempt to enter critical section, since it waits forever for turn == 2 to be true.

 CS 3211

4

Question 3 [5 marks]

Consider an atomic operation flip, such that

int flip (int lock){ lock =(lock +1)%3; return lock}

This is a variation of an example we discussed in class, where we had lock =(lock +1)%2. Suppose 2 processes

are executing the following code, with lock initialized to 0. Will the solution work – i.e. it ensures mutual exclusion
and no starvation? Give detailed comments.

/* Lock acquisition */

while (flip(lock) != 1)

 while (lock!= 0) {};

CRITICAL SECTION /* Does not alter the value of lock */

/* Lock release */

lock = 0;

Answer:

For the class example, mutual exclusion was violated with lock =(lock +1)%2

Mutual exclusion is now preserved with lock =(lock +1)%3. Initially lock is 0, and any arbitrary process, say

process 1, executes flip(lock) which returns 1, gaining entry to critical section. Since subsequent flip(lock) executions
return 2, process 2 enters the inner loop where it is stuck until process 1 exits from the critical section and sets lock
to 0.

No starvation is not guaranteed as shown by the following execution

Process 1 Process 2

flip(lock) returns 1 // exit outer loop
CRITICAL SECTION
 flip(lock) returns 2 // enter outer loop
 lock == 2 // enter inner loop and stuck

lock = 0
 lock == 0 // exit inner loop

flip(lock) returns 1 // exit outer loop
 CRITICAL SECTION
 flip(lock) returns 2// enter outer loop

< The pattern above may repeat forever>

 CS 3211

5

EMPTY PAGE

 CS 3211

6

Question 4 [5 marks]
The readers-writers problem for concurrently accessing a shared database was discussed in class. In this problem,
several reader and writer threads try to access a shared database. At any time only one writer or several readers (but
not both) should be allowed to access the database.

A. Following is a Java solution of the problem using monitors. Comment on the solution in terms of progress of
readers/writers in eventually accessing the database. Give detailed comments.

B. Comment in general about the ability of monitors in Java in ensuring that a thread trying to enter a monitor
will eventually (and quickly) enter the monitor.

class RWmonitor{

 private int readers = 0; private boolean writing = false;

 public synchronized void StartRead(){ public synchronized void EndRead(){

 while (writing){ notifyAll();

 try{ wait(); readers--;

 } catch(InterruptedException e){} }

 }

 readers++; notifyAll();

 }

 public synchronized void StartWrite(){ public synchronized void EndWrite(){

 while (writing || (readers != 0)){ notifyAll();

 try{ wait(); writing = false;

 } catch(InterruptedException e){} }

 }

 writing = true;

 }

}

Answer

A. A writer will wait whenever readers > 0. Hence readers can starve out a writer if more and more readers
continue to acquire access to the database by executing StartRead. Even if there are fixed number of
readers, and they are forced to exit reading after bounded time --- we can have reader i+1 acquire access to
the database immediately after reader i relinquishes access. This can go on forever, starving the writer.

 The readers also wait whenever writing == true. Thus, if there are several hungry writers, they will also
 continue to access the database, starving out the readers.

 CS 3211

7

B. In Java, the process executing notify (the signaling process) has to release the lock. Even after executing

notify/notifyAll --- it continues to hold the lock until it returns from a synchronized method or encounters a wait
itself. The notified process (which was waiting) therefore has to re-check the condition on which it was waiting,
and the condition may no longer be true. This allows for starvation in monitor entry.

To avoid such starvation – one could allow for the signaling process to immediately pass control to the chosen
waiting process. However, this is not done in Java implementations.

 In addition, notifyAll notifies all waiting processes – processes waiting on the object, and only one
 of them is chosen. So, a process may keep on getting ignored.

END OF PAPER

