
1

14/09/200714/09/2007 11

CS4272: HW SW Codesign
Scheduling

Dr. Abhik Roychoudhury
School of Computing

National University of Singapore

Some slides are modified from Peter Marwedel’s accompanying lecture notes

14/09/2007 2

Hardware Software partioning
¾ Deciding which parts of the design will be

implemented where --- on processor or as
custom hardware
z Allocation of tasks to processing elements
z More than two tasks may get allocated to the

same processing element
z If so, how will they share the computing power

of the processing element
• Scheduling methods --- today’s lecture !

14/09/2007 3

Reading
¾ Section 4.1, 4.2 of textbook

z Embedded System Design
z Peter Marwedel
z Coverage is quite good

¾ Word of caution
z There are many scheduling algorithms for

different settings
z Our aim is to understand the basic concepts,

not to give a list of all scheduling algorithms.

14/09/2007 4

Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols

14/09/2007 5

Definition
¾ Embedded systems that monitor, respond to, or

control external environment under real time
constraints

¾ Examples:
z Vehicles (car, aircraft, …)
z Traffic control (highway, air, railway, …)
z Process control (power plant, chemical plant, …)
z Medical systems (radiation therapy, …)
z Telephone, radio, satellite communication
z Computer games

14/09/2007 6

Characteristics
¾ Timing constraints / deadline

z Functional and temporal correctness

¾ Hard deadline
z Must always meet deadline
z Air traffic controller

¾ Soft deadline
z Must frequently meet deadline
z MPEG decoder

2

14/09/2007 7

Characteristics (Contd.)
¾ Concurrency (multiple processes)

z Handle multiple input and output signals

¾ Reliability
z How often the system fails

¾ Fault tolerance
z Recognition and handling of failures

¾ Critical system
z High cost of failure
z Hard real time system ⇒ critical system

14/09/2007 8

Tasks
¾ A task is a block of code executed in a

CPU in a sequential fashion.
¾ Several independent tasks may be

executing on the same CPU
z How to schedule them ?
z Today’s lecture

¾ There might also be dependences among
tasks, captured by a task graph
z Task mapping – which task on which CPU?
z Task scheduling – in what order to run the

tasks mapped to same CPU?

14/09/2007 9

Why study scheduling?
¾ Increase CPU utilization or other metrics
¾ For real-time systems requiring hard

guarantees
z Study in advance whether all tasks can be

scheduled without missing any deadlines.
z Need computation time of each task

• Typically given as a worst-case bound, called the
Worst-case Execution Time (WCET)

• How to derive these bounds ?
• Involves a low-level code analysis, will be discussed

in later lectures.

14/09/2007 10

Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols

14/09/2007 11

Informally, scheduling is
¾Assume that we are given a task
graph G=(V,E).

¾Def.: A schedule s of G is a
mapping

V → T
of a set of tasks V to start times from
domain T.

V1 V2 V4V3

t

G=(V,E)

T

s

14/09/2007 12

Informally, scheduling is
¾Typically, schedules have to
respect a number of constraints,
incl. resource constraints,
dependency constraints, deadlines.

¾Scheduling = finding such a
mapping.

¾Scheduling to be performed
several times during ES design
(early rough scheduling as well as
late precise scheduling).

3

14/09/2007 13

More precisely,
¾ Schedule

z An assignment of tasks to the processor
(assuming 1 processor!) over time.

¾ Feasible schedule
z All tasks can be completed and all constraints

(precedence, resource, deadline) can be
respected.

¾ Scheduling Algorithm
z A recipe for producing schedules

¾ Schedulability
z If at least one scheduling algorithm producing

a feasible schedule exists.

14/09/2007 14

Classification of scheduling
algorithms

14/09/2007 15

Hard and soft deadlines

¾Def.: A time-constraint (deadline) is called
hard if not meeting that constraint could
result in a catastrophe [Kopetz, 1997].

¾All other time constraints are called soft.

¾We will focus on hard deadlines.
14/09/2007 16

Periodic and aperiodic tasks

14/09/2007 17

Periodic and Aperiodic
¾Def.: Tasks which must be executed once
every p units of time are called periodic
tasks. p is called their period. Each
execution of a periodic task is called a job.
¾All other tasks are called aperiodic.
¾Def.: Tasks requesting the processor at
unpredictable times are called sporadic, if
there is a minimum separation between the
times at which they request the processor.

