Telelogic
Rhapsody

C Tutorial

Rhapsody®

C Tutorial

Before using the information in this manual, be sure to read the “Notices’ section of the Help or
the PDF available from Help > List of Books.

This edition applies to Telelogic Rhapsody 7.4 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Getting Started 1
Rhapsody in C Tutorial OVerVIEW e e 1
C Tutorial ObJeCtiVES. . . 1
Documentation CONVENTIONSot e 2
About the Rhapsody Product. 2
UML DIagrams . . .ottt et et e e e e e e e 3
Diagrams in the FunctionalC Profile. 4
Starting the Rhapsody Product 5
Closing the Rhapsody Product. e e e e e e 5
Setting Up forthe C Tutorial. e e e e 6
Creating the Stopwatch Project e 6
Creating @ ProjecCt.o 6
Managing ProjeCtS. 9
SaAVING @ PrOJ e oo e 9
OPpeNINg @ ProjeCt. . . .o o 11
Saving Packages Separately 12
Creating BaCKUPS . .« .o v it e 14
Naming Conventions and Guidelines i e e 16
Standard PrefiXes. 16
Guidelines for Naming Model Elements. 16
Rhapsody User Interface 17
TO0I0ArS . . . 18
BrOW ST . . 19
Drawing Toolbars e 21
DrAWING AN .« . o vttt e 21
OUPUE WINAOW. . . . o oo e e e e 21
Features DIialog BOX.ttt e 22
SUMIMAIY . ottt e e 26
Lesson 1: Creating File Diagrams 27

Rhapsody

Table of Contents

Goals for this LeSSONo e 27
Exercise 1: Creating the File Diagram e 28
Task 1a: Creating the File Diagram e 29
Task 1b: Drawing Files.o e e 31
Task 1c: Adding Functions for Timer e 33
Task 1d: Adding Variables for Timer e 34
Task 1e: Adding a DEPENAENCYottt e e 35
Task 1f: Adding a Function and Arguments forDisplay 37
Task 1g: Adding an Include File for Displayo 41
Task 1h: Addinga Diagram Title e e 42
SUMIMIAIY . .ttt e e e e e 42
Lesson 2: Creating Flow Charts i, 43
Goals for this LeSSONo e 43
Exercise 1: Creating a Flow Chart for the Tick Function. 44
Task 1a: Creating the Flow Chart. e e e 45
Task 1b: Drawing Action Elements 46
Task 1c: Drawing a Default FIOw e a7
Task 1d: Drawing a Termination State. i e e e 47
Task 1le: Drawing Condition CONNECIOr i e e 48
Task 1f: Drawing Activity FIOWSo 49
Task 1g: Addinga Diagram Titlet e e e 50
SUMMIAIY .« oottt e e e 51
Lesson 3: Creating Statecharts i 53
Goals for this LeSSONo e e 53
Exercise 1: Creating a Statechart forthe Timer 54
Task l1a: Creating the Statechart e 55
Task 1b: Adding Transitions Between States. i 57
Task 1c: Using the Rhapsody Timer e 59
Exercise 2: Animating a Statechart 62
Task 2a: Defining a Test Component and Configuration., 63
Task 2b: Creating a Debug Configuration 65
Task 2c¢: Starting Animation 67
Task 2d: Creating the TiImer INStance i e i e 69
Task 2e: Generating Events to Run the Animation 73
Task 2f: Quitting ANIMation 78
SUMIMIAIY . . e e e e e e 78

iv C Tutorial

Table of Contents

Lesson 4: Creating Message Diagrams 79
Goals for this LesSSONo e 79
Exercise 1: Creating a Message Diagram e 80
Task 1a: Creating a Message Diagramttt e e e e 81
Task 1b: Adding Instances to the Message Diagram. 83
Task 1c: Drawing Messages to Define the Stopwatch Communication. 84
Task 1d: Addinga Diagram Title e e e 86
SUMIMIAIY . .ttt e e e e e e e e 86
Lesson 5: Generating Codeand More i, 87
Goals for this LeSSON oo e 87
Exercise 1: Managing Multiple Configurations. i 88
Exercise 2: Generating Code e 89
Exercise 3: Viewing and Editing the Generated Code 89
Task 3a: Viewing the Generated Code i e 90
Task 3b: Adding Line NUMbers 92
Task 3c: Using the Browser to Locate Code e 93
Task 3d: Adding Code for the timerReset Function. 94
Task 3e: ROUNANIPPING . . . oottt e e e 95
SUMIMIAIY ottt et e e e e e 96
Lesson 6: Animating and Comparing Message Diagrams 97
Goals for this LeSSON o 97
Exercise 1: Animating Message Diagramsottt 98
Task la: Running the Executable 98
Task 1b: Generating an Event 100
Task 1c¢: Pausing Animation.t e e e 102
Task 1d: Stopping AnIMation 102
Task le: Saving the Animated Diagram.t 103
Task 1f: Comparing the Message Diagramsttt 104
Task 1g: Examining the Comparison Results 106
SUMIM Y .ottt e e e e e e 106
N X . o 107

Rhapsody %

Table of Contents

Vi

C Tutorial

Getting Started

Welcome to the C tutorial for Telelogic Rhapsody®!

Rhapsody is the Model-Driven Devel opment environment of choice for systems engineers and
software devel opers of either embedded or real-time systems.

Rhapsody in C generates full production C code for avariety of target platforms based on UML 2.0
behavioral and structural diagrams. The Rhapsody product also provides for the reverse
engineering of C code for reuse of your intellectua property within a Model-Driven environment.

Note

Before you can work through any of the lessonsin this tutorial, you must create the
Stopwatch project, which is detailed in Setting Up for the C Tutorial. After which, you should
work through the tutorial in the order of the lessons.

Rhapsody in C Tutorial Overview

Thistutorial teaches you the basics of using Rhapsody in C by building a stopwatch model. It
provides step-by-step instructions on using the main features of the Rhapsody product to analyze,
design, and build amodel of a stopwatch using afile-based modeling approach.

C Tutorial Objectives

When you have completed this tutorial, you will have performed the following standard tasks:

*

Created a Rhapsody project

Create afile diagram

Create aflow chart

Create a statechart

Create a message diagram

Generated, viewed, located, and edited code

Animated the model, including compared message diagrams

Rhapsody

Getting Started

Documentation Conventions

This document uses the following conventions:

¢ Boldface for names of GUI objects and controls, including selection choices; and
emphasis. Examples:

— From the Type drop-down list box, select the Functional C profile.

— Hold the Ctrl key and use the mouse to drag the Release configuration in to
Test.

— Click the Dependency button| ™ on the Drawing toolbar.

— If the Rhapsody browser does not display, select View > Browser.

— A project file, called <project_name>.rpy.

¢ Ccourier font in 10 point for pathnames, system messages, and itemsthat you have to
type. Examples:

— These C sample models are in the <Rhapsody
installation>\Samples\CSamples directory.

— The Output window displays the message animation session terminated.
— In the Project name box, replace the default project name with stopwatch.
— Type showfor the function name, and press Enter.

¢ Italicsfor the first mention of a concept with an explanation.

About the Rhapsody Product

Rhapsody in C offers alarge feature set for devel opers to employ key enabling technologiesin a
natural, easy-to-use tool environment. Rhapsody makes a seamless and efficient environment for
systems, software, and testability. It enables you to perform these tasks:

+ Analyze, during which you can define, analyze, and validate the system requirements.

* Design, during which you can specify and design the architecture.

+ Implement, during which you can automatically generate code, and then build and run it
within the Rhapsody product.

¢ Model Execution, during which you can animate the model on the local host or aremote
target to perform design-level debugging within animated views.

2 C Tutorial

About the Rhapsody Product

UML Diagrams

The following are the UML diagrams in the Rhapsody product:

*

Use Case Diagrams show the main functions of the system (use cases) and the entities
(actors) outside the system.

Sructure Diagrams show the system structure and identify the organizational pieces of
the system.

Object Model Diagrams show the structure of the system in terms of classes, objects,
files, and the relationships between these structural elements.

Seguence Diagrams show sequences of steps and messages passed between structural
elements when executing a particular instance of a use case.

Activity Diagrams specify aflow for classifiers (classes, files, blocks, actors, use cases),
objects, and operation/function.

Satecharts show the behavior of a particular classifier (class, file, actor, use case) or
object over itsentirelife cycle.

Collaboration Diagrams provide the same information as sequence diagrams,
emphasizing structure rather than time.

Component Diagrams describe the organization of the software units and the
dependencies among units.

Deployment Diagrams show the nodes in the final system architecture and the
connections between them.

In addition, Flow Charts are available in the Rhapsody product. You can use aflow chart to
describe afunction or class operation and for code generation.

Rhapsody

Getting Started

Diagrams in the FunctionalC Profile

The Functional C profile tailors Rhapsody in C for the C coder, allowing the user to functionally
model an application using familiar constructs such asfiles, functions, call graphs, and flow charts.
A Rhapsody profile “hosts” domain-specific tags and stereotypes.

The Functional C profile tailors the diagram view for the C developer by providing the following
diagrams:
¢ Build Diagrams to show how the software is to be built.

¢ Call Graph Diagramsto show the relationship of function calls aswell asthe
relationship of data.

+ File Diagramsto show how filesinteract with one another (typically how the #inciude
structure is created).

¢ Flow Chartsto show afunction or class operation and for code generation.

¢+ Message Diagramsto show how the files functionality may interact through messaging
(synchronous function calls or asynchronous communication).

In addition, you can a so create activity diagrams, statecharts, and use case diagrams (as described
in UML Diagrams) when you use the Functional C profile.

Note that not all diagrams are used in thistutorial. For more information about the diagram types,
refer to the Rhapsody User Guide.

4 C Tutorial

About the Rhapsody Product

Starting the Rhapsody Product
Windows

To start the Rhapsody product in Windows: Select Sart > All Programs > Telelogic > Telelogic
Rhapsody version number > Rhapsody Development Edition > Rhapsody in C.

Linux
To start the Rhapsody product in Linux, follow these steps:

1. Fromthe Terminal, browse to the Rhapsody home directory.

2. Execute the RhapsodyInc script. For example:

[RhapsodyUser@MyHostMachinel # cd /home/Rhapsody
[RhapsodyUser@MyHostMachine Rhapsodyl# ./RhapsodyInC

In this example, “ RhapsodyUser” is the username, “mMyHostMachine” iSthe host machine
and “/home/Rhapsody” is the installation directory.

Closing the Rhapsody Product

To exit the Rhapsody product, follow these steps:

1. Saveyour work.

2. Choose File > Exit or click the Close button .

Rhapsody 5

Getting Started

Setting Up for the C Tutorial

You must create and set up the Stopwatch project before you can work through this tutorial.

Note

Thistutorial assumes that you have installed the compiler necessary to generate code.

Creating the Stopwatch Project
This section describes how to:

¢ Createaproject
¢ Saveaproject
¢ Open the Stopwatch project

Creating a Project

A Rhapsody project includes the UML diagrams, packages, and code generation configurations
that define the model and the code generated from it. When you create a new project, Rhapsody
creates a directory containing the project files in the specified location. The name you choose for
your new project is used to name project files and directories, and it appears at the top level of the
project hierarchy in the Rhapsody browser. Rhapsody provides several default elementsin the new
project, including a default package, component, and configuration.

To create a new project, follow these steps:

1. Start the Rhapsody product if it isnot already running. See Starting the Rhapsody Product,
if necessary.

2. Click the New button Ql on the main toolbar or select File > New to open the New
Project dialog box.

3. Inthe Project name box, replace the default project name (project) with stopwatch.
4. Intheln folder box, enter anew directory name or browse to find an existing directory.

Note: To avoid potentially long pathnames, do not create the project on the desktop.

6 C Tutorial

Setting Up for the C Tutorial

5. From the Type drop-down list box, select the FunctionalC profile.
The Functional C profile tailors Rhapsody in C for the C coder, allowing the user to

functionally model an application using familiar constructs such asfiles, functions, call
graphs, and flow charts.

Note: For adescription of the available project profile types that you can select from
the Type drop-down list, refer to the Rhapsody User Guide. (Do a search of the
user guide PDF file for “specialized profile.”)

Your dialog box should resemble the following figure.

ﬁ) New Project [Z|

Froject name: |Stupwatu:h

In folder: |C:\Rhapsodhy/\Stapwatch Browse...

Tywpe:

The Functional C profile tailors Rhapsody in Cfar the C coder allowing to funclionally madel an
application using familiar constructs such as files, functions, call graphs and flow charts.

(0] | Cancel Help

Rhapsody

Getting Started

6. Click OK. The Rhapsody product verifiesthat the specified location exists. If it does not,
Rhapsody asks whether you want to create it. Click Yes. Rhapsody creates a new project
in the Stopwatch subdirectory, opens the project, and displays the Rhapsody browser in
the left pane. Open the foldersin the browser to see the starting point for the project, as
shown in the following figure.

4 #4 Gy £

x

DE' File Edit Wiew Code Layout Tools Window Help

& & &M @i 2 |#a 0

ul}

x
B B

Stopwatc
- Builds
+ DefaultBuild
=-Z1 File Diagrams
ni Modell
-1 pPackages
E5 Default
+-E59 PredefinedTypes (REF)
+-£9 PredefinedTypesC (REF)
=1 Profiles
=8 FunctionalC (REF)
+-(Z1 File Diagrams
+-(1 Packages
+-+5» Steraotypes

x‘h:& DBW 57

PNty

ﬂ | DefaultCaonfig

AR ENE!

B«

Jl

SR eO AR @ Arial U I_

| o

UWeIcame...‘ p? Modell* ‘

Note: If the Rhapsody browser does not display, select View > Browser.

C Tutorial

Managing Projects

Managing Projects

This section provides you with more information about the Rhapsody product. It covers how to
save and open a project, how to save packages separately (to help you with configuration
management and improve project organization), and how to create automatic backups. In addition,
it talks about naming conventions and provides you with details about the Rhapsody user interface.

Saving a Project

Use the Save command to save the project in its current location. The Save command saves only
the modified units, reducing the time required to save large projects. In Rhapsody, a unit is any
element of aproject that issaved in aseparatefile. You can partition your model into units down to
the class/file level. Creating units simplifies collaboration in team environments.

To save the project to a new location, use the Save As command.

The Rhapsody product performs an autosave every ten minutes to back up changes made between
saves. Modified units are saved in the autosave folder, along with any units that have atime stamp
older than the project file.

You may want to save your project more frequently. To save the project in the current location, use
one of the following methods:

* Click the Save button |E| on the main toolbar, or
¢ Sdect File> Save.

