
4/6/2011

1

Software Validation
CS 4271 Lecture 11, 12

Abhik Roychoudhury
National University of Singapore

Copyright 2009 by Abhik Roychoudhury1

http://www.comp.nus.edu.sg/~abhik/

Software construction
From a design model

In safety-critical domains – automotive, avionics.
D0 178C – software in airborne systems.

Or, hand-constructed
Usual practice – audio, video and other domains.

Copyright (c) 2009, Abhik Roychoudhury2

UML models only for guidance.

Model-driven engineering

Requirements (English)

D i M d l (St t Di ?)
Alternate models?

Manual stepManual step

Desirable
Properties

User

Copyright (c) 2009, Abhik Roychoudhury3

Design Model (State Diagrams?)

Code

Tests

Dynamic

checking tools

Sequence Diag.

Semi-automated

Static checking
tools

Validation output

No model may be available.

CodeTest Suite
coverage Static

Analyzer Properties

Programmer

Copyright (c) 2009, Abhik Roychoudhury4

testing

Dynamic
Checker

Model

abstract

Static
Checker

Validation output

Programming

CS5219 2010-11 by Abhik

Creativity Precision+

The art of debugging

“A software bug (or just
"bug") is an error, flaw,
mistake, … in a computer
program that prevents it from
behaving as intended (e.g.,
producing an incorrect

6

result). … Reports detailing
bugs in a program are
commonly known as bug
reports, fault reports, …
change requests, and so
forth.”
--- Wikipedia

4/6/2011

2

Tools?

7

We should automatically
produce the bug report via
analysis of program and/or
execution trace

Bug report is a small
fragment of the program.

Organization
Dynamic checking of programs

Dynamic slicing
Hierarchical slicing
Fault Localization
Directed testing

Copyright (c) 2009, Abhik Roychoudhury8

Static checking of programs – Not covered.
Predicate abstraction
Abstraction refinement

What is dynamic checking?
Check program executions, not source code.
How to generate program executions?

Testing (coverage based)
Testing (specification based)

How to check program executions

Copyright (c) 2009, Abhik Roychoudhury9

p g
Data and control dependencies (slicing)
By comparing against other program executions (fault
localization).

SW Debugging: Social aspects

Copyright (c) 2009, Abhik Roychoudhury10

Software-controlled devices are ubiquitous ---
automotive control, avionics control and consumer electronics
Many of these software are safety-critical
⇒ should be validated extensively.

SW Debugging: Economics
How often do bugs appear ?
How many of them are critical?
How much money does a company gain by using
sophisticated debugging tools?
Could it be avoided simply by sparing one more

Copyright (c) 2009, Abhik Roychoudhury11

p y y p g
programmer?

SW Debugging: Economics

SW project with 5 million LOC (note: Windows Vista is 50
million LOC !!)

Assume linear scaling up of errors
Actually could be more errors --- we make more mistakes as the SW
grows long and arduous.

Copyright (c) 2009, Abhik Roychoudhury12

1 hr to fix each major error
Actually much more

$40K salary per year 1000
5000000

13 * = 65,000
bugs

44
000,65

weeks = 1477 weeks = ≈
50

1477
30 years = $1.2 M

4/6/2011

3

SW Debugging: tools
“Even today, debugging remains very much of an art. Much of the

computer science community has largely ignored the debugging
problem….. over 50 percent of the problems resulted from the time
and space chasm between symptom and root cause or inadequate
debugging tools.” (Hailpern & Santhanam, IBM Sys Jnl, 41(1),
2002)

Copyright (c) 2009, Abhik Roychoudhury13

)
-> Need methods and tools to trace back to the root cause of

bug from the manifested error
-> What about the current tools?

jdb on windows XP

Copyright (c) 2009, Abhik Roychoudhury14

VB watch debugger

Copyright (c) 2009, Abhik Roychoudhury15

So, what did we see?
Command line tool for Java

User can set breakpoints, and
Replay an execution, and
Watch it at the breakpoints.

Lack of GUI is not the issue here.

Copyright (c) 2009, Abhik Roychoudhury16

Can easily collect and visualize more program info.

Lack of automation is the problem!
Need automated trace analysis.

Dynamic Slicing for Debugging

Program

Input

Exec. Trace
Instrument

Copyright (c) 2009, Abhik Roychoudhury17

Output

OK Unexpected, debug it

Dynamic Slice =
Bug Reportcriterion

Debugging

Dynamic Slicing

b=2;
y=1;
If (a>1){

1
2
3

C t l

Consider input a == 2

CS5219 2010-11 by Abhik

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6 Slicing
Criterion

Data
Dependence

Control
Dependence

4/6/2011

4

Dynamic Slice
Set slicing criterion

(Variable v at first instance of line 70)
The value of variable v at first instance of line 70 is
unexpected.