14/09/2007 18

Periodic Task
¾ Activated on a regular basis between fixed

interval
z scan the airspace every 3 sec

¾ P = (s, c, p, d)
z s = start time or arrival time
z c = worst case execution time (WCET)
z p = period or cycle time
z d = deadline
z c <= d <= p

4

14/09/2007 19

Periodic Process (Contd.)

�Period: interval between process activations.

�Initiation interval: reciprocal of period.

�Initiation time: time at which process becomes ready.

�Deadline: time at which process must finish.

�In most cases, d = p

d

cp

14/09/2007 20

Sporadic Task
¾ P = (c, p, d) where c <= d <= p
¾ t <= te + d

where t is completion time
te is the event occurrence time

� p is the minimum time between event
� If p = 0, then aperiodic task
� Aperiodic task does not have deterministic timing

constraints
� Jitter : Variation from cycle to cycle in task

completion time

14/09/2007 21

Preemptive and non-preemptive scheduling

� Non-preemptive schedulers:
Tasks are executed until they are done.
Response time for external events may be quite long.

� Preemptive schedulers: To be used if
- some tasks have long execution times or
- if the response time for external events to be short.

14/09/2007 22

Dynamic/online scheduling

� Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based
on the information about the
tasks arrived so far.

14/09/2007 23

Static/offline scheduling

� Static/offline scheduling:
Scheduling taking a priori knowledge about
arrival times, execution times, and deadlines
into account.
Dispatcher allocates processor when
interrupted by timer. Timer controlled by a
table generated at design time.

14/09/2007 24

necessary

Schedulability
¾Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set of
tasks & constraints.

¾Exact tests are NP-hard in many situations.

¾Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of indicating that no schedule
exists even though one exists.

¾Necessary tests: checking necessary
conditions. Used to show no schedule exists.
There may be cases in which no schedule
exists & we cannot prove it.

schedulable
sufficient

5

14/09/2007 25

Cost functions
¾ Cost function: Different algorithms aim at minimizing

different functions.

¾ Def.: Maximum lateness =

¾ maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2
Max. lateness

14/09/2007 26

To summarize
¾ Input to Scheduling Algorithm

z One or more processes
z Activation time, execution time, deadline for

each process

¾ Scheduling algorithm: a policy to allocate
tasks to the processor(s)

¾ Feasible schedule if the scheduling
algorithm can meet all the constraints

¾ Optimal algorithm: A scheduling algorithm
that produces a feasible schedule if it
exists

14/09/2007 27

To summarize
¾ Constraints to be met by

scheduling algorithm
z No task misses deadlines
z Precedence constraints among

tasks --- captured by task graph
z Resource constraints

• Due to synchronization over shared
data structures/resources by different
tasks

• We will discuss this later.

P1 P2

P3

P4

14/09/2007 28

To summarize
¾ How do we evaluate a scheduling policy:

z Ability to satisfy all deadlines.
z CPU utilization: percentage of time devoted to

useful work.
z Scheduling overhead: time required to make

scheduling decision.

14/09/2007 29

Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols

14/09/2007 30

Aperiodic scheduling
- Scheduling with no precedence constraints

¾ Let {Ti } be a set of tasks. Let:
¾ ci be the execution time of Ti ,
¾ di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

¾ ℓi be the laxity or slack, defined as ℓi = di - ci

¾ fi be the finishing time.

ℓi

6

14/09/2007 31

Our very first …
¾ … scheduling problem

z Uni-processor
z Set of independent tasks
z All tasks arrive at the same time.

14/09/2007 32

Uni-processor with equal arrival times

¾Preemption is useless.

¾Earliest Due Date (EDD): Execute task
with earliest due date (deadline) first.

¾EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

¾EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

14/09/2007 33

Optimality of EDD
¾ EDD is optimal, since it follows Jackson's rule:

Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the
maximum lateness.

¾ Proof (See Buttazzo, 2002):

z Let σ be a schedule produced by any algorithm A

z If A ≠ EDD → ∃ Ta, Tb, da ≤ db, Tb immediately precedes Ta

in σ.

z Let σ' be the schedule obtained by exchanging Ta and Tb.