Note

You can set a property to create backups of your model every time you save your project.
This gives you the opportunity to revert to a previously saved version if you encounter a
problem. By default, Rhapsody does not create backups. For more information about
creating backups, see Creating Backups. You can also refer to the Rhapsody User Guide.

Rhapsody 9

Getting Started

About Project Files and Directories
The Rhapsody product creates the following files and subdirectories in the project directory:

*

*

A project file, called <project_name>.rpy

A repository directory, called <project_name>_rpy, which contains the unit files for the
project, including UML diagrams, packages, and code generation configurations

An event history file, called <project_name>.ehl, which contains arecord of events
injected during animation, and active and nonactive breakpoints

Log files, which record when projects were loaded and saved in the product
A .vbafile, called <project_name_>.vba, which contains macros or wizards
Backup project files and directories

An _RTC directory, which holds any tests created using the TestConductor™ add-on

Note

To be able to generate source code and to simulate the model, Rhapsody requires the
presence of the project file (<project_name>.rpy) and the repository directory
(<project names rpy).

10

C Tutorial

Managing Projects

Opening a Project
Once you have created a Rhapsody project, you can open and work on it at any time.
To open aproject, follow these steps:

1. Start Rhapsody if it is not already running.

2. Click the Open button = on the main toolbar or select File > Open to open the Open
dialog box.

3. Navigate to the location in which you saved the project.

4. Select the project file, which has an extension of . r py (for example, Sopwatch.rpy), or
type the name of the project file in the File name box, as shown in the following figure.

2l
Laoak ir: I_;' Stopwatch j - EF _
) Stopwatch_rpy @ it &1l Subunits
R T " without Suburits

" Restore Last Session

File: namme: |Stupwatch.rp_l,l Open

Filez of type: IFlhapsody Project(=] [* rpy:*.mpl] j Cancel |

5. Accept the default option, With All Subunits.

Refer to the Rhapsody Team Collaboration Guide for information about the other options.

6. Click Open. Rhapsody opens the selected project.

Rhapsody 11

Getting Started

Saving Packages Separately

To assist with configuration management and improve project organization, you may want to store

packages in separate subdirectories within a parent folder. Rhapsody has two directory schemes:
flat and hierarchical.

+ Inflat mode, all package files are stored in the project directory, regardless of their
location in the project hierarchy.

¢ Inhierarchical mode, apackageis stored in asubdirectory onelevel below its parent. Itis
possibleto have ahybrid project, where some packages are stored in flat mode, and others
are organized in a hierarchy of folders.

To change the directory scheme so new packages are stored in separate directories by default,
follow these steps:

1. Right-click the project name in the Rhapsody browser (for example, Sopwatch) and
select Featur es to open the Features dialog box.

2. Onthe Propertiestab, click the drop-down arrow and select All. (The label appears as
View All after you make the selection.)

Note: The Propertiestab lists the properties associated with an element. The
Propertiestab of the Features dialog box includes a Help pane below thelist of
properties. This pane displays help text for the selected property. Help is
displayed for each of the levels: subject, metaclass, property (for example,
General, Model, DefaultDirectoryScheme). For an example of this pane, see
the figure shown in step 4.

3. Expand the General subject and then expand the M odel metaclass.

Note: Rhapsody descriptions use a notation method with double colonsto identify the
location of a specific property, for example,
Gener al : : Mbdel : : Def aul t Di rect or ySchene.

12 C Tutorial

Managing Projects

x|
Generall Descriptionl Helatiu:unsl Tage Propertiss I
Wiew Al -
| General =
El| Madel
ActiveCodeYiewSensitivity ElementSelection
ActualCalRegExp AN
Additionall anguagekevwords
AddMewManuStructure b
ApplyhewTermSemantic
AutoCascadedddhewMenu
Autosavelnteryal 10
AukoSvnchronize D
fyvailableMetaclasses
BackUps Mone
BlockIsSavednit D
CheckRoundtrip
ClassCodeEditar Inkernal
ClassIsSavedUnit

CommonTypes

CompareBuildMurnber InF.epository D

ComponentIsSayedUnit

PackageasDirectory

General:Model:DefaultDirectoryScheme

The DefaultDirectomnSchems property iz used by the hierarchical repositon functionality, Thiz
property iz available only at the project level, but activates or deactivates the Save in
Subdirectory check box an the Unit Information for Package dialog bos. The pozsible values are
az follows:

* Flat - All unitz are stored in the project _rpy directory (a8 in previous versions of Rhapzody].

* PackagedzDirectory - Mew packages [and their descendantz] are nested in a reparate
directory, no more than one level below the parent. The package subdirectony has the same
name az the package it containz.

[Detault = Flat)

Locate | Ok | Apply | ‘

5. Click OK.

L ocate the DefaultDirector yScheme property and use the drop-down menu to change the
default value of Flat to PackageAsDirectory, as shown in the following figure.

Rhapsody

13

Getting Started

Creating Backups

To set up automatic backups for your project, follow these steps:

1. Right-click the project name in the Rhapsody browser (for example, Siopwatch) and
select Features to open the Features dialog box.

2. Onthe Propertiestab, click the drop-down arrow and select All.
3. Expand the General subject, and then the M odel metaclass.

4. Locatethe BackUps property and use the drop-down menu to change the default value of
None to Two, as shown in the following figure. With the Two setting, Rhapsody creates
up to two backups of every project in the project directory.

=i
Generall Descriptinnl Helatiu:unsl Tags Froperties |
Wiew Al -
= General -
=l Model
AckiveCodeviewSensitivicy ElermnentSelection
ackualCalReqgExp AN
Additinnall anguagekeywaords
AddMewMeanusStructure
ApplyhewTermSennantic
AutoCascadesddhlewienu
Aubosavelnteryal 10
Autosynchronize D

AvailableMetaclasses
TR -
General:Model:BackUps

The BackUps property specifies the marimunm number of backups created when you zave.
The pozsible values are Mone, One, and Twa, [Default = Maone)

Lucaiel 0K | Apply ||

14 C Tutorial

Managing Projects

5. Click OK.

After this change, saving a project more than once creates <projectname>_bak?2.r py, which
contains the most recent backup and <projectname>_bak1.r py, which is the previous backup, as
shown in the following figure.

open 2l x|
Look in: | () Stopwatch | c¥ E-
|_7) Stopwatch_bakl_rpy @-Stnpwatch_bakz.rpv & wfith Al Subunits
.7 Stopwatch_bakz_rpy without Subunits
) Stopwatch_rpy " Restore Last Session
@Test

r.l_?',- Stopwatch.rpy
r.l_?-,-Stu:upwatch_bakl oy

File name: | Open I
Files of type: IHhapsud}l Project(s] [*.rpy;” mpl] j Cancel |

To restore an earlier version of a project, you can open either of these backup files.

Rhapsody 15

Getting Started

Naming Conventions and Guidelines

To assist all members of your team in understanding the purpose of individual itemsin the model,
it isagood idea to define naming conventions. These conventions help team members to read the
diagram quickly and remember the model element names easily.

Note

Remember that the names used in the Rhapsody models are going to be automatically
written into the generated code. Therefore, the names should be simple and clearly labdl all
of the elements.

Standard Prefixes

Lower and upper case prefixes are useful for model elements. The following isalist of common
prefixes with examples of each:

¢ Eventnames="“ev” (evStart)

+ Trigger operations = “op” (opPress)

+ Condition operations = “is" (isPressed)

+ Interface classes="“1" (IHardware)

Guidelines for Naming Model Elements
The names of the model elements should follow these guidelines:

¢ Class names begin with an upper case letter, such as “ System.”
* Operations and attributes begin with lower case letters, such as “restartSystem.”
* Upper case letters separate concatenated words, such as “ checkStatus.”

* The same name should not be used for different elementsin the model because it will
cause code generation problems. For example, no two elements, such asaclass, an
interface, and a package, should not have exactly the same name.

16 C Tutorial

Rhapsody User Interface

Rhapsody User Interface

Before proceeding with this tutorial, you should become familiar with the main features of the
Rhapsody graphical user interface (GUI. The Rhapsody GUI is made up of three key window
panes (browser, drawing area, and output window) and many toolbars at the top of the interface
and for each of the diagram types (drawing toolbars). The following figure shows a view of the
Rhapsody GUI.

g File Edit View Code Layout Tools Window Help ivVienu bar I o E e

DEH @ &% 45 = M5O @ QHomE Ew v
O~
! e |Dish‘.“a‘asherGui /O'v\.)/- leuiId & un GUI application vl {3} E B

PP 00 SO e OA ' @Batang

.. . e
Drawing Area o
Entire Model View - ﬁ g
=l f1 Dishwasher = Tank i Dishwasher 4
[Z1 Components E.:f — :
{22 Object Model Diagrams =]l S = dryTime-int
=23 Packages ~(:)' B ek Mananads
=B Default Browser T ﬁevTankFill[_} ﬁlslnNee_deSemc...
\ =il L}I@« B cuTankNrainit Bl zatunfiunid
L Links
= ﬁ Objects %051
"%, Dishwasher ?
"%, Heater
[k Jet 1
"% Tank . — =~
E} PredefinedTypes (REF) < | >

E PredefinedTypesC (REF)
[:l Sequence Diagrams

& Welcome to... ﬂ Abstract Dis...

Lelx

Output Window

\Log,v{ Check Model }, Buid }, Configuration Management J, Animation j, Search Results

Rhapsody 17

Getting Started

Toolbars

The Rhapsody toolbars provide quick access to the commonly used commands. These commands
are also available from the menus. The Rhapsody product has the following toolbars:

¢ Sandard has buttons for the frequently used options on the File, Edit, and Help menus.
Examples: New, Open, Save; Copy, Paste, Locatein Browser; About.

+ Code has buttons for the frequently used options on the Code menu, such as Make, Run
executable and G/M/R (for Gener ate/M ake/Run).

+ Windows has buttons for the frequently used options on the View menu, such as Show/
Hide Browser and Show/Hide output window.

+ Diagrams has buttons for the part of the Tools menu that give you quick access to the
diagrams in the project, such as Use Case Diagram and Open Satechart.

+ VBA provides accessto the VBA options, such as VBA Editor and Show M acros
Dialog. Note that VBA isfor Windows only.

+ Animation has buttonsfor the animation options during an animation session, such as Go,
Animation Break, and Quit Animation.

¢ Layout has buttons that help you with the layout of elementsin your diagram, such as
Snap to Grid, Align Top, and Align L eft.

+ Drawing has buttons for the graphics editor used to create and edit diagrams. Each
Drawing toolbar is unique to its particular diagram type. For example, the Drawing
toolbar for afile diagram is different from that for a statechart.

¢ Common Drawing has buttons to add requirements, comments, and other annotationsto
any diagram, such as Note and Requirement.

* Free Shapes has buttons for basic drawing shapes, such as Polyline and Polycurve.
¢ Zoom has buttons to zoom options, such as Zoom In, Zoom Out, and Pan.

+ Format has buttons for various text formatting options and line/fill options, such asItalic
and Font Color.

You can use the View > Toolbar s menu to make a toolbar appear or not appear in the Toolbars
area. Refer to the Rhapsody User Guide for detailed information about the toolbars.

18 C Tutorial

Rhapsody User Interface

Browser

The Rhapsody browser shows the contents of the project in an expandable tree structure. By
default, it isthe upper, left-hand part of the Rhapsody GUI. The top-level folder, which contains
the name of the project, is the project folder or project node. Although this folder contains no
elements, the folders that reside under it contain elements that have similar characteristics. These
folders are referred to as categories.

A project consists of at least one package in the Packages category. A package contains UML
elements, such as classes, files, and diagrams. Rhapsody automatically creates a default package
called Default, which it usesto save model parts unless you specify a different package. The
following figure shows an example of the browser.

Browser Filter ——p»{ Entire Madel View - | || & + <

Project Folder ———»

=41 Stopwatch |

Click the plus (+)

{:l Builds
-2 File Diagrams
#-|_] Message Diagrams

to expand a branch.
Click the minus (-)
to collapse a
branch.

Note

27 Packages

El& Default

‘ \ Events

. B Files
Display

E% Timer

---‘:] Dependencies

When applicable,
click the Up or
Down button to re-
order the
elements.

Rhapsody allows you to have more than one project open at atime. When thisis the case,
the top-level folder is called Projects and all project folders reside under it, as shown in the
following figure. For more information about working with multiple projects, refer to the
Rhapsody User Guide.

Rhapsody

19

Getting Started

B
¥+

Entire Model Yiew A
E.
E| Q Dishwasher (RO}
i I #-_7] Components
E| D Obiject Model Diagrams
g8 mbstract Dishwasher (RO
l:l Packages
I -7 Profiles
: l l:l Sequence Diagrams
EI gl Stopwatch
- -2 Builds
E| D File Diagrams
; fegll Crverview

Filtering the Browser
The browser filter lets you display only the elements relevant to your current task.
To filter the Rhapsody browser, click the drop-down arrow at the top of the browser window, and

select the view you want to see from the menu. Refer to the Rhapsody User Guide for information
on the view options.

Re-ordering the Browser Elements

With Rhapsody version 7.0, you can re-order the elements in the Rhapsody browser.
Choose View > Browser Display Options > Enable Ordering to activate the Up and
Down buttons for the browser. Once activated, select an element in the browser and then

+ *

click the appropriate Up or Down button

Moving the Browser
To make more room, you can move the browser out of the Rhapsody GUI as a separate window.

To move the Rhapsody browser, click-and-drag it to another location.

20 C Tutorial

Rhapsody User Interface

Drawing Toolbars

The Rhapsody product displays a separate Drawing toolbar for each UML diagram type. By
default, it places the Drawing toolbar to the left of the diagram.

To move the toolbar, click and drag it to another location. To make the Drawing toolbar appear or
not appear, choose View > Toolbars > Drawing.

Drawing Area

The drawing area displays the graphic editors and code editors, and it is the region for drawing
diagrams. By default, it is the upper, right-hand section of the Rhapsody GUI. Rhapsody displays
each diagram with atab that includes the name of the diagram and an icon that denotes the diagram
type. When you make changes to a diagram, Rhapsody displays an asterisk next to the diagram
name on the tab and after the name of the diagram in the title bar to indicate that you must save
your changes.

Output Window

The Output window displays Rhapsody messages. By default, it is the lower section of the
Rhapsody GUI. It includes tabs that display the following types of messages:

*

*

*

*

*

*

Log

Check Mode

Build

Configuration Management
Animation

Search Results

Typically, the Output window appears when you generate code and run animation. If the Output
window does not appear, choose View > Output Window.