Dynamic slice

Copyright (c) 2009, Abhik Roychoudhury19

Closure of
Data dependencies &
Control dependencies

from the slicing criterion.

Dynamic data dependencies

V := 1;

…

U := V

An edge from a variable usage to the
latest definition of the variable.

Copyright (c) 2009, Abhik Roychoudhury20

A[i] := 1;

…

U := A[j]

Do we consider this data dependence edge ?

Remember that the slicing is for an input, so
the addresses are resolved

We thus define data dependences
corresponding to memory locations rather than
variable names.

Static Control dependencies

Post-dominated: I,J – nodes in Control Flow Graph

I is post-dominated by J iff all paths from I to EXIT pass through J

I
I

NO

Copyright (c) 2009, Abhik Roychoudhury21

J

EXIT

J

EXIT

YES

Static control dependencies

I
I not post-dom by J

U, V post-dom by J

Control dependence

Copyright (c) 2009, Abhik Roychoudhury22

U

V

J

EXIT

I -> J

Dynamic control dependencies
X is dynamically control dependent on Y if

Y occurs before X in the execution trace
X’s stmt. is statically control dependent on Y’s stmt.
No statement Z between Y and X is such that X’s stmt. is
statically control dependent on Z’s stmt.

C h

Copyright (c) 2009, Abhik Roychoudhury23

Captures the intuition:
What is the nearest conditional branch statement that allows
X to be executed, in the execution trace under consideration.

Dynamic Slice

1. void setRunningVersion(boolean runningVersion)

2. if(runningVersion) {
3. savedValue = value;

}

Copyright (c) 2009, Abhik Roychoudhury24

}
else{

4. savedValue = "";
}

5 this.runningVersion = runningVersion;

6. System.out.println(savedValue);
} Slicing Criterion

4/6/2011

5

Jslice: a dynamic slicing tool

GUI (a Eclipse plug-in)

Execute the program Select

Kaffe JVM

Instrument

Bug Report

Copyright (c) 2009, Abhik Roychoudhury25

Compact Bytecode Trace
Criterion = (Inp, Var, Line#)

Dynamic Slicing

Set of bytecodes

(Stack simulation)Reverse Translate

Class Files

http://jslice.sourceforge.net

Issues for such a slicing tool
Online trace compression – beyond conventional string
compression.

Full trace is never stored.

Program dependence analysis on compressed trace – no
decompression

Copyright (c) 2009, Abhik Roychoudhury26

decompression.

Analysis at low-level (byte-code) to support third-party
software.

Managing stack architecture.

Organization
Dynamic checking of programs

Dynamic slicing
Hierarchical slicing
Fault Localization
Directed testing

Copyright (c) 2009, Abhik Roychoudhury27

Static checking of programs
Predicate abstraction
Abstraction refinement

Problem with dynamic slicing
Huge overheads

Backwards slicing requires trace storage.
Jslice tool for Java

Online trace compression & traversal
http://jslice.sourceforge.net

D i Sli i ill l

Copyright (c) 2009, Abhik Roychoudhury28

Dynamic Slice is still too large …
… for human comprehension

Now

An example

1 public static void main(String[] args) {
…….

2. init(db);
3 operate(db);
4. output (db)

SPECJVM
DB program

Copyright (c) 2009, Abhik Roychoudhury29

5. return;
}

init(.. db) {
db= ..
….

}

operate (… db) {
db =..

…
}

output (db) {
……
print(db...);

}

Divide trace into phases

1 public static void main(String[] args) {
…….

2. init(db);
3 operate(db);
4. output (db);
5 return; }

Copyright (c) 2009, Abhik Roychoudhury30

5. return; }

main()

init()

db

operate()
db

output()
db

4/6/2011

6

Report inter-phase dependencies

main()

Copyright (c) 2009, Abhik Roychoudhury31

init()

db

operate()
db

output()
db

Intra-phase control and data dependencies are suppressed.

Inter-phase dep. form input-output relationships.

