/” cS4272: Hardware Software
Codesign

Hardware Platforms

Abhik Roychoudhury
School of Computing

k National University of Singapore /

02/11/2007 CS4272, 2006 1

Recall that ...

> Steps in co-design
« Modeling
« Partitioning (into HW and SW parts)
« Scheduling
« Software Analysis (to support scheduling)
« Compilers + Processors to run the software
= Similarly, synthesizing the hardware

« All of the above, with power management and
not just performance in mind.

02/11/2007 CS4272, 2006 2

Organization

» Connection with the physical world
. Sensors and Actuators
« A/D and D/A converters

> Within the nice digitized world
« ASICs

« Processors

= General-purpose Processors, Special-purpose
processors (ASIP) and Custom processors.
« Emphasis on Power management/Customization

« Reconfigurable Logic

02/11/2007 Cs4272, 2006 3

Connection to Environment

Display
A/D Processor,

Converter ASIC, FPGA

D/A

Converter

Sensors

02/11/2007 Cs4272, 2006 4

Sensors

Why need them ?

02/11/2007 Cs4272, 2006 5

Sensors

> Sense continuous variables from the
physical world.
. Current, Voltage
. Temperature, Pressure, Light ...

> Examples

« Proximity sensor in a car
= Many modern cars have this particularly when the car
is being driven in Reverse Gear

« Rain Sensor (in high-end cars)

= Allow adjusting speed of wiper to rain speed.
. Image Sensors

- Digital Camera, Fingerprint Authentication

02/11/2007 CS4272, 2006 6

Image Sensors based on CMOS

e || Sequencer
Jtle Array of light sensors.
-]
£ i + L ¥ - Each pixel performs
@ pixel matrix el
o |—Imer[ace =7 Slight sensing, and
=] ot
B post -Limited Processing
s ’
processing | Smart Sensors !!

|V column amplifier | |A."D—conv. |

|—k analog mux

= : L

x addressing

02/11/2007 CS4272, 2006 7

Smart Sensors

> Many applications
« Target tracking/spying in difficult terrains.

« Future Generation Home
= Home 2015 --- Light turns on when you enter ©

> Come under Distributed Sensor Networks
« Slightly different from our presentation.

» Our sensors are typically simplified.
« They provide data to the processing units.

> Integration of limited intelligence into
Sensors remains an active research area.

02/11/2007 CS4272, 2006 8

Actuators

> Provide output to the environment
« Can vary radically in size and function
= To be inserted into Human body or
= Huge actuators overseeing mechanical movement of
heavyweight items
» Example from Health-care

« Sensors --- Can be slapped/inserted into body
to detect fail, monitor blood pressure etc.

. Actuators --- Can be injected to enable release
of drugs into the human body based on sensor
data (and its processing)

= Less intrusive than using injection syringe !

02/11/2007 Cs4272, 2006 9

D/A Converters

> Convert digital data (d) to analog (a)
« Can be fed into actuators
> Simple circuit
. Often forms the basis of A/D Converters
> Basic Concept
« Use each bit of (d) to control a current source
« Arrange current sources in geometric
progression depending on position of bits
« Add current sources to produce total current at
a junction
. a = Output analog voltage « Total Current

02/11/2007 Cs4272, 2006 10

D/A Converter: Schematic

How do we generate the current
sources in geometric progression?

i, 2i, 4, 8i
Vrel I
i 2 a4 8i
Current Soulce/
]| |
Sum of currents produce
output voltage at this nide/
T T T ’
Q QL Q2 Q3
Do D1 D2 D3 R
To processor T T T T
LSB MSB

02/11/2007 Cs4272, 2006 11

D/A Converter

Vret = Vi8R
i 2i 4i 8i
Total current =1
8R 4R§ 2R R
Qo Q1 Q2 Q3
DO E‘)l E‘)Z E‘)S
LSB MSB Olp analog
voltage V « |
02/11/2007 Cs4272, 2006 12

A/D Converter

> Convert an analog voltage to a n-bit
digital output
« Given the maximum reference voltage V
> Obvious cases
. Voltage = V, corresponds to 1111....1

. Voltage = 0 corresponds to 0000...0

= The minimum voltage can be different from 0 in
which the definition of 000...0 can be suitably altered

> Use proportionality to convert the
intermediate voltages to intermediate n-
bit numbers
« How to build a circuit to accomplish this task?