More
in-depth:

14/09/2007 34

Exchanging Ta and Tb cannot increase lateness

¾ Max. lateness for Ta and Tb in σ is Lmax(a,b)=fa-da

¾ Max. lateness for Ta and Tb in σ' is L'max(a,b)=max(L'a,L'b)

¾ Two possible cases

1. L'a≥ L'b: → L'max(a,b) = f'a – da < fa – da = Lmax(a,b)
since Ta starts earlier in schedule σ'.

2. L'a ≤ L'b: → L'max(a,b) = f'b – db = fa – db ≤ fa – da =
Lmax(a,b) since fa=f'b and da ≤ db

–) L'max(a,b) ≤ Lmax(a,b)

Tb

TbTa

σ
σ'

Ta

fa=f'b

14/09/2007 35

EDD is optimal

) Any schedule σ with lateness L can be
transformed into an EDD schedule σn with
lateness Ln ≤ L, which is the minimum
lateness.

) EDD is optimal (q.e.d.)

end

14/09/2007 36

Earliest Deadline First (EDF)
- Horn’s Theorem -

¾Different arrival times: Preemption potentially
reduces lateness.

¾Theorem [Horn74]: Given a set of n
independent tasks with arbitrary arrival times,
any algorithm that at any instant executes the
task with the earliest absolute deadline among
all the ready tasks is optimal with respect to
minimizing the maximum lateness.

7

14/09/2007 37

Earliest Deadline First (EDF)
- Algorithm -

¾Earliest deadline first (EDF) algorithm:
� Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the queue,

the currently executing task is preempted.
¾Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2)

Sorted queue

Executing task
14/09/2007 38

Earliest Deadline First (EDF)
- Example -

Later deadline
) no preemption

Earlier deadline
) preemption

14/09/2007 39

Another Algorithm

ℓi

Least Laxity first

--- Another dynamic priority algorithm, but different from EDF.

14/09/2007 40

Least laxity (LL), Least Slack Time First (LST)

¾Priorities = decreasing function of the laxity (the less laxity, the
higher the priority); dynamically changing priority; preemptive.

14/09/2007 41

Summarizing …
¾ Both EDF and LL are optimal for

z Uni-procesor
z Aperiodic independent tasks
z Arrival times diff, pre-emption allowed
z No precedence, resource or other constraints

¾ This means that both algorithms will find a
schedule, if one exists --- but …
z Their produced schedules may be different.

14/09/2007 42

Scheduling with precedence
constraints

¾ Task graph and possible
schedule:

Schedule can be stored in table.Schedule can be stored in table.

8

14/09/2007 43

Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

¾LDF [Lawler, 1973]: reads the task graph and among the tasks
with no successors inserts the one with the latest deadline into a
queue. It then repeats this process, putting tasks whose successor
have all been selected into the queue.
¾At run-time, the tasks are executed in the generated total order.
¾LDF is non-preemptive and is optimal for uni-processors.

If no local deadlines exist, LDF performs just a topological sort.If no local deadlines exist, LDF performs just a topological sort.
14/09/2007 44

What if
¾ We have …

z Uni-processor
z Aperiodic Tasks with precedence constraints
z Diff arrival times and pre-emption

¾ We have …
z Uni-processor
z Aperiodic Tasks with precedence constraints
z Diff arrival times and no pre-emption

¾ We have …
z Omitted from our “laundry list” ☺

14/09/2007 45

Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

14/09/2007 46

Scheduling without preemption
¾ T1: periodic, c1 = 2, p1 = 4, d1 = 4
¾ T2: occasionally available at times 4*n+1, c2= 1, d2= 1
¾ T1 has to start at t=0
¾) deadline missed, but schedule is possible (start T2 first)
¾) scheduler is not optimal) contradiction! q.e.d.

14/09/2007 47

Scheduling without preemption

¾Preemption not allowed:) optimal schedules
may leave processor idle to finish tasks with
early deadlines arriving late.

)Knowledge about the future is needed for
optimal scheduling algorithms
then

))No online algorithm can decide whether or
not to keep idle.