Rhapsody

21

Getting Started

Features Dialog Box

The Features dialog box lets you view and edit the features of an element in the Rhapsody product.
To open the Features dialog box, do one of the following in the Rhapsody browser or a diagram:

+ Double-click an element (for example, mins[avariabl€]), or

+ Right-click an element (for example, Execution [a diagram]) and then select Features, or
¢ Select an element and press Alt + Enter, or

¢ Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on this dialog box if you want. For more
information about using the Features dialog box, refer to the Rhapsody User Guide.

Note

Once you open the Features dialog box, you can leave it open and select other elementsto
view their features. You must save your model to save all the changes you may have
made.

22 C Tutorial

Rhapsody User Interface

Tabs for the Features Dialog Box
The Features dialog box has different tabs at the top of the dialog box and different boxes on the
tabs depending on the element type.

Thefollowing tabs are ones used most often in thistutorial. For more information about these tabs,
as well asthe other tabs that you may see in a Features dialog box, refer to the Rhapsody User
Guide.

¢ General typically contains the name of the element and other general options, asshownin
the following figure.

File : Timer in Default x|

General |Descriptiu:un| Variablesl Functiu:un&l Flelatiunsl Tags I F'ru:upertiesl =

M ame; ITimer Ll

Steretype: | | El &l
Fair Diagrarn: IDvewiew j
Concurrency: Isequential |

Type: f <Implicit: ==
Multplicity: |1 =

Iritialization: I _l

" Felation to whole ‘ Lo

[T Enows itz whale as:

+ Variablesletsyou add, edit, or remove variables from the file. This tab containsalist of
al the variables belonging to the file, as shown in the following figure.

File : Timer in Default | o x|
Generall Description Y ariables |Functiu:uns| Helatiu:unsl Tags | F'n:upertiesl
i x
Mame | Wisibility | Type | Initial Yalue | Yalue
= Public int a
Private

Locate | 1] 4 | Apply | ‘

Rhapsody 23

Getting Started

+ Functionsletsyou add, edit, or remove functions from the file. Thistab contains alist of
al the functions defined in the file, as shown in the following figure.
=i xj
Generall Descriptionl Wariables Functions |F|e|atiu:|n3| Tangz I Propertiesl —
X
Mame | Visibility | Return Tvpe |
a kick, Public wioid
.ﬁ timerF.eset
=Mew >
Iw:nil:l timerRezet() -
4| | E
Locate | OK | Apply | ‘
*

Arguments lets you add, edit, or remove arguments from the file. It contains alist of all
the arguments defined in the file, as shown in the following figure.

Function : show in Display) x|

Generall Descriptionl Implementation Arguments |F|e|atiu:|n3| Tags I Propertiesl

I\-'uil:l zhowlint mint =

i “r <+
MName | Twpe | Yalue Direction |
E['] m ink In
E['] 5 ink In
=Mew

Locate | 0K | Apply | ‘

C Tutorial

Rhapsody User Interface

+ Implementation lets you add code for thefile. You can a so edit or remove any previously

entered code from the file, as shown in the following figure.

Function : show in Display *

==l

Generall Description Implementation |.&rguments| Helatiu:unsl Tags I F'n:upertiesl

Ivu:uiu:l showlint mint =]

01 printf("sd: sd5r",m,3);

TR o

Lucatel 1] 4 | Apply ||

+ Propertieslists the properties associated with the element. The Propertiestab of the

Features dialog box includes a Help pane below the list of properties. This pane displays
help text for the selected property. Help is displayed for each of the levels: subject,
metaclass, property. For an example of thistab, see Saving Packages Separately, Step 4.

Moving the Features Dialog Box

The Features dialog box is a floating window that can be positioned anywhere on the screen, or
docked to the Rhapsody GUI.

To dock the Features dialog box in the Rhapsody window, do one of the following:

¢ Double-click thetitle bar. The dialog box docks. You can now drag it to another location if
you want.

or

Right-click thetitle bar and select Docking by Drag and then drag the dialog box to
another location.

To undock the Features dialog box, do one of the following:

+ Double-click thetitle bar to undock it, or
*

Right-click thetitle bar and clear Docking by Drag and then drag the dialog box to
another location.

Rhapsody 25

Getting Started

Summary

In this section, you became familiar with the Rhapsody product and its features. You learned how
to do the following:

¢ Start and close the Rhapsody product
¢ Set up for the tutorial by creating the Stopwatch project
¢ Learned about the Rhapsody GUI
You are now ready to proceed to the next sections, where you are going to create afile diagram.

Note that for ease of presentation, this guide organizes the sections by diagram type and general
workflow. However, when modeling systems, diagrams are often created in parallel or may require
elements in one diagram to be planned or designed before another diagram can be finalized. For
example, you might identify the communication scenarios using sequence diagrams before
defining the flows, flow items, and port contracts in the structure diagrams. In addition, you might
perform black-box analysis using activity diagrams, sequence diagrams, and statecharts; and
white-box analysis using sequence diagrams before decomposing the system’s functions into
subsystem components.

When you do black-box analysis, such as when you do a black-box sequence diagram, you are
showing the sequence of messages between external actors and the system as a whole. When you
do white-box analysis, such as when you do a white-box sequence diagram, you are showing
messages to and from the internal individual parts.

26

C Tutorial

Lesson 1: Creating File Diagrams

File diagrams show how files interact with one another. Typically, file diagrams show how the
#include Structureis created. File diagrams provide a graphical representation of the system
structure. The Rhapsody code generator directly transl ates the elements and rel ationships model ed
in file diagramsinto C source code.

Note

Before you can work through any of the lessonsiin this tutorial, you must create the
Stopwatch project, which is detailed in Setting Up for the C Tutorial. In addition, you should
work through the tutorial in the order of the lessons.

Goals for this Lesson

In thislesson, you create afile diagram called Overview.You learn about the following elements
for afile diagram:

* Files
¢ Functions
* Vaiables

¢ Dependencies
* Arguments

Rhapsody 27

Lesson 1: Creating File Diagrams

Exercise 1: Creating the File Diagram

The elementsin afile diagram provide an overview of the system. A file diagram shows the types
of filesin the system, the attributes/variables and operations/functions that belong to those files,
and the static relationships that can exist between classes (types).

The following diagram shows the Overview file diagram that you create in this exercise.

Overview File Diagram

x|]K |
Entite Madel View -+ * ‘ ==
E--g Skopwatch i H H
| -topwe Overview File Diagram
D Builds £
=] File Diagrams ?
i Overview T «Files «Files
=20 Packages €, Display Timer
= Default -
B[] Fles py = mins:int
E| Display
EE Functions \ — — — —]
f B showefint m,int 53 i «Usage»
E|--- Timer
—]--*+} Dependencies
*y) «Usages Display & showirn:int,s:int):void S tick 1void
[]---& PredefinedTypes (REF)

(- PredefinedTypesC (REF) e

-2 Profiles
Kl I _>lJ

W Welcome ta.. pb Overview

28 C Tutorial

Exercise 1: Creating the File Diagram

Task la: Creating the File Diagram

You draw afile diagram using the following genera steps:

1

Draw files

2. Add functions, variables, and dependencies

3. Add implementation code

The following tasks describe each of these stepsin detail.

By default, when you created the Stopwatch project, the Rhapsody product added the File
Diagrams category and created afile diagram named M odel 1. In thistask, you rename the
diagram asOver vi ew.

To rename afile diagram, follow these steps:

1
2
3.
4

Start Rhapsody and open the stopwatch model if they are not aready open.
In the Rhapsody browser, expand File Diagrams.
Right-click M odel1 and select Featur es to open the Features dialog box.

On the General tab, in the Name box, replace the default name with overview, as shown
in the following figure.

File Diagram : Modell in Stopwatch * - |

General I Descriptiunl Helatiu:unsl Tags I F'n:upertiesl

M amne; IDvewiew LI

Stereatype: I j
Default Package: IDefauIt ﬂ

Lucatel 1] 4 |Applv ”

Rhapsody

29

Lesson 1: Creating File Diagrams

5. Click OK.

Notice the name change for the diagram in the browser and on the diagram tab, as shown
in the following figure.

=Ty =

Entire Madel Yiew - ¥ * ‘ —
ED Skopwatch
{:l Builds]

-2 File Diagrams —
[Overview -h
D Packages .

-2 Profiles -
S

=
«| | »

u\:\u"elc:ometo...lbg Ovverview |

6. Click the Save button B to save your work.

Note

To create anew file diagram, right-click the File Diagrams category in the Rhapsody
browser and then select Add New File Diagram. You can also create afile diagram using
the Tools menu or the Diagrams toolbar. Refer to the Rhapsody User Guide for more
information about creating diagrams.

30 C Tutorial

Exercise 1: Creating the File Diagram

Task 1b: Drawing Files

In thistask, you draw files for your Overview file diagram. The stopwatch model must have a
display to show the time and atimer to perform its function as a stopwatch. You add these
elements asfiles on your file diagram. A fileis agraphical representation of a specification (.h) or
implementation (.c) source file. For more information about files, refer to the Rhapsody User
Guide.

Use the overview File Diagram figure as a reference

To add afile, follow these steps:

Select the File button on the Drawing toolbar.
On the Drawing area, click and drag the pointer to create a rectangle.

Type pisplay and then press Enter.

A 0w D PE

Repeat the above steps, but this time name thefile Timer.

Rhapsody 31

Lesson 1: Creating File Diagrams

5. Expand the Packages category in the browser, then Default, and then Files. Notice that
the Display and Timer files also appear in the Rhapsody browser, as shown the following

figure.
x| m =]
Entire Model Yiew @ + 4 —
E@ Stopwatch
{:l Builds £
ED File Diagrarns ?
PooL Civeryiem Tu «Files «Files
<, Display Tirner
£ Default -
Eﬁ Fi|E!5 | y
isplay
------ Bl Timer \

& PredefinedTypes (REF)
; & PredefinedTypesC (REF)
-1 Profiles

o il

W Welcome to...l pi Owerview

C Tutorial

Exercise 1: Creating the File Diagram

Task 1c: Adding Functions for Timer

In thistask, you add a tick function to the Timer file for your Overview file diagram. Use the
Overview File Diagram figure as areference.

To add afunction, follow these steps:

1. Double-click the Timer filein the Rhapsody browser or on the drawing areato open the
Features dialog box.

2. Onthe Functionstab, click <New> and select Function.
3. Typeti ck asthe name of this function and then press Enter.
4. Repesat the above steps to create afunction named timerreset, and select Private from

the Visibility drop-down list box and then click Apply. Because the visibility is set to
Private, alock symbol appears for timer Reset, as shown in the following figure.

File : Timer in Default =]
i
Generall Descriptiu:unl ‘Wariables Functions |F|e|atiu:uns| Tags I F'ru:upertiesl =
M E X
Iame | Wisibility: | Return Twpe |
E kick. Puhblic wiid
.ﬁ tirnetResek Private
=Mew

Ivuid timerReset(] -
1| | TE

Lucalel 1].4 | Apply ||

5. Click OK.

Rhapsody 33

Lesson 1: Creating File Diagrams

Task 1d: Adding Variables for Timer

In thistask, you add variables to the Timer file for your Overview file diagram. To control the
timer, you need variables. A variable is a storage place within afile for a data element. The data
element can be a data type such as a date or number, or areference to another file. Use the
Overview File Diagram figure as areference.

To add variables, follow these steps:

1. Double-click the Timer filein the browser or on the drawing areato open the Features
dialog box.

2. Onthe Variablestab, click <New> and for the first variable, make these settingsin the
following columns and then press Enter:

a. Name: Typeni ns
b. Type: Selectint from the drop-down list box if not already set to this choice
c. Initial Value: Type o (zero)
3. Click <New> again and create a second variable with these settings:
a. Name: Typesecs
b. Visbility: Select Private from the drop-down list box
c. Type: Selectint if not aready set to this choice
d. [Initial Value: Type o (zero)

4. Click Apply. Because the secs variable hasits visibility set to Private, alock symbol
appears for secs, as shown in the following figure.

File : Timer in Default =l=]
Generall Diescription Yariables I Func:tiu:unsl Flelatiu:unsl Tags I F'ru:upertiesl
i b
[ame | Wisibility: | Type | Initial Yalue | Yalue
= rmins Public ink a
Private

Lucatel 0K | Apply ||

5. Click OK.

34 C Tutorial

Exercise 1: Creating the File Diagram

Task le: Adding a Dependency

In this task, you draw a dependency between Display and Timer. A dependency is adirect
relationship in which the function of an element requires the presence of and may change another

element.

To draw a dependency, follow these steps:

1
2.

Click the Dependency button| ™ on the Drawing toolbar.

Click the left edge of Timer in the diagram and then click the right edge of Display. The
arrowhead of the Dependency line should be pointing at Display.

Double-click the dependency line to open the Features dialog box.

On the General tab, in the Sereotype box, select the Usage in PredefinedTypes
checkbox from the drop-down list box, as shown in the following figure.

Dependency : Display in Timer *

M arne:
Sterentype:

Depends
|zage:

Locate |

General |Descriptiu:un| Tags | F'n:upertiesl

==l

IDispIay

Izage

[T <cMewss

[T derive in PredefinedT vpes

[T extend in PredefinedTypes

[T Bind in CallGraphE lements

[T Callin CallGraphElements

[T header_include in FileE lements
[T source_include in FileElements
[T include in PredefinedT ypes

[refine in PredefinedT ypes

[T Send in PredefinedT vpes

[T tace in PredefinedTypes
|7] zage in Predefine =3

oK | Apply ||

Rhapsody

35

Lesson 1: Creating File Diagrams

5. Click Apply and then OK. Thisaddsthe display.h includeinto timer.h.

Entire Maodel View <

At this point, your Rhapsody browser and file diagram should resembl e the following figure.

4?\

Eg Stopwatch
-1 Builds
=] File Diagrams

S Cverview

=] Packages

EE_‘] Default
=] Files

o] Display

E| Tirnet
[=-*s) Dependencies
[*y) «lsages Display
a Functions
..... a Ficki')

@l timerReset()

Variables

(- PredefinedTypes (REF)
[-F PredefinedTypesc (REF)

-] Profies

A el

|Afu’

) Weloome to... p& Overview *

Files «Files
Display Titmer
= mins:int
¢lsages
Htick(:void
Kl |

|»

36

C Tutorial

Exercise 1: Creating the File Diagram

Task 1f: Adding a Function and Arguments for Display

In this task, you add a function with arguments to Display. Use the Overview File Diagram figure
asareference.

To add afunction and arguments to Display, follow these steps:

1. Double-click the Display file in the Rhapsody browser or on the diagram to open the
Features dialog box.

2. Onthe Functionstab, click <New> and select Function.
3. Typeshowfor the function name, as shown in the following figure, and press Enter.

