
2/8/2012

1

Modeling Notations
CS 4271 lecture 2

Abhik Roychoudhury
National University of Singapore

Copyright 2012 by Abhik Roychoudhury1

http://www.comp.nus.edu.sg/~abhik/

Different kinds of ES Validation

Hardware

Informal
Requirements

Copyright 2012 by Abhik Roychoudhury2

System Model

Model Validation

Partition
Communication
Validation

Software

Functionality
&
Performance
Validation

What is a system design model?
We first clarify the following terms

System Architecture: Inter-connection among the system
components.
System behavior: How the components change state, by
communicating among themselves.

Copyright 2012 by Abhik Roychoudhury3

System Design Model = Architecture + Behavior
More precise definition later.

The big picture in modeling

System
Require
ments

(Dream)

System
Model
(Rough
Idea)

Simulate

Copyright 2012 by Abhik Roychoudhury4

Properties
to Satisfy
(caution)

Checking
Method

(Automated)

Counter-
examples

Refine the
model

Criteria for a Design Model
Provides structure as well as behavior for the system
components.
Complete

Complete description of system behavior.

Based on well-established modeling notations.

Copyright 2012 by Abhik Roychoudhury5

We use UML.

Preferably executable
Can simulate the model, and get a feel for how the constructed
system will behave!

Running Example - ATC

ATC
1

N1

1 1

0..N

connected
itsWCP

Copyright 2012 by Abhik Roychoudhury6

WCP
Clients1

N1

Overall System Structure, Behavior not shown.

2/8/2012

2

On system behavior
Consider a “scenario”

Client1 sends “connect” request to ATC
Client2 sends “connect” request to ATC
ATC sends weather information to Client1, Client2.

No need to capture “weather info.” in model.

Copyright 2012 by Abhik Roychoudhury7

OK to abstract this info. from the requirements while
constructing the model, provided

No decisions are made in the system based on weather info.

Model is “complete” at a certain level of abstraction.

ATC – the example control sys.
NASA CTAS

Automation tools for managing large volume arrival air
traffic in large airports.
Final Approach Spacing Tool

Determine speed and trajectory of incoming aircrafts on their
final approach.

Copyright 2012 by Abhik Roychoudhury8

pp
Master controller updates weather info. to “clients”

controllers using inputs to compute aircraft trajectories.

ATC

WCP Clients

1

1 N
1

1 1

0..N

connected
itsWCP

ATC – the example control sys.
Part of the Center TRACON Automation System (CTAS) by NASA

manage high volume of arrival air traffic at large airports
http://ctas.arc.nasa.gov

Control weather updating to all weather-aware clients
A weather control panel (WCP)
Many weather-aware clients

Copyright 2012 by Abhik Roychoudhury9

Many weather-aware clients
A communication manager (CM)

