
1

02/11/200702/11/2007 CS4272, 2006CS4272, 2006 11

CS4272: Hardware Software 
Codesign

Hardware Platforms

Abhik Roychoudhury
School of Computing

National University of Singapore

02/11/2007 CS4272, 2006 2

Recall that …
¾ Steps in co-design

z Modeling
z Partitioning (into HW and SW parts)
z Scheduling
z Software Analysis (to support scheduling)
z Compilers + Processors to run the software

• Similarly, synthesizing the hardware

z All of the above, with power management and 
not just performance in mind.

02/11/2007 CS4272, 2006 3

Organization
¾ Connection with the physical world

z Sensors and Actuators
z A/D and D/A converters

¾ Within the nice digitized world
z ASICs
z Processors 

• General-purpose Processors, Special-purpose 
processors (ASIP) and Custom processors.

z Emphasis on Power management/Customization

z Reconfigurable Logic

02/11/2007 CS4272, 2006 4

Connection to Environment

A/D

Converter
Processor,

ASIC, FPGA
D/A

Converter

Display

ActuatorsSensors Phys.  Env.

02/11/2007 CS4272, 2006 5

Sensors

Why need them ?

02/11/2007 CS4272, 2006 6

Sensors
¾ Sense continuous variables from the 

physical world.
z Current, Voltage
z Temperature, Pressure, Light …

¾ Examples
z Proximity sensor in a car

• Many modern cars have this particularly when the car 
is being driven in Reverse Gear

z Rain Sensor (in high-end cars)
• Allow adjusting speed of wiper to rain speed.

z Image Sensors
• Digital Camera, Fingerprint Authentication



2

02/11/2007 CS4272, 2006 7

Image Sensors based on CMOS

Array of light sensors.

Each pixel performs

ÆLight sensing, and

ÆLimited Processing

Smart Sensors !!

02/11/2007 CS4272, 2006 8

Smart Sensors
¾ Many applications

z Target tracking/spying in difficult terrains.
z Future Generation Home 

• Home 2015 --- Light turns on when you enter ☺

¾ Come under Distributed Sensor Networks
z Slightly different from our presentation.

¾ Our sensors are typically simplified.
z They provide data to the processing units.

¾ Integration of limited intelligence into 
sensors remains an active research area.

02/11/2007 CS4272, 2006 9

Actuators
¾ Provide output to the environment

z Can vary radically in size and function
• To be inserted into Human body or
• Huge actuators overseeing mechanical movement of 

heavyweight items

¾ Example from Health-care
z Sensors --- Can be slapped/inserted into body 

to detect fail, monitor blood pressure etc.
z Actuators --- Can be injected to enable release 

of drugs into the human body based on sensor 
data (and its processing)
• Less intrusive than using injection syringe !

02/11/2007 CS4272, 2006 10

D/A Converters
¾ Convert digital data (d) to analog (a)

z Can be fed into actuators

¾ Simple circuit 
z Often forms the basis of A/D Converters

¾ Basic Concept
z Use each bit of (d) to control a current source
z Arrange current sources in geometric 

progression depending on position of bits
z Add current sources to produce total current at 

a junction
z a = Output analog voltage ∝ Total Current

02/11/2007 CS4272, 2006 11

D/A Converter: Schematic

XXXX

i 2i 4i 8i
Vref

Q0 Q1 Q2 Q3

D0 D1 D2 D3

Current Source
Analog Switch

R

Sum of currents produce 
output voltage at this node

To processor

LSB                               MSB

How do we generate the current 
sources in geometric progression?

i, 2i, 4i, 8i

02/11/2007 CS4272, 2006 12

D/A Converter

Vref

X X X X

R2R4R8R

i 2i 4i 8i

i = Vref/8R

Q0             Q1            Q2          Q3

D0               D1            D2          D3

LSB MSB

Total current = I

- +

O/p analog 
voltage V ∝ I



3

02/11/2007 CS4272, 2006 13

A/D Converter
¾ Convert an analog voltage to a n-bit 

digital output
z Given the maximum reference voltage Vref

¾ Obvious cases
z Voltage = Vref corresponds to 1111….1
z Voltage = 0  corresponds to 0000…0

• The minimum voltage can be different from 0 in 
which the definition of 000…0 can be suitably altered

¾ Use proportionality to convert the 
intermediate voltages to intermediate n-
bit numbers
z How to build a circuit to accomplish this task?

