CS3211 Parallel and Concurrent Programming — Guidelines for tutorial (12-16 April 2010)

Sample Exercises:

[Please conduct these as an interactive discussion, rather than an evaluation. Please also
make it clear to the students that they are not being evaluated for their performance in
these exercises, so that they are not afraid to make mistakes while answering.]

MPI usage instructions See the file tembusu-MPI-access.pdf in Workbin\Assignments

1. MPI Example Warmup— Management of groups. What will be printed by the following program
(and why)?

Assume MPI_Group_incl creates a new group (which is then used within a communicator).

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#define NPROCS 8

int main (int argc, char *argv[]l)

{

int rank, new_rank, sendbuf, recvbuf, numtasks,
ranks1[4]={0,1,2,3}, ranks2[4]={4,5,6,7};

MP1_Group orig_group, new_group;

MP1_Comm new_comm;

MPI1_Init(&argc,&argv);
MP1_Comm_rank(MP1_COMM_WORLD, &rank);
MP1_Comm_size(MP1_COMM_WORLD, &numtasks);

if (numtasks = NPROCS) {
printF("'Must specify %d tasks. Terminating.\n",NPROCS);
MP1_Finalize();
exit(0);

sendbuf = rank;

/* Extract the original group handle */
MPI1_Comm_group(MPI1_COMM_WORLD, &orig_group);

/* Divide tasks into two distinct groups based upon rank */
if (rank < NPROCS/2) {
MP1_Group_incl(orig_group, NPROCS/2, ranksl, &new_group);

else {
MP1_Group_incl(orig_group, NPROCS/2, ranks2, &new_group);

}

/* Create new new communicator and then perform collective communications */
MP1_Comm_create(MP1_COMM_WORLD, new_group, &new_comm);
MP1_Allreduce(&sendbuf, &recvbuf, 1, MPI_INT, MPI_SUM, new_comm);

MP1_Group_rank (new_group, &new_rank);
printfF("'rank= %d newrank= %d recvbuf= %d\n",rank,new_rank,recvbuf);

MP1_Finalize();
}

Answer: Try to run it in tembusu with 8 processes. The program will split the processes into different
communicators and assign new ranks to the processes.

2. What will happen when we run the following program?

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main (int argc, char *argv[])

{

int numtasks, taskid, len, buffer, root, count;
char hostname[MPI_MAX_ PROCESSOR_NAME];

MPI_Init(&argc, &argv);
MPI_Comm_size(MP1_COMM_WORLD, &numtasks);
MP1_Comm_rank(MP1_COMM_WORLD, &taskid);
MP1_Get_processor_name(hostname, &len);

printf (“"Task %d on %s starting...\n", taskid, hostname);
buffer = 23;
root = O;
count = taskid;
if (taskid == root)
printf("’'Root: Number of MPI tasks is: %d\n',numtasks);

MP1_Bcast(&buffer, count, MPI_INT, root, MPI_COMM_WORLD);

MP1_Finalize(Q);

}

Answer: Try it in tembusu. The program will "hang”. The count being used as argument in the broadcast
library is wrong. Change the count to 1, and the problem should disappear.

3. Following is a simple example of the Scatter library in MPI, one of our collective communication
primitives. Will the program progress to completion? What will be printed against each process?

#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>
#define SIZE 4

int main (int argc, char *argv[])
{
int numtasks, rank, sendcount, recvcount, source;
float sendbuf[SIZE]J[SIZE] = {
{1.0, 2.0, 3.0, 4.0},
{5.0, 6.0, 7.0, 8.0},
{9.0, 10.0, 11.0, 12.0},
{13.0, 14.0, 15.0, 16.0} };
float recvbuf[SI1ZE];

