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Scheduling

Dr. Abhik Roychoudhury
School of Computing

National University of Singapore

Some slides are modified from Peter Marwedel’s accompanying lecture notes 
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Hardware Software partioning
¾ Deciding which parts of the design will be 

implemented where --- on processor or as 
custom hardware
z Allocation of tasks to processing elements
z More than two tasks may get allocated to the 

same processing element
z If so, how will they share the computing power 

of the processing element
• Scheduling methods --- today’s lecture !
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Reading
¾ Section 4.1, 4.2 of textbook

z Embedded System Design
z Peter Marwedel
z Coverage is quite good

¾ Word of caution
z There are many scheduling algorithms for 

different settings
z Our aim is to understand the basic concepts, 

not to give a list of all scheduling algorithms.
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Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols
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Definition
¾ Embedded systems that monitor, respond to, or 

control external environment under real time 
constraints 

¾ Examples:
z Vehicles (car, aircraft, …)
z Traffic control (highway, air, railway, …)
z Process control  (power plant, chemical plant, …)
z Medical systems (radiation therapy, …)
z Telephone, radio, satellite communication
z Computer games
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Characteristics
¾ Timing constraints / deadline

z Functional and temporal correctness 

¾ Hard deadline
z Must always meet deadline
z Air traffic controller

¾ Soft deadline
z Must frequently meet deadline
z MPEG decoder
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Characteristics (Contd.)
¾ Concurrency (multiple processes)

z Handle multiple input and output signals

¾ Reliability
z How often the system fails

¾ Fault tolerance
z Recognition and handling of failures

¾ Critical system
z High cost of failure 
z Hard real time system ⇒ critical system
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Tasks
¾ A task is a block of code executed in a 

CPU in a sequential fashion.
¾ Several independent tasks may be 

executing on the same CPU
z How to schedule them ?
z Today’s lecture

¾ There might also be dependences among 
tasks, captured by a task graph
z Task mapping – which task on which CPU?
z Task scheduling – in what order to run the 

tasks mapped to same CPU?
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Why study scheduling?
¾ Increase CPU utilization or other metrics
¾ For real-time systems requiring hard 

guarantees
z Study in advance whether all tasks can be 

scheduled without missing any deadlines.
z Need computation time of each task

• Typically given as a worst-case bound, called the 
Worst-case Execution Time (WCET)

• How to derive these bounds ?
• Involves a low-level code analysis, will be discussed 

in later lectures.
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Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols
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Informally, scheduling is
¾Assume that we are given a task 
graph G=(V,E).

¾Def.: A schedule s of G is a 
mapping 

V → T
of a set of tasks V to start times from 
domain T.

V1 V2 V4V3

t

G=(V,E)

T

s
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Informally, scheduling is
¾Typically, schedules have to 
respect a number of constraints, 
incl. resource constraints, 
dependency constraints, deadlines.

¾Scheduling = finding such a 
mapping.

¾Scheduling to be performed 
several times during ES design 
(early rough scheduling as well as 
late precise scheduling).
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More precisely,
¾ Schedule

z An assignment of tasks to the processor 
(assuming 1 processor!) over time.

¾ Feasible schedule
z All tasks can be completed and all constraints 

(precedence, resource, deadline) can be 
respected.

¾ Scheduling Algorithm
z A recipe for producing schedules

¾ Schedulability
z If at least one scheduling algorithm producing 

a feasible schedule exists.
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Classification of scheduling 
algorithms
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Hard and soft deadlines

¾Def.: A time-constraint (deadline) is called 
hard if not meeting that constraint could 
result in a catastrophe [Kopetz, 1997].

¾All other time constraints are called soft.

¾We will focus on hard deadlines.
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Periodic and aperiodic tasks
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Periodic and Aperiodic
¾Def.: Tasks which must be executed once 
every p units of time are called periodic
tasks. p is called their period. Each 
execution of a periodic task is called a job.
¾All other tasks are called aperiodic.
¾Def.: Tasks requesting the processor at 
unpredictable times are called sporadic, if 
there is a minimum separation between the 
times at which they request the processor. 
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Periodic Task
¾ Activated on a regular basis between fixed 

interval
z scan the airspace every 3 sec

¾ P = (s, c, p, d)
z s = start time or arrival time
z c = worst case execution time (WCET)
z p = period or cycle time
z d = deadline
z c <= d <= p
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Periodic Process (Contd.)