02/11/2007 CS4272, 2006 14

Voltage comparison
¾ Say n = 2, Vref = 4V
¾ Use proportionality to define 

z 00 ≡ 0 – 1 V
z 01 ≡ 1 – 2 V
z 10 ≡ 2 – 3 V
z 11 ≡ 3 – 4 V

¾ Now how to convert 1.4V ?
z 1.4 V > 4V ? 

• No

z 1.4 V > 3V ? 
• No …

02/11/2007 CS4272, 2006 15

Voltage Comparison
¾ In general

z a / Vref =  d / 2n

z a  = analog voltage value
z d = converted digital output for a
z Vref = Maximum reference voltage
z n = precision of digital output (# of bits)

¾ Example
z d = (1.4/4)*4
z = 1.4 = 1 (rounded down) 

• Could be rounded up, then formula needs to change!

z = 01 (digital output for 1.4V voltage)

02/11/2007 CS4272, 2006 16

Voltage Comparator Circuit

+

-

V1

V2

Out

Out =  1   if  V1 > V2

=  0   otherwise.

Compares two analog 
voltages and produces a 
one-bit output

How can we use voltage comparators to build A/D converters?

02/11/2007 CS4272, 2006 17

Voltage Comparison

Time

Vo
lta

ge Comparator threshold 
Voltage

Comparator threshold 
Voltage

C
om

pa
ra

to
r d

ig
ita

l o
ut

pu
t

1

0

02/11/2007 CS4272, 2006 18

Flash A/D Comparator
¾ Say n = 2, Vref = 4V, a = 1.4V

z Find digital output d

¾ Again define
z 00 = 0-1V, 01 = 1-2V, 10=2-3V, 11 = 3-4V

¾ Now, compare
z a > 4V  (use voltage comparator)

• No

z a > 3V (use another voltage comparator !)
• No

¾ Sequential search, and …
z Requires 2n – 1 comparators for n-bit output



4

02/11/2007 CS4272, 2006 19

Flash A/D Converter

Sequential search 
parallelized in 
hardware --- BUT

Exponentially many 
voltage comparators 
required.

+
-

+
-

+
-

+
-

Vref

3/4Vref

2/4Vref

1/4Vref

a

Encoding

Over-range

(Ovf)

b0

b1

x1

x2

x3

x4

How are the results of (parallel) comparisons combined to produce 
digital output ?

02/11/2007 CS4272, 2006 20

Flash A/D Converter

+
-

+
-

+
-

+
-

Vref

3/4Vref

2/4Vref

1/4Vref

a

Encoding

b1
x1

x2

x3

x4

b0

Ovf

x1 x2 x3 x4 b0 b1

0 0 0 0 0 0

1 0 0 0 1 0

1 1 0 0 0 1

1 1 1 0 1 1

Ovf

0

0

0

0

1 1 1 1 1 1 1

d

b0 is the LSB of output

b1 is the MSB of output

02/11/2007 CS4272, 2006 21

Single Slope A/D converter
¾ Can we reduce the # of voltage 

comparators?
z Say n = 2, Vref = 4V, a = 1.4V
z Compute voltages for 11, 10, 01, 00 using a 

D/A converter. 
• 4V, 3V, 2V, 1V

z Now compare
• Analog input (1.4V) against voltage for 11 (4V)
• 1.4 V < 4V, so compare 1.4V against voltage for 10 

z We still perform sequential search
• Maximum 2n – 1 comparisons, all by same 

comparator
• Very slow !!

02/11/2007 CS4272, 2006 22

Successive Approx. A/D Converter

Set D/A 
MSB to 1

Vout
>

Vx?