File : Display in Default *

?‘__‘:“_}X

Mame | Wigibiliky | Return Twpe |
Public

<Mew >

lvoid function_ 0[]

analel 1] .4 | Apply ||

4. Click OK.

5. Inthe browser or on the diagram, double-click show to open the Features dialog box.

Rhapsody 37

Lesson 1: Creating File Diagrams

On the Argumentstab, click <New> to create the following argument and then press

Enter:
a. Name m
b. Type int

c. Direction: 1n

Create another argument with these settings:
a. Name: s

b. Type int

c. Direction: 1n

Your Arguments tab should resemble the following figure.

Function : show in Display) x|

Genetall Descriptionl Implementation Arguments |F|e|aticnns| Tagz I Prapettiesl

|vuiu:| zhowlint mint)

i T+
Marne I Tvpe I Value Direction I
E['] m ink In
E['] 5 ink In
<Mew =

Locate | OK | Apply | ‘

38

C Tutorial

Exercise 1: Creating the File Diagram

8. Select the Implementation tab and enter this code, as shown in the following figure.

printf ("$.2d: %.2d\r",m,s);

Function : show in Display 2=

Generall Description [mplementation |Arguments| Helatiu:unsl Tags I F'n:upertiesl

Ivu:uiu:l zhow(ink m.int =]

printfi"s.2d: &.2d\r",m,3); ﬂ
-
1| I 4

Locate | OK | Apply | ‘

Note that if you are using Linux, you should enter this code, as shown in the
following figure.

printf ("%.2d: %.2d\r",m,s);
fflush (stdout) ;

Note: The ffiush(stdout) code resolves abuffering issuein Linux so that the time
updates on your screen correctly.

LIS

Function : show in Display *

Generall Description |mplementation I.-’-'«rgumentsl Helatiu:unsl Tags I F'ru:upertiesl

Ivu:uiu:l show(int mint)

01 princf("sd: 3d",m,=): j

0z f£flushistdout):

KN — _>I;I

Locate | 0K | Apply | ‘

Note: If you have Line Numbering turned on, each line of code will have a number
preceding it, as shown in the above figure.

Rhapsody 39

Lesson 1: Creating File Diagrams

9. Click OK.

At this point, your browser and file diagram should resembl e the following figure.

x|
Entire Model Yiew = ‘ + 1+ ‘

=-f Stapwateh
D Builds
ED File: Diagrarns

[Overvien
211 Packages

EEJ Default

+Files «Filez

Display Tirner

ey eaE|

-] Files
£ Display
- =@ Functions
. | 'showdint mint s)

= mins:int

«lsage»

|d?'u’

& show(m:int,s:int)void S ticki 1void

- [ik
@ timerReset{)
M wariables

[mins

(-5 PredefinedTypes (REF)
E]---& PredefinedTypesC (REF)
-] Profiles

Kl

o Welcome to.. pb Overview *

40

C Tutorial

Exercise 1: Creating the File Diagram

Task 1g: Adding an Include File for Display

In the previous task, you added implementation code for the Display file that useSprint£ (). TO
complete the implementation, you must add the <stdio.h> include file to Display. Follow these

steps:

1. Inthe Rhapsody browser or the file diagram, double-click the Display file to open the

Features dialog box.

2. Onthe Propertiestab, click the drop-down arrow and select Common to list only the

common properties.

3. Expandthe C_CG subject, then expand the Class metaclass, and then select the

I mplncludes property.

The Implncludes property defines the Implementation include files. The C_CG

subject means C Code Generation.

4. Enter <stdio.h>, asshownin the following figure.

File : Display in Default =l=]
General I Dezcription | Wariables | Functions | Relations I Tags FProperties |
Yiew Common
=|c_ce Al
El Class
Enablelynamicallocation
EnableUseFromCPP D
GenerateDestruckor
ImpIncludes <stdio. bz
OhjectTypedsSingleton D
Specindudes -
C_C&:Clazz: Implncludes
The Implncludes property specifies the names (inchiding full paths) of header files to
be included at the top of implementation
filez generated for claszes, objectz or object bypes, or packages. Separate multiple file
namesz uzing commaz, without spaces. [Default = empty sting):

Lucatel 1] 4 | Apply ||

5. Click OK.

Rhapsody

41

Lesson 1: Creating File Diagrams

Task 1h: Adding a Diagram Title

Each diagram hasits name in the diagram table and in the title bar of the window that displaysthe
diagram. However, it is also useful to add atitle onto the diagram itself to help other members of
your team understand the content and purpose of a diagram.

To add an optional title to your diagram, follow these steps:

1. Withthe diagram displayed in the drawing area, click the Text button A

2. Click abovethe itemsin the diagram and type the title of the diagram. For example, you
can name this diagram Over vi ew Fi |l e Di agram

3. Makethe following changesif you want:

a. Reposition thetitle by dragging it into another location.

b. Usethetoolson the Format toolbar to change the font styles.
4. Saveyour model.

You have completed drawing the Overview file diagram. It should resemble the Overview File
Diagram figure.

Summary

Inthislesson, you created afile, which shows how the system components are interconnected. You
became familiar with the parts of afile diagram and you added the following elements:

+ Files
+ Functions
¢ Variables

¢ Dependencies
¢+ Arguments
¢ Implementation code
You are now ready to proceed to the next lesson, where you create aflow chart.

42 C Tutorial

Lesson 2: Creating Flow Charts

Flow charts describe afunction or class operation. They show algorithmic flow.

In the previous lesson, you entered code directly for the Display function, see Task if:

Adding a Function and Arguments for Display. Asit doesfor file diagrams, the Rhapsody code
generator also directly translates the elements modeled in flow charts of the function you want to

implement into C source code.

Goals for this Lesson

In thislesson, you create aflow chart called Tick. In thistutorial, Tick isatiming function that
increments in minutes and seconds.

Rhapsody 43

Lesson 2: Creating Flow Charts

Exercise 1: Creating a Flow Chart for the Tick Function

The elementsin aflow chart describe afunction or class operation. The following diagram shows
the Tick flow chart that you create in this exercise.

Tick Flow Chart
- .

|»

Entire Model Yiew = ‘ + 4+ ‘

-] Packages -
EIB Diefault
-] Files
-] Display
E| Timer
[#-*s) Dependencies
EIE Functions
=B, tick)
[EREpriovichart
R, default of action_0
E1-4Z] Actions
E1-() action_0
EI \&, Incomning ActivityFlaws [secs=09)
© LR default of action_0 S —
==, Outgaing ActivityFlows for
o *~, to condition_1 e
=2 ackion_1
] \b Incoming ActivityFlows

------ *, from condition_1 [else]
Q’ Outgoing ActivityFlows

Tick Flow Chart

ming++

De@0u/ /B0

B

secs=0

=) action_2 ®
= Incorning ActivityFlows
*~, from action_1

Oukgoing ActivityFlows

&

[—:I@ condition_1
B ™%, Incoming AckivicyFlows

P *~, From action_0
=] Q; Oukgaing ActivityFlaws _ILI
iy bo action_1 1 | 4

(%) state3 = pi Overview | Welcome to...I H Default: Tim...

44 C Tutorial

Exercise 1: Creating a Flow Chart for the Tick Function

Task la: Creating the Flow Chart

You draw aflow chart using the following general steps:

1. Draw actions

2. Add default flows, activity flows, condition connectors, and termination states

The following tasks describe each of these stepsin detail. Use the Tick Flow Chart figure asa

reference.

To create aflow chart, follow these steps:

1. Start Rhapsody and open the stopwatch model if they are not already open.
2. Inthe Rhapsody browser, expand Packages, Default, Files, Timer, and Functions.

3. Right-click the tick() function and select Add New > Flowchart.
Notice the new diagram tab in the drawing area, as shown in the following figure.

Entire Model Yiew =

|

&1\

£

Bl Stopwatch
-2 Builds
D File Diagrams

=] Packages

EI& Default

=] Files
B[] Display
E| Timer
[~y Dependencies
Iél E Functions

|]ﬁ timReset()
- variahles
]& PredefinedTypes (REF)

£

]E PredefinedTypesC (REF)

-] Profiles

We®OU//BEO|

4

|»

o Welcome to...l pb Dverview |HDefault::Tim...|

Rhapsody

45

Lesson 2: Creating Flow Charts

Task 1b: Drawing Action Elements

In thistask, you draw the action elements that represent the functional processes.

To draw action elements, follow these steps. Use the Tick Flow Chart figure as a reference for the

placement of the action elements.

1. Click the Action button ™ on the Drawing toolbar.

2. Near the top left corner of the drawing area, click and draw an action element, type
secs++ and then press Ctrl+Enter.

3. Click the Action button and draw another action element below and to the right of the

secst++ action element, type mins++, and then press Ctrl+Enter.

4. Draw another action element below the mins++ action element, type secs=0, and then
press Ctri+Enter. Your flow chart should resemble the following figure.

EET

|

Entire Model Yiew = ‘ + % ‘

B4 Stopwatch
D EBuilds
D File Diagrams
{:l Message Diagrams
EI{:I Packages
EE Default
\ Events
-] Files
Display
IEI@| Timer
[*s) Dependencias
EIE Functions
- E evReset()
- E evToggled)
: Lick{}
@5l timerReset()
EJ Stakechart
E Yariables
(-5 PredefinedTypes (REF)
(-5 PredefinedTypesC (REF)
(-5 PredefinedTypesCpp (REF)
B+ Profiles
[]--D Sequence Diagrams

De®OuU /B

4

SECS+t+

W Welcome to...l pf Overview H Default::Tim...I

mins++

secs=(

5. Click the Save button & to save your work

46

C Tutorial

Exercise 1: Creating a Flow Chart for the Tick Function

Task 1c: Drawing a Default Flow

In this task, you draw a default flow. One of the action elements must be the default action
element.The flow chart flow originates from the element pointed to by the default flow.

To draw adefault flow, follow these steps. Use the Tick Flow Chart figure as areference.

1. Click the Default Flow button ‘W‘ on the Drawing toolbar.

2. Click above and to the left of the secs++ action element, then click its edge, and then click
the mouse button again (thisis the same as pressing Enter); or press Ctrl+Enter.

Task 1d: Drawing a Termination State

A termination state provideslocal termination semantics. The flow chart returns at this point to
the operation/function that invoked it.

To draw atermination state, follow these steps. Use the Tick Flow Chart figure as areference.

1. Click the Termination Sate button & ‘ on the Drawing toolbar.

2. Click below the secst++ action element and to the left of the secs=0 action element.

Rhapsody 47

Lesson 2: Creating Flow Charts

Task le: Drawing Condition Connector

A condition connector shows a branching condition. A condition connector can have only one
incoming action flow and two or more outgoing action flows. The outgoing flows are |abeled with
adistinct guard condition. A predefined guard, denoted [e1se], can be used for no more than one
outgoing flow.

To draw a condition connector, follow these steps:

1. Click the Condition Connector button ‘3‘| on the Drawing toolbar.

2. Click below the secs++ action e ement and to the left of the mins++ action element, and
then press Ctrl+Enter.

3. Saveyour work.

Your flow chart should resemble the following figure.

EEN =
Entire Model Yiew - ‘ + % ‘

B Stopwatch
(] Builds
[#-{1] File Diagrams
[#-{1] Message Diagrams
EID Packages

E& Default

\ Ewvents

Eﬁ Files
B Display
EI@I Timer

[~y Dependencies

Functions mins++
E evReset()
E evToggle()
- Hicky

: @ timerResst()
EJ Statechart
E ‘ariables
I:I---E PredefinedTypes (REF)
(-5 PredefinedTypesC (REF)
(- PredefinedTypesCpp (REF) secs=0

-1 Profiles
#-{_1] Sequence Diagrams

=
« | »

UWeIcometo...lDQ Overview HDefault::Tim...l

|»

SeCcs++

We@0u//BOF

48

C Tutorial

Exercise 1: Creating a Flow Chart for the Tick Function

Task 1f: Drawing Activity Flows

Activity flows represent the response to a message in a given action element. They show what the
next action element will be.

To draw activity flows between actions, follow these steps. Use the Tick Flow Chart figure asa
reference.

1. Click the Activity Flow button ™ on the Drawing toolbar and draw aflow from the
secs++ action element to the Condition Connector, and then click the mouse button
again (thisisthe same as pressing Enter); or press Ctrl+Enter.

2. Click the Activity Flow button and draw aflow from the Condition Connector to the
mins++ action element, type [secs>591, and then press Ctrl+Enter.

3. Draw aflow from the mins++ action element to the secs=0 action e ement and then click
the mouse button again or press Ctrl+Enter.

4. Draw aflow from the secs=0 action element to the Ter mination Sate and then click the
mouse button again or press Ctrl+Enter.

5. Draw aflow from the Condition Connector to the Ter mination State, type [else] and
then press Ctrl+Enter.

6. Saveyour work. Your model should resemble the following figure.

= =l
+ 4|
=1 Packages =]
=5 Defaul
[% Everts
=] Files
Display
E@I Timner
s Dependencies
=B Functions
----- E evReset()
----- E evToggled)
=B k)
=22 Flowchart
-, default of action_0
£ Actions
ElD action_0
E\'&, Incoming ActivityFlows
.\. default of action_0
EQ, Qukgaing ActivityFlows

Entire Model Yiew -

SeCs++

Ue@Ou/s/BO0|

[secs=>58]

=112 action_1

B Incoming ActivityFlows
i e From condition_t
EQ\ Oukgoing AckivityFlows

= action_2

EME, Incoming ActivityFlows
\ from action_1
EQ, Qukgaing ActivityFlows

Rhapsody 49

Lesson 2: Creating Flow Charts

Task 1g: Adding a Diagram Title

Each diagram hasits name in the diagram table and in the title bar of the window that displaysthe
diagram. However, it is also useful to add atitle onto the diagram itself to help other members of
your team understand the content and purpose of a diagram.

To add an optional title to your diagram, follow these steps:

1. Withthe diagram displayed in the drawing area, click the Text button A

2. Click abovethe itemsin the diagram and type the title of the diagram. For example, you
can namethisdiagram Ti ck Fl ow Chart .

3. Makethe following changesif you want:
a. Reposition thetitle by dragging it into another location.
b. Changethefont styles.

4. Saveyour work.

You have completed drawing the Tick flow chart. It should resemble the Tick Flow Chart figure.

The flow chart you have drawn will generate code, as shown in the following figure. The
generating code function is covered in Lesson 5: Generating Code and More.