14/09/2007 48

Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols

9

14/09/2007 49

Periodic task - Recap
¾ Activated on a regular basis between fixed

interval
z scan the airspace every 3 sec

¾ P = (s, c, p, d)
z s = start time or arrival time
z c = worst case execution time (WCET)
z p = period or cycle time
z d = deadline
z c <= d <= p

14/09/2007 50

Task Execution Recap
Terminate

….

activation

pre-emption

Scheduling
dis-

patch
Execution

Dispatching from the ready queue will be based on the
scheduling policy which takes into account task priority.

14/09/2007 51

Priority-driven scheduling
¾ Each process has a priority.
¾ CPU goes to highest-priority process that

is ready.
¾ Priorities determine scheduling policy:

z fixed priority;
z time-varying priorities.

14/09/2007 52

Priority-driven scheduling example

¾ Rules:
z each process has a fixed priority (1 highest);
z highest-priority ready process gets CPU

• Preemptive scheduling

z process continues until done.

¾ Processes
z P1: priority 1, execution time 10
z P2: priority 2, execution time 30
z P3: priority 3, execution time 20

14/09/2007 53

Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3

14/09/2007 54

Rate monotonic scheduling
¾ RMS (Liu and Layland 1973)

z widely-used, analyzable scheduling policy.

¾ Analysis is known as Rate Monotonic Analysis
¾ RMS is an optimal fixed priority assignment

method
z If there exists a schedule that meets all the deadlines

with fixed priority, then RMS will produce a feasible
schedule

10

14/09/2007 55

RMA model
¾ All process run on single CPU.
¾ Zero context switch time.
¾ No data dependencies between processes.
¾ Process execution time is constant.
¾ Deadline is at end of period (p = d)
¾ Highest-priority ready process runs.

14/09/2007 56

RMS priorities
¾ Optimal (fixed) priority assignment:

z shortest-period process gets highest priority;
z priority inversely proportional to period;
z break ties arbitrarily.

¾ Intuition: Processes requiring frequent
attention (smaller period) should receive
higher priority

14/09/2007 57

RMS example

time
0 5 10

P2 period

P1 period

P1

P2

P1 P1

14/09/2007 58

RMS Example

P1

P2

P3

P1: s=0, c=2, p=d=5
P2: s=1, c=1, p=d=4
P3: s=2, c=2, p=d=20

5 10 15 20

1 5 9 13 17 21

2 22

0

14/09/2007 59

Rate-monotonic analysis
¾ Response time: time required to finish

process.
¾ Critical instant: scheduling state that gives

worst response time.
¾ Critical instant occurs when all higher-

priority processes are ready to execute.

14/09/2007 60

Critical instant

P4

P3

P2

P1

critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes

11

14/09/2007 61

Informal argument of optimality
¾ P1 = (c1, p1, d1) with p1 = d1
¾ P2 = (c2, p2, d2) with p2 = d2
¾ p1 < p2
¾ Suppose P1 and P2 can be scheduled with non-

RM priority assignment, i.e., P2 has highest
priority

¾ At critical instant, with non-RM priorities
z c1 + c2 <= p1; [1]

¾ With RM priority
z ⎣p2/p1⎦*c1 + c2 <= p2; [2]

¾ If [1] is satisfied, then [2] is also satisfied

14/09/2007 62

RMS optimality

P2 period

P1 period
P1

P2

P1 P1

P2 period

P1 period
P1 P1

P1

P2

14/09/2007 63

RMS CPU utilization
¾ Utilization for n processes is

z U = Σ i ci / pi

¾ U<=1 is a necessary condition for feasibility
regardless of scheduling policy

¾ Scheduling with fixed priorities is feasible if
U <= n (2 1/n – 1)

� The bound is sufficient but not necessary
¾ As number of tasks approaches infinity,

maximum utilization approaches 69%.
z RMS cannot use 100% of CPU, even with zero context

switch overhead.
z Must keep idle cycles available to handle worst-case

scenario.

14/09/2007 64

Practical side
¾ RMS is widely used.

z Static priority scheme makes it easy to
implemented.

z Implemented within OS to manage scheduling
of threads
• Windows NT

14/09/2007 65

Earliest-deadline-first scheduling

¾ EDF: dynamic priority scheduling scheme.
¾ Process closest to its deadline has highest

priority.
¾ Requires recalculating processes at every

timer interrupt.
¾ EDF can use 100% of CPU.