YES

NO

Reset D/A 
BIT to 0

Done?
YESNO

Set Next
D/A BIT to 1

Vx = Analog Voltage 
being converted

Digital output

02/11/2007 CS4272, 2006 23

Example
¾ n = 2, a = 1.4 V, Vref = 4 V

z ½ (4 + 0) = 2 V > 1.4 V    00
z ½(2 + 0) = 1V < 1.4 V      01
z Final encoding = 01

¾ Can you repeat the work for 4 bits?

02/11/2007 CS4272, 2006 24

Organization
¾ Connection with the physical world

z Sensors and Actuators
z A/D and D/A converters

¾ Within the nice digitized world
z ASICs
z Processors & Memory

• General-purpose Processors, Special-purpose 
processors and Custom processors.

z Emphasis on Power management/Customization

z Reconfigurable Logic



5

02/11/2007 CS4272, 2006 25

ASICs
¾ Implement functionality in custom 

hardware
z Very efficient
z No flexibility
z Can only be done for very specific parts of the 

design.

02/11/2007 CS4272, 2006 26

General-Purpose Processor
¾ Processor designed for a variety of 

computation tasks
¾ Low unit cost, in part because 

manufacturer spreads NRE over large 
numbers of units

¾ Carefully designed as high NRE is 
acceptable
z Can yield good performance, size and power

¾ Low cost, short time-to-market, high 
flexibility
z User just writes software; no processor design

02/11/2007 CS4272, 2006 27

Basic Architecture

¾ Control unit 
and data-path

¾ Features
z General data-

path 
z Control unit

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

02/11/2007 CS4272, 2006 28

Data Path
¾ Register File

z Storing intermediate results

¾ Arithmetic Logic Unit
z Computations

¾ Operations may involve computation, 
movement across registers and/or mem.

02/11/2007 CS4272, 2006 29

Data-path Operations

¾ Load
z Read memory 

location into 
register 

¾ ALU
z Arithmetic/logical 

operation

¾ Store
z Write register into 

memory location 

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...

10

+1

11

11

02/11/2007 CS4272, 2006 30

Control Unit

¾ Control unit: configures the 
data-path operations
z Sequence of desired 

operations (“instructions”) 
stored in memory –
“program”

¾ Instruction cycle – broken 
into several sub-operations, 
each one clock cycle:
z Fetch: Get next instruction 

into IR
z Decode: Determine what the 

instruction means
z Fetch operands: Move data 

from memory to data-path 
register

z Execute: Move data through 
the ALU

z Store results: Write data 
from register to memory

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

10
...

...
load R0, M[500] 500

501

100
inc R1, R0101

store M[501], R1102

R0 R1



6

02/11/2007 CS4272, 2006 31

Architectural Considerations

¾ N-bit 
processor
z N-bit ALU, 

registers, buses, 
memory data 
interface

z Embedded: 8-
bit, 16-bit, 32-
bit common

z Desktop/servers
: 32-bit, even 64

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

02/11/2007 CS4272, 2006 32

Architectural Considerations

¾ Clock 
frequency
z Inverse of clock 

period
z Must be longer 

than longest 
register to 
register delay in 
entire processor

z Memory access 
is often the 
longest

Processor

Control unit Datapath

ALU

Registers

IRPC

Controller

Memory

I/O

Control
/Status

02/11/2007 CS4272, 2006 33

Pipelining: 
Increasing Instruction 

Throughput

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Fetch-instr.

Decode

Fetch ops.

Execute

Store res.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Wash

Dry

Time

Non-pipelined Pipelined

Time

Time

Pipelined

pipelined instruction execution

non-pipelined dish cleaning pipelined dish cleaning

Instruction 1

02/11/2007 CS4272, 2006 34

Superscalar and VLIW
¾ Multiple ALU to support more than one 

instruction stream
z Superscalar: Fetches instructions in batches, 

executes as many as possible 
• May require extensive hardware to detect 

independent instructions

z VLIW: each word in memory has multiple 
independent instructions
• Relies on the compiler to detect and schedule 

instructions
• Currently growing in popularity --- many multimedia 

or DSP processors are VLIW processors.