�Period: interval between process activations.

�Initiation interval: reciprocal of period.

�Initiation time: time at which process becomes ready.

�Deadline: time at which process must finish.

�In most cases, d = p

d

cp
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Sporadic Task 
¾ P = (c, p, d) where c <= d <= p
¾ t <= te + d

where t is completion time
te is the event occurrence time

� p is the minimum time between event
� If p = 0, then aperiodic task
� Aperiodic task does not have deterministic timing 

constraints 
� Jitter : Variation from cycle to cycle in task 

completion time

14/09/2007 21

Preemptive and non-preemptive scheduling

� Non-preemptive schedulers:
Tasks are executed until they are done.
Response time for external events may be quite long.

� Preemptive schedulers: To be used if 
- some tasks have long execution times or
- if the response time for external events to be short.
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Dynamic/online scheduling

� Dynamic/online scheduling:
Processor allocation decisions 
(scheduling) at run-time; based 
on the information about the 
tasks arrived so far.
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Static/offline scheduling

� Static/offline scheduling:
Scheduling taking a priori knowledge about 
arrival times, execution times, and deadlines 
into account.
Dispatcher allocates processor when 
interrupted by timer. Timer controlled by a 
table generated at design time.
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necessary

Schedulability
¾Set of tasks is schedulable under a set of 
constraints, if a schedule exists for that set of 
tasks & constraints.

¾Exact tests are NP-hard in many situations.

¾Sufficient tests: sufficient conditions for 
schedule checked. (Hopefully) small 
probability of indicating that no schedule 
exists even though one exists. 

¾Necessary tests: checking necessary 
conditions. Used to show no schedule exists. 
There may be cases in which no schedule 
exists & we cannot prove it.  

schedulable
sufficient
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Cost functions
¾ Cost function: Different algorithms aim at minimizing 

different functions.

¾ Def.: Maximum lateness = 

¾ maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2
Max. lateness
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To summarize
¾ Input to Scheduling Algorithm

z One or more processes
z Activation time, execution time, deadline for 

each process

¾ Scheduling algorithm: a policy to allocate 
tasks to the processor(s)

¾ Feasible schedule if the scheduling 
algorithm can meet all the constraints

¾ Optimal algorithm: A scheduling algorithm 
that produces a feasible schedule if it 
exists
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To summarize
¾ Constraints to be met by 

scheduling algorithm
z No task misses deadlines 
z Precedence constraints among 

tasks --- captured by task graph
z Resource constraints

• Due to synchronization over shared 
data structures/resources by different 
tasks

• We will discuss this later.

P1 P2

P3

P4
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To summarize
¾ How do we evaluate a scheduling policy:

z Ability to satisfy all deadlines.
z CPU utilization: percentage of time devoted to 

useful work.
z Scheduling overhead: time required to make 

scheduling decision.
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Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols
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Aperiodic scheduling
- Scheduling with no precedence constraints 

¾ Let {Ti } be a set of tasks. Let:
¾ ci be the execution time of Ti ,
¾ di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

¾ ℓi be the laxity or slack, defined as ℓi = di - ci 

¾ fi be the finishing time.

ℓi
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Our very first …
¾ … scheduling problem

z Uni-processor
z Set of independent tasks
z All tasks arrive at the same time.
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Uni-processor with equal arrival times

¾Preemption is useless.

¾Earliest Due Date (EDD): Execute task 
with earliest due date (deadline) first.

¾EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

¾EDD requires all tasks to be sorted by their (absolute) 
deadlines. Hence, its complexity is O(n log(n)). 

14/09/2007 33

Optimality of EDD
¾ EDD is optimal, since it follows Jackson's rule:

Given a set of n independent tasks, any algorithm that 
executes the tasks in order of non-decreasing (absolute) 
deadlines is optimal with respect to minimizing the 
maximum lateness.