MPI1_Init(&argc,&argv);
MP1_Comm_rank(MP1_COMM_WORLD, &rank);
MPI_Comm_size(MP1_COMM_WORLD, &numtasks);

if (numtasks == SIZE) {
source = 1;
sendcount = SIZE;
recvcount = SIZE;
MP1_Scatter(sendbuf,sendcount,MPl_FLOAT,recvbuf, recvcount,
MP1_FLOAT,source,MPI_COMM_WORLD) ;

printf('rank= %d Results: %f %f %f %f\n",rank,recvbuf[0],
recvbuf[1], recvbuf[2], recvbuf[3]);
}

else
printf('Must specify %d processors. Terminating.-\n",SI1ZE);

MPI_Finalize();
}

Answer: Try it will 4 processors and 4 processes in tembusu.
The program will terminate. Print out is as follows. The per-process output may appear out-of-sequence.

rank= 0 Results: 1.000000 2.000000 3.000000 4.000000
rank= 1 Results: 5.000000 6.000000 7.000000 8.000000
rank= 2 Results: 9.000000 10.000000 11.000000 12.000000
rank= 3 Results: 13.000000 14.000000 15.000000 16.000000

4. This exercise implements a simple parallel data structure. This structure is a two dimension regular
mesh of points, divided into slabs, with each slab allocated to a different processor. In the simplest C
form, the full data structure is

double x[maxn][maxn];
and we want to arrange it so that each processor has a local piece:
double xlocal[maxn][maxn/size];

where size is the size of the communicator (e.g., the number of processors).

If that was all that there was to it, there wouldn't be anything to do. However, for the computation
that we're going to perform on this data structure, we'll need the adjacent values. That is, to compute
anew x[i1[j], we will need

x[i]0i+1]

x[i]0-1]

x[i+1]1[J1]

x[i-1101

The last two of these could be a problem if they are not in xlocal but are instead on the adjacent
processors. To handle this difficulty, we define ghost points that we will contain the values of these
adjacent points.

Write code to copy divide the array x into equal-sized strips and to copy the adjacent edges to the
neighboring processors. Assume that x is maxn by maxn, and that maxn is evenly divided by the
number of processors. For simplicity, You may assume a fixed size array and a fixed (or minimum)
number of processors.

To test the routine, have each processor fill its section with the rank of the process, and the
ghostpoints with -1. After the exchange takes place, test to make sure that the ghostpoints have the
proper value. Assume that the domain is not periodic; that is, the top process (rank = size - 1) only
sends and receives data from the one under it (rank = size - 2) and the bottom process (rank = 0)
only sends and receives data from the one above it (rank = 1). Consider a maxn of 12 and use 4
processors to start with.

X, showing decomposition

by color Xocal for Blue processor
oS00 000 OS®
XEXXXXXX (@ ® ® ® ® ® ® ® Ghost points
S0 0000O0® (N N N NN NN
LA N B N N B N LA N B N N B N
|:]Ghustpuints
o000 00 0O
LA N B N N B N

Here

5.

is the code template.

MPI_Init(&argc, &argv);

MP1_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size '= 4) MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */

/* Fill the data as specified */
for (i=1; i<=maxn/size; i++)
for (J=0; j<maxn; j++)
xlocal[i]1[]J] = rank;
for (J=0; j<maxn; j++) {
xlocal[O][J] = -1;
xlocal[maxn/size+1][j] = -1;

/* Send up unless I"m at the top, then receive from below */
/* Note the use of xlocal[i] for &xlocal[i][0] */
if (rank < size - 1)
MP1_Send(xlocal[maxn/size], maxn, MP1_DOUBLE, rank + 1, O,
MPI1_COMM_WORLD);
if (rank > 0)
MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,
&status);
/* Send down unless I"m at the bottom */
if (rank > 0)
MP1_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1, MPI_COMM_WORLD);
if (rank < size - 1)
MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE, rank + 1, 1,
MP1_COMM_WORLD, &status);

/* Check that we have the correct results */
errcnt = 0O;
for (i=1; i<=maxn/size; i++)

for (J=0; j<maxn; j++)

if (xlocal[i][J] '= rank) errcnt++;

for (J=0; j<maxn; j++) {

if (xlocal[O][J] !'= rank - 1) errcnt++;

iT (rank < size-1 && xlocal[maxn/size+1][j] !

