Statecharts

Abhik Roychoudhury
School of Computing

\ National University of Singapore /

Warm up — the big picture

System
to be
built

(Dream)

Properties
to Satisfy
(caution)

System
Model |
(Rough |~
Idea)

Checking
Method
(Automat

ed)

Violations |’

\‘:. Refine
i the
i model

CS4271, 2011-12 1

Background

Readings

> Finite state machines
« Other variants
« Model Reactive and transformational systems

> Statecharts is one of the simplest and
most popular modeling formalism
« Very intuitive, visual.

« An illustration of how to model systems with
statecharts will be shown via Rhapsody tool.
= Also, tested in the first lab assignment.

Cs4271, 2011-12 3

» Statecharts: A visual formalism for

complex systems, by David Harel, Science

of Computer Programming, 1987
> Executable object modeling with

statecharts, by David Harel and Eran

Gery, IEEE Computer, 1997

is introduced first.

Cs4271, 2011-12

> Basic understanding of states/transitions

Introducing FSMs --- a puzzle

State change

> A man with a goat, a wolf and a cabbage
wants to cross a river.

> A boat can carry only 2 of the 4 entities.
> Wolf wants to eat the goat.

» Goat wants to eat the cabbage.
« How to transport all the 4 entities ?

> Think of modeling the local state of each
entity — on which side of the river?

« A global state is a composition of these local
states --- transitions of global states form FSM

CS4271, 2011-12

5

CS4271, 2011-12

State change
Cabbage

@ Cabbage
Wolf ﬂ

Goat

CS4271, 2011-12

Modeling using FSMs

> A solution to our problem is a path from
the initial state to a state where all 4
entities are on other side of river.
« Notion of “termination” of the problem.
« Shown as accepting states of FSMs

> Minor note:
« Not all cycles in the FSM for this problem have
been shown.

CS4271, 2011-12

FSM --- Definition

>M=(S, S0, X, >, F)
. Sis a set of states
« SO c S is the set of initial states
« > < S x X, x S is the transition relation
« F < Sis the set of final or accepting states
> The set of strings accepted by M or the
language of M
« L(M) = all strings which have a path from an
initial state to an accepting state.

« Using finite state machines for recognizing or
distinguishing (infinite) set of (finite) strings.

Cs4271, 2011-12 9

FSM --- Example

1 (: 0

0 1

Accepts all binary strings with odd number of 1s

An infinite collection of finite strings

Cs4271, 2011-12

10

Transition Systems

> FSMs can accept infinite strings too, change
accepting condition
« An infinite string is accepted iff it visits at least one final
state infinitely often.
> Transition systems go one step further where all
states are accepting.
« TS = (S, SO, X, »)
= No notion of terminating or accepting states
= The alphabet X labeling the transitions is also
optional.
= The traces captured by a transition system are
obtained by unrolling the graph from the initial
state(s).

CS4271, 2011-12 11

TS - Example

1 (} 0

0 1

Traces captured by this transition system are
(0% 1)* 0
(0*1)°

CS4271, 2011-12

12

Transformational Systems

> Conventional notion of a terminating
program.
« Takes in input.
« Performs computation step.
- Terminates after producing output.
> System behavior
« Can be described as a transformation function
over the input.
> What about controllers ?
« In continuous interaction with the
environment.

CS4271, 2011-12

13

Reactive Systems

> Continuously interacts with its
environment.
» No notion of system termination.

» Interaction with environment is typically
asynchronous.

» Often consists of a concurrent composition

of processes.
» Often, its response to environment needs to
obey time constraints.

CS4271, 2011-12 14

Reactive system behavior

> (Infinite) collection of infinite traces.

> Traces denote ongoing interaction with
environment.

> Use state transition systems to describe
behavior of a reactive system
« Too much complexity
« Many processes --- concurrency
« Each process has many states --- hierarchy
« What kind of inter-process communication?

> The language of Statecharts addresses
these practical issues !!

Cs4271, 2011-12

15

Visual Formalisms

> Important/imperative at initial design
stages.

> Vital for communication.

> Formal visual languages can help in:
« Documentation
« Initial analysis.