Programmer zooms into …

… one phase by inspecting the phase outputs

-> (may/may not involve re-executing program)

main()

Copyright (c) 2009, Abhik Roychoudhury32

init()

db

operate()
db

output()
db

read_db()
current_record

insert()

entries[2]

exit()

Re-exec phase 1 and
observe db

Parallel Dependence Chains

main()

f1() f2()

y

f3()

Copyright (c) 2009, Abhik Roychoudhury33

()

x1

()
x2

x1 = f1();

x2 = f2();

x3 = f3();

y = x1 + x2 + x3;

print y --- Criterion

()
x3

…
y

Hierarchical dynamic slicing
Compute “phases” of an exec. trace

Control structure boundaries

Augment dynamic slicing algorithm
Mark inter-phase dependencies
Compute only reachable nodes from selected inter-phase

Copyright (c) 2009, Abhik Roychoudhury34

p y p
dependency.

Programmer intervention
Select the first suspicious inter-phase dep.
Comprehension guides computation.

In action …

main()

init() operate() output()

Copyright (c) 2009, Abhik Roychoudhury35

Beyond Dynamic Slices
If dynamic slice computation and traversal becomes
manageable

We can look beyond dynamic slices.
We can look at errors which are not captured in dynamic
slices.

4/6/2011

7

Static vs Dynamic Slicing
Static Slicing

source code
statement
static dependence

Dynamic Slicing
a particular execution
statement instance
dynamic dependence

Static vs Dynamic Slicing

b=1;
If (a>1)

1
2

x=1;
else

x=2;
printf (“%d”, x);

3
4
5
6 Slicing Criterion

Static vs Dynamic Slicing

p.f = 1;1

Static points-to analysis is always conservative

p
x= q.f;
printf (“%d”, x);

2
3

Slicing Criterion

p and q point to
the same object?

b=10;
x=1;
If (a>1){

1
2
3

Relevant Slicing

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

b=1;
x=1;
If (a>1){

1
2
3

Relevant Slicing

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

b=1;
x=1;
If (a>1){

1
2
3

input: a=2

Source of Failure

Relevant Slicing

(){
if (b>1){

x=2;
}

}
printf (“%d”, x);

4
5

6

Dynamic Slice

Execution is omitted

4/6/2011

8

b=1;
x=1;
If (a>1){

1
2
3

input: a=2

Potential Dependence

if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

b=1;
x=1;
If (a>1){

1
2
3

input: a=2

Relevant Slice

P t ti l if (b>1){
x=2;

}
}
printf (“%d”, x);

4
5

6

Potential
Dependence Dynamic Data

Dependence

b=1;
x=1;
If (a>1){

1
2
3

input: a=2

Program Slice

Static Dynamic Relevant
1
2
3

2
1
2

If (a>1){
if (b>1){

x=2;
}

}
printf (“%d”, x);

3
4
5

6

3
4
5

6 6

4

6

Organization
Dynamic checking of programs

Dynamic slicing
Hierarchical slicing
Fault Localization
Directed testing

Copyright (c) 2009, Abhik Roychoudhury46

Static checking of programs
Predicate abstraction
Abstraction refinement

More on debugging
Dynamic slicing analyzes the problematic execution trace.

Problematic: output is unexpected
OK: output is as expected.

Alternatively:
We could compare a given problematic trace with an OK trace

Copyright (c) 2009, Abhik Roychoudhury47

to localize the source of error.

Fault Localization: overview

Compare Execution

Failing Run Successful Run

Copyright (c) 2009, Abhik Roychoudhury48

Compare Execution

Difference As bug report

Developer

4/6/2011

9

Comparing executions

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;
5 } should be

Copyright (c) 2009, Abhik Roychoudhury49

5. }
6. …..

should be

if ((m >= 0) && (lastm!=m))

Comparing executions

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;

1 . m=...
2. if (m >= 0) {
3. ...
4. lastm = m;

Copyright (c) 2009, Abhik Roychoudhury50

Failing run Successful run

5. }
6. …..

4. lastm m;
5. }
6. …..

Fault localization

Choose

Successful Run Pool Testing

Change Failing
InputGenerate

Copyright (c) 2009, Abhik Roychoudhury51

Compare Execution

Failing Run Successful Run

Difference As bug report

Difference Metric

Example program

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5 if ()

ProgramProgram

Copyright (c) 2009, Abhik Roychoudhury52

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Comparing executions
1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)
6 if (d)

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)
6 if (d)

Copyright (c) 2009, Abhik Roychoudhury53

Execution run Execution run ππ Execution run Execution run ππ11

6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Set of statements

S = Set of statements executed in ππ
{1,3,5,6,7,10}

S1 = Set of statements executed in ππ1
{1,3,4,5,6,9,10}

If ππ is faulty and π1 is OK

Copyright (c) 2009, Abhik Roychoudhury54

If ππ is faulty and π1 is OK
Bug report = S – S1 = {4,7}

Choice of the execution run to compare with is very
important.