345 woid ticki() {

346
347
348
349
350
351
35a
353
354
355
356
357
358

SR state tick().ROOT.action 0. (Emtry) +*/
secs++;
S S
if | secs>59)
i
F*#[state tick().ROOT.action 1.(Entry) */
mins++;
DS
JH#[state tick().ROOT.action 2. (Entry) */
secs=0;
FSEEL S
¥
return;

50

C Tutorial

Summary

Summary

In thislesson, you created aflow chart, which shows actions and implementation code, and which
will be used for code generation later. You became familiar with the parts of aflow chart and you
added the following elements:

¢ Action elements

¢ Default flow

¢ Activity flows

¢ Condition connector

¢ Termination state

You are now ready to proceed to the next lesson, where you identify the action element-based
behavior for the stopwatch model using a statechart.

Rhapsody 51

Lesson 2: Creating Flow Charts

52

C Tutorial

Lesson 3: Creating Statecharts

Satecharts define the behavior of classifiers (actors, files, use cases, or classes), objects, including
the states that they can enter over their lifetime and the messages, events, or operations functions
that cause them to transition from state to state.

Statecharts are a key animation tool used to verify the functional flow and modeling. Statecharts
can be animated to view the design level of abstraction and graphically show dynamic behavior.

Goals for this Lesson

In this lesson, you create the Timer statechart.

Rhapsody 53

Lesson 3: Creating Statecharts

Exercise 1: Creating a Statechart for the Timer

Statecharts define state-based behavior. The following figure shows the Timer statechart that you
createin thislesson.

Timer Statechart

Entire Model View L 2 |

=1 Packages ;I
EI& Difault
\ Events
=] ﬁ Files
-- Display
E% Timer
[y Dependencies
E Functions
B Statechart
=] states
EH:] Active
R default of CFf
=" Incoming transitions
L L5y self of Active
EQ. Qukgaing transitions
L Le®) self of Active
=1-{5] States
BT off
| E }, Incoming kransitions
%, default of OFf
- from on
-, Gukgaing transitions
\ to On
E-{J on
E!}, Incoming kransitions
e From OFF
“ self of On b

EQ, Qutgoing transitions =
‘_') self of On 4| | _PI_I

o0~ IETR I'IL‘ Welcome to...IDEP Overview ™ | Timer * I

evReset/timerReset();

Active

Off On

evloggle |

evToggle

Fy

tm{1000)/
tick();
show(ming secs);

DreoR+t®0 006/ 07

[«

54 C Tutorial

Exercise 1: Creating a Statechart for the Timer

Task la: Creating the Statechart

In thistask, you create a statechart. In order to describe the behavior of the timer, you need to add
astatechart. Use the Timer Statechart figure as a reference.

To create a statechart, follow these steps:

1. Start Rhapsody and open the stopwatch model if they are not aready open.

2. Inthe Rhapsody browser, expand Packages, Default, and Files.

3. Right-click the Timer filein the Rhapsody browser and select Add New > Statechart.
The system adds a Statechart element to the Rhapsody browser and creates a drawing
areanamed Timer, as shown in the following figure.

-&1“

Entire Model Yiew =

E--D Stopwatch
- Builds
D File Diagrams
EID Packages
EIB Default
=] Files
E| Display
ElE Functions
: L & showiint m,ink s)

=) Dependencies
L™y slsages Display
E Funictions

S i tick)
erReset])

h

[]---ﬁ PredefinedTypes (REF)
[]---ﬁ PredefinedTypesC (REF)
-1 Profiles

OB *t®0-000 0./ /07

|

|»

| o

W Welcome to...l pE Overview |E

Tirner * |

4. Click the State button 2 on the Drawing toolbar.

5. Draw alarge rectangle by clicking near the upper left hand corner of the drawing areaand
dragging to the lower right hand corner.

6. Replace the default name with Act i ve, and then press Enter.

7. Draw two states inside the Active state and name them ot £ and on.

Rhapsody

55

Lesson 3: Creating Statecharts

Entire Model Yiew @

8. Click the Default Connector button| > and draw a connector to the Off state and then
click the mouse button again (thisis the same as pressing Enter) or press Ctrl+Enter.

At this point, your diagram should resemble the following figure.

x|

{-1-|

- Stopwatch
&-{C] Buids
&-{_] File Diagrams
-] Packages

B

EE Default
Eﬁ Files
Display
= % Tirmer
*s) Dependencies
E Functions
E;'.—?:._J Statechart
EH:I States
: B Active
&, default of OFf
=) States
B off
"%, Incoming transitions
L& default of CFF
on

- varisbles
-5 PredefinedTypes (REF)
-5 PredefinedTypescC (REF)
7+ Profiles

|»

Active

OB+ t®0° 00058/ 0l

4

i Weloome tD...l B Owvervizw |E

Tirner * |

9. Click the Save button

= to save your work.

56

C Tutorial

Exercise 1: Creating a Statechart for the Timer

Task 1b: Adding Transitions Between States

To build a functioning statechart, the states must have connections (transitions) to indicate the
workflow. Rhapsody provides atimer, tm(1000), that you can use within statecharts. The timer
tm(1000) acts as an event to be taken one second after the state has been entered. Therefore, when
entering into a state, the timer starts, and it stops when exiting the state.

Use the Timer Statechart figure as areference.

To create transitions for the states, follow these steps:

1. Click the Transition button , then click the right border of the Off state, and then draw
atransition to the On state.

2. Namethetransition evToggl e and then press Ctrl+Enter.
3. Draw another transition from On to Off and nameit evToggl e.

4. Draw another transition linefrom Act i ve state back to itself, type the following code, and
press Ctrl+Enter:

evReset/ti nmerReset () ;

5. Draw another transition line from the On state back to itself and press Ctrl+Enter.

Rhapsody 57

Lesson 3: Creating Statecharts

Your statechart should resemble the following figure.

4

x|
Entire Model View - | ¥ % |
=1 Packages ;I
EE] Default
\ Events
EI--ﬁ Files
Display
El Timer
% *v) Dependencies
=] states
B Ackive
X, default of Off
E| E, Incoming transitions
©y self of Active
Q’ 2utgoing kransitions
: “y self of Active
EH:I States
B off
| E-"% Incoming transitiol
R, default of OFF
s from On
[=-=, Dutgeing transitio
A, toOn
B on
EE Incoming kransitiol
© e From OfF
o e®y seffofon
E% Cutgoing kransitio
%y self of On
[ES0 — TR

D eE(*+4@0-0060 |8/ 0|

evResetitimerReset();

|»

Active
Off On
evloggle |
 evToggle
| | _'I—I
¥ Welcome to...l pb Overview * |E Timer |

58

C Tutorial

Exercise 1: Creating a Statechart for the Timer

Task 1c: Using the Rhapsody Timer

Rhapsody provides atimer, tm(1000), that can be used within the statecharts. Thistimer uses the
OS Tick and only generates timeouts that are a multiple of ticks. For example, if asystemtick is
20ms and atimeout of 65ms is requested, then the resulting timeout is actually between 80ms and
100ms, depending on when the timeout is started relative to the system tick.

Note

If precise timeouts are required, then it is better to use a hardware timer in combination with
triggered operations.

To enter adefinition for atimer, follow these steps:

1. Double-click the unlabeled transition line located at the bottom of the On state in the
statechart diagram to open the Features dialog box.

2. Typetm(1000) inthe Trigger box.

Rhapsody 59

Lesson 3: Creating Statecharts

3.

In the Action box, press Enter and then type the following code below that blank line as

shown in the following figure.

tick();

show (mins, secs) ;

Note: The blank line before the code forces the action to appear on anew line.

Transition : 3 in StatechartOTimer *

General I Descriptianl Tags I Prapettiesl

Marme : | LI

Stereotype: | =] El ﬁl

Target [on =T Overidden

Trigger: [unj1000] =l

Guard: | | Dweridder
Action

;l ™| Overidden

tick():
show (ming,secs)

=

Locate | 0K | Apply | |

| =

60

C Tutorial

Exercise 1: Creating a Statechart for the Timer

4. Click OK.

At this point, your statechart should resemble the following figure.

Display

=B, Timer

[«

(-5} Dependencies
@@ Functions
(-] Statechart
=20 States
B Active

1 x|
Entire Model Yiew -+ |
[=] D Packages ;I
=] EJ Default
\ Events
E'ﬁ Files

R, default of OFF
E\E Incoming transitions
.) self of Active
EQ. Cukgaing transitions
- ©y self of Active
=42 states
=) Off
= }, Incaming kransitions
&, default of OFf
ey From On
[=E Q. Oubgoing kransitions
ey kDO
= on
= ‘E, Incaming kransitions
*~, From OFf
-~y self of O b
Qukgaing kransitions
%y self of O

oAy ta OFF =
ieLies
o

OB+ E®0 0000/ /0

evResettimerReset();

Active

|»

Off

On

evToggle |

evToggle

Fy

te (1000
tick();
show(rmins, secs);

<

¥ Welcome to...| pB Overvigw E Timer

5. Click the Save button IE' and save your model.

Rhapsody

61

Lesson 3: Creating Statecharts

Exercise 2: Animating a Statechart

Asthe model gets more and more complicated, it isagood practice to stop and validate the model
periodically and provide design-level debugging. One of the primary methods the Rhapsody
product usesto simulate a model is animation.

Animation is the execution of behaviors and associated definitions in the model. Rhapsody
animates the model by executing the code generated with instrumentation for classes/files,
operations/functions, and associations. Once you animate the model, you can open animated
diagrams, which let you observe the model asit is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

Note

As part of this exercise, you generate code. However, this exercise focuses on animation,
and specifically for a statechart. In later lessons you learn more about generating code and
animating.

62

C Tutorial

Exercise 2: Animating a Statechart

Task 2a: Defining a Test Component and Configuration

In this task, you define the execution code for this animation. To do this, you must first define a
test component and a configuration to use for animation. Follow these steps:

1. Inthe Rhapsody browser, expand Builds.
2. Double-click DefaultBuild to open the Features dialog box.

3. Replace the default name with Test, as shown in the following figure, and then click OK.

Build : DefaultBuild in Stopwatch * -1

General |Scupe| Descriptiu:unl Helationsl Tagz | Propertieal

I arme: ITest

L]
Sterentype; I j EIEI

Dhirectony: IDefauItB uild
Libraries: I

]
o
Additional Sources: | _I
m
]

Standard Headers: I
Include Path: I

Tupe
’7 " Library 1% Executable " Other

Lucatel 1] 4 | Apply | |

4. Expand Test and then expand Configurations.
5. Double-click DefaultConfig to open the Features dialog box.

6. Onthe General tab, replace the default name with release.

Rhapsody 63

Lesson 3: Creating Statecharts

7. Onthe Settingstab, define the environment so that Rhapsody knows how to create an
appropriate makefile. Rhapsody setsthe valuesin the Environment Settings group based
on the compiler settings you configured during installation. If you want to use a different
compiler, select a system compiler from the drop-down menu in the Environment box.

Note: This example uses a system with the Microsoft compiler, as shown in the
following figure. Your environment may use a different compiler.

Configuration : Release in Teskt] x|

Generall De&criptiunl |itialization | Eheck&l Helatiu:unsl Tags | F'n:upertiesl

Directony: |E:'xFEhapsod}l?.ﬂ\ﬁtupwatch‘ | v Use Default

Librarnies: | _I

Additional Sources: |

|

Standard Headers: | _I
Include Path: I _I
— Instrumentation

Instriumentation Mode: |Mone "I Advanced |

— wiehify
I™ ‘wieb Enabling Adyanced.. |
Time Model: * Real Simulated

Statechart Implementation: & Feysable) Flat

— Enviranment S ettings

E nvironment: I Micrasaft >| Defaul |

Build Set: I Debug j

Compiler Switches: |/ A -
$0MD efaultS pecificationDirectany A LI _l

Link Switches: $0MLinkCommandSet /AMOLOGO ;I

]

Locate | 114 | Apply | ‘

8. Click OK.

64

C Tutorial

Exercise 2: Animating a Statechart

Task 2b: Creating a Debug Configuration

In this task, for animation purposes, you create a Debug configuration. Follow these steps:

1. Inthe Rhapsody browser, highlight the Release configuration you created in the previous
task.

2. Hold the Ctrl key and use the mouse to drag the Release configuration in to Test.
This creates a copy of the configuration named Rel ease_copy.
3. Double-click Release_copy to open the Features dialog box.

4. Onthe General tab, replace the default name with pebug, as shown in the following
figure.

Configuration : Release_copy in Test *) x|

General IDescriptinnI Initializatiu:unl Settingsl Eheck&l Flelatiunsl Tags | F'rupertiesl

M arne; IDebug

L
Sterentype: I j EIE'

Lucatel 1] 4 | Apply | |

Rhapsody 65

Lesson 3: Creating Statecharts

5. Onthe Settingstab, in the I nstrumentation group, from the I nstrumentation M ode
drop-down list box, select Animation, as shown in the following figure. This adds
instrumentation code to this configuration, which makes it possible to animate the model.

Configuration : Debug in Test * x|

Generall Descriptiu:unl Initialization Settings |Ehecks| Helatiu:unsl Tags | F'n:upertiesl

Directony: |E:'\Flhapsody?.D\Stupwatc:h" | v Lse Default

Libraries: | _I

Additional Sources:

Include Path:

N
L
N

Advanced ... |
— ‘wehify

[weh Enabling Advaneed .. |

Time Model ' Real = Simulated
Statechart Implementation: (' Feyzable % Flat

|
Standard Headers: |
|

— Inztrumentation

Ingtrumentation Mode: |EEINEIGE ~

— Ervironment Settings

E nvironment: IMiCFDSth x| Defaul |
Build Set: IDehug j
Cormpiler Switches: |/ ./ -
$00 D efaults pecificationDirecton A LI _l
Link Switches: $0MLinkCommandSet MOLOGO ﬂ

Locate | 114 | Apply | ‘

6. Click OK.

66 C Tutorial

Exercise 2: Animating a Statechart

Task 2c: Starting Animation

In thistask, you validate the model by animating the statechart. Follow these steps:

1. Onthe Codetoolbar, select Test and Debug as shown in the following figure. Doing this
sets Debug as the active configuration for what you are about to do.

POE g ITest leebug j

2. Savethe project.

3. Click the Generate/M ake/Run button 'ﬂ'

Note: Click Yesto create the Debug subfolder, if necessary.