14/09/2007 66

EDF implementation
¾ On each timer interrupt:

z compute time to deadline;
z choose process closest to deadline.

¾ Generally considered too expensive to use
in practice.

12

14/09/2007 67

EDF example

time
0 2 4 6 8 10 12 14 16 18 20

P1 period

P2 period

P2 P2 P2 P2

P1 P1 P1 P1 P1

P1 = (2, 4, 4) P2 = (5, 10, 10)

14/09/2007 68

EDF Results
¾ EDF is optimal

z If a feasible schedule exists using dynamic
priorities, then EDF will produce a feasible
schedule

¾ EDF can always produce a feasible
schedule if U ≤ 1

¾ Scheduling with dynamic priority is
feasible if and only if U ≤ 1

14/09/2007 69

Fixing scheduling problems
¾ What if your set of processes is not

schedulable?
z Change deadlines in requirements.
z Reduce execution times of processes.
z Get a faster CPU.

14/09/2007 70

Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols

14/09/2007 71

Resource Constraints
¾ Resource:

z software structure used by a task during its execution.
z A data structure, variables, an area of main memory, a

file, a set of registers of a peripheral device.

¾ Shared resource:
z Used by more than one task.

¾ Exclusive resource:
z No simultaneous access.
z Require mutual exclusion.
z Operating system must provide a synchronization

mechanism to ensure sequential access..

14/09/2007 72

A small question
¾ If the tasks are Java threads

z Of a program you have written

¾ The scheduler is in the OS/VM
z Depends on the VM

• Sun’s VM uses scheduler in OS
• Kaffe VM manages its own scheduling

¾ What kind of exclusive shared resources
can you think of?

13

14/09/2007 73

Task states
Without Resource Constraints

READY RUNactivation
scheduling

Pre-emption

terminate

With Resource Constraints

READY RUN
scheduling

Pre-emption

terminate

WAIT

Signal

free resource

Wait on
busy resource

14/09/2007 74

Resource access protocols
¾Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.
¾Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see if
resource is available
and if yes, sets S to “used“.
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and starts
sleeping task (if any).

P(S) checks semaphore to see if
resource is available
and if yes, sets S to “used“.
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and starts
sleeping task (if any).

Exclusive
access
to resource
guarded by
S

Task 1 Task 2

14/09/2007 75

Priority inversion
¾Priority T1 assumed to be > than priority of T2.
¾If T2 requests exclusive access first (at t0), T1 has to wait until
T2 releases the resource (time t3), thus inverting the priority:

In this example:
duration of inversion bounded by length of critical section of T2.

14/09/2007 76

Duration of priority inversion with >2 tasks
can exceed the length of any critical section

¾Priority of T1 > priority of T2 > priority of T3.
¾T2 preempts T3:
¾T2 can prevent T3 from releasing the resource.

14/09/2007 77

The MARS Pathfinder problem

¾“But a few days into the mission,
not long after Pathfinder started
gathering meteorological data, the
spacecraft began experiencing total
system resets, each resulting in
losses of data. The press reported
these failures in terms such as
"software glitches" and "the
computer was trying to do too
many things at once".” …

14/09/2007 78

The MARS Pathfinder problem

¾“VxWorks provides preemptive priority scheduling of threads.
Tasks on the Pathfinder spacecraft were executed as threads with
priorities that were assigned in the usual manner reflecting the
relative urgency of these tasks.”
¾“Pathfinder contained an "information bus", which you can think
of as a shared memory area used for passing information between
different components of the spacecraft.”

z A bus management task ran frequently with high priority to
move certain kinds of data in and out of the information
bus. Access to the bus was synchronized with mutual
exclusion locks (mutexes).”

14

14/09/2007 79

The MARS Pathfinder problem

z The meteorological data gathering task ran as an infrequent,
low priority thread, … When publishing its data, it would
acquire a mutex, do writes to the bus, and release the
mutex. ..

z The spacecraft also contained a communications task that ran
with medium priority.”