02/11/2007 CS4272, 2006 13

Voltage comparison

>Say n =2, V=4V
> Use proportionality to define

«00=0-1V
«01=1-2V
«10=2-3V
«11=3-4V

> Now how to convert 1.4V ?
. 1.4V=>4V?
= No
. 1.4V>3V?
= No ...

02/11/2007 CS4272, 2006 14

Voltage Comparison

> In general

eal/Vgy= d/2n

. a = analog voltage value

« d = converted digital output for a

« Vs = Maximum reference voltage

. n = precision of digital output (# of bits)
> Example

. d=(1.4/4)*4

« =1.4 =1 (rounded down)

= Could be rounded up, then formula needs to change!
.« = 01 (digital output for 1.4V voltage)

02/11/2007 Cs4272, 2006 15

Voltage Comparator Circuit

Vi 0—— 1+ Out
Compares two analog
0 voltages and produces a
V2 00— - one-bit output

Out=1 if Vl>V2

= 0 otherwise.

How can we use voltage comparators to build A/D converters?

02/11/2007 Cs4272, 2006 16

Voltage Comparison

Comparator threshold
Voltage

Voltage

AN

Comparator digital output

Time

02/11/2007 Cs4272, 2006 17

Flash A/D Comparator

>Say n=2,V.,=4V,a=14V
« Find digital output d
» Again define
« 00 =0-1V, 01 = 1-2V, 10=2-3V, 11 = 3-4V
> Now, compare
. a >4V (use voltage comparator)
- No
. a > 3V (use another voltage comparator !)
= No
> Sequential search, and ...
« Requires 2" — 1 comparators for n-bit output

02/11/2007 CS4272, 2006 18

Flash A/D Converter

Vv,

ref

a

x4

Sequential search
i Over-range parallelized in
3/4V,

:t>_ X3 (ovf) hardware --- BUT

Exponentially many

voltage comparators
——— boO required.

ref

Buipoouz

2/4v, :I>—X2

ref — bl

14V, >t

How are the results of (parallel) comparisons combined to produce
digital output ?

02/11/2007 CS4272, 2006 19

Flash A/D Converter

Vref
a Ovf

0 0 0 0 0] 0
314V 7:[>— 5

m
ref 3 1{ofofo|1]|o]o
o
S | bo 1|l 1]o]ofof1]o
2 8
<Q d
1|1 f1fo|1]|1]o
2/4V L
b1 E A (N I U B O O S

wav, & TP

b0 is the LSB of output
b1 is the MSB of output

02/11/2007 CS4272, 2006 20

Single Slope A/D converter

> Can we reduce the # of voltage
comparators?
e Sayn=2,V,=4V,a= 1.4V
. Compute voltages for 11, 10, 01, 00 using a
D/A converter.
=4V, 3V, 2V, 1V
« Now compare
= Analog input (1.4V) against voltage for 11 (4V)
= 1.4V < 4V, so compare 1.4V against voltage for 10
« We still perform sequential search

= Maximum 2" — 1 comparisons, all by same
comparator

= Very slow !!

02/11/2007 Cs4272, 2006 21

Successive Approx. A/D Converter

Set DIA
MSB to 1

Vx = Analog Voltage
being converted

Reset D/A
BITto 0

SetNext |t Done? Digital output

D/ABITto 1

02/11/2007 Cs4272, 2006 22

Example

>n=2,a=14V,Vref=4V
«%B(@A+0)=2V=>14V 00
e L2+0)=1V<14V 01
« Final encoding = 01

> Can you repeat the work for 4 bits?