Rhapsody 67

Lesson 3: Creating Statecharts

4. If thebuild is successful, the Output window lists the messages and stateSBuild Done. In
addition, when the animation starts successfully, the Animation toolbar becomes active
and a blank Display window opens. Do not close this window. The following figure
shows these windows.

x|

Entire Model Yiew <

¢f|

E--D Stopwatch
EI{:I Builds
. B8 Test
ED Configurations
‘\ Debug
B, Release
D File Diagrarns
D Packages
D Profiles

evResettimerReset();

L]

Active

off

OreB+4c®@0c - 006|607

4]

evloggle |

evTaggle

Fy

tm{1000)¢
tick);
show(mins secs);

UWeIcometo...IDQ Overview |

Timer

On

o

[Fuild Done

=
]
=

[T o Buitd £ chack Madal }

Configuration Managemert , Animation [

Note: If errors messages appear in the Output window indicating that the model did
not build, check the diagramsfor typographical errors and examine the code by
clicking on the errorsin the Output window to display the generated code in

the drawing area.

5. If you make changes to correct any problems you discover, save the model and choose
Code > Re Generate > Debug.

68

C Tutorial

Exercise 2: Animating a Statechart

Task 2d: Creating the Timer Instance

In thistask, after the model builds without errors and the executable has been run, you can run the
animation. Follow these steps:

1. Onthe Animation toolbar, click the Go button \ BX to trigger the statechart animation.

You can resize or move the Display window, as shown in the following figure, to be able
to observe the animation of the diagram and the display at the same time.

& REE

Rhapsody 69

Lesson 3: Creating

Statecharts

2. Onthe Rhapsody browser, expand Timer and notice that there is now an I nstances

category, as shown in the following figure.

Entire Model Wiew - + 1

]

=

g Stopwatch
EII:I Builds
E| Test
EI{:I Configurations
‘\, Debug
‘k Release
[-{_7] File Diagrams
=] Packages
EE‘J Defaulk
- % Events
Elﬁ Files
-[E] Display
E@, Timer
[s Dependencies
ﬁ Functions
EJQ] Instances

EJ Skatechart
- varishles
[EI---& PredefinedTypes (REF)
£ PredefinedTypesC (REF)

[

f-{_7 Profiles

70

C Tutorial

Exercise 2: Animating a Statechart

3. Double-click the Timer instance to open the Features dial og box. Notice that the attributes
m ns and secs are now initialized to 0, as shown in the following figure.

Features of Timer E-1 S|
Inztance Marne: |- —
Attributes:

Marme | WValue | Type |
minz a int
TECE il int
Felahans:
=
Locate | OK | Apply | ‘

4. Click OK.

5. Right-click the Timer instance and select Open I nstance Satechart.

Rhapsody 71

Lesson 3: Creating Statecharts

6. The animated statechart displays, as shown in the following figure, with Off asthe active

state (magenta).
_lo/x]
evResettimerReset();
i Active h
off Cin
evToggle
evToggle
trm {1000/ U
tick;
show({mins secs);
k b
1 | 3

72

C Tutorial

Exercise 2: Animating a Statechart

Task 2e: Generating Events to Run the Animation

In thistask, you generate events to run the animation. You inject eventsin an animated diagram to
see how the model reacts.

To generate events, follow these steps:

1. Right-click the Off state in the animated statechart and select Gener ate Event to open the
Events dialog box.

2. Fromthe Event drop-down list box, select evToggle, as show in the following figure.

Events X
Object: ITimer Select |

Ewent:

Arguments:
M arme | Type | walue | Edit

Hizton:

Clear |

Cancel | Help |

Rhapsody 73

Lesson 3: Creating Statecharts

3. Click OK. The evToggle transitionsto the On state is briefly highlighted, as shown in the

following figure.

RI=TE
evResettimerReset();
i Active h
off On
evTDggIe
evlongle
trm(10000/ U
tick(;
show({mins, secs);
L -
1| | ’|

74

C Tutorial

Exercise 2: Animating a Statechart

Then thet n{ 1000) transition line on the model highlights the On state and the
timer arrow to show the animation, as shown in the following figure.

j=] Statechart of : Timer - Timer o]|

Fy

evResetdtimerReset();

Artive

Off Cin

evloggle

evlogyle

ten(1000)f u
tick;

show(mins secs);

Rhapsody 75

Lesson 3: Creating Statecharts

4. Examinethe Display window. The stopwatch timer displays el apsed minutes and seconds,
as shown in the following figure.

& BEE

5. Examinethe Timer instance in the browser and notice that it is blinking.

6. Usethe other animation buttons, as shown in the following figure, to stop and start the

animation and perform other actions. For more information about the Animation toolbar,
refer to the Rhapsody User Guide.

Mol ! =y /o d

76

C Tutorial

Exercise 2: Animating a Statechart

7. Right-click the On state on the diagram, select Gener ate Event to open the Generate
Events dialog box and then click OK. The animation toggles back to the Off state to
complete the statechart animation, as shown in the following figure.

j=] Statechart of : Timer - Timer -0 =]

-

evResettimerReset();

Artive

Off On

evloggle

evTDggIe

trm {1000}
tick): U

show(mins secs);

Rhapsody 77

Lesson 3: Creating Statecharts

Task 2f: Quitting Animation

To end the animation session, follow these steps:

1. Click the Animation Break button M on the Animation toolbar and then click the Quit

. . il
Animation button = .
2. Click Yesto confirm ending the animation session.
3. Saveyour model.

The Display window closes, and the Animation tab on the Output window displays the message

Animation session terminated.

Note

To animate the statechart again, on the Code toolbar, click the Run executable button !

and then, from the Animation toolbar, click the Go button ‘ ¥ to tri gger the statechart
animation.

Summary

In thislesson, you created a statechart for the timer for the stopwatch model. You became familiar
with the parts of a statechart and did the following:

+ Added transitions and timeout transitions

¢ Added the Rhapsody time

+ Animated a statechart and saw it progress through states

+ Created atimer instance

¢ Generated an event for a statechart

You are now ready to proceed to the next lesson, where you define the message exchange for the
stopwatch model by using a message diagram.

78 C Tutorial

Lesson 4: Creating Message Diagrams

Message diagrams show how the files functionality may interact through messaging (through
synchronous function calls or asynchronous communication). Message diagrams can be used at
different levels of abstraction. At higher levels of abstractions, message diagrams show the
interactions between actors, files, use cases, and objects. At lower levels of abstraction and for
implementation, message diagrams show the communication between classes, files, and objects.

M essage diagrams have an executabl e aspect and are a key animation tool. When you animate a
model, Rhapsody dynamically builds message diagrams that record the object-to-object

messaging.

Goals for this Lesson

In this lesson, you create the Execution message diagram, which captures what happens when the
stopwatch model runs.

For the stopwatch model, only one message diagram is needed. You may have more than one
message diagram for the models you create, depending on their complexity and need.

Rhapsody 79

Lesson 4: Creating Message Diagrams

Exercise 1: Creating a Message Diagram

In thistask, you create a message diagram. You draw a message diagram using the following
general steps:

1. Draw classifier roles

2. Draw messages

3. Draw timeouts

This exercise describes each of these stepsin detail.

The following figure shows the Execution message diagram that you create in this lesson.

—

Execution Message Diagram

=l K ENY | Timer | Display |
A | 4 | = Execution Message Diagram -
=4 Stopwateh T ENY Timer Display
+-7] Builds &
{1 File Diagrams ;
—|-{_] Message Diagrams
4] Exeadtion G 1. evToggle() | |
- Packages] | |
E|E| Default |
- %, Events ¢ |
[Files
Display E 2. tmi1000) |
e[, Timer =
ﬁ PredefinedTypes (REF) o | |
| £ PredefinedTypesC (REF) |
-1 Profiles l:' |
=} 3. ticki)
a |
=] | =

SAANS SIS SN SN SSSSSSSSSSSSS S

2l

4. showim=0,5=1)

s I

. tm{1000)

B. showim=0,s5=2)

-]

UWeIcometo...ltﬁ Overvien |E Tirner |E Timer - Timer |%] Execution I

b
u

i

80

C Tutorial

Exercise 1: Creating a Message Diagram

Task la: Creating a Message Diagram

In thistask, you create a message diagram. The model needs a message diagram to capture what
happens when the stopwatch model runs.

To create a message diagram, follow these steps:
1. Start Rhapsody and open the stopwatch model if they are not aready open.

2. Inthe Rhapsody browser, right-click Sopwatch and select Add New > M essage
Diagram to open the New Diagram dialog box.

Note: If Message Diagram is not enabled on the pop-up menu, you can choose File >
M essage Diagram and click the New button on the dialog box that opens.

3. TypeExecuti on, asshown in the following figure.

x
Selected Owner: message diagram_ 0

Marne: IExecutiun

Operation Mode
’7 " Andlysiz {5 Design

ok | Help |

4. Inthe Operation Mode area, select the Design option button if it is not already selected.

Rhapsody lets you create message diagrams in two modes:

a. Inanalysis mode, you draw message sequences without adding elementsto the
model. This meansyou can brainstorm your analysis and design without affecting the
generated source code.

b. Indesign mode, which isthe default, every instance line and message you create or
rename can be realized as an element (class/file, object, operation/function, or event)
that appears in the Rhapsody browser, and for which code can be generated. When
you draw a message, Rhapsody may ask if you want to realizeit. If asked by the
system, click Yesto realize the message.

5. Click OK.

Rhapsody 81

Lesson 4: Creating Message Diagrams

Rhapsody automatically creates the M essage Diagr ams category in the browser and adds the
name of the new message diagram. In addition, Rhapsody opens the new diagram in the drawing
area, as shown in the following figure.

=
Entire Model View ~ ‘ + 4+ ‘ = et
=g Stopwatch i
-] Builds G
-] File Diagrams —
EI{:I Message Diagramms N
- el Execation P
D Packages
-1 Profiles ﬁ
O
+
= L
+
(o]
il
El
Ed
< | Ll_l
o Welcome to...l DD Owerview IE Tirmer |E Tirner - Timerl I:,'I Execution *

Note

You can also create a message diagram using the Tools menu or the Diagr ams toolbar.
Refer to the Rhapsody User Guide for more information about creating diagrams.

82 C Tutorial

Exercise 1: Creating a Message Diagram

Task 1b: Adding Instances to the Message Diagram

In thistask, you create the basic itemsin the message diagram. For placement of the items, use the
Execution Message Diagram figure as areference.

To add instances to the message diagram, follow these steps:

1
2.

In the Rhapsody browser, expand Packages, and then Default and Files.

Click the Timer file and drag-and-drop it onto the message diagram.

Click the System Border button %* and click to the l€ft of the Timer item.

This creates the environment boundary of the message diagram.

In the browser, click the Display file and drag-and-drop it to the right of the Timer item.

At this point, your diagram should resemble the following figure.

3|

Ertire Model View = | + 1 |

B4 Stopwatch
B0 Builds
-3 File Diagrams
=10 Message Diagrams
4] Execution
B Packages
£ Default
[, Events
B Files
-] Display
% Timer
£ PredefinedTypes (REF)
E PredefinedTypesC (REF)
-] Profiles

EMNV |

Tirner I Displa;

BED[=0+ Frwr:v|yTry

m
=
<

Display

A

<

uW’eIcometo...lDEF Overview |E

Tirner |E Timer - Timer |5] Execution I

|»

r

Rhapsody

83

Lesson 4: Creating Message Diagrams

Task 1c: Drawing Messages to Define the Stopwatch Communication

To show the model’s scenario, a message diagram defines the communication between parts of the
model. To show these messages, you draw communication lines.

A message represents an interaction between objects/files, or between an object/afile and the
environment. A message can be an event, atriggered operation, or a primitive operation.
Depending on the shape of the line, Rhapsody interprets the message as follows:

+ If the message line is horizontal, the message isinterpreted as a triggered operation if the
target isareactive class, or a primitive operation if the target is a nonreactive class. A
message line that is horizontal indicates that the operations are synchronous.

+ If the message line is slanted, the message isinterpreted as an event if thetarget isa
reactive class, or as a primitive operation if the target is a nonreactive class. A message
line that is danted emphasizes that time passes between the sending and receiving of
messages. Message lines that are slanted can cross each other.

+ If the message line returns to itself, the message is interpreted as a primitive operation if
the arrow folds back to a nonreactive class or if the arrow folds back immediately; or itis
interpreted as an event if the arrow folds back sometime later. The arrow can be on either
side of the instance line.

Note

Reactive classes can receive events, triggered operations, and primitive operations.
Non-reactive classes can receive only messages that are callsto primitive operations.

To draw messages, follow these steps:

)

1. Click the Message button on the Drawing toolbar.

2. Click the ENV system boundary line and click the Timer to create a downward-slanted
diagonal line. Rhapsody creates a message with a default value name of # function_n(),
where n is an incremental integer starting with O.

3. Rename the message evToggle () and then press Enter.

4. Click the Timeout button l? and draw atimeout on the Timer line that goes back to

itself and which is below the evToggle () message line, then typet m(1000) , and then
press Enter.

84 C Tutorial

Exercise 1: Creating a Message Diagram

Click the M essage button and draw a message from the Timer line back to itself, then
type tick (), and then press Enter.

Click the M essage button and draw a straight message line from Timer to Display, then
typeshow(m = 0, s = 1), and then pressEnter.

Click the Timeout button I? and draw atimeout on Timer that goes back to itself, then
typet m(1000) , and then press Enter.

Click the M essage button and draw a straight message line from Timer to Display, then
typeshow(m = 0, s = 2),andthen press Enter.

Your message diagram should resemble the following figure. Notice that each item is
numbered and appears with execution occurrence bars by default. Refer to the Rhapsody
User Guide to learn how to make them not appear if you want.

ENV | Timer | Display |
ENY Timer Display =l

|
Entire Model View - | + 4 |

E--Q Stopwatch
[Builds
D File Diagrams
EID Message Diagrams
o] E_:I Execution
EI{:I Packages
. B9 Defauk
: \ Events

Eﬁ Files

- - Display

1. evTogglel) |

2. tr(1000)

H = % Tirner

& PredefinedTypes {REF)
& PredefinedTypesC (REF)
D Profiles

1 T

3. tick()

T

4. showi(m =0, 5=1)

‘EEBIGO*PI'@"&?& i .g|*3«—:a|§[[

]

B. showi{m=10,5=2)

|
|
|
|
|
|
|
|
|
|
|
|
_tm(1000) '|'i"
|
|
oy
I

AAERRAEERRARRR R R R AR R RRRRR R R RN RN

-—1

-
< | 3

i Welcome to...l ph Overview * |E Timet |E Timer - Timer |51 Execution I

9. Click the Save button El and save your model.

Rhapsody

85

Lesson 4: Creating Message Diagrams

Task 1d: Adding a Diagram Title

Each diagram hasits name in the diagram table and in the title bar of the window that displaysthe
diagram. However, it is also useful to add atitle to a diagram to help other members of your team
understand the content and purpose of a diagram.

