
2/8/2012

1

SMV Model Checker
CS 4271

Abhik Roychoudhury
http://www.comp.nus.edu.sg/~abhik

Copyright 2012 by Abhik Roychoudhury1

Organization
So Far

What is a Model?
ATC – Running Example
How to model such requirements
How to validate the models

Copyright 2012 by Abhik Roychoudhury

Simulations, 
Model-based testing, 
Model Checking
Model Checkers

SMV

2

SMV
Symbolic Model Verifier
Several versions exist, we will use Cadence SMV 

http://www-cad.eecs.berkeley.edu/~kenmcmil/smv/

Familiarize yourself via the tutorial at
http://www-cad.eecs.berkeley.edu/~kenmcmil/tutorial.ps
You should preferably use it in an online mode by trying out the 
examples, rather than offline reading.

We will have a full case study in a later class.

Copyright 2012 by Abhik Roychoudhury3

Recap: the big picture

System to 
be built 
(Dream) 

System 
Model
(Rough 
Idea) 

Properties 
to Satisfy 
(caution)

Checking 
Method
(Automated)

Counter-
examples

Refine the 
model

Today’s lecture is a checking tool.
Yes, the tool comes before the method !

Copyright 2012 by Abhik Roychoudhury4

Before starting …
If a property is false, a counter-example trace is generated.

Details of counter-example generation is not covered in our course.
We only present and discuss model checking as a yes/no decision 
procedure in class with no other output.
However, studying the counter-example trace is of utmost importance 
for detecting errors in your design, when you are using Cadence SMV as 
 l d  la validation tool.

Copyright 2012 by Abhik Roychoudhury5

SMV vs. SPIN 

LTL 
Property

System 
Model

SMV input model – more 
suitable for modeling 
hardware, not so in SPIN

Copyright 2012 by Abhik Roychoudhury

Model 
Checking

Yes
No, with 
Counter-example trace

OR

SMV model checker – check 
hardware / processors …

6



2/8/2012

2

Modeling in SMV
Can model state machines.
States given by valuation of signals.
How each signal changes is captured by individual assignment 
statements.
Let us start with a simple combinational circuit; then we go to 

i l i isequential circuits

Copyright 2012 by Abhik Roychoudhury7

Example circuit

req1 ack1

No internal state
req2 ack2

Copyright 2012 by Abhik Roychoudhury8

A combinational circuit
module main(req1, req2, ack1, ack2)
{  

input req1, req2 : boolean;
output ack1, ack2 : boolean;

ack1 := req1 & ~req2;q q ;
ack2 := ~req1 & req2;

serve: assert (req1 | req2) -> (ack1 | ack2)
}

Copyright 2012 by Abhik Roychoudhury9

Inputs and outputs
Input signals come with finite types

Can assume any valuation within that type.
SMV has to try out all possible valuations of all input signals.

Output signals are computed from input
In our combinational circuit, they are simple boolean formulae 
of inputs.

Copyright 2012 by Abhik Roychoudhury10

Verifying the circuit
req1 = 1, req2 = 1, ack1=0, ack2 = 0

Combinational circuit, this state repeats forever.
A counter-example trace for serve

serve is a propositional property
For sequential circuits, we verify temporal properties 
specified in LTL.

Temporal properties were discussed earlier!

Copyright 2012 by Abhik Roychoudhury11

A slight modification
module main(req1, req2, ack1, ack2)
{  

input req1, req2 : boolean;
output ack1, ack2 : boolean;

ack1 := req1 ;ack1 := req1 ;
ack2 := ~req1 & req2;

serve: assert (req1 | req2) -> (ack1 | ack2)
}

Copyright 2012 by Abhik Roychoudhury12



2/8/2012

3

A slight modification
ack1 is set whenever

req1 is set

If  req1 is always set
This will starve ack2

Need a bit of memory to remember for how long req1 is y g q
set

A sequential circuit …

Copyright 2012 by Abhik Roychoudhury13

Modeling sequential circuits
module main(req1, req2, ack1, ack2)
{  

input req1, req2 : boolean;
output ack1, ack2 : boolean;
bit : boolean;      // a latch has been added

next(bit) := ack1;
ack1 := bit ? req1 & ~req2 : req1;
ack2 := bit ? req2 : req2 & ~req1;

}

Copyright 2012 by Abhik Roychoudhury14

Block diagram

req1
ack1

req2 ack2

bit

Copyright 2012 by Abhik Roychoudhury15

Assignment statement in SMV
Assignments for ack1 and ack2 signals are conditional. 
SMV also allows direct usage of (see manual)

If-then-else statement
Case statement

Assignments may involve the next operator
V l  f  i l  i  th  t l k l  i  t d i  th  l  f Value of a signal s in the next clock cycle is computed using the value of 
various signals (possibly including s) in the current cycle.

