
1

Statecharts

CS4271, 2011CS4271, 2011--1212 11

Abhik Roychoudhury
School of Computing

National University of Singapore

Warm up – the big picture

System
to be
built

(Dream)

System
Model

(Rough
Idea)

Refine
Properties
to Satisfy
(caution)

Checking
Method

(Automat
ed)

Violations

Refine
the

model

Background
Finite state machines

Other variants
Model Reactive and transformational systems

Statecharts is one of the simplest and

CS4271, 2011-12 3

p
most popular modeling formalism

Very intuitive, visual.
An illustration of how to model systems with
statecharts will be shown via Rhapsody tool.
• Also, tested in the first lab assignment.

Readings
Statecharts: A visual formalism for
complex systems, by David Harel, Science
of Computer Programming, 1987
Executable object modeling with
statecharts, by David Harel and Eran

CS4271, 2011-12 4

Gery, IEEE Computer, 1997
Basic understanding of states/transitions
is introduced first.

Introducing FSMs --- a puzzle
A man with a goat, a wolf and a cabbage
wants to cross a river.
A boat can carry only 2 of the 4 entities.
Wolf wants to eat the goat.
Goat wants to eat the cabbage

CS4271, 2011-12 5

Goat wants to eat the cabbage.
How to transport all the 4 entities ?

Think of modeling the local state of each
entity – on which side of the river?

A global state is a composition of these local
states --- transitions of global states form FSM

State change

MWGC---
Transport

Goat WC---MG

Wolf
Cabbage

CS4271, 2011-12 6

2

State change

MWGC---
Transport

Goat WC---MG

Wolf
Cabbage

C---MWG
W---MCG

Cabbage

CS4271, 2011-12 7

Goat Goat

MGC---W
MGW-C

wolf
cabbage

G---MCW

MG---
WC

---MWGC

Modeling using FSMs
A solution to our problem is a path from
the initial state to a state where all 4
entities are on other side of river.

Notion of “termination” of the problem.
Shown as accepting states of FSMs

CS4271, 2011-12 8

Minor note:
Not all cycles in the FSM for this problem have
been shown.

FSM --- Definition
M = (S, S0, ∑, →, F)

S is a set of states
S0 ⊆ S is the set of initial states
→ ⊆ S × ∑ × S is the transition relation
F ⊆ S is the set of final or accepting states

CS4271, 2011-12 9

The set of strings accepted by M or the
language of M

L(M) = all strings which have a path from an
initial state to an accepting state.
Using finite state machines for recognizing or
distinguishing (infinite) set of (finite) strings.

FSM --- Example

0

1

1

0

CS4271, 2011-12 10

Accepts all binary strings with odd number of 1s

An infinite collection of finite strings

Transition Systems
FSMs can accept infinite strings too, change
accepting condition

An infinite string is accepted iff it visits at least one final
state infinitely often.

Transition systems go one step further where all
states are accepting.

CS4271, 2011-12 11

TS = (S, S0, ∑, →)
• No notion of terminating or accepting states
• The alphabet ∑ labeling the transitions is also

optional.
• The traces captured by a transition system are

obtained by unrolling the graph from the initial
state(s).

TS - Example

0

1

1

0

CS4271, 2011-12 12

Traces captured by this transition system are

(0* 1)* 0ω

(0*1)ω

3

Transformational Systems
Conventional notion of a terminating
program.

Takes in input.
Performs computation step.
Terminates after producing output.

CS4271, 2011-12 13

System behavior
Can be described as a transformation function
over the input.

What about controllers ?
In continuous interaction with the
environment.

Reactive Systems
Continuously interacts with its
environment.

No notion of system termination.

Interaction with environment is typically
asynchronous.

CS4271, 2011-12 14

Often consists of a concurrent composition
of processes.

Often, its response to environment needs to
obey time constraints.