To add an optional title to your message diagram, follow these steps:

1. Withthe diagram displayed in the drawing area, click the Text button A
2. Click abovetheitemsin the diagram and type Execut i on Message Di agram
3. Makethe following changesif you want:
a. Reposition thetitle by dragging it into a new location.
b. Changethefont styles.
4. Saveyour work.

You have completed drawing the Execution SD. It should resemble the Execution Message
Diagram figure.

Summary

In thislesson, you created the Execution message diagram, which captures what happens when the
stopwatch model runs. You became familiar with the parts of a message diagram and created the
following:

¢ System border

¢ Classifier roles

¢+ Messages

¢ Timeintervals

¢ Timeouts
You are now ready to proceed to the next lesson, where you are going to generate code.

86 C Tutorial

Lesson 5: Generating Code and More

Rhapsody uses the following sources to generate code for the mode!:

Project Type or profile selected when you created the project. Refer to Creating a Proje

ct.

Component definition described in the Task 2a: Defining a Test Component and
Configuration.

Compiler and instrumentation mode sel ections made when defining the configuration.

Code you entered for functions, asin the Task 1f: Adding a Function and Arguments for

Display.
Flow charts as described in Lesson 2: Creating Flow Charts.

C code that Rhapsody automatically generates to support the design you created in the
diagrams.

You must generate or regenerate code before you can run animation.

Goals for this Lesson

In this lesson, you learn about the following:

*

Generating code
Viewing code
Locating code
Manually adding code

Rhapsody

87

Lesson 5: Generating Code and More

Exercise 1: Managing Multiple Configurations

With more than one configuration, you must select which one you want to use. There are two ways
to do this. You can do either of the following:

+ Sdlect the configuration from the Code toolbar, as shown in the following figure.

b ITESt ﬂlDebug j

or

+ Right-click the configuration in the Rhapsody browser and select Set as Active
Configuration.

88 C Tutorial

Exercise 2: Generating Code

Exercise 2: Generating Code

With the component, configuration, and environment defined, you can generate code for the

stopwatch model. Follow these steps:

1
2.

i) - Dot

From the menu bar, choose Code > Generate > Debug.

Wait while Rhapsody generates code. Rhapsody generates the code for your application
along with the Microsoft makefiles. See the Output window, as shown in the following

figure.

+ %

Entire Model Yiew — +

|

Bl Stopwatch

{:I EBuilds
[#-{_]] File Diagrams
=-{1] Message Diagrams
L E_:I Execution
ED Packages
E& Default
\ Events
=] Files
Display
@, Timer
- PredefinedTypes (REF)
. - PredefinedTypesC (REF)
{:I Profiles

EMY

Timer Displa:
Execution Message Diagram 4|

= Timer Display J
% 1. evToggle) I I

’

7 |

“

7 |

7 . tm(1000)

7 Eﬁ—‘ |

// | |

1]

il

W Welcome to...l pi Overview |E

Timer

|E Timner - Timerll_':l Execution * |

=

411 Checks Terminated 3uccessfully

Checker Done

0 Error(s), 0 Warning(s)

Code generated to directory: C:\Rhapsody?.0\3topwatch'Test\Debug
Generating specification of Display into file Display.h
Generating specification of Timer into file Timer.h

Generating implementation of Display into f£ile Display.c
Generating implementation of Timer inteo file Timer.c

Generating specification of Default into file Default.h
Generating implementation of Default into £ile Default.c

Code Generation Done

0 Error(s), 0 Warning(s)

.

0 Message(s)

|»

|
H I 4 I }I M I\ Build & Check Model)\ Configuration Managernent ,}\ Anirnation [‘

Exercise 3: Viewing and Editing the Generated Code

In this exercise, you view and edit the generated code. You also learn how to use the Rhapsody

browser to locate code, how to manually add code, and how to update the model with small

changes by roundtripping.

Rhapsody

89

Lesson 5: Generating Code and More

Task 3a: Viewing the Generated Code

In thistask, you view the generated code. Follow these steps:

1. Select the Timer file in the Rhapsody browser.

2. From the menu bar, choose View > Active Code View. Rhapsody displays the generated

Ertire Model Wiew - | + +

code in the Code window, as shown in the following figure.

=l ENY | Timer | Displar

Execution Message Diagram

-1 Builds - . .
--CI File Diagrams [ERNY Tirmer Display
= D Message Diagrams
i L_, Execution
ED Pacl

EE Default

kages 1. evToggle) | |

Z | |
7. |
J |

Ll

W Welcome to...l pi Overview |E Tirner |E Tirner - Tirner | 5] Execution ® |

4

nz4
nzs
nze
nzv
nzs
nz9
030
031
03z
033
034
03s
036
037
n3s
akci=]
040
041

A - - 7
l/* Timer.k "y
SE——— - - =/
S package Default #7

S dgnore &7

#define Timer Timeout_Cn id 1
SHETES

SR class TopLevel::Timer =/

A attribute mins %/

extern int mins:;

S classInstance Timer. Timer */
extern struct Timer_ t Timer;

o

A E R Timerh A Timer.c

Note: If your Output window is still open, click the Hide docked window button =
for it so that you can expand the Code window. Note that in the above figure,

the Drawing toolbar is also closed.

90

C Tutorial

Exercise 3: Viewing and Editing the Generated Code

The Timer.h tab displays the header file, as shown in the previous figure. The Timer.c tab shows

the C code, as shown in the following figure.

Ed| EMNY | Timer | Clizpla: |
Entire Model View = ‘ + 4+ Execution Message Diagram ;I
-1 Builds 3| - _ J
&3 File Diagrams ENY Tirner Display
ED Message Diagrams
- E_:I Execution
221 evTogglel) | |
Z | |
7
] Z | -
Display 1| | _bl_l
@,Tlmer |L|j U\n\-’elcometo...lhl} Owerview |E Tirrier |E Timer-Timer“:I E:-cec:ution"l
| 024 J# __ __ [Py -
= 025 /# Timer.c *
026 /= - — [y 1
oz
025 /4 package Default */
oze
030 /44 class TopLevel::Timer #*/
031
032 /*## attribute mins */
033 int mins = 0;
034
035 /#f# attribute secs */
036 static int =secs = 0;
o3
038 /# classInstance Timer.Timer #/
039 struct Timer t Timer:
040 B
041 /### operation timerResest() */ -
| | ;I_I
4[> [Timerh j Timer.c

Note

You can scroll through the code and edit any code you want to change.

Rhapsody

91

Lesson 5: Generating Code and More

Task 3b: Adding Line Numbers

By default, line numbers should appear in the Code window. If they do not appear, and you would
like them to appear, follow these steps.

1. Right-click in the Code window and select Properties to open the Window Properties
dialog box.

2. OntheMisc tab, in the Line Numbering area, from the Style drop-down list box, select
Decimal, and in the Start at box, enter 1, as shown in the following figure.

Window Properties x|

I:u:ulnr.-"Fu:untI Language.-"TabsI Keyboard Misc |

[~ Smoath serolling ¥ Color spntax highlighting
v Show lsft margin ¥ Show horizantal scrollbar
¥ Line tooltips on zcroll W Show vertical scrollbar
v &llow drag and drop [~ allow horizontal zplitting
v Allow column selection [~ Allow vertical spliting

™ Confine caret to text

Line nurmbering Max undoable actions:

Stle [Decimal > | & Urlimited
Start at: |1 . Limitedto:l

(1] 4 I Cancel | Apply |

3. Click OK.

92 C Tutorial

Exercise 3: Viewing and Editing the Generated Code

Task 3c: Using the Browser to Locate Code

In this task, you use the Rhapsody browser to locate code. Follow these steps:

1. Inthebrowser, click the minsvariable.

2. Wait for the header and C code files to display in the Code window, as shown in the
following figure.

x| EN | Tirmer | Displa
Entire Model view = | ¥ 4+ ‘ Execution Message Diagram -l
-7 Files B _I
=-[B) Display ENY Timer Display
E% Timer
-y Dependencies
- f@ Functions 1. evToggle
[| Statechart J Z e | |
B Variables 7 | | _ILI
.= 4| | »
o secs - - -
- PredefinedTypes (REF) = uW’eIcometo...lDP Ovverview |E Tirner ||:| Execution |
%I 035 /### class TopLevel::Timer #*/ -
- 036
037 /### attribute mins */
035 extern int mins:;
039 /#4# classInstance Timer.Timer */
040 extern struct Timer_t, Timer;
041
042 /# icgmore #/ |
043
044 struet Timer t {
045 RiCReactive ric_reactive;
046
047 S Framework entries kS
045
049 AT dgnore *F
os0 FEstates enumeration: */
051 enum Timer Enum{ Timwer RiCNon3tate=0, Timer Active=1, Tiwer_ On=2, Timer OLf=3 }
05z Timer EnumVar:
053 S
054 int rootState subState: S igmore #S

|

.

AN Timerh 4 Timer.c

Rhapsody

93

Lesson 5: Generating Code and More

Task 3d: Adding Code for the timerReset Function

In thistask, you add code for the t imerreset function. While you have defined the tick function
in the model, you have not yet done so for the t imerreset function that was included in the

statechart.

To manually add code for the t imerreset function directly into the previously generated code,
follow these steps:

1. Ifiitisnot already displayed, click the Timer.c tab in the Code window.

2. Locatethe timerreset section of the code as shown in the following figure and type these
missing instructions:

mins=0;
secs=0;
[= ENY | Timer | Displa:
Ertire Model iew = | & ‘ Execution Message Diagram ﬂ
E% Timer -l
[y Dependencies ENY Timer Display
=i Functions
& evReset() J
; EevTDggle() > 1 evTonnlan | _lj
L tdg) | | v

m@h PP] uW’eIcometo...IDQ Overview |E Tirner ||:,'| Executionl

ﬂl 365
= 366
367
368
369
370
371
ava
373
374
375
376
377
378
379
380
351
igz
3g3
354
385
386

« 7

{
A operation timerReset() #/
mwins=0;
secs=0;

S
i

void Tiwer initRelationsi() {
Timer Init (RiCHMainTask()):

#ifdef OMNINSTRUMENT

ARCAT 3JetName (& (Timer), Timer, "Timer"”, ARCNoMultiplicity):
#endif = _OMINSTRUMENT*/
}

P L]

File Path : Test\Debugh Timer. c
***************f********f****************************f********f******z

L

A e B, Timerh 4 Timer.c

3. Savethe model.

Because you have changed the generated code, you must update the model with the change. To do
this, you use the roundtripping, which is described in the next task.

94

C Tutorial

Exercise 3: Viewing and Editing the Generated Code

Task 3e: Roundtripping

In this task, you use roundtripping. Roundtripping is an on-the-fly method used to update the
model quickly with small changes entered to previously generated code. You may set Rhapsody to
automatically roundtrip changed code using one of these methods:

*

Select Code >Dynamic Model Code Associativity > Roundtrip.

¢ Click the Enable Dynamic Code Associativity button % if the button has ared x and

look disabled (gray). This changes the button to be active |

In order to compile the new code you manually entered for the timerreset function in the
previous task into the model’s generated code and check to be certain it was added to the model,
follow these steps:

1

If Rhapsody was not set to automatically roundtrip the code, from the file menu, choose
Code > Roundtrip > Debug.

See what message appears in the Output window.

To check that the code has been added to the model, double-click the timer Reset function
in the Rhapsody browser to open the Features dialog box.

On the Implementation tab, and seeif the code is now listed, as shown in the following

figure.

=] Packages
HB Diefault
\ Events
-7 Files
Display
E% Tirner
[#-"y) Dependencies
EIE Functions

]ﬁ timerReset()
| Statechart
- variables

Note

x|

Function : timerReset in Timer

Generall Description Implementation |Arguments Helationsl Tags I Propertiesl

I\.-'oid timerRezet(]

01 mins=0; -
0Z secs=0:

Roundtripping should not be used for major changes in the model that would require the
entire model to be rebuilt.

Rhapsody

95

Lesson 5: Generating Code and More

Summary

In thislesson, you generated code. You became familiar with the following:

¢ Managing multiple configurations
¢ Generating, viewing, locating, editing, and manually adding code
¢ Roundtripping

You have completed creating the stopwatch model. You are now ready to proceed to the next
lesson, where you animate the message diagram and compare message diagrams.

96 C Tutorial

Lesson 6: Animating and Comparing

Message Diagrams

Animation executes the behaviors and associated definitionsin the model. Rhapsody animates the
model using the code generated with instrumentation for the components to simul ate the
behaviors. After animating a diagram, you can open the animated versions of the diagrams to
observe the model asit isrunning. This facilitates design-level debugging and troubleshooting.
Using the animation approach, you can step through the model, set and clear breakpoints, inject
events, and generate an output trace.

It isgood practice to test the model incrementally using model execution. You can animate pieces
of the model asit is developed. This gives you the opportunity to determine whether the model
meets the requirements and find defects early on. Then you can test the entire model. In this way,
you iteratively build the model, and then with each iteration perform an entire model validation.

Goals for this Lesson

Previously you animated the Timer statechart. In thislesson, you animate the message diagram for
the stopwatch model by:

*

*

*

Preparing for animation

Animating the message diagram

Viewing the animated message diagram

Comparing the non-animated and animated message diagrams

Rhapsody

97

Lesson 6: Animating and Comparing Message Diagrams

Exercise 1: Animating Message Diagrams

Message diagrams are a key animation tool. When animating a model, Rhapsody dynamically
builds message diagrams to record the block-to-block messaging.

Task la: Running the Executable

To be certain that all of the previous changes are incorporated in the model, it isagood practiceto
generate the model again. Follow these steps:

1. Click the Run Executable button ¥ . The following happens:

+ The Display window opens. Do not close the Display window, though you may want to
minimize, resize, and/or move the it so that you have a better view of the message
diagram.

+ A copy of the message diagram (without the message lines) displays on an Animated
Execution tab on the Drawing area.

+ The Cal Stack, Event Queue, and Output (with the Animation tab active) windows open.
The Call Stack and Event Queue windows provide supporting information to help you
understand what is happening in the animated views.

Note: If these windows are not displayed, from the menu bar, choose View > Call
Sack, View > Event Queue, and/or View > Output Window. The windows
are dockable, so you can move them out of the Rhapsody GUI to increase the
viewable area for animations. To move awindow, click-and-drag it to another
location.

98

C Tutorial

Exercise 1: Animating Message Diagrams

2. Click the Go button |E and watch asthe system adds create () message linesto the copy
of the message diagram, as shown in the following figure.