Behavior of ATC example
Two standard behaviors

Client initialization
Weather update

Abstracted Information
Weather information types

Copyright 2012 by Abhik Roychoudhury10

Clients types
Internal computation on weather information

For simplified requirements: textbook Chap 2.3

Client Initialization

ATC

c0

c1WCP
c0

Copyright 2012 by Abhik Roychoudhury11

c2connect ATC c1

c2

WCP

Get_init_wthr

Client - Initialization

ATC

c0

c1WCP

succ

ATC

c0

c1WCP

use init wthr

Copyright 2012 by Abhik Roychoudhury12

c2

succ
c2

_ _

ATC

c0

c1

c2

WCP

fail

ATC

c0

c1

c2

WCP

2/8/2012

3

Client - Initialization

CM

c0

c1

c2

WCP

succ

CM

c0

c1

c2

WCP

Copyright 2012 by Abhik Roychoudhury13

CM

c0

c1

c2

WCP

fail

CM

c0

c1

c2

WCP

Client – Weather Update

CM

c0

c1WCP
c0

update Get_new_wthr

Copyright 2012 by Abhik Roychoudhury14

CM c1WCP

c2

c2

Client Update – Case 1

CM

c0

c1

c2

WCP

succ

succ

succ

CM

c0

c1

2

WCP

Use_new_wthr

Copyright 2012 by Abhik Roychoudhury15

c2 c2

CM

c0

c1

c2

WCP CM

c0

c1

c2

WCP

succ

succ

succ

Client Update – Case 2

CM

c0

c1WCP

succ

succ

succ

CM

c0

c1WCP

Use_new_wthr

Copyright 2012 by Abhik Roychoudhury16

c2 c2

CM

c0

c1

c2

WCP CM

c0

c1

c2

WCP

fail

succ

succ

Client Update – Case 3

CM

c0

c1

c2

WCP

succ

fail

succ

CM

c0

c1

2

WCP

Use_old_wthr

Copyright 2012 by Abhik Roychoudhury17

c2 c2

CM

c0

c1

c2

WCP CM

c0

c1

c2

WCP

succ

succ

succ

Client Update – Case 4

CM

c0

c1

c2

WCP

succ

fail

succ

CM

c0

c1

2

WCP

Use_old_ wthr

Copyright 2012 by Abhik Roychoudhury18

c2 c2

CM

c0

c1

c2

WCP CM

c0

c1

c2

WCP

fail

succ

succ

2/8/2012

4

What do the requirements
… look like ?
A weather update controller consists of a weather control panel

(WCP), a number of weather-aware clients, and a
communication manager (ATC) which controls the interactions
between the WCP and all connected clients. Initially, the WCP
is enabled for manually weather updating, the ATC is at its idle

Copyright 2012 by Abhik Roychoudhury19

y p g,
status, and all the clients are disconnected. Two standard
behaviors of this system are as follows.

Sample Initialization Requirements
A disconnected weather-aware client can establish a
connection by sending a connecting request to the CM.

If the ATC’s status is idle when the connecting request is
received, it will set both its own status and the connecting
client’s status to preinitializing and disable the weather control

Copyright 2012 by Abhik Roychoudhury20

client s status to preinitializing, and disable the weather control
panel so that no manual updates can be made by the user
during the process of client initialization.

Otherwise (ATC’s status is not idle), the ATC will send a message to the
client to refuse the connection, and the client remains disconnected.

Organization
So Far

What is a Model?
ATC – Running Example

Informal Req. at a lab scale.
Has subtle deadlock error (see textbook chap 2.3)

N h d l/ lid h i

Copyright 2012 by Abhik Roychoudhury21

Now, how to model/validate such requirements
Modeling Notations

Finite State Machines

Finite State Machines

M = (S, I, →)
S is a finite set of states
I ⊆ S is the set of initial states
→ ⊆ S × S is the transition relation.

Copyright 2012 by Abhik Roychoudhury22

s0

s1
s2

S = {s0, s1, s2}

I = {s0}

→ = {(s0,s1), (s1,s2), (s2,s2), (s2,s0)}

Issues in system modeling …
… using FSMs

Unit step: How much computation does a single transition
denote?
Hierarchy: How to visualize a FSM model at different levels of
details?
Concurrency: How to compose the behaviors of concurrently

Copyright 2012 by Abhik Roychoudhury23

Concurrency: How to compose the behaviors of concurrently
running subsystems (of a large sys.)

Each subsystem is modeled as an FSM!

What’s in a step?
For hardware systems

A single clock cycle

For software systems
Atomic execution of a “minimal” block of code

A statement or an instruction?

Copyright 2012 by Abhik Roychoudhury24

Depends on the level at which the software system is being modeled
as an FSM !

2/8/2012

5

Example
1 v = 0;
2 v++;
3 …
◦ What are the states ?

(value of pc, value of v)

Copyright 2012 by Abhik Roychoudhury25

◦ How many initial states are there ?
No info, depends on the type of v

Draw the states and transitions corresponding to this
program.

Example

Pc=1,v=0

v = 0

Pc=1,v=1 Pc=1,v=2 …

Copyright 2012 by Abhik Roychoudhury26

Pc=2, v= 0

Pc = 3, v = 1
…..

v++

Hierarchy
Choice of steps at different levels of details also
promotes hierarchical modeling.

on off

Copyright 2012 by Abhik Roychoudhury
27

dim bright

stable flashing

Basic Concurrent Composition
M1 = (S1, I1, →1) M2 = (S2, I2, →2)
Define

M1 × M2 = (S1×S2, I1×I2, →)
Where (s1,s2) → (t1, t2) provided

s1 ∈ S1, t1 ∈ S1,

Copyright 2012 by Abhik Roychoudhury28

s2 ∈ S2, t2 ∈ S2,
(s1 →1 t1) OR (s2 →2 t2)

Defines control flow of the composed FSM as an
arbitrary interleaving of flows from components.