Copyright 2012 by Abhik Roychoudhury16

Properties to be proved
Cadence SMV allows user to specify properties in LTL.
Properties are distinguished via assert keyword.
There is an option to verify all LTL properties described in 
your spec. file.
You can also assume properties to prove other properties 

More about this later …

Copyright 2012 by Abhik Roychoudhury17

Starvation of low priority req.?

module main(req1, req2, ack1, ack2)
{  

input req1, req2 : boolean;
output ack1, ack2 : boolean;
bit : boolean;      // not initialized

next(bit) := ack1;
ack1 := bit ? req1 & ~req2 : req1;
ack2 := bit ? req2 : req2 & ~req1;

no_starve: assert G F (~req2 | ack2);
}

Copyright 2012 by Abhik Roychoudhury18



2/8/2012

4

Exercise
Draw the underlying state machine for this SMV specification.
Verify the non-starvation property manually using this state 
machine.

GF denotes infinitely often
GF (~req2 | ack2) denotes infinitely often 

Either req2 is not set,
Or ack2 is set.

Copyright 2012 by Abhik Roychoudhury19

Traffic Control

Sense for traffic going S
Pedestrian crossing

Sense for traffic 
going N

g g

Sense for 
traffic going E

When traffic turns E, N-ward traffic is also 
stopped due to a pedestrian crossing.

Copyright 2012 by Abhik Roychoudhury20

A Traffic Light Controller

module main(N_s, S_s, E_s, N_g, S_g, E_g){
input  N_s, S_s, E_s : boolean;
output N_g, S_g, E_g : boolean;

…

Traffic Light 
Controller

N_s    S_s    E_s

N_g    S_g   E_g

Verify a closed system
Traffic Light 
Controller

N_s    S_s    E_s

N_g    S_g   E_g

Copyright 2012 by Abhik 
Roychoudhury

21

Inputs/outputs of controller
N_s = 1  (similarly  S_s, E_s)

Traffic going North is sensed

N_g = 1  (similarly N_g, E_g)
Green light allowing traffic to go North.

Traffic Light 
Controller

N_s    S_s    E_s

N_g    S_g   E_g

Consider all possible values of the 
input variables.

Copyright 2012 by Abhik Roychoudhury22

Internal variables of controller
N_r, S_r, E_r

Latch sensor outputs from the three directions
Requests sensed, but not served.

NS_lock
Convenient way of disabling E_g
Set exactly when traffic is enabled in North and/or South 
directions.

Copyright 2012 by Abhik Roychoudhury23

Initializations
N_g, E_g, S_g, N_r, E_r, S_r

All green lights are initially 0
NS_lock

Initially 0.
Use the init command

init(N g) := 0;init(N_g) := 0;

Copyright 2012 by Abhik Roychoudhury

The full spec. comes with the Cadence SMV distribution
Look under ./doc/smv/examples

Let us take a quick look at a few salient issues. 

24



2/8/2012

5

Properties
safety: assert G ~(E_g & (N_g | S_g));
N_live: assert G (N_s  -> F N_g);
S_live: assert G  (S_s  -> F S_g);
E_live: assert G (E_s -> F E_g);

Once again these are LTL properties. 

The actual “liveness”can only hold if drivers do not wait 
forever at a green light.

But, this is something we are not verifying.
We assume the humans to co-operate.

Alternatively, traffic may always be coming from an enabled 
direction, starving other directions?

Copyright 2012 by Abhik Roychoudhury25

So we need to assume …
Assume infinite occurrences of states with no pending 
requests

N_fair: assert G F ~(N_s & N_g);
S_fair: assert G F ~(S_s & S_g);
E_fair: assert G F ~(E_s & E_g);

In the controller implementation these fairness constraints will In the controller implementation these fairness constraints will 
have to be ensured.

Copyright 2012 by Abhik Roychoudhury26

Verification
We instruct SMV to explore only fair paths.

using N_ fair, S_ fair, E_ fair
prove N_live, S_live, E_live

assume N_fair, S_fair, E_fair;
In general, we can instruct SMV to assume any arbitrary 
temporal property

Corresponds to implementation details which are not modeled in SMV, 
but are required for verification.
A very useful feature, from my personal experience !

Use of implementation assumptions which are temporal properties!

Copyright 2012 by Abhik Roychoudhury27

Exercises
Try out the traffic light controller verification.

Fix the counter-example(s) obtained.