)
High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

14/09/2007 80

The MARS Pathfinder problem
(4)

¾“Most of the time this combination worked fine. However, very
infrequently it was possible for an interrupt to occur that caused the
(medium priority) communications task to be scheduled during the
short interval while the (high priority) information bus thread was
blocked waiting for the (low priority) meteorological data thread. In
this case, the long-running communications task, having higher
priority than the meteorological task, would prevent it from running,
consequently preventing the blocked
information bus task from running. After some time had passed, a
watchdog timer would go off, notice that the data bus task had not
been executed for some time, conclude that something had gone
drastically wrong, and initiate a total system reset. This scenario is
a classic case of priority inversion.”

14/09/2007 81

Coping with priority inversion:
the priority inheritance protocol

z Tasks are scheduled according to their active priorities. Tasks
with the same priorities are scheduled FCFS.

z If task T1 executes P(S) & exclusive access granted to T2:
T1 will become blocked.
If priority(T2) < priority(T1): T2 inherits the priority of T1.
) T2 resumes.
Rule: tasks inherit the highest priority of tasks blocked by it.

z When T2 executes V(S), its priority is decreased to the
highest priority of the tasks blocked by it.
If no other task blocked by T2: priority(T2):= original value.
Highest priority task so far blocked on S is resumed.

z Transitive: if T2 blocks T1 and T1 blocks T0,
then T2 inherits the priority of T0.

14/09/2007 82

Example

T3 inherits the
priority of T1 and

T3 resumes.

¾How would priority inheritance affect our example
with 3 tasks?

V(S)

14/09/2007 83

Priority inversion on Mars
¾ Priority inheritance also solved the Mars Pathfinder

problem: the VxWorks operating system used in the
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to

“on”. When the software was shipped, it was set to “off”.

The problem on Mars was
corrected by using the
debugging facilities of
VxWorks to change the flag to
“on”, while the Pathfinder was
already on the Mars [Jones,
1997].

The problem on Mars was
corrected by using the
debugging facilities of
VxWorks to change the flag to
“on”, while the Pathfinder was
already on the Mars [Jones,
1997].

14/09/2007 84

Remarks on priority inheritance protocol

¾Possible large number of tasks with high priority.

¾Possible deadlocks.

¾Ongoing debate about problems with the protocol:

Victor Yodaiken: Against Priority Inheritance,
http://www.fsmlabs.com/articles/inherit/inherit.html

¾Finds application in ADA: During rendez-vous,
task priority is set to the maximum.

¾More sophisticated protocol: priority ceiling protocol.

15

14/09/2007 85

Deadlocks on inheritance
Two tasks with nested critical sections

Task P1

…

lock(S1)

…

lock(S2)

…

unlock(S2)

…

unlock(S1)

…

Task P2
…

lock(S2)
…

lock(S1)
…
unlock(S1)

…
unlock(S2)
…

14/09/2007 86

Deadlock Example

L(S2)

L(S1)

Cannot lock S2

Cannot lock S1

Deadlock!

P1

P2

Assume that P1 has higher priority than P2

Pre-emption

14/09/2007 87

Priority Ceiling Protocol
¾ Basic Idea:

z A task is not allowed to enter a critical section
if there are already locked semaphores which
could block it eventually.

z Once a task enters a critical section, it cannot
be blocked by lower priority tasks till its
completion.

14/09/2007 88

Priority Ceiling Protocol
¾ Define Priority ceiling of a resource

z PC(S) = highest priority of all tasks that may
lock S

z A task T attempting to lock a resource will be
suspended unless its priority is higher than
PC(S) for all resources S currently locked by all
tasks other than T.
• This means --- if any of the currently locked

resources can be used by T, it is suspended.

z If T is suspended then the task T1 that holds
the lock with highest PC, effectively blocks T
• T1 inherits T’s priority as in priority inheritance

protocol.

14/09/2007 89

No deadlock

L(S2)

Cannot lock S1 since
priority of P1 not > PC(S2)

PC(S1) = PC(S2) = max(P1’s priority, P2’s priority) = P1’s priority

U(S2)U(S1)L(S1)

Now lock S1

Inherit P1’s priority

P1

P2

14/09/2007 90

More Explanation (1)
¾ Critical Section Entry

z Let S* be the semaphore with the highest
priority ceiling among all the semaphores
currently locked by tasks other than T.

z To enter the critical section guarded by S , T’s
priority must be higher than PC(S*).

z If not, the lock on S is denied.
• T is now said to be blocked on semaphore S*.

z When T is thus blocked it transmits its priority
to the task, say T*, that is holding the
semaphore S* which is blocking T.
• T* will now start executing.