¾ Proof (See Buttazzo, 2002):

z Let σ be a schedule produced by any algorithm A

z If A  ≠ EDD → ∃ Ta, Tb, da ≤ db, Tb immediately precedes Ta

in σ.

z Let σ' be the schedule obtained by exchanging Ta and Tb.

More
in-depth:
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Exchanging Ta and Tb cannot increase lateness

¾ Max. lateness for Ta and Tb in σ is Lmax(a,b)=fa-da

¾ Max. lateness for Ta and Tb in σ' is L'max(a,b)=max(L'a,L'b)

¾ Two possible cases

1. L'a≥ L'b: → L'max(a,b) = f'a – da < fa – da = Lmax(a,b)
since Ta starts earlier in schedule σ'.

2. L'a ≤ L'b: → L'max(a,b) = f'b – db = fa – db ≤ fa – da = 
Lmax(a,b) since fa=f'b and da ≤ db

– ) L'max(a,b) ≤ Lmax(a,b)

Tb

TbTa

σ
σ'

Ta

fa=f'b
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EDD is optimal

) Any schedule σ with lateness L can be 
transformed into an EDD schedule σn with 
lateness Ln ≤ L, which is the minimum 
lateness.

) EDD is optimal (q.e.d.)

end
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Earliest Deadline First (EDF)
- Horn’s Theorem -

¾Different arrival times: Preemption potentially 
reduces lateness.

¾Theorem [Horn74]: Given a set of n
independent tasks with arbitrary arrival times, 
any algorithm that at any instant executes the 
task with the earliest absolute deadline among 
all the ready tasks is optimal with respect to 
minimizing the maximum lateness.
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Earliest Deadline First (EDF)
- Algorithm -

¾Earliest deadline first (EDF) algorithm:
� Each time a new ready task arrives:
� It is inserted into a queue of ready tasks, sorted by their 

absolute deadlines. Task at head of queue is executed.
� If a newly arrived task is inserted at the head of the queue, 

the currently executing task is preempted.
¾Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2)

Sorted queue

Executing task
14/09/2007 38

Earliest Deadline First (EDF)
- Example -

Later deadline
) no preemption

Earlier deadline
) preemption
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Another Algorithm

ℓi

Least Laxity first

--- Another dynamic priority algorithm, but different from EDF.
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Least laxity (LL), Least Slack Time First (LST)

¾Priorities = decreasing function of the laxity (the less laxity, the 
higher the priority); dynamically changing priority; preemptive.
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Summarizing …
¾ Both EDF and LL are optimal for

z Uni-procesor
z Aperiodic independent tasks
z Arrival times diff, pre-emption allowed
z No precedence, resource or other constraints

¾ This means that both algorithms will find a 
schedule, if one exists --- but …
z Their produced schedules may be different.
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Scheduling with precedence 
constraints

¾ Task graph and possible 
schedule:

Schedule can be stored in table.Schedule can be stored in table.
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Simultaneous Arrival Times:
The Latest Deadline First (LDF) Algorithm

¾LDF [Lawler, 1973]: reads the task graph and among the tasks 
with no successors inserts the one with the latest deadline into a 
queue. It then repeats this process, putting tasks whose successor 
have all been selected into the queue.
¾At run-time, the tasks are executed in the generated total order.
¾LDF is non-preemptive and is optimal for uni-processors.

If no local deadlines exist, LDF performs just a topological sort.If no local deadlines exist, LDF performs just a topological sort.
14/09/2007 44

What if
¾ We have …

z Uni-processor
z Aperiodic Tasks with precedence constraints 
z Diff arrival times and pre-emption

¾ We have …
z Uni-processor
z Aperiodic Tasks with precedence constraints 
z Diff arrival times and no pre-emption

¾ We have …
z Omitted from our “laundry list” ☺
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Scheduling without preemption

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor 
idle.

Lemma: If preemption is not allowed, optimal schedules may 
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor 
idle.
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Scheduling without preemption 
¾ T1: periodic, c1 = 2, p1 = 4, d1 = 4
¾ T2: occasionally available at times 4*n+1, c2= 1, d2= 1
¾ T1 has to start at t=0
¾ ) deadline missed, but schedule is possible (start T2 first)
¾ ) scheduler is not optimal ) contradiction! q.e.d.
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Scheduling without preemption

¾Preemption not allowed: ) optimal schedules 
may leave processor idle to finish tasks with 
early deadlines arriving late.