ENV [Tirmer | Bl

x|
Entire Madel Yiew ~ | + % EMy Timer Display A
= D Stopwatch
(] Buids

D File Diagrams
D Message Diagrams
D Packages

D Profiles

Cregteg [_.J

GED|=0|stts ™37

EURRRRRRRRR R RN R RN w\

« ' | _>l_I
o Welcome to...l el Owerview |E Timer |E Timer - Timerl 5] Execution ﬂ Anirnated Ex...
e[

[EE
[EES

d |_>|—I I,

Call Stack I\ Event Queue /| A>T, Build }, Check Madal 4 Configuration Managament }, Animation

Rhapsody 99

Lesson 6: Animating and Comparing Message Diagrams

Task 1b: Generating an Event

In this task, you start the animation of the messages defined in the original message diagram by
generating an event to start the communication.

To inject a previously defined event into the message diagram, follow these steps:

1. Right-click the Timer on the message diagram and select Gener ate Event to open the
Events dialog box, as shown in the following figure.

Events x|
Object: ITimer Select |

Event: IE\-’T oogle j

Arguments:

M ame | Type | Walue I Edit

History:

Tirner-> GEM[evT ogglel]) Clear |

Timner-> GEM[evFeszet(]]

Cancel | Help |

2. Inthe Event box, select evToggleif it isnot already selected.

100 C Tutorial

Exercise 1: Animating Message Diagrams

3. Click OK.

The display beginsthe timer by displaying seconds with each tick. The file chart beginsto
generate timer tick message lines. At this point your animating diagram should resemble

the following figure.

EMNY

Display

EM

Create(]
< Create(])

Timer Display

Ltmi{1000) at ROOT. Active. i:)n
tickn) |

] |

| showi(m =0, 5= 3) .._|

tm(1000) at ROOT Active. O

E

Rhapsody

101

Lesson 6: Animating and Comparing Message Diagrams

Task 1c: Pausing Animation

You can pause the animation and restart it.

¢ Click the Pause button m to pause the animation.

¢ Click the Go button |E to restart animation.

Task 1d: Stopping Animation

To stop the animation when you are done with observing the animated messages, follow these
steps:

1. Click the Pause button m to pause the animation.

2. Click the Quit Animation button = The system asks if you want to exit the animation
session.

3. Click Yes.

Notice that in the Output window, the Animation session terminated Message
appears.

102 C Tutorial

Exercise 1: Animating Message Diagrams

Task le: Saving the Animated Diagram

You need to save the animated version of the message diagram in order to compare it to your
original version.

To save the animated message diagram, follow these steps:

1. Click the Save button |E| or choose File> Save. The system asksif you want to save the
animated diagram.

2. Click Yes. The animated diagram appears in the browser, as shown in the following figure.

[|
Entire Model Wiew - + 1

El--D Stopwatch
D Builds
{:l File Diagrams
D Message Diagrams
{:l Packages
D Profiles
EI{:I Sequence Diagrams
“| Animated Execution

Rhapsody 103

Lesson 6: Animating and Comparing Message Diagrams

Task 1f: Comparing the Message Diagrams
Once you have saved the two message diagrams, you can do file comparison.

To compare the message diagrams, follow these steps:

1. Choose Tools > Sequence Diagram Compar e to open the Sequence Diagrams
Comparison dialog box.

2. Inthe SD1 box, select the Execution message diagram.
3. Inthe SD2 box, select the animated Execution message diagram.

Your Sequence Diagrams Comparison dialog box should resemble the following figure.

Sequence Diagrams Comparison

Chooge diagrams to compare

X

Ok

S0 IE:-:ecutiu:un j

Cancel
[

Options

Help

dudd

104 C Tutorial

Exercise 1: Animating Message Diagrams

4. Click OK.

Your comparison results should resemble the following figure.

ANHERRRRRRHHERR R R R R AR R R R R R R R R AR

4

F 3

3. tick()
|

T 4 show(m=0,s=1)

[

I

I

I

I

| I
2 tm(1000) |
I

I

I

I

|

.

5. tr(100)

L

I
I
I
T B. showim =0, s=2) _I

L
|

i

4]

W Welcome to...l pi Overview |HDefauIt::Tim...| E Tirner

ENY | Tirner Display | ENV Timer Display |
Execution Message Diagram -] -

EMy Tirmer Display EMw Timer Display

| Creaeg | _ _ -]

I Zlreated) I

1. evTogglel) | evTogglel) | |

I I I

Sl

7 I

— I | ~

tm(1000) at ROOT.Active.Pn

tick()

t

show(m=0,5=1)

trm(1000) at ROOT.Active.I:)n

ick
%Iv(m =0,5=2)

tm(1000) at ROOT. Active. On

[an-]

!
il
|

| ticki)

o

|E Tirmer - Timerl I Execution |ﬂ Animated E... ﬂ[Execution : I

Rhapsody

105

Lesson 6: Animating and Comparing Message Diagrams

Task 1g: Examining the Comparison Results

The displayed messages are col or-coded on the comparison results to easily show the differences.

*

*

Green means the message matches in both message diagrams.
Pink means the message is missing in the other message diagram.

Notice that the animation added the create () messages as expected. However, it also added a
tick () after the second timer that was missing from the original. Then it generated the expected
timer results.

To correct the problem found in this comparison, open the original file diagram and add the
missing tick () asshown in the animated version.

Summary

In this lesson, you animated the message diagram for the stopwatch model. You become more
familiar with animation and you performed the following:

*

*

*

Ran the component

Animated the message diagram

Sent events to the model and saw it pass messages

Compared the message diagram with the animated message diagram

106

C Tutorial

Index

Symbols

#include structure 27
<stdio.h> 41

A

Action elements 46
Activity diagrams 3
Activity flows 49
Analysis mode 81
Animation 62
buttons 76
comparing message diagrams 104
generating events 73
message diagram 98
pausing 102
quitting 78, 102
restarting 102
running 73
saving diagrams 103
sending events 73
set up 63
starting 67
statecharts 62
stopping 102
Arguments 38
Argumentstab 24
Autosave 9

B

Backups 9, 14
Black-box analysis 26
Browser 8,17, 19
copying a configuration 65
filtering 20
locate generated code 93
moving 20
re-ordering elements 20
Build diagrams 4

C

C language 1
adding timerReset function 94

editing code 89
generating code 89
header file 91
makefiles 64
profiles 7
variables 34
Cadll Graph diagrams 4
Call Stack window 98
Categories 19
Check model 21
Classes
naming guidelines 16
Code 1
Ci19
define execution 63
editing 89, 91, 94
executable 98
generated 89
generated from 87
generating 89
header 91
line numbers 92
locate with browser 93
roundtripping 95
viewing 89
Code window 90, 92, 93, 94
Collaboration diagrams 3
Communication 84
Comparing message diagrams 104
Compilers 64
Component diagrams 3
Condition connector 48
Configurations 63
Debug 65
multiple 88
Test 65
Creating
file diagram 30
message diagram 79
statechart 53
stopwatch project 6

D

Debug configuration 65
Default flow 47

Rhapsody

107

Index

Dependency 35
Deployment diagrams 3
Design mode 81
Diagrams 3

Execution message diagram 79, 80

in Functional C profile 4

Overview file diagram 28

renaming 35
Tick flow chart 44
Timer statechart 53, 54
UML diagrams 3
Directories 10
_RTC 10
C samples 2
Linux home 5
project files 6
project repository 10
structure 12
display.h 36
Drawing 18
action elements 46
area 17,21
default flow 47
dependencies 35
files 31
termination state 47
toolbar 17,21

E

Editing code 91
Event history file 10
Event Queue window 98
Events 57, 73
generating 77, 100
naming conventions 16
Executable 98

F

Features dialog box 22
Argumentstab 24
docking 25
Functionstab 24
General tab 23
Implementation tab 25
moving 25
Propertiestab 25
tabs 23
Variablestab 23

fflush 39

Filediagrams 3, 4, 27, 28
creating 28, 30
Overview 28
renaming 29

Files 6, 10
.ehl 10

Ipy 10
.vba 10

drawing 31

log 10

project 6

timer.h 36
Flow charts 3, 4, 43, 44

creating 44, 45

Tick 44
Flows

default 47
FunctionalC profile 4,7
Functional C type 7
Functions 33, 34, 37
Functionstab 24

G

General tab 23
Generating 87
C code 1, 89

different configurations 88

Generating events 73
Graphical user interface 17

Guidelines for naming model elements 16

H
Help pane for property 12

Implncludes property 41
Implementation code 39
Implementation tab 25
Includefiles 41
Instance 69
Interfaces
naming conventions 16
naming guidelines 16

L

Line numbering 92
Linux 5,39

starting Rhapsody 5
Lock symbol 33, 34
Log 21

files 10

M

Makefiles 64, 89

Menu 17

Message diagrams 3, 4, 79
adding instances 83

108

C Tutorial

Index

animated 98
comparing 104
comparison results 106
creating 79, 80

Execution message diagram 80

messages 84
saving animated 103
types of messages 84
Messages 84
Model properties 12
Models
drawing files 31
naming guidelines 16
properties 14
validating 62

N

Names
conventionsfor 16
model element guidelines 16

O

Object model diagrams 3
Opening

project 11

Rhapsody 5
Operations

naming conventions 16
Output window 17, 21, 98

P

Packages 12, 19
filesin browser 32
naming guidelines 16
storing separately 12

Pausing animation 102

printf() 39, 41

Profiles
C language 7

Projects
backups 14
creating 6
directories 10
directory structure 12
file 10
files 6,10
folder 19
more than one 19
node 19
opening 11
restore 15
saving 9
types 7

Properties 12, 14, 41

backup 14

common filter 41

filter 41

implementation includes 41
tab 12,25

Q

Quitting animation 78, 102

R

Renaming diagrams 35
Repository directory 10
Restarting animation 102
Rhapsody 2

autosave 9

backups 9, 14

browser 19

closing 5

drawing area 21

Drawing toolbar 21

exiting 5

Features dialog box 22

GUI 17

interface 17

Output window 21

Propertiestab 12

restore projects 15

starting 5

timer 59

toolbars 18

UML tools 3
Rhapsody browser

filtering 20

moving 20

re-ordering elements 20
Roundtripping 95
rpy file 10

S

Saving aproject 9
Sequence diagrams 3
Simulation 62
Statecharts 3, 53
animated 73
creating 53, 54
generating events 73
simulating 62
Timer 54
transitions 57
stdio.h 41
Stereotype 35
Stopping animation 102
Stopwatch model
animating 62

Rhapsody

109

Index

communication 84
file diagram 27
flow chart 43
message diagram 79
statechart 53
Stopwatch project
creating 6
opening 11
Structure diagrams 3

T

Tabs

check model 21

log 21

timer.c 91

timer.h 91
Termination state 47
Test component 63
Test configuration 65
TestConductor

add-on directory 10
Timeout 84
Timer

.ctab 91

.hfile 36

.htab 91

communication definition 84
instance 69
Timer (event) 57
Timer statechart 54
Timer.ctab 94
Toolbars 17, 18, 21
Transitions 56, 57
Troubleshooting
Message diagram comparison 106
Types of projects 7

U

UML (Unified Modeling Language) 1
Use case diagrams 3

Vv

Variables 34
Variablestab 23

W

White-box analysis 26
Windows 5

110

C Tutorial

	Contents
	Getting Started
	Rhapsody in C Tutorial Overview
	C Tutorial Objectives
	Documentation Conventions
	About the Rhapsody Product
	UML Diagrams
	Diagrams in the FunctionalC Profile
	Starting the Rhapsody Product
	Closing the Rhapsody Product

	Setting Up for the C Tutorial
	Creating the Stopwatch Project
	Creating a Project

	Managing Projects
	Saving a Project
	About Project Files and Directories

	Opening a Project
	Saving Packages Separately
	Creating Backups

	Naming Conventions and Guidelines
	Standard Prefixes
	Guidelines for Naming Model Elements

	Rhapsody User Interface
	Toolbars
	Browser
	Filtering the Browser
	Re-ordering the Browser Elements
	Moving the Browser

	Drawing Toolbars
	Drawing Area
	Output Window
	Features Dialog Box
	Tabs for the Features Dialog Box
	Moving the Features Dialog Box

	Summary

	Lesson 1: Creating File Diagrams
	Goals for this Lesson
	Exercise 1: Creating the File Diagram
	Task 1a: Creating the File Diagram
	Task 1b: Drawing Files
	Task 1c: Adding Functions for Timer
	Task 1d: Adding Variables for Timer
	Task 1e: Adding a Dependency
	Task 1f: Adding a Function and Arguments for Display
	Task 1g: Adding an Include File for Display
	Task 1h: Adding a Diagram Title

	Summary

	Lesson 2: Creating Flow Charts
	Goals for this Lesson
	Exercise 1: Creating a Flow Chart for the Tick Function
	Task 1a: Creating the Flow Chart
	Task 1b: Drawing Action Elements
	Task 1c: Drawing a Default Flow
	Task 1d: Drawing a Termination State
	Task 1e: Drawing Condition Connector
	Task 1f: Drawing Activity Flows
	Task 1g: Adding a Diagram Title

	Summary

	Lesson 3: Creating Statecharts
	Goals for this Lesson
	Exercise 1: Creating a Statechart for the Timer
	Task 1a: Creating the Statechart
	Task 1b: Adding Transitions Between States
	Task 1c: Using the Rhapsody Timer

	Exercise 2: Animating a Statechart
	Task 2a: Defining a Test Component and Configuration
	Task 2b: Creating a Debug Configuration
	Task 2c: Starting Animation
	Task 2d: Creating the Timer Instance
	Task 2e: Generating Events to Run the Animation
	Task 2f: Quitting Animation

	Summary

	Lesson 4: Creating Message Diagrams
	Goals for this Lesson
	Exercise 1: Creating a Message Diagram
	Task 1a: Creating a Message Diagram
	Task 1b: Adding Instances to the Message Diagram
	Task 1c: Drawing Messages to Define the Stopwatch Communication
	Task 1d: Adding a Diagram Title

	Summary

	Lesson 5: Generating Code and More
	Goals for this Lesson
	Exercise 1: Managing Multiple Configurations
	Exercise 2: Generating Code
	Exercise 3: Viewing and Editing the Generated Code
	Task 3a: Viewing the Generated Code
	Task 3b: Adding Line Numbers
	Task 3c: Using the Browser to Locate Code
	Task 3d: Adding Code for the timerReset Function
	Task 3e: Roundtripping

	Summary

	Lesson 6: Animating and Comparing Message Diagrams
	Goals for this Lesson
	Exercise 1: Animating Message Diagrams
	Task 1a: Running the Executable
	Task 1b: Generating an Event
	Task 1c: Pausing Animation
	Task 1d: Stopping Animation
	Task 1e: Saving the Animated Diagram
	Task 1f: Comparing the Message Diagrams
	Task 1g: Examining the Comparison Results

	Summary

	Index