16

14/09/2007 91

More Explanation (2)
¾ Critical Section Exit

z Similar to Priority Inheritance protocol
• When the currently executing T* exits a critical

section, it unlocks the semaphore, and the highest
priority task, if any, that is blocked on that
semaphore is awakened.

• The priority of T* is set to the priority of the highest
priority task it is continuing to block.

14/09/2007 92

Wrapping up
¾ Schedulability analysis

z Aperiodic and periodic
z All tasks arrive at same time --- simplistic

• Or at diff. times – do we allow pre-emptions

z Popular methods for periodic tasks
• RMS (static priority), EDF (dynamic priority)
• Static priority of RMS makes it easy to implement.

z Resource access protocols
• Tasks may share resources
• Priority inheritence and priority ceiling protocols.

RMS & EDF classroom exercise

1064pi

321Ci

t3t2t1

All tasks are periodic, period = deadline

All tasks arrive at time 0

Construct a RMS schedule.

RMS schedule

1064pi

321Ci

t3t2t1

Construct EDF schedule

864pi

321Ci

t3t2t1

All tasks arrive at t=0

14/09/2007 96

More Classroom Exercises
¾ Consider the following scheduling algorithm for

periodic tasks Pi = (ci , pi, pi), where the
execution time is ci, the period is pi and the
deadline is also pi . Assume that all execution
times ci and periods pi are given by integers, for
simplicity. The scheduling algorithm proceeds as
follows. In every unit of time, we allocate a
fraction of the CPU equal to ci /pi to each task Pi
Show any one run of this scheduling algorithm on
the following three tasks

¾ P1 = (1,4,4), P2 = (2, 6, 6), P3 = (1,3,3).

17

14/09/2007 97

Answers

In every time unit, the three processes get allocated
the following fractions of time (in any order). Shown for the first 6 time units.

P1 P2 P3
Time unit 1 ¼ 1/3 1/3

2 ¼ 1/3 1/3
3 ¼ 1/3 1/3 P3 finished

meets deadline
4 ¼ 1/3 1/3 P1 finished

meets deadline
5 ¼ 1/3 1/3
6 ¼ 1/3 1/3 P2 finished

meets deadline

14/09/2007 98

More Classroom Exercises
¾ Let us call the scheduling algorithm in

Question 2A as OurSchedAlgo. Can you
compare it with RMS and EDF? That is,
whenever RMS produces a feasible
schedule will OurSchedAlgo produce a
feasible schedule and vice-versa?
Similarly, whenever EDF (with
preemption) produces a feasible schedule
will OurSchedAlgo produce a feasible
schedule and vice-versa? Give detailed
justifications for your answer.

14/09/2007 99

Answers
The algorithm is optimal, i.e. whenever a feasible schedule exists,
it will find one.
In every unit of time, process i gets ci /pi units of time.

So, in pi units of time,
process i will get ci units of time and thus meet its deadline,

unless the summation of ci/pi for all i (the utilization) is greater than 1.

This means that OurSchedAlgo has the same feasibility region as EDF.

Furthermore, OurSchedAlgo should have a larger feasibility region than RMS ---
all problems which cannot be scheduled using static priorities/RMS,
but can be scheduled using dynamic priorities/EDF are examples where
OurSchedAlgo will produce a schedule, but RMS will not.

One such example is given in next slide

14/09/2007 100

Answers

P1 = (3,9,9), P2 = (5,18,18), P3 = (4,12,12).

2 4 6 8 10 12 14 16 180

P1

P2

P3

Using RMS, P2 is not finished (1 time unit left) when its deadline is reached at 18
Since the utilization factor is 3/9 + 5/18 + 4/12 = 0.944 < 1, OurSchedAlgo is
guaranteed to produce a schedule.

14/09/2007 101

Midterm Examination
¾ 11th Oct Thu 9 AM, SR 3B

z Basics, Modeling, StateCharts, Scheduling,
Partitioning

z Open Book --- bring in any material.
z 2 hour exam.