)Knowledge about the future is needed for 
optimal scheduling algorithms
then 

))No online algorithm can decide whether or 
not to keep idle.
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Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols
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Periodic task - Recap
¾ Activated on a regular basis between fixed 

interval
z scan the airspace every 3 sec

¾ P = (s, c, p, d)
z s = start time or arrival time
z c = worst case execution time (WCET)
z p = period or cycle time
z d = deadline
z c <= d <= p
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Task Execution Recap
Terminate

….

activation

pre-emption

Scheduling
dis-

patch
Execution

Dispatching from the ready queue will be based on the 
scheduling policy which takes into account task priority.
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Priority-driven scheduling
¾ Each process has a priority.
¾ CPU goes to highest-priority process that 

is ready.
¾ Priorities determine scheduling policy:

z fixed priority;
z time-varying priorities.
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Priority-driven scheduling example

¾ Rules:
z each process has a fixed priority (1 highest);
z highest-priority ready process gets CPU

• Preemptive scheduling

z process continues until done.

¾ Processes
z P1: priority 1, execution time 10
z P2: priority 2, execution time 30
z P3: priority 3, execution time 20
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Priority-driven scheduling example

time

P2 ready t=0 P1 ready t=15
P3 ready t=18

0 3010 20 6040 50

P2 P2P1 P3
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Rate monotonic scheduling
¾ RMS (Liu and Layland 1973)

z widely-used, analyzable scheduling policy.

¾ Analysis is known as Rate Monotonic Analysis
¾ RMS is an optimal fixed priority assignment 

method
z If there exists a schedule that meets all the deadlines 

with fixed priority, then RMS will produce a feasible 
schedule
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RMA model
¾ All process run on single CPU.
¾ Zero context switch time.
¾ No data dependencies between processes.
¾ Process execution time is constant.
¾ Deadline is at end of period (p = d)
¾ Highest-priority ready process runs.
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RMS priorities
¾ Optimal (fixed) priority assignment:

z shortest-period process gets highest priority;
z priority inversely proportional to period;
z break ties arbitrarily.

¾ Intuition: Processes requiring frequent 
attention (smaller period) should receive 
higher priority 
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RMS example

time
0 5 10

P2 period

P1 period

P1

P2

P1 P1
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RMS Example

P1

P2

P3

P1: s=0, c=2, p=d=5
P2: s=1, c=1, p=d=4
P3: s=2, c=2, p=d=20

5 10 15 20

1 5 9 13 17 21

2 22

0
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Rate-monotonic analysis
¾ Response time: time required to finish 

process.
¾ Critical instant: scheduling state that gives 

worst response time.
¾ Critical instant occurs when all higher-

priority processes are ready to execute.
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Critical instant

P4

P3

P2

P1

critical
instant

P1 P1 P1 P1

P2 P2

P3

interfering processes



11

14/09/2007 61

Informal argument of optimality
¾ P1 = (c1, p1, d1) with p1 = d1
¾ P2 = (c2, p2, d2) with p2 = d2 
¾ p1 < p2 
¾ Suppose P1 and P2 can be scheduled with non-

RM priority assignment, i.e., P2 has highest 
priority 

¾ At critical instant, with non-RM priorities
z c1 + c2 <= p1; [1]

¾ With RM priority 
z ⎣p2/p1⎦*c1 + c2 <= p2; [2]

¾ If [1] is satisfied, then [2] is also satisfied  
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RMS optimality

P2 period

P1 period
P1

P2

P1 P1

P2 period

P1 period
P1 P1

P1

P2
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RMS CPU utilization
¾ Utilization for n processes is

z U = Σ i ci / pi

¾ U<=1 is a necessary condition for feasibility 
regardless of scheduling policy

¾ Scheduling with fixed priorities is feasible if 
U <= n (2 1/n – 1) 

� The bound is sufficient but not necessary
¾ As number of tasks approaches infinity, 

maximum utilization approaches 69%.
z RMS cannot use 100% of CPU, even with zero context 

switch overhead.
z Must keep idle cycles available to handle worst-case 

scenario.
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Practical side
¾ RMS is widely used.

z Static priority scheme makes it easy to 
implemented.

z Implemented within OS to manage scheduling 
of threads
• Windows NT
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Earliest-deadline-first scheduling

¾ EDF: dynamic priority scheduling scheme.
¾ Process closest to its deadline has highest 

priority.
¾ Requires recalculating processes at every 

timer interrupt.
¾ EDF can use 100% of CPU.
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EDF implementation
¾ On each timer interrupt:

z compute time to deadline;
z choose process closest to deadline.