Reactive system behavior
(Infinite) collection of infinite traces.
Traces denote ongoing interaction with
environment.
Use state transition systems to describe
behavior of a reactive system

CS4271, 2011-12 15

b a o o a a y
Too much complexity
Many processes --- concurrency
Each process has many states --- hierarchy
What kind of inter-process communication?

The language of Statecharts addresses
these practical issues !!

Visual Formalisms
Important/imperative at initial design
stages.
Vital for communication.
Formal visual languages can help in:

Documentation

CS4271, 2011-12 16

Documentation
Initial analysis.
Developing correct-by-construction translation
to more detailed (non-visual) descriptions.

Statecharts
Statecharts =

FSMs +
Depth +
Orthogonality +
Structured transitions +

CS4271, 2011-12 17

Broadcast communication

Used in the Rhapsody tool.
Included in UML 2.0 as state diagrams.

General Idea
Statecharts

= FSM + many features to contain complexity.

What does the FSM denote?
System response to external triggers.
States of the FSM = internal states of the
system
Transitions of the FSM are labeled by such
triggers.
• An external trigger may in turn generate internal

triggers which can also form the labels.

Traces of the FSM are sequence of transitions.
• System response should stabilize eventually, waits

for the next external trigger from environment.
CS4271, 2011-12 18

4

Statecharts
Depth:

States can have internal structure.
OR type states

Orthogonality
Independent states
Concurrency
AND type states

CS4271, 2011-12 19

Structured transitions
Succinct descriptions of transition families.

Broadcast communication
Succinct descriptions of synchronizations

Depth : OR States

CS4271, 2011-12 20

(b) is the statechart representation of the FSM (a).

Depth : OR States

CS4271, 2011-12 21

A and C are clustered into a superstate D

A and C are the internal exclusive-or components of the D state.

Depth : OR States

CS4271, 2011-12 22

e, f : are trigger (external) events.

g [c]: g, a trigger event and c a condition

Depth : OR States

CS4271, 2011-12 23

f is a transition from D to B.

From any D-state (A or C) there is an f-move to B

Depth : OR States

CS4271, 2011-12 24

h is transition from B to D (A or C).

The actual state entered is the default entry state; the state C

5

Depth : OR States

CS4271, 2011-12 25

D is the initial state.

The actual initial state within D is not the default state C.

Instead, it is A.

Depth: OR States

CS4271, 2011-12 26

Which state will transition e yield in (b) and (c)?

Which state will transition h yield in (b) and (c)?

What’s the default state for the superstate E in (c)? Hierarchically!

A Concrete Example: OR-chart

CS4271, 2011-12 27

OR-State: in a nutshell

An OR-state can contain other states as its internal
substates (hierarchical internal structure);
A super OR-state is active, if and only if one of its
immediate substates is active (exclusive or);
When the control enters a (super) OR state its

CS4271, 2011-12 28

When the control enters a (super) OR-state, its
default substate is entered and becomes active;
When the control leaves a (super) OR-state, all its
substates become inactive!
More issues: history, priority, …

Orthogonality: AND States

CS4271, 2011-12 29

(b) is the statechart representation of the FSM (a).

Orthogonality: AND States

CS4271, 2011-12 30

Y is an AND state.
It has two orthogonal components A and D.
A is an OR state with components B and C.
D is an OR state with components E, F and G.

6

Orthogonality: AND States

CS4271, 2011-12 31

Y is an AND state.
It has two orthogonal components A and D.
a state of Y is composed of a state of A and a state of D
What is the default initial state of Y?