4/6/2011

10

Another difference metric

Failing Run

π1, π2π

Successful Runs
Number of Branches

Location of

Copyright (c) 2009, Abhik Roychoudhury55

diff_1 diff_2

Compare

Location of
Branches

Difference b/w traces shown

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5 if (c)

Copyright (c) 2009, Abhik Roychoudhury56

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Trace alignment and differences

Copyright (c) 2009, Abhik Roychoudhury57

Compare Corresponding
Statement Instances

1. while (a){
2. if (b)
3. i++;
4. }
1 while (a){

1. while (a){
2. if (b)
3. i++;
4. }
1 while (a){

1st Loop
Iteration

58

1. while (a){
2. if (b)
3.
4. }
1. while (a){
5. ……

1. while (a){
2. if (b)
3. i++;
4. }
1. while (a){
2. if (b)

2nd Loop
Iteration

3rd Loop
Iteration

Use control dependencies!

Formal notion of Alignment
For any pair of event e in run x and event e0 in run y, we

define align(e, e0) = true (e and e0 are aligned) iff.
stmt(e) = stmt(e0), and
either

e, e0 are the first events appearing in runs x, y or
align(dep(e x) dep(e0 y)) = true

CS5219 2010-11 by Abhik

align(dep(e, x), dep(e0, y)) = true.
dep(e, x) == the event on which e is dynamically control dependent in
run x.

Comparison of differences

Failing runFailing run Successful runsSuccessful runs

diffdiff diffdiff’’ππ ππ11 ππ22

?

4/6/2011

11

Comparison of differences

< <

diffdiff diffdiff’’

<

diffdiff diffdiff’’

<

Fault localization – In summary

Choose

Successful Run Pool Testing

Change Failing
InputGenerate

Copyright (c) 2009, Abhik Roychoudhury62

Compare Execution

Failing Run Successful Run

Difference As bug report

Difference Metric

Organization
Dynamic checking of programs

Dynamic slicing
Hierarchical slicing
Fault Localization
Directed testing

Copyright (c) 2009, Abhik Roychoudhury63

Big picture – Testing and
Debugging

Why test?
Feel good about the program you have written.

How does it relate to fault localization?
Testing identifies which inputs we run the program against.

What is a good set of inputs to test?
Once you run the selected inputs, for some of them the output Once you run the selected inputs, for some of them the output
is unexpected.

These are the failing tests.
These are subjected to fault localization.

Big picture – Debugging & MC

P

input = 0

output = 0

P
G(pc = end ⇒output > input)

Model Checker

Counter-example:
input = 0, output = 0

We should have (output >
input)

(a) Debugging (b) Model Checking

Common terminology

Test case
A test input (or its execution trace)

Test suite
Set of test cases

Test purpose

Copyright (c) 2009, Abhik Roychoudhury66

A formal specification to guide testing
e.g. a regular expression which the test case should satisfy

Coverage criterion
A guide to exhaustively cover program structure.

e.g. Statement coverage, Cond. coverage, Path coverage.

4/6/2011

12

Statement coverage

Y = Y +1
Make the branch condition true

〈X = 1, Y = 1, Z = 2, W = 1〉

Copyright (c) 2009, Abhik Roychoudhury67

X = X -1

true false
X = Y ∧ Z > W

Edge coverage

Y = Y +1

Make the branch condition
true/false

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

Copyright (c) 2009, Abhik Roychoudhury68

X = X -1

true false
X = Y ∧ Z > W

Condition coverage

For each executable condition c
Check whether it can be both true or false

c could be unsatisfiable or valid in all pgm. executions
For all such conditions c, c should be true in at least
one test in the test suite and c should be false in at

Copyright (c) 2009, Abhik Roychoudhury69

one test in the test suite, and c should be false in at
least one test in the test suite.

Condition coverage

Y = Y +1

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

X == Y is true in both the test cases

Copyright (c) 2009, Abhik Roychoudhury70

X = X -1

true false
X == Y ∧ Z > W

Condition coverage

Y = Y +1

〈X = 1, Y = 1, Z = 2, W = 1〉

〈X = 1, Y = 1, Z = 2, W = 2〉

〈X = 3, Y = 4, Z = 7, W = 5〉

Copyright (c) 2009, Abhik Roychoudhury71

X = X -1

true false
X == Y ∧ Z > W

Path coverage
Cover all paths in the program

Unboundedly many, unless loops can be bounded.
Lot of infeasible paths i.e. paths which do not form execution
trace for any input.

Infeasible path detection will help test-suite construction.