Try out an alternate modeling where NS_lock is 
simply defined by the eqn

NS lock := N g | S g_ _g | _g

Look under ./doc/smv/examples/traffic 
contains other versions of the controller

Copyright 2012 by Abhik Roychoudhury28

More on assumptions

Processor p1 Processor p2

A bit

Program Program

Arbiter

Slave s

Model and verify the bus access protocol using SMV

Copyright 2012 by Abhik Roychoudhury29

Overall structure
MODULE main() {

p1 : processor(a.GRANT1, s.RESP);
p2 : processor(a.GRANT2, s.RESP);
s : slave(a.GRANT1, a.GRANT2);
a : arbiter(p1.REQUEST, p2.REQUEST);

mutex: assert G( ~(a.GRANT1 & a.GRANT2) );
nostarve1: assert G( p1.REQUEST -> F a.GRANT1 );
nostarve2: assert G( p2.REQUEST -> F a.GRANT2 );
using mutex prove nostarve1, nostarve2;
assume mutex;

}

Copyright 2012 by Abhik Roychoudhury30



2/8/2012

6

Advantages

Can now under-specify the arbiter.
Advantages

No need to worry about implementation details.
Verification not dependent on specific arbitration policy.

Can thus even deliberately under-specify!

MODULE arbiter(REQUEST1, REQUEST2) 
{

GRANT1, GRANT2 : boolean;
next(GRANT1) := case{             

REQUEST1 : {0,1};
default: 0;

}
next(GRANT2) := case{

REQUEST2 : {0,1};
default: 0;

}
}

Copyright 2012 by Abhik Roychoudhury31

Composing modules
Your design consists of a number of components

Each component is a module
Default composition of modules is synchronous.
Asynchronous composition is enabled by declaring each 
component as process in the main module.

Copyright 2012 by Abhik Roychoudhury32

Assigning Signals
Within a module

A signal can be assigned through “default” block nestings as 
shown in traffic light controller
Or, a less error-prone method is use a switch statement 
(called “case” in SMV).
Thi  i  ill t t d i  th  f ll i  lThis is illustrated in the following example.

Copyright 2012 by Abhik Roychoudhury33

Example: ABP
Alternating bit protocol

Sender
Receiver
Data_Chan
Ack_Chan

Sender sends msg with bit 0
Receiver sends ack with bit 0
Sender sends msg with bit 1
Receiver sends ack with bit 1

Copyright 2012 by Abhik Roychoudhury34

Example: ABP
Both channels are lossy

Msg / Ack may be lost
Fairness is needed for progress of the protocol.
Msg / Ack cannot be dropped forever.

Sender resends message until an ack with the expected bit is 
received.
Receiver resends previous ack until a message with the 
expected bit is received.

Copyright 2012 by Abhik Roychoudhury35

Protocol Architecture

one_bit_chan outputmsg

sender

S

receiver

R

msg_chan

one_bit_chan

ack_chan

ackoutput

Copyright 2012 by Abhik Roychoudhury36



2/8/2012

7

Protocol Architecture

module main
{    S: process sender(ack_chan.output);

R: process receiver(msg_chan.output);
msg_chan: process one-bit-chan(S.msg);
ack_chan : process one-bit-chan(R.ack);

init(S.msg) := 0;  
init(R.expect):= 0; init(R.ack) := 1;
init(msg_chan.output) := 1; 
init(ack_chan.output) := 1;
delivery: assert G(S.status = sent -> F R.status = received)
using fair_chan prove delivery assume fair_chan;

}

Copyright 2012 by Abhik Roychoudhury37

Channel
module one-bit-chan(input)
{    output: boolean;

next(output) := {input, output};

fair chan: assert G(input = 0 -> F output = 0)_ ( p p )
& G(input = 1 -> F output = 1)

}

Copyright 2012 by Abhik Roychoudhury38

Sender

module sender(ack)
{    status : {send, sent};

msg: boolean;  // the control bit

init(status) := send;
i it( )  0init(msg) := 0;
next(status) :=  case{

status = send & ack = msg : sent;
1 : send; }

next(msg) := case {
status = sent : ! msg;
1                  : msg ;  }

}

Copyright 2012 by Abhik Roychoudhury39

Receiver
module receiver(bit)
{   status : {receiving, received};

ack, expect : boolean;
init(status) := receiving;
next(status) := case{

bit = expect & status = receiving: received;p g ;
1                                             : receiving; }

next(ack) := case{   status = received: bit;
1                       : ack; }

next(expect) := (status = received) ? ! expect : expect;
}

Copyright 2012 by Abhik Roychoudhury40

Some key points about ABP
Illustrates the alternate modeling style

Transition of each signal modeled by a separate case 
statement.
No use of “default” nestings.

Illustrates assume-guarantee proofs
Assumptions about channel are crucial for proving data Assumptions about channel are crucial for proving data 
delivery.
These assumptions refer to impl. and are hence not 
dispensed using SMV.
More about this issue in the revision hour !

Copyright 2012 by Abhik Roychoudhury41

Some points about the properties verified
Data values are not modeled.
Cannot verify properties like:

If a message with value x is sent, the same uncorrupted 
message is eventually received.
What is the domain of x ?