Orthogonality: AND States

CS4271, 2011-12 32

Y is an AND state.
It has two orthogonal components A and D.
a state of Y is composed of a state of A and a state of D
What is the default initial state of Y? (B,F)

Orthogonality: AND States

CS4271, 2011-12 33

f belongs to only A.
e belongs to both A and D.
From (B,F) there is a simultaneous e-move to (C,G)

Orthogonality: AND States

CS4271, 2011-12 34

f belongs to only A.
e belongs to both A and D.
From (B,F) there is a simultaneous e-move to (C,G)

Orthogonality: AND States

CS4271, 2011-12 35

f belongs to only A.
e belongs to both A and D.
From (B,F) there is a simultaneous e-move to (C,G)

Orthogonality: AND States

CS4271, 2011-12 36

f belongs to only A.
e belongs to both A and D.
From (B,F) there is a simultaneous e-move to (C,G)

7

Orthogonality: AND States

CS4271, 2011-12 37

From every Y state (how many?) there is a p-move to I

Orthogonality: AND States

CS4271, 2011-12 38

From every Y state (6!) there is a p-move to I
From I there is an e-move to the Y-state (?, ?)

Orthogonality: AND States

CS4271, 2011-12 39

From I there is an e-move to the Y-state (C, G)

What if there is an e-arrow from I to just the surface of Y?

Orthogonality: AND States

CS4271, 2011-12 40

For each (?, F) state there is an m-move to I
Note the [in G] condition attached to the f-move from C
(state reference!).

AND-state: in a nutshell

An AND-state is composed of several
independent (OR-)states that run in parallel
(concurrency);
An active state of an AND-state comprises a state
of each concurrent component, i.e., (s1,s2,…,sn);
When the control enters (leaves) an AND-state, it
simultaneously enters (leaves) all its components;

CS4271, 2011-12 41

simultaneously enters (leaves) all its components;
An AND-state can even occur inside an OR-state
(different from conventional programming
languages)

Broadcast Communication

CS4271, 2011-12 42

A transition has a trigger and an action (output!)

But the output of a transition can be inputs for other orthogonal
components!

8

Broadcast Communication

CS4271, 2011-12 43

Start configuration (B, F, J)

m/e: m is the trigger event, while e is the action (output!)

Suppose m (external event) occurs.

Broadcast Communication

CS4271, 2011-12 44

Start configuration (B, F, J)

Suppose m (external event) occurs.

H goes to I from J ; e-moves are enabled in A and D

Broadcast Communication

CS4271, 2011-12 45

Start configuration (B, F, J)

m occurs

Final configuration (C, G, I)

Broadcast Communication

CS4271, 2011-12 46

Suppose event n comes,

What happen now?

Broadcast Communication

CS4271, 2011-12 47

Now suppose event n comes,

What happen? Transition is fired, f is generated,

which fires transition

Broadcast Communication

CS4271, 2011-12 48

Now suppose event n comes,

What happen? Transition is fired, f is generated,

which fires transition , which again fires

9

Broadcast Communication

CS4271, 2011-12 49

Now suppose event n comes,

Transition is fired, f is generated,

which fires transition , which again fires

Finally yielding (B,E,J)

What are the triggers/actions
Method call

Method_name(parameters)

Or, Event
Event_name(parameters)

Is there a difference?

CS4271, 2011-12 50

Is there a difference?
Lots, in terms of semantics
A method call involves a transfer of control
• If there are nested method calls, they can cause

further transfer of control

An event will be lodged in a system queue
• It will be removed by the recipient later.

Events and Method calls
Event based communication

Inherently asynchronous
• Designer does not worry about controlling all

interaction sequences (this is taken care of by the
system queue)

Method call based communication

CS4271, 2011-12 51

Method call based communication
Synchronous, involving transfer of control
Involves close control by the designer over
interaction sequences ---
• getting closer to code level

Most General form of …
… annotation for a transition

Trigger[condition]/Action

Trigger is event expression or method
invocation
Condition is like a branch condition on

CS4271, 2011-12 52

Condition is like a branch condition on
data variables
Action is a program

Sequence of event generation or method
invocation or even code in a programming
language.

Summary
Practical Use of Statecharts in Modeling
Object-based systems

Use statecharts to describe behavior of classes
(of active objects)
Class Associations given by class diagrams.

CS4271, 2011-12 53

Contains code in the actions for realistic
designs

A realistic approach for modeling
(distributed) embedded controllers.