02/11/2007 Cs4272, 2006 23

Organization

> Connection with the physical world
« Sensors and Actuators
. A/D and D/A converters

> Within the nice digitized world
« ASICs

« Processors & Memory

= General-purpose Processors, Special-purpose
processors and Custom processors.
« Emphasis on Power management/Customization

« Reconfigurable Logic

02/11/2007 CS4272, 2006 24

ASICs

> Implement functionality in custom
hardware
. Very efficient
« No flexibility

. Can only be done for very specific parts of the
design.

02/11/2007 CS4272, 2006 25

General-Purpose Processor

> Processor designed for a variety of
computation tasks

> Low unit cost, in part because
manufacturer spreads NRE over large
numbers of units

> Carefully designed as high NRE is
acceptable
. Can yield good performance, size and power

» Low cost, short time-to-market, high
flexibility
« User just writes software; no processor design

02/11/2007 CS4272, 2006 26

Basic Architecture

> Control unit Processor
an d data_ path Control unit Datapath
ALU
> Featu res Controller ?Su‘y;tlzil
. General data- D *
path Registers
« Control unit I I
PC IR
| i
1o l
Memory
02/11/2007 CS4272, 2006 27

Data Path

> Register File

« Storing intermediate results
> Arithmetic Logic Unit

. Computations

» Operations may involve computation,
movement across registers and/or mem.

02/11/2007 Cs4272, 2006 28

Data-path Operations

> Load

Processor

. Read_ memory Control unit
location into
register Controller

> ALU

« Arithmetic/logical
operation

> Store T
« Write register into e ETRj

memory location

Datapath

‘ Memory

02/11/2007 Cs4272, 2006

29

Control Unit

» Control unit: configures the

data-path operations Processor

« Sequence of desired Control unit Datapath
operations (“instructions”)
stored in memory — pmw—

“program” ot

> Instruction cycle — broken e

into several sub-operations,
each one clock cycle:

« Fetch: Get next instruction

into IR i
- Decode: Determine what the| PC IR

instruction means

ALU

Registers

S|
b1

« Fetch operands: Move data

from memory to data-path o

register 100 [load RO, M[500]] Memor
ad RO,
« Execute: Move data through 01 RLRO ™ s00
the ALU MeRL 501
102 store M[501], R

« Store results: Write data

from register to memory
02/11/2007 CS4272, 2006 30

Architectural Considerations

> N-bit Processor

processor Control unit Datapath
« N-bit ALU, Controller ALY

Control|

registers, buses, Status

memory data Regisers
interface

Embedded: 8- E‘cj ETC‘

bit, 16-bit, 32-

bit common v I

[l[e]
. Desktop/servers Memory
: 32-bit, even 64

02/11/2007 CS4272, 2006 31

Architectural Considerations

» Clock Prosessr
f re q uen Cy Control unit Datapath
« Inverse of clock Controller Control H
period b
. Must be longer 7] [\ Reasters |
than longest
register to Eg—_‘ g%
register delay in [
entire processor / B { I \\
. Memory access Memory NG
is often the ‘
longest
02/11/2007 CS4272, 2006 32

FTOETTTIg-
Increasing Instruction

wen [1[2[3[4[5]6]7]8] BEENEEEE
Non-pipelined Pipelined
fw [z 3T s 67 ¢] [El2[3[* s 67 [¢]
"ttt "+
non-pipelined dish cleaning Time pipelined dish cleaning Time

Fetch-instr.

Decode
Fetch ops. Pipelined
Execute

—
pipelined instruction execution Time

02/11/2007 Cs4272, 2006 33

Superscalar and VLIW

> Multiple ALU to support more than one
instruction stream
« Superscalar: Fetches instructions in batches,
executes as many as possible
= May require extensive hardware to detect
independent instructions
« VLIW: each word in memory has multiple
independent instructions
= Relies on the compiler to detect and schedule
instructions
= Currently growing in popularity --- many multimedia
or DSP processors are VLIW processors.