« Developing correct-by-construction translation
to more detailed (non-visual) descriptions.

Cs4271, 2011-12 16

Statecharts

> Statecharts =
« FSMs +
. Depth +
« Orthogonality +
« Structured transitions +
« Broadcast communication
> Used in the Rhapsody tool.
> Included in UML 2.0 as state diagrams.

CS4271, 2011-12

17

General ldea

» Statecharts
« = FSM + many features to contain complexity.
> What does the FSM denote?
« System response to external triggers.
« States of the FSM = internal states of the
system
« Transitions of the FSM are labeled by such

triggers.
= An external trigger may in turn generate internal
triggers which can also form the labels.
« Traces of the FSM are sequence of transitions.
= System response should stabilize eventually, waits
for the next external trigger from environment.
CS4271, 2011-12 18

Statecharts

Depth : OR States

Depth:

States can have internal structure.

OR type states
Orthogonality

Independent states

Concurrency

AND type states
Structured transitions

Succinct descriptions of transition families.
Broadcast communication

Succinct descriptions of synchronizations

CS4271, 2011-12 19

(b) is the statechart representation of the FSM (a).

Cs4271, 2011-12 20

Depth : OR States

Depth : OR States

Aand C are clustered into a superstate D

Aand C are the internal exclusive-or components of the D state.

Cs4271, 2011-12 21

(a)

e, f: are trigger (external) events.
g[c]: g, atrigger event and c a condition

Cs4271, 2011-12 22

Depth : OR States

Depth : OR States

fis a transition from D to B.

From any D-state (A or C) there is an f-move to B

CS4271, 2011-12 23

(a)

h is transition from B to D (A or C).
The actual state entered is the default entry state; the state C

CS4271, 2011-12 24

Depth : OR States

D is the initial state.
The actual initial state within D is not the default state C.

Instead, it is A.

CS4271, 2011-12 25

Depth: OR States

(b)

Which state will transition e yield in (b) and (c)?
Which state will transition h yield in (b) and (c)?

What's the default state for the superstate E in (c)? Hierarchically!

Cs4271, 2011-12 26

A Concrete Example: OR-chart

phone

nngs - -,
WaitingFor
T S
iealler) hang’s -
. lifts receiers .- answers
hangs dal tone shann
u bowins | = v
up s ,

[Making \] (
Phone | Call Y .. l

Lina~ .

Racaiving]
Call

T (Eommed N
._q‘lDiallin‘}_.." "i‘;,";”]_.{mnqin Connsctad]

. . Ateallee) |
= tvalid "~ TRuwdy b
number] phone rings phone/
nngung wops
_ Making Call
Cs4271, 2011-12 27

OR-State: in a nutshell

> An OR-state can contain other states as its internal
substates (hierarchical internal structure);

> A super OR-state is active, if and only if one of its
immediate substates is active (exclusive or);

> When the control enters a (super) OR-state, its
default substate is entered and becomes active;

> When the control leaves a (super) OR-state, all its
substates become inactive!

> More issues: history, priority, ...

Cs4271, 2011-12 28

Orthogonality: AND States

(b) is the statechart representation of the FSM (a).

CS4271, 2011-12 29

Orthogonality: AND States

fa)

Y is an AND state.

It has two orthogonal components A and D.
Alis an OR state with components B and C.

D is an OR state with components E, F and G.

CS4271, 2011-12 30

Orthogonality: AND States

(a)

Y is an AND state.

It has two orthogonal components A and D.

a state of Y is composed of a state of A and a state of D
What is the default initial state of Y?

CS4271, 2011-12 31

Orthogonality: AND States

Y is an AND state.