If it is unbounded, what to do ?

Copyright 2012 by Abhik Roychoudhury42



2/8/2012

8

So far …
Basics of modeling

Includes details of SMV syntax
Toy examples

ABP,  Traffic Light Controller

In the remaining time
Modeling exercises in SMV

Copyright 2012 by Abhik Roychoudhury43

Exercises on SMV

CS 4271
Abhik Roychoudhury

National University of Singapore

Copyright 2012 by Abhik Roychoudhury44

Ex 1: Modeling a Counter
A normal three bit counter can also be described as a mod 8 
counter since its contents vary from 0 to 7 by following the 
sequence 

0 → 1 → . . . → 7 →0 → 1 . . .

Construct the Kripke Structure for a mod 7 counter whose 
contents vary from 0 to 6 by following a similar sequence.y y g q
Encode the mod7 counter in SMV. Use only boolean 
variables.

Copyright 2012 by Abhik Roychoudhury45

More Exercises
Model a shift register in SMV

Prove that a signal when fed from left goes out eventually 
through the right end.

Model the crude mutual exclusion protocol involving 
“turn” studied earlier in our lectures.

Prove mutual exclusion.

Copyright 2012 by Abhik Roychoudhury46

Right shifts only
MODULE main(left, inleft)
{

input left : boolean;
input inleft : boolean;

bit0 : cell(left, inleft);
bit1 : cell(left, bit0.content);
bit2 : cell(left, bit1.content);
bit3 : cell(left, bit2.content);

left_live : assert G ( ( ( G left ) & inleft ) -> F bit3.content);

prove left_live; 

}

Copyright 2012 by Abhik Roychoudhury47

Each cell 
MODULE cell(left, lval)
{

content: boolean;

init(content) := 0;

next(content) := case{
left  : lval;
1    : content;

};

}

Copyright 2012 by Abhik Roychoudhury48



2/8/2012

9

Left and right shifts
Need to have more input variables
What do we do when there is input to be fed from each 
side ?

Can we then prove the liveness properties for each direction 
of shift ?

Copyright 2012 by Abhik Roychoudhury49

Shift Register
MODULE main(left, right, inleft, inright)
{

input left, right: boolean;
input inleft, inright : boolean;

bit0 : cell(left, right, inleft, bit1.content);
bit1 : cell(left, right, bit0.content, bit2.content);
bit2 : cell(left, right, bit1.content, bit3.content);
bit3 : cell(left, right, bit2.content, inright);

left_live : assert G ( ( ( G left ) & inleft ) -> F bit3.content);
right_live : assert G( ( (G right) & inright ) -> F bit0.content); 

prove left_live, right_live; 

}

Copyright 2012 by Abhik Roychoudhury50

Each cell 
MODULE cell(left, right, lval, rval)
{

content: boolean;

init(content) := 0;

next(content) := case{next(content) := case{
left  : lval;
right : rval;
1     : content;

};

}

Copyright 2012 by Abhik Roychoudhury51

A Concurrent Program

l0:  while true do
l1:     wait(turn = 0);

m0:  while true do
m1:     wait(turn = 1);

P0  ||   P1

l1:     wait(turn  0);
l2:     turn := 1;
l3:  endwhile

( )
m2:     turn := 0;
m3:  endwhile

Models a crude protocol for entry/exit to critical section without modeling the 
critical section itself.

Copyright 2012 by Abhik Roychoudhury52

SMV modeling
MODULE main()
{

pc0 : { l0, l1, l2, l3 };
pc1 : { m0, m1, m2, m3 };
turn : boolean;
schedule : boolean;

schedule := {0, 1};

init(turn) := 0;
next(turn) := case{

(schedule = 0 & pc0 = l2) : 1;
(schedule = 1 & pc1 = m2) : 0;
1 : turn;

};

Copyright 2012 by Abhik Roychoudhury53

SMV modeling
init(pc0) := l0;

next(pc0) := case{
(schedule = 0 & pc0 = l0) : l1;
(schedule = 0 & pc0 = l1  & turn = 0 ) : l2;
(schedule = 0 & pc0 = l2) : l3;
(schedule = 0 & pc0 = l3) : l0;
1 : pc0;

};

init(pc1) := m0;
next(pc1) := case{

(schedule = 1 & pc1 = m0) : m1;
(schedule = 1 & pc1 = m1 & turn = 1) : m2;
(schedule = 1 & pc1 = m2) : m3;
(schedule = 1 & pc1 = m3) : m0;
1 : pc1;

};

mutual_excl: assert G( !(pc0 = l2 & pc1 = m2));
prove mutual_excl;

}

Copyright 2012 by Abhik Roychoudhury54