02/11/2007 Cs4272, 2006 34

Very long instruction word
~ (VLIW) processors

Key idea: detection of possible parallelism to be done by §
compiler, not by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long
word (instruction packet), each instruction controlling one
functional unit. E.g.:

- instruction packet -

Iinstructi0n1 | instruction 2 | instruction 3 | instruction 4 |

{ v

floating point | | integer ‘ integer ‘ memory ‘

unit unit unit unit

| I I |

02/11/2007 Cs4272, 2006 35

The Texas Instruments
™ 2 XX n exampl

‘ Bit in each instruction encodes end of parallel execution ‘
31 031 031 031 031 031 031 O
ot b fd [i

Instr. Instr. Instr. Instr. Instr. Instr. Instr.
A B C D E F G

- Instructions B, C and D
Cycle Instruction /cannot use any of the same
1 A functional units, cross paths
2 B c p| orother data path
resources. The same is also
3 E F G true for E, F and G.

Parallel execution cannot span several packets.

Partitioned register files

* Many memory ports are required to supply enough
operands per cycle.

* Memories with many ports are expensive.

@ Registers are partitioned into (typically 2) sets, e.g. for Tl

C60x:
Data path A Data path B
| register file A | | register file B |
|

17 1]

Address bus

Data bus
02/11/2007 CS4272, 2006 37

The M3 VLIW DSP Processor

256 bit-wide memory

I ¢

[Interconnection network

oll~]]w

=} S =] =]

& 8 [] g

a = = a

] 5| <] <]

o|l|o]|o a .
Designed at TU Dresden
(G. Fettweis et al.)

02/11/2007 CS4272, 2006 38

Large # of delay slots
add—stub—and—ot
sub 'm’diﬁ? b)kéiP _div
pipeline = [1d_* st ' [mv_ibeq instruction fetch
stages \§| [4 | % | % | instruction decode
[| | | | instruction execute
L il i] 1 | register writeback t
02/11/2007 CS4272, 2006 39

Large # of delay slots

add seday €md_ or
pipeline > [sub® [mult [xof idiv instruction fetch

stages \il [d #[st” [mv [beq. | instruction decode

[I | I | instruction execute

L il i] 1 | register writeback t

02/11/2007 Cs4272, 2006 40

Large # of delay slots

delay slots

pipeline = ladd” Isiy_land_or instruction fetch
saoes \\il sub” Tmillt TxorIdive | instruction decode
[1d [st mv__|beq instruction execute

L il i] 1 | register writeback t

The execution of many instructions has been started before it is
realized that a branch was required.

Nullifying those instructions would waste compute power

@ Executing those instructions is declared a feature, not a bug.
@ How to fill all delay slots with useful instructions?

@ Find code which will execute irrespective of branch.
02/11/2007 CS4272, 2006 41

Sample code
>if(@a=0){ x=1; .} y=x+2z

« In this case you cannot move instriny = x +z
to delay slots

»if(x=>0){a=1;b=2;} y=x+2

« You can move instructions in y = x +z to delay
slots.

> if (a>0) { x=1; y =2} else {x=1; y=0;}
« You can move instructions in x= 1 to delay
slots.

02/11/2007 CS4272, 2006 42

Predication

Predicated execution

> Sometimes, it may be difficult to find
instructions to fill delay slots.

> Another way is to get rid of branches and
produce more and more straight line code
« Predication !

02/11/2007 CS4272, 2006 43

Conditional Instruction [c] |
consists of:
e condition ¢
e instruction |
c =true => | executed
c =false => NOP

Execute/don’t execute individual instructions based
on condition

if @==0) pred_eq p1, a, #0
b=4; mov b, #4 (pl)
02/11/2007 CS4272, 2006 44

Utility

Compiled code

Eliminate branch delay (also called if-conversion)
Predication makes delayed branches more effective

- can fill delay slots with predicated instructions from both
branch paths.

if (x==0)
y=2;
else
y=4

What will be the compiled code with and without predicated
execution?