Interleaving of independent flows, what about comm.?

Communicating FSM
Basic FSM

M = (S, I, →)
S is a finite set of states
I ⊆ S is the set of initial
states

Communicating FSM
M = (S, I, ∑, →)

S is a finite set of states
I ⊆ S is the set of initial
states

Copyright 2012 by Abhik Roychoudhury29

→ ⊆ S × S is the transition
relation.

∑ is the set of action names
that it takes part in
→ ⊆ S × ∑ × S is the
transition relation.

Communication across
FSMs via action names.

Composition of comm. FSMs
M1 = (S1, I1, ∑1 , →1) M2 = (S2, I2, ∑2 , →2)
Define

M1 × M2 = (S1×S2, I1×I2, ∑1∪ ∑2 , →)
And (s1,s2) (t1,t2) provided

s1 ∈ S1, t1 ∈ S1, and
→
a

Copyright 2012 by Abhik Roychoudhury30

s2 ∈ S2, t2 ∈ S2, and
If a ∈ ∑1 ∩ ∑2 we have (s1 t1) and (s2 t2)

If a ∈ ∑1 - ∑2 we have (s1 t1)

If a ∈ ∑2 - ∑1 we have (s2 t2)

→
a

→
a

→a

→a

2/8/2012

6

Example - basic composition

idle busy idle busy

a1
data data

ack

b1

ack

Component FSMs

Copyright 2012 by Abhik Roychoudhury31

idle, idle

idle, busy busy, idle

busy, busy

Example - composition of comm. FSMs

idle busy idle busy

a1
data data

ack

b1

ack

Component FSMs

Copyright 2012 by Abhik Roychoudhury32

data ack

a1
idle, idle

busy, busy

b1

Example - data communication

idle busy idle busy

a1
!data(5) ?data(X)

?ack

b1

!ack

Sender Process Receiver Process

Copyright 2012 by Abhik Roychoudhury33

data

[X = 5]
ack

a1
idle, idle

busy, busy

b1

Example: Concurrent Program

l0: while true do

l1: wait(turn = 0);

m0: while true do

m1: wait(turn = 1);

P0 || P1

Copyright 2012 by Abhik Roychoudhury34

();

l2: turn := 1;

l3: endwhile

m2: turn := 0;

m3: endwhile

Models a crude protocol for entry/exit to critical section without modeling the critical
section itself.

Example Concurrent Program: States
Global State = (pc0, pc1, turn)

pc0 ∈ { l0, l1, l2, l3 }
pc1 ∈ { m0, m1, m2, m3 }
turn ∈ { 0, 1 }

Total = 4 * 4 * 2 = 32 possible states

Copyright 2012 by Abhik Roychoudhury35

Not all of them might be reachable from the initial states.
How many are reachable – try it!

Wrap-up of FSMs
FSMs denote an intra-component style of modeling

Given a large system – identify its components
Model each component as FSM – M1, M2, M3
Overall system modeled as concurrent composition

M1 || M2 || M3

Copyright 2012 by Abhik Roychoudhury36

Alternate style of modeling
Inter-component style
Emphasize communication over computation.
Sequence Diagrams are basic snippets for describing
communication.

2/8/2012

7

MSC based Models

MSC = Message Sequence Chart
Labeled partial order of events

Highlights inter-process communications
While, FSMs highlight intra-process control flow.

Copyright 2012 by Abhik Roychoudhury37

m1

m2

p q

MSC partial order
How is the partial order constructed
- Time flows from top to bottom along each vertical line.