02/11/2007 CS4272, 2006 35

Very long instruction word 
(VLIW) processors

Key idea: detection of possible parallelism to be done by 
compiler, not by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long 
word (instruction packet), each instruction controlling one 
functional unit. E.g.:

Key idea: detection of possible parallelism to be done by 
compiler, not by hardware at run-time (inefficient).

VLIW: parallel operations (instructions) encoded in one long 
word (instruction packet), each instruction controlling one 
functional unit. E.g.:

The Texas Instruments
TMS 320C6xx as an example

31      0

0
Instr. 
A

31      0

0
Instr. 
D

31      0

1
Instr. 
F

31      0

0
Instr. 
G

31      0

1
Instr. 
E

31      0

1
Instr. 
C

31      0

1
Instr. 
B

Cycle Instruction

1 A
2 B C D
3 E F G

Instructions B, C and D 
cannot use any of the same 
functional units, cross paths 
or other data path 
resources. The same is also 
true for E, F and G.

Bit in each instruction encodes end of parallel executionBit in each instruction encodes end of parallel execution

Parallel execution cannot span several packets.Parallel execution cannot span several packets.



7

02/11/2007 CS4272, 2006 37

Partitioned register files

register file A register file B

L1 S1 M1 D1 D2 M2 S2 L2 

Data bus

Address bus

Data path A Data path B

• Many memory ports are required to supply enough 
operands per cycle.

• Memories with many ports are expensive.
) Registers are partitioned into (typically 2) sets, e.g. for TI 

C60x:

02/11/2007 CS4272, 2006 38

The M3 VLIW DSP Processor

Designed at TU Dresden 
(G. Fettweis et al.)

02/11/2007 CS4272, 2006 39

Large # of delay slots
add sub and or

sub mult xor div

ld st mv beq

02/11/2007 CS4272, 2006 40

Large # of delay slots

add sub and or

sub mult xor div

ld st mv beq

02/11/2007 CS4272, 2006 41

Large # of delay slots

The execution of many instructions has been started before it is
realized that a branch was required.
Nullifying those instructions would waste compute power
) Executing those instructions is declared a feature, not a bug.
) How to fill all delay slots with useful instructions?
) Find code which will execute irrespective of branch.

add sub and or

sub mult xor div

ld st mv beq

02/11/2007 CS4272, 2006 42

Sample code
¾ if (a > 0) {  x = 1; …}  y = x + z

z In this case you cannot move instr in y = x +z 
to delay slots

¾ if (x > 0) { a = 1; b= 2;}  y = x + z
z You can move instructions in y = x +z to delay 

slots.

¾ if (a > 0) { x=1; y =2} else {x=1; y=0;}
z You can move instructions in x= 1 to delay 

slots.



8

02/11/2007 CS4272, 2006 43

Predication
¾ Sometimes, it may be difficult to find 

instructions to fill delay slots.

¾ Another way is to get rid of branches and 
produce more and more straight line code
z Predication !

02/11/2007 CS4272, 2006 44

Predicated execution

Conditional Instruction [c] I 
consists of:
• condition c
• instruction I

c = true  =>  I executed
c = false =>  NOP

Execute/don’t execute individual instructions based 
on condition
if (a == 0)                          pred_eq p1, a, #0

b = 4;                        mov b, #4 (p1)

02/11/2007 CS4272, 2006 45

Utility
Eliminate branch delay  (also called if-conversion)
Predication makes delayed branches more effective
- can fill delay slots with predicated instructions from both
branch paths.

if (x == 0)
y =2;

else
y = 4;

What will be the compiled code with and without predicated 
execution?

02/11/2007 CS4272, 2006 46

Compiled code
¾ bne #false, x, #0
¾ mov y, #2
¾ jmp #end
¾ false: mov y, #4
¾ end:     ….

¾ eq p1, x, #0
¾ (p1) mov y, #2
¾ (!p1) mov y, #4

No branches in this one !!

Predication removes branches and forms larger chunks of 
straight-line code often called hyperblocks in compiler literature.

Predication involves changes to instruction set, however minor.

Increases instruction fetch, predicated instructions are always 
fetched.