02/11/2007 Cs4272, 2006 45

> bne #false, x, #0 > eq pl, x, #0

> movy, #2 > (p1) movy, #2
> jmp #end > (Ip1l) movy, #4
> false: mov y, #4

No branches in this one !!
> end:

Predication removes branches and forms larger chunks of
straight-line code often called hyperblocks in compiler literature.

Predication involves changes to instruction set, however minor.

Increases instruction fetch, predicated instructions are always
fetched.

02/11/2007 Cs4272, 2006 46

General Processors - Recap

Application-Specific Instruction-Set
Processors (ASIP)

> Instruction scheduling
« At run-time --- Superscalar
« At compile-time --- VLIW
= Important for the embedded domain (Why?)
» Instruction set Architecture
« Reduced --- RISC machines
. Complex --- CISC machines
> Much processing in embedded systems is
still done by micro-controllers

. Simple micro-architecture, instruction set and
little on-chip memory.

02/11/2007 Cs4272, 2006 47

» General-purpose processors
. Sometimes too general to be effective in demanding
application
- e.g., video processing — requires huge video buffers and
operations on large arrays of data, inefficient on a GPP

« But ASIC has high NRE, not programmable
» ASIP — targeted to a particular domain
. Contain architectural features specific to that domain

- e.g., embedded control, digital signal processing, video
processing, network processing, telecommunications, etc.

« Still programmable

02/11/2007 CS4272, 2006 48

A Common ASIP:

> For signal processing applications

. Large amounts of digitized data, often
streaming

. Data transformations must be applied fast
. e.g., cell-phone voice filter, digital TV, music
synthesizer
> DSP features
« Does a lot of math operations
« Several instruction execution units
« Multiply-accumulate single-cycle instruction

. Efficient vector operations, e.g., add two
arrays
= Vector ALU, loop buffers, etc.

02/11/2007 CS4272, 2006 49

Domain of DSP

> DSP process data in real time

> Analog information is converted to a
digital representation, processed, then
reconverted to analog

02/11/2007 CS4272, 2006 50

More on DSP

> The Killer App for DSP (16-bit fixed
point) has been the PC modem and sound
cards
« In 1998, 70 to 80 Million PC are sold
« Every modem and high-end sound card has a

DSP

> New Killer App is predicted to be voice
encoding/decoding
« Voice Over Internet Protocol (VOIP)
« Speech recognition

02/11/2007 Cs4272, 2006 51

Features of DSP processors

> Support for Vector operations
> Special addressing modes

» Saturating and fixed point arithmetic
« As opposed to floating point
> Multiple memory banks

02/11/2007 Cs4272, 2006 52

DSP-Processors: new instr.

MR:=0; Al:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];
for (j:=1to n)
[{MR:=MR+MX*MY; MY:=a[Al]; MX:=X[A2]; Al++; A2} |
7

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL)
instruction preceding MAC
instruction.

Loop testing done in parallel to
MAC operations.

02/11/2007 Cs4272, 2006 53

Saturating arithmetic

= Returns largest/smallest number in case of over/underflows

= Example:
a 0111
b + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted (0111 almost correct’

= Appropriate for DSP/multimedia applications:
« No timeliness of results if interrupts are generated for overflows
« Precise values less important
« Wrap around arithmetic would be worse.

02/11/2007 CS4272, 2006 54

Fixed-point arithmetic

sign binary point

i V
CESENPNREN

wi

Shifting required after multiplications and divisions in
order to maintain binary point.

02/11/2007 CS4272, 2006 55

Properties of fixed-point
" .

« Automatic scaling a key advantage for
multiplications.

Example:

x= 0.5 x 0.125 + 0.25 x 0.125 = 0.0625 + 0.03125 =
0.09375

For iwl=1 and fwl=3 decimal digits, the less significant digits
are automatically chopped off: x = 0.093

Like a floating point system with numbers e [0..1),

with no stored exponent (bits used to increase precision).