¾ Generally considered too expensive to use 
in practice.
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EDF example

time
0     2      4       6      8     10     12    14    16     18  20

P1 period

P2 period

P2 P2 P2 P2

P1 P1 P1 P1 P1

P1 = (2, 4, 4)  P2 = (5, 10, 10)
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EDF Results
¾ EDF is optimal

z If a feasible schedule exists using dynamic 
priorities, then EDF will produce a feasible 
schedule

¾ EDF can always produce a feasible 
schedule if U ≤ 1  

¾ Scheduling with dynamic priority is 
feasible if and only if U ≤ 1 
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Fixing scheduling problems
¾ What if your set of processes is not 

schedulable?
z Change deadlines in requirements.
z Reduce execution times of processes.
z Get a faster CPU.
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Organization
¾ Real-time Systems
¾ Basics of Scheduling
¾ Aperiodic Scheduling Methods
¾ Periodic Scheduling Methods

z RMS
z EDF

¾ Resource Access Protocols
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Resource Constraints
¾ Resource:

z software structure used by a task during its execution.
z A data structure, variables, an area of main memory, a 

file, a set of registers of a peripheral device.

¾ Shared resource:
z Used by more than one task.

¾ Exclusive resource:
z No simultaneous access.
z Require mutual exclusion.
z Operating system must provide a synchronization 

mechanism to ensure sequential access..
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A small question
¾ If the tasks are Java threads

z Of a program you have written

¾ The scheduler is in the OS/VM
z Depends on the VM

• Sun’s VM uses scheduler in OS
• Kaffe VM manages its own scheduling

¾ What kind of exclusive shared resources 
can you think of?
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Task states
Without Resource Constraints

READY RUNactivation
scheduling

Pre-emption

terminate

With Resource Constraints

READY RUN
scheduling

Pre-emption

terminate

WAIT

Signal

free resource

Wait on
busy resource
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Resource access protocols
¾Critical sections: sections of code at which
exclusive access to some resource must be guaranteed.
¾Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see if 
resource is available 
and if yes, sets S to “used“. 
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and starts 
sleeping task (if any).

P(S) checks semaphore to see if 
resource is available 
and if yes, sets S to “used“. 
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to “unused“ and starts 
sleeping task (if any).

Exclusive
access
to resource
guarded by
S

Task 1 Task 2
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Priority inversion
¾Priority T1 assumed to be > than priority of T2.
¾If T2 requests exclusive access first (at t0), T1 has to wait until 
T2 releases the resource (time t3), thus inverting the priority:

In this example:
duration of inversion bounded by length of critical section of T2.
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Duration of priority inversion with >2 tasks
can exceed the length of any critical section

¾Priority of T1 > priority of T2 > priority of T3.
¾T2 preempts T3:
¾T2 can prevent T3 from releasing the resource.
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The MARS Pathfinder problem 

¾“But a few days into the mission, 
not long after Pathfinder started 
gathering meteorological data, the 
spacecraft began experiencing total 
system resets, each resulting in 
losses of data. The press reported 
these failures in terms such as 
"software glitches" and "the 
computer was trying to do too 
many things at once".” …
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The MARS Pathfinder problem 

¾“VxWorks provides preemptive priority scheduling of threads. 
Tasks on the Pathfinder spacecraft were executed as threads with
priorities that were assigned in the usual manner reflecting the
relative urgency of these tasks.”
¾“Pathfinder contained an "information bus", which you can think 
of as a shared memory area used for passing information between 
different components of the spacecraft.”

z A bus management task ran frequently with high priority to 
move certain kinds of data in and out of the information 
bus. Access to the bus was synchronized with mutual 
exclusion locks (mutexes).”
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The MARS Pathfinder problem 

z The meteorological data gathering task ran as an infrequent, 
low priority thread, … When publishing its data, it would 
acquire a mutex, do writes to the bus, and release the 
mutex. ..

z The spacecraft also contained a communications task that ran 
with medium priority.”