- e1 < e3 and e2 < e4

- Each message receive must occur after the corresponding send.
- e1 < e2 and e3 < e4

Appl th l d i t fi d t hi h t t k

Copyright 2012 by Abhik Roychoudhury38

- Apply these rules over and over again to find out which event takes
place before which other event.
- e1 < e2, e2 < e4, e1 < e2, e3 < e4, e1 < e4

m1

m2

p q

e1 e2

e3 e4

Cannot deduce e2 < e3 or e3 < e2

Incomparable events

Conventional use of MSCs

Describe sample scenarios of system interaction
Appears in requirement documents
Do not describe “complete” system behavior

ATC WCPClient

Copyright 2012 by Abhik Roychoudhury39

connect

setStatus_1
disable

status = 1

update

Sample MSC from ATC example

Exercise: Find two incomparable
events in this MSC

MSC-based design model

M1

M2

Copyright 2012 by Abhik Roychoudhury40

M2

M3

Connect MSCs into a graph – Message Sequence Graph (MSG)
Each node of the graph is a MSC.
Need to define the meaning of concatenation of MSCs

Interface ResourceUser InterfaceUser Resource

InterfaceUser

request

Resource

Chart M1

M1

M2

M3

Copyright 2012 by Abhik Roychoudhury41

Interface ResourceUser

request

deny

no

InterfaceUser

request

grant

yes

Resource

Chart M2
Chart M3

MSC concatenation
Interface ResourceUser

request

deny

no

Synchronous: All events in M2
≤All events in M3

Asynchronous: All events in
process p of M2 ≤All events in
process p of M3

Copyright 2012 by Abhik Roychoudhury42

request

grant

yes

Chart M2

Chart M3

Interface and Resource processes
can finish M3 while User process
is still in M2 – provided
asynchronous concatenation is
considered.

2/8/2012

8

MSC-based design model?
Complete

Complete description of system behavior.
MSG achieves this criterion.

Based on well-established modeling notations.
We use UML Sequence Diagrams, which is OK.

Copyright 2012 by Abhik Roychoudhury43

Preferably executable
Can simulate the model, and get a feel for how the constructed
system will behave!
Global simulation of MSG is possible.
But not per-process execution !!

Why not executable?

M1

M2

InterfaceUser

request

Resource

Copyright 2012 by Abhik Roychoudhury44

M3
Chart M1

At the end of M1, all the processes agree together to execute either M2 or M3.
One process may go ahead of the others (under asynchronous concatenation).
However, the decision of which MSC to execute next must be consistent.
Difficult to generate per-process code to capture this joint decision.

Example MSG

m1

p q r
Ch1

Generates behavior of the form

(Ch1 o (Ch2 + Ch3))ω

Copyright 2012 by Abhik Roychoudhury45

m2
m3

p q r
p q r

Ch2
Ch3

Per-process FSMs

p!q,m2 p!r,m3 q!r m1
q!r,m1

q?p,m2

m1

p q r
Ch1

Copyright 2012 by Abhik Roychoudhury46

p q, p ,

FSM for p
q!r,m1

FSM for q

r?q,m1

r?p,m3

FSM for r

r?q,m1
m2

m3
p q r

p q r

Ch2
Ch3

Implied Scenario

m1

p q r
Ch1

Supposed to generates behavior of the form

(Ch1 o (Ch2 + Ch3))ω

Copyright 2012 by Abhik Roychoudhury47

m1

m2

m3

p q r

Chart Ch1

Chart Ch2

Chart Ch3

m2
m3

p q r
p q r

Ch2
Ch3

Putting the notations together
So, far we have studied 2 notational styles

Intra-process style FSM modeling notations
Inter-process style MSC-based modeling notation.

In actual system modeling from English requirements

Copyright 2012 by Abhik Roychoudhury48

How do they fit together?
What roles do they play?
Are they both used in parallel?

2/8/2012

9

Informal System Requirements (in English)

Sample Scenarios (as MSCs)

MSC-based System Model (say HMSC)

Relatively easy

Hard manual step

Relatively easy, but manual

Generating test spec. in the absence of a
MSC-based system model

Copyright 2012 by Abhik Roychoudhury49

Local FSMs for the processes in the system

System Implementation

Hard to automate due to implied scenarios

Test Spec.