rank + 1) errcnt++;
}
MP1_Reduce(&errcnt, &toterr, 1, MPI_INT, MPI_SUM, O, MPI_COMM_WORLD);
if (rank == 0) {
if (toterr)
printf(! found %d errors\n', toterr);
else
printf("No errors\n");

As the last exercise, we take up an embarrassingly parallel activity. Write a MPI program to
generate all prime numbers below a certain threshold (say all prime numbers lesser than 2500000)
All processes should distribute the work equally. Each process can take up every nth number where
n == (rank*2) + 1. Even numbers should always be ignored. Comment on whether using strides is
better than dividing the work among processes via contiguous blocks of numbers.

Answer:

The method of using stride is preferred over contiguous blocks of numbers, since numbers in the higher
range require more work to compute and may result in load imbalance. This program demonstrates
embarrassing parallelism. Collective communications calls are used to reduce the only two data elements
requiring communications: the number of primes found and the largest prime.

#include "mpi_h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define LIMIT 2500000 /* Increase this to find more primes */
#define FIRST 0 /* Rank of first task */

int isprime(int n) {
int i,squareroot;
if (n>10) {

squareroot = (int) sqrt(n);

for (i=3; i<=squareroot; i=i+2)

if ((n%i1)==0)
return O;
return 1;

/* Assume first four primes are counted elsewhere. Forget everything else */
else

return O;
}
int main (int argc, char *argv[])
{
int ntasks, /* total number of tasks in partitiion */
rank, /* task identifier */
n, /* loop variable */
pc, /* prime counter */
pcsum, /* number of primes found by all tasks */
foundone, /* most recent prime found */
maxprime, /* largest prime found */
mystart, /* where to start calculating */
stride; /* calculate every nth number */

double start_time,end_time;

MPI1_Init(&argc,&argv);

MP1_Comm_rank(MP1_COMM_WORLD, &rank) ;

MPI_Comm_size(MP1_COMM_WORLD, &ntasks);

if (((ntasks%2) '=0) || ((LIMIT®hntasks) !=0)) {
printF("'Sorry - this exercise requires an even number of tasks.\n");
printfF('evenly divisible into %d. Try 4 or 8.\n",LIMIT);
MP1_Finalize();

exit(0);

}
start_time = MPI_Wtime(); /* Initialize start time */
mystart = (rank*2)+1; /* Find my starting point - must be odd number */
stride = ntasks*2; /* Determine stride, skipping even numbers */
pc=0; /* Initialize prime counter */
foundone = 0; /* Initialize */

if (rank == FIRST) {
printF("'Using %d tasks to scan %d numbers\n',ntasks,LIMIT);
pc = 4; /* Assume first four primes are counted here */
for (n=mystart; n<=LIMIT; n=n+stride) {
it (isprime(n)) {
pc++;
foundone = n;
/***** Qptional: print each prime as it is found
printf('%d\n"", foundone) ;

*****/

}

}
MP1_Reduce(&pc,&pcsum,1,MP1_INT,MP1_SUM,FIRST,MP1_COMM_WORLD);
MP1_Reduce(&Ffoundone,&maxprime,1,MPI_INT,MPI_MAX,FIRST,MP1_COMM_WORLD);
end_time=MP1_Wtime();
printf("’'Done. Largest prime is %d Total primes %d\n",maxprime,pcsum);
printf(*'Wallclock time elapsed: %.21TF seconds\n",end_time-start_time);

}

if (rank > FIRST) {
for (n=mystart; n<=LIMIT; n=n+stride) {
if (isprime(n)) {
pc++;
foundone = n;
/***** Qptional: print each prime as it is found
printf('%d\n"", foundone) ;

*****/

}

}
MP1_Reduce(&pc,&pcsum,1,MP1_INT,MP1_SUM,FIRST,MP1_COMM_WORLD);
MP1_Reduce(&Foundone, &maxprime,1,MPI_INT,MPI_MAX,FIRST,MPI1_COMM_WORLD);

}

MPI_Finalize();
}