)
High priority:      retrieval of data from shared memory
Medium priority: communications task
Low priority:       thread collecting meteorological data

14/09/2007 80

The MARS Pathfinder problem 
(4)

¾“Most of the time this combination worked fine. However, very 
infrequently it was possible for an interrupt to occur that caused the 
(medium priority) communications task to be scheduled during the
short interval while the (high priority) information bus thread was 
blocked waiting for the (low priority) meteorological data thread. In 
this case, the long-running communications task, having higher 
priority than the meteorological task, would prevent it from running, 
consequently preventing the blocked
information bus task from running. After some time had passed, a
watchdog timer would go off, notice that the data bus task had not 
been executed for some time, conclude that something had gone 
drastically wrong, and initiate a total system reset. This scenario is 
a classic case of priority inversion.”
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Coping with priority inversion:
the priority inheritance protocol

z Tasks are scheduled according to their active priorities. Tasks 
with the same priorities are scheduled FCFS.

z If task T1 executes P(S) & exclusive access granted to T2:  
T1 will become blocked.
If priority(T2) < priority(T1): T2 inherits the priority of T1.
) T2 resumes. 
Rule: tasks inherit the highest priority of tasks blocked by it.

z When T2 executes  V(S), its priority is decreased to the 
highest priority of the tasks blocked by it.
If no other task blocked by T2: priority(T2):= original value. 
Highest priority task so far blocked on S is resumed.

z Transitive: if T2 blocks T1 and T1 blocks T0,
then T2 inherits the priority of T0.
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Example

T3 inherits the 
priority of T1 and 

T3 resumes.

¾How would priority inheritance affect our example 
with 3 tasks?

V(S)
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Priority inversion on Mars
¾ Priority inheritance also solved the Mars Pathfinder 

problem: the VxWorks operating system used in the 
pathfinder implements a flag for the calls to mutex
primitives. This flag allows priority inheritance to be set to 

“on”. When the software was shipped, it was set to “off”.

The problem on Mars was 
corrected by using the 
debugging facilities of 
VxWorks to change the flag to 
“on”, while the Pathfinder was 
already on the Mars [Jones, 
1997].

The problem on Mars was 
corrected by using the 
debugging facilities of 
VxWorks to change the flag to 
“on”, while the Pathfinder was 
already on the Mars [Jones, 
1997].
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Remarks on priority inheritance protocol

¾Possible large number of tasks with high priority.

¾Possible deadlocks.

¾Ongoing debate about problems with the protocol:

Victor Yodaiken: Against Priority Inheritance,
http://www.fsmlabs.com/articles/inherit/inherit.html

¾Finds application in ADA: During rendez-vous,
task priority is set to the maximum.

¾More sophisticated protocol: priority ceiling protocol.
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Deadlocks on inheritance
Two tasks with nested critical sections

Task P1

…

lock(S1)

…

lock(S2)

…

unlock(S2)

…

unlock(S1)

…

Task P2
…

lock(S2)
…

lock(S1)
…
unlock(S1)

…
unlock(S2)
…
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Deadlock Example

L(S2)

L(S1)

Cannot lock S2

Cannot lock S1

Deadlock!