02/11/2007 CS4272, 2006 47

General Processors - Recap
¾ Instruction scheduling

z At run-time --- Superscalar
z At compile-time --- VLIW

• Important for the embedded domain (Why?)

¾ Instruction set Architecture
z Reduced --- RISC machines
z Complex --- CISC machines

¾ Much processing in embedded systems is 
still done by micro-controllers
z Simple micro-architecture, instruction set and 

little on-chip memory. 

02/11/2007 CS4272, 2006 48

Application-Specific Instruction-Set 
Processors (ASIP)

¾ General-purpose processors
z Sometimes too general to be effective in demanding 

application
• e.g., video processing – requires huge video buffers and 

operations on large arrays of data, inefficient on a GPP

z But ASIC has high NRE, not programmable

¾ ASIP – targeted to a particular domain
z Contain architectural features specific to that domain

• e.g., embedded control, digital signal processing, video 
processing, network processing, telecommunications, etc.

z Still programmable



9

02/11/2007 CS4272, 2006 49

A Common ASIP:
Digital Signal Processors (DSP)
¾ For signal processing applications

z Large amounts of digitized data, often 
streaming

z Data transformations must be applied fast
z e.g., cell-phone voice filter, digital TV, music 

synthesizer

¾ DSP features
z Does a lot of math operations
z Several instruction execution units
z Multiply-accumulate single-cycle instruction
z Efficient vector operations, e.g., add two 

arrays
• Vector ALU, loop buffers, etc.

02/11/2007 CS4272, 2006 50

Domain of DSP

¾ DSP process data in real time 
¾ Analog information is converted to a 

digital representation, processed, then 
reconverted to analog

02/11/2007 CS4272, 2006 51

More on DSP
¾ The Killer App for DSP ( 16-bit fixed 

point ) has been the PC modem and sound 
cards
z In 1998, 70 to 80 Million PC are sold
z Every modem and high-end sound card has a 

DSP

¾ New Killer App is predicted to be voice 
encoding/decoding
z Voice Over Internet Protocol (VOIP)
z Speech recognition

02/11/2007 CS4272, 2006 52

Features of DSP processors
¾ Support for Vector operations
¾ Special addressing modes
¾ Saturating and fixed point arithmetic

z As opposed to floating point

¾ Multiple memory banks

02/11/2007 CS4272, 2006 53

DSP-Processors: new instr.

MR:=0; A1:=1; A2:=n-2; MX:=x[n-1]; MY:=a[0];
for ( j:=1 to n)

{MR:=MR+MX*MY; MY:=a[A1]; MX:=x[A2]; A1++; A2--}

Multiply/accumulate (MAC) instruction Zero-overhead loop (ZOL) 
instruction preceding MAC 
instruction.
Loop testing done in parallel to 
MAC operations.

02/11/2007 CS4272, 2006 54

�Returns largest/smallest number in case of over/underflows

�Example:
a 0111
b + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted 0111

�Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows
• Precise values less important
• Wrap around arithmetic would be worse.

�Returns largest/smallest number in case of over/underflows

�Example:
a 0111
b + 1001
standard wrap around arithmetic (1)0000
saturating arithmetic 1111
(a+b)/2: correct 1000

wrap around arithmetic 0000
saturating arithmetic + shifted 0111

�Appropriate for DSP/multimedia applications:
• No timeliness of results if interrupts are generated for overflows
• Precise values less important
• Wrap around arithmetic would be worse.

Saturating arithmetic

„almost correct“



10

02/11/2007 CS4272, 2006 55

Fixed-point arithmetic

Shifting required after multiplications and divisions in 
order to maintain binary point.
Shifting required after multiplications and divisions in 
order to maintain binary point.

02/11/2007 CS4272, 2006 56

Properties of fixed-point 
arithmetic

z Automatic scaling a key advantage for 
multiplications.

z Example:
x= 0.5 x 0.125 + 0.25 x 0.125 = 0.0625 + 0.03125 = 
0.09375
For iwl=1 and fwl=3 decimal digits, the less significant digits 
are automatically chopped off: x = 0.093
Like a floating point system with numbers ∈ [0..1),
with no stored exponent (bits used to increase precision).

z Appropriate for DSP/multimedia applications
(well-known value ranges).