« Appropriate for DSP/multimedia applications
(well-known value ranges).

02/11/2007 CS4272, 2006 56

Real-time capability

« Timing behavior has to be predictable
Features that cause problems:
= Unpredictable access to shared resources
« Caches with difficult to predict replacement strategies
« Unified caches (conflicts betw. instructions and data)
« Pipelines with difficult to predict stall cycles ("bubbles™)
« Unpredictable communication times for multiprocessors
= Branch prediction, speculative execution
= Interrupts that are possible any time
= Memory refreshes that are possible any time
= Instructions that have data-dependent execution times
~ Trying to avoid as many of these as possible.

02/11/2007 Cs4272, 2006 57

[Dagstuhl workshop on predictability, Nov. 17-19, 2003]

e.g. Cache->scratchpad

> One way to avoid the timing
unpredictability due to cache
Compiler controlled scratchpad memory

At compile time define the contents of what is
going inside cache

Cache contents are locked, do not change.

Possible to extend this with dynamic overlays
-- cache contents changes at selected points.

> In more details in next lecture.

02/11/2007 Cs4272, 2006 58

Another Trend: Customized ASIPs

> In the past, microprocessors acquired as chips
» Today, we increasingly acquire a processor as
Intellectual Property (IP)
« e.g., synthesizable VHDL model

> Opportunity to add a custom datapath hardware
and a few custom instructions, or delete a few
instructions
« Can have significant performance, power and size
impacts
« Problem: need compiler/debugger for customized ASIP
= Remember, most development uses structured languages
= One solution: automatic compiler/debugger generation
- e.g., www.tensillica.com
= Another solution: retargetable compilers
« e.g., www.improvsys.com (customized VLIW architectures)

02/11/2007 Cs4272, 2006 59

Organization

> Connection with the physical world
« Sensors and Actuators
« A/D and D/A converters

» Within the nice digitized world
« ASICs

« Processors & Memory

= General-purpose Processors, Special-purpose
processors and Custom processors.

« Reconfigurable Logic

02/11/2007 CS4272, 2006 60

10

So, what is it

> Programmable Logic Devices

« An integrated circuit chip that can be
configured by end user to implement different
digital hardware

« Also known as “Field Programmable Logic
Device (FPLD) “

02/11/2007 CS4272, 2006 61

Reconfigurable Logic

> Full custom chips may be too expensive, software
too slow.
» Combine the speed of HW with flexibility of SW
HW with programmable functions and interconnect.
Use of configurable hardware;
common form: field programmable gate arrays (FPGAs)
~ Applications: bit-oriented algorithms like
. encryption,
. fast object recognition (medical and military)
. Adapting mobile phones to different standards.
» Very popular devices from
o XILINX (XILINX Vertex Il are very recent devices)
« Actel and others

02/11/2007 CS4272, 2006 62

Exercise

> Given a trace of instructions, perform

opcode assignment to minimize number of

bit-flips. # of bits in each opcode is fixed.

This may be common in embedded
applications and processors
Traces obtained by profiling application

- Often programs with one path.
Opcode assignment not fixed being designed.
Number of bit-flips indicative of energy
consumption which may be an issue.

02/11/2007 Cs4272, 2006 63

Answer

> Flip in a single bit position defined as
o | x[i1-yl[il| where x[i], y[i] are bits.
> This can be encoded in ILP as
e« c<=x[i]-y[i]<=c, O<=c<=1
. Thatis, c is an extra ILP variable.
» Instead of minimizing | x[i] — y[i] | now
minimize c

02/11/2007 Cs4272, 2006 64

Assignment 3

> Use Chronos WCET estimation tool for
cache-aware scheduling
« Due on Friday November 16.
« Use the server modelchk.comp.nus.edu.sg
« Discussion on assignment now.

02/11/2007 Cs4272, 2006 65

11