A technique to help exercise new paths with new tests

Copyright (c) 2009, Abhik Roychoudhury72

A technique to help exercise new paths with new tests
Attempts to achieve path coverage
Basic idea: concrete and symbolic execution at the same time.

4/6/2011

13

Directed testing
Start with a random input I.
Execute program P with I

Suppose I executes path p in program P.
While executing p, collect a symbolic formula f which captures the
set of all inputs which execute path p in program P.
f is the path condition of path p traced by input i.

Copyright (c) 2009, Abhik Roychoudhury73

Minimally change f, to produce a formula f1
Solve f1 to get a new input I1 which executes a path p1 different
from path p.

Example program
if (Climb)

separation = Up;
else

separation = Up + 100; Start with random input

if (separation > 150) (Climb == 0, Up == 457)
upward = 1;

Copyright (c) 2009, Abhik Roychoudhury74

p ;

else
upward = 0;

if (upward >0)
printf(“Upward”);

else
printf(“Downward);

Example program
if (Climb)

separation = Up;
else Climb == 0 ∧

separation = Up + 100;

if (separation > 150) (Up + 100 > 150) ∧
upward = 1;

Copyright (c) 2009, Abhik Roychoudhury75

p ;

else
upward = 0;

if (upward >0) upward > 0
printf(“Upward”);

else
printf(“Downward);

Generating new tests
The path condition calculated

Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0

Minimally modify the condition
Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)

Corresponding to the path …

Copyright (c) 2009, Abhik Roychoudhury76

p g p

Infeasible path!!
if (Climb)

separation = Up;
else Climb == 0 ∧

separation = Up + 100;

if (separation > 150) (Up + 100 > 150) ∧
upward = 1;

Copyright (c) 2009, Abhik Roychoudhury77

p ;

else
upward = 0;

if (upward >0)
printf(“Upward”);

else ¬ upward > 0
printf(“Downward);

Generating new tests
The path condition calculated

Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0

Minimally modify the condition
Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)
Corresponding to infeasible path!

Copyright (c) 2009, Abhik Roychoudhury78

Modify a bit more
Climb == 0 ∧ ¬ (Up + 100 > 150)
Corresponding to the path …

4/6/2011

14

Feasible path
if (Climb)

separation = Up;
else Climb == 0 ∧

separation = Up + 100;

if (separation > 150) ¬ (Up + 100 > 150)
upward = 1;

Copyright (c) 2009, Abhik Roychoudhury79

p ;

else
upward = 0;

if (upward >0)
printf(“Upward”);

else
printf(“Downward);

Generating new tests
The path condition calculated

Climb ==0 ∧ Up + 100 > 150 ∧ upward > 0
Minimally modify the condition

Climb ==0 ∧ Up + 100 > 150 ∧ ¬(upward > 0)
Corresponding to infeasible path!

Modify a bit more

Copyright (c) 2009, Abhik Roychoudhury80

Modify a bit more
Climb == 0 ∧ ¬ (Up + 100 > 150)
Solve to get another test input

Climb == 0, Up == 0

Continue in this fashion.

Path condition computation
1 input x, y, z;
2 if (y > 0){
3 z = y * 2;
4 x = y - 2;
5 x = x - 2; }
6 if (z == x){
7 output("How did I get here");
}

Path condition computation

Line# Assignment store Path cond.
1 {} true
2 {} y > 0
3 {(z, 2*y)} y > 0
4 {(z,2*y), (x, y-2)} y > 0

1 input x, y, z;

2 if (y > 0){

3 z = y * 2;

4 x = y - 2;

5 x = x - 2; }

6 if (z == x){

5 {(z,2*y), (x, y-4)} y > 0
6 {(z,2*y), (x, y-4)} y > 0 /\ 2*y == y - 4
7 {(z, 2*y), (x, y-4)} false

7 output("How did I get here");

}

Path condition computation
We traverse forward along the sequence of statements in the given
path, starting with a null formula and gradually building it up. At any
point during the traversal of the trace, we maintain a set of symbolic
expressions for the program variables and the path condition.

for every assignment encountered, we update the symbolic assignment
store.
for every branch statement encountered, we conjoin the branch
condition with the path condition. While doing so, we use the symbolic p g y
assignment store for every variable appearing in the branch condition.

At the end of the trace, we get the path condition.

Topics Covered
Dynamic checking of programs

Dynamic slicing - what was important & executed
Hierarchical slicing – managing dynamic slices
Fault Localization – Trace comparison
Directed testing – Symbolic execution along traces

Copyright (c) 2009, Abhik Roychoudhury84

Static checking of programs – Not covered in this module