It has two orthogonal components A and D.

a state of Y is composed of a state of A and a state of D
What is the default initial state of Y? (B,F)

Cs4271, 2011-12 32

Orthogonality: AND States

fa)
f belongs to only A.
e belongs to both Aand D.
From (B,F) there is a simultaneous e-move to (C,G)

Cs4271, 2011-12 33

Orthogonality: AND States

f belongs to only A.
e belongs to both Aand D.
From (B,F) there is a simultaneous e-move to (C,G)

Cs4271, 2011-12 34

Orthogonality: AND States

fa)

f belongs to only A.
e belongs to both Aand D.
From (B,F) there is a simultaneous e-move to (C,G)

CS4271, 2011-12 35

Orthogonality: AND States

fa)

f belongs to only A.
e belongs to both A and D.
From (B,F) there is a simultaneous e-move to (C,G)

CS4271, 2011-12 36

Orthogonality: AND States

Orthogonality: AND States

fa)
From every Y state (how many?) there is a p-move to |

CS4271, 2011-12 37

From every Y state (6!) there is a p-move to |
From | there is an e-move to the Y-state (?, ?)

Cs4271, 2011-12 38

Orthogonality: AND States

Orthogonality: AND States

fa)
From | there is an e-move to the Y-state (C, G)

What if there is an e-arrow from | to just the surface of Y

Cs4271, 2011-12 39

For each (?, F) state there is an m-move to |
Note the [in G] condition attached to the f-move from C
(state reference!).

Cs4271, 2011-12 40

AND-state: in a nutshell

~ An AND-state is composed of several

independent (OR-)states that run in parallel
(concurrency);

> An active state of an AND-state comprises a state
of each concurrent component, i.e., (s;,s,,...,S,);
> When the control enters (leaves) an AND-state, it
simultaneously enters (leaves) all its components;
- An AND-state can even occur inside an OR-state
(different from conventional programming
languages)

CS4271, 2011-12 41

Broadcast Communication

Atransition has a trigger and an action (output!)

But the output of a transition can be inputs for other orthogonal
components!

CS4271, 2011-12 42

Broadcast Communication

Start configuration (B, F, J)
m/e: mis the trigger event, while e is the action (output!)
Suppose m (external event) occurs.

CS4271, 2011-12 43

Broadcast Communication

(&

Start configuration (B, F, J)
Suppose m (external event) occurs.
H goes to | from J ; e-moves are enabled in A and D

CS4271, 2011-12

a4

Broadcast Communication

Start configuration (B, F, J)
m occurs
Final configuration (C, G, I)

Cs4271, 2011-12 45

Broadcast Communication

Suppose event n comes,

What happen now?

Cs4271, 2011-12

46

Broadcast Communication

Now suppose event n comes,
. nff . .
What happen? Transition I —= 1 is fired, f is generated,

which fires transition ¢ /1 &

CS4271, 2011-12 47

Broadcast Communication

Now suppose event n comes,
. off L .
What happen? Transition T MESTS fired, fis generated,

which fires transition = /4 & , which again fires & L E

CS4271, 2011-12

48

Broadcast Communication

Now suppose event n comes,

Transition 1 _'; J is fired, f is generated,

which fires transition ¢ ‘% &, which again fires (; -2 |
Finally yielding (B,E,J)

CS4271, 2011-12 49

What are the triggers/actions

> Method call

« Method_name(parameters)
» Or, Event

« Event_name(parameters)
> Is there a difference?

« Lots, in terms of semantics

« A method call involves a transfer of control

= If there are nested method calls, they can cause
further transfer of control

« An event will be lodged in a system queue
= It will be removed by the recipient later.

CS4271, 2011-12 50

Events and Method calls

Most General form of ...

» Event based communication

« Inherently asynchronous

= Designer does not worry about controlling all
interaction sequences (this is taken care of by the
system queue)

> Method call based communication
« Synchronous, involving transfer of control

« Involves close control by the designer over
interaction sequences ---
- getting closer to code level

Cs4271, 2011-12 51

» ... annotation for a transition
« Trigger[condition]/Action

> Trigger is event expression or method
invocation

> Condition is like a branch condition on
data variables

> Action is a program
« Sequence of event generation or method

invocation or even code in a programming
language.

Cs4271, 2011-12

52

Summary

> Practical Use of Statecharts in Modeling
Object-based systems
« Use statecharts to describe behavior of classes
(of active objects)
« Class Associations given by class diagrams.
« Contains code in the actions for realistic
designs
> A realistic approach for modeling
(distributed) embedded controllers.

CS4271, 2011-12 53