02/11/2007 CS4272, 2006 57

Real-time capability

z Timing behavior has to be predictable
Features that cause problems:
• Unpredictable access to shared resources

z Caches with difficult to predict replacement strategies

z Unified caches (conflicts betw. instructions and data)

z Pipelines with difficult to predict stall cycles ("bubbles")
z Unpredictable communication times for multiprocessors

• Branch prediction, speculative execution
• Interrupts that are possible any time
• Memory refreshes that are possible any time
• Instructions that have data-dependent execution times
) Trying to avoid as many of these as possible.

[D
ag

st
uh

l w
or

ks
ho

p 
on

 p
re

di
ct

ab
ilit

y,
 N

ov
. 1

7-
19

, 2
00

3]

02/11/2007 CS4272, 2006 58

e.g. Cache->scratchpad
¾ One way to avoid the timing 

unpredictability due to cache
z Compiler controlled scratchpad memory
z At compile time define the contents of what is 

going inside cache
z Cache contents are locked, do not change.
z Possible to extend this with dynamic overlays  

-- cache contents changes at selected points.

¾ In more details in next lecture.

02/11/2007 CS4272, 2006 59

Another Trend: Customized ASIPs
¾ In the past, microprocessors acquired as chips
¾ Today, we increasingly acquire a processor as 

Intellectual Property (IP)
z e.g., synthesizable VHDL model

¾ Opportunity to add a custom datapath hardware 
and a few custom instructions, or delete a few 
instructions
z Can have significant performance, power and size 

impacts
z Problem: need compiler/debugger for customized ASIP

• Remember, most development uses structured languages
• One solution: automatic compiler/debugger generation

z e.g., www.tensillica.com
• Another solution: retargetable compilers

z e.g., www.improvsys.com (customized VLIW architectures)

02/11/2007 CS4272, 2006 60

Organization
¾ Connection with the physical world

z Sensors and Actuators
z A/D and D/A converters

¾ Within the nice digitized world
z ASICs
z Processors & Memory

• General-purpose Processors, Special-purpose 
processors and Custom processors.

z Reconfigurable Logic



11

02/11/2007 CS4272, 2006 61

So, what is it
¾ Programmable Logic Devices

z An integrated circuit chip that can be 
configured by end user to implement different 
digital hardware 

z Also known as “Field Programmable Logic 
Device (FPLD) “

02/11/2007 CS4272, 2006 62

Reconfigurable Logic
¾ Full custom chips may be too expensive, software 

too slow.
¾ Combine the speed of HW with flexibility of SW

) HW with programmable functions and interconnect.
) Use of configurable hardware;

common form: field programmable gate arrays (FPGAs)

) Applications: bit-oriented algorithms like
z encryption,
z fast object recognition (medical and military)
z Adapting mobile phones to different standards. 

¾ Very popular devices from
z XILINX (XILINX Vertex II are very recent devices)
z Actel and others

02/11/2007 CS4272, 2006 63

Exercise
¾ Given a trace of instructions, perform 

opcode assignment to minimize number of 
bit-flips. # of bits in each opcode is fixed.
z This may be common in embedded 

applications and processors
z Traces obtained by profiling application

• Often programs with one path.

z Opcode assignment not fixed being designed.
z Number of bit-flips indicative of energy 

consumption which may be an issue.

02/11/2007 CS4272, 2006 64

Answer
¾ Flip in a single bit position defined as

z | x[i] – y[i] |  where x[i], y[i] are bits.

¾ This can be encoded in ILP as    
z -c <= x[i] – y[i] <= c,   0 <= c <= 1  
z That is, c is an extra ILP variable. 

¾ Instead of minimizing | x[i] – y[i] |  now 
minimize c

02/11/2007 CS4272, 2006 65

Assignment 3
¾ Use Chronos WCET estimation tool for 

cache-aware scheduling
z Due on Friday November 16.
z Use the server modelchk.comp.nus.edu.sg
z Discussion on assignment now.