Automated

Automatically
generate tests

Test Suite

Refer back
test results

Organization
So Far

What is a Model?
ATC – Running Example

Informal Req. at a lab scale.
Has subtle deadlock error (see textbook chap 2.3)

H t d l h i t

Copyright 2012 by Abhik Roychoudhury50

How to model such requirements
Modeling Notations

Finite State Machines
MSC based models

Now, how to validate the models
Simulations

The big picture - recapitulate

System
Require
ments

(Dream)

System
Model
(Rough
Idea)

Simulate

Copyright 2012 by Abhik Roychoudhury51

Properties
to Satisfy
(caution)

Checking
Method

(Automated)

Counter-
examples

Refine the
model

FSM Simulations
Monolithic FSM simulation

A random walk through the FSM’s graph.

Simulating a composition of FSMs
Need to consider the definition of concurrent composition.
Keep track of local states of the individual processes.

Copyright 2012 by Abhik Roychoudhury52

Simulating more complex notations
UML State Diagrams
MSC-based models

Example – State Diagrams

req() / P->deny()

Processor P Bus Controller BC

wait idle

Copyright 2012 by Abhik Roychoudhury53

write() /
BC->req()

accept() /

BC->addr_data()

deny()/ BC->req()

req() / P-> accept()addr_data()

try busy

Processor and Bus Controller – what does the example do?

This is what the example does

write
P BC

write
P BC

req

deny

req

accept

addr_datareq
…

Copyright 2012 by Abhik Roychoudhury54

Sample scenarios of the State Diagram shown in the previous slide.

Super-step:
On encountering a write, the sequence of method calls executed is

write, req, (deny, req)*, accept, addr_data

How?

2/8/2012

10

Simulation – State Diagrams

req() / P->deny()

Processor P Bus Controller BC

wait idle

Copyright 2012 by Abhik Roychoudhury55

write() /
BC->req()

accept() /

BC->addr_data()

deny()/ BC->req()

req() / P-> accept()addr_data()

try busy

req(), deny(), req(), accept(), addr_data()

Model simulation
So far

FSMs and State Diagrams – Intra component style modeling
MSCs and MSGs - Inter component style modeling
Simulation of FSMs and State Diagrams

How to simulate MSCs?
Generate a trace of events which satisfies the partial order
denoted by a given MSC.
Always maintain a ``cut’’ to denote the progress in each
process – while simulating a given MSC.

The whole question now is how to advance a cut.
Let us look at this matter visually!

Copyright 2012 by Abhik Roychoudhury56

Simulating MSCs

ATC WCP

connect

Client

update

Copyright 2012 by Abhik Roychoudhury57

setStatus_1

disablestatus = 1

Cut
Shows progress of the individual
processes / components: ATC, WCP, Client

Simulating MSCs

ATC WCPClient

ATC WCP

connect

setStatus_1

disable

Client

update

Copyright 2012 by Abhik Roychoudhury58

connect

setStatus_1

disablestatus = 1

update
ATC WCP

connect

setStatus_1

disable

Client

update

Recap on MSC semantics
For a sequence of MSCs --- M1, M2

Synchronous concatenation: All events in M1 ≤All events
in M2
Asynchronous concatenation: All events in process p of
M1 ≤All events in process p of M2

For any msg. m sent from process p to process q

Copyright 2012 by Abhik Roychoudhury59

Synchronous message passing: Send and receive happens in
the form of a hand-shake.
Asynchronous message passing: Sender sends message
which is stored in a queue, picked up by receiver later.

Simulating a sequence of MSCs will need to follow the
concatenation & message passing semantics.

Simulating a sequence of MSCs
Interface ResourceUser

request

deny

request
Chart M1

Allowed for asynchronous
concatenation.

Not allowed for synchronous
concatenation.

Copyright 2012 by Abhik Roychoudhury60

y
no

request

grant

yes

Chart M2

Chart M3

2/8/2012

11

Simulation requires unbounded memory?

ReceiverSender

data

p q r s

m m

Copyright 2012 by Abhik Roychoudhury61

Simulation requires unbounded memory
under asynchronous concatenation and
asynchronous message passing

Simulation requires unbounded memory
under asynchronous concatenation and
synchronous / asynchronous message
passing.

In the next lecture
So Far

What is a Model?
ATC – Running Example
How to model such requirements

Copyright 2012 by Abhik Roychoudhury62

How to validate the models
So far: Simulations
In the next lecture

: Model-based testing