P1

P2

Assume that P1 has higher priority than P2

Pre-emption
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Priority Ceiling Protocol
¾ Basic Idea:

z A task is not allowed to enter a critical section 
if there are already locked semaphores which 
could block it eventually.

z Once a task enters a critical section, it cannot 
be blocked by lower priority tasks till its 
completion.
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Priority Ceiling Protocol
¾ Define Priority ceiling of a resource

z PC(S) = highest priority of all tasks that may 
lock S

z A task T attempting to lock a resource will be 
suspended unless its priority is higher than 
PC(S) for all resources S currently locked by all 
tasks other than T.
• This means --- if any of the currently locked 

resources can be used by T, it is suspended.

z If T is suspended then the task T1 that holds 
the lock with highest PC, effectively blocks T
• T1 inherits T’s priority as in priority inheritance 

protocol.
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No deadlock

L(S2)

Cannot lock S1 since 
priority of P1 not > PC(S2)

PC(S1) = PC(S2) = max(P1’s priority, P2’s priority) = P1’s priority

U(S2)U(S1)L(S1)

Now lock S1

Inherit P1’s priority

P1

P2
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More Explanation (1)
¾ Critical Section Entry

z Let S* be the semaphore with the highest 
priority ceiling among all the semaphores 
currently locked by tasks other than T.

z To enter the critical section guarded by S , T’s 
priority must be higher than PC(S*). 

z If not, the lock on S is denied. 
• T is now said to be blocked on semaphore S*.

z When T is thus blocked it transmits its priority 
to the task, say T*,  that is holding the 
semaphore S* which is blocking T. 
• T* will now start executing.
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More Explanation (2)
¾ Critical Section Exit

z Similar to Priority Inheritance protocol
• When the currently executing T* exits a critical 

section, it unlocks the semaphore, and the highest 
priority task, if any, that is blocked on that 
semaphore is awakened.

• The priority of T* is set to the priority of the highest 
priority task it is continuing to block.

14/09/2007 92

Wrapping up
¾ Schedulability analysis

z Aperiodic and periodic
z All tasks arrive at same time --- simplistic

• Or at diff. times – do we allow pre-emptions

z Popular methods for periodic tasks
• RMS (static priority), EDF (dynamic priority)
• Static priority of RMS makes it easy to implement.

z Resource access protocols
• Tasks may share resources
• Priority inheritence and priority ceiling protocols.

RMS & EDF classroom exercise

1064pi

321Ci

t3t2t1

All tasks are periodic, period = deadline

All tasks arrive at time 0

Construct a RMS schedule.

RMS schedule

1064pi

321Ci

t3t2t1

Construct EDF schedule

864pi

321Ci

t3t2t1

All tasks arrive at t=0
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More Classroom Exercises
¾ Consider the following scheduling algorithm for 

periodic tasks Pi = (ci , pi, pi), where the 
execution time is ci, the period is pi and the 
deadline is also pi . Assume that all execution 
times ci and periods pi are given by integers, for 
simplicity. The scheduling algorithm proceeds as 
follows. In every unit of time, we allocate a 
fraction of the CPU equal to ci /pi to each task Pi  
Show any one run of this scheduling algorithm on 
the following three tasks                    

¾ P1 = (1,4,4), P2 = (2, 6, 6), P3 = (1,3,3). 
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Answers

In every time unit, the three processes get allocated 
the following fractions of time (in any order). Shown for the first 6 time units.

P1       P2                          P3
Time unit 1                                     ¼ 1/3                        1/3

2                                       ¼ 1/3                         1/3
3                                      ¼ 1/3                         1/3 P3 finished

meets deadline
4                                       ¼ 1/3                       1/3 P1 finished

meets deadline
5                                        ¼ 1/3                        1/3
6                                       ¼ 1/3                        1/3 P2 finished

meets deadline
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More Classroom Exercises
¾ Let us call the scheduling algorithm in 

Question 2A as OurSchedAlgo.  Can you 
compare it with RMS and EDF? That is, 
whenever RMS produces a feasible 
schedule will OurSchedAlgo produce a 
feasible schedule and vice-versa?
Similarly, whenever EDF (with 
preemption) produces a feasible schedule 
will OurSchedAlgo produce a feasible 
schedule and vice-versa? Give detailed 
justifications for your answer. 
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Answers
The algorithm is optimal, i.e. whenever a feasible schedule exists, 
it will find one. 
In every unit of time, process i gets  ci /pi units of time. 

So, in pi units of time,
process i will get ci units of time and thus meet its deadline,

unless the summation of ci/pi  for all i ( the utilization) is greater than 1.

This means that OurSchedAlgo has the same feasibility region as EDF.

Furthermore, OurSchedAlgo should have a larger feasibility region than RMS ---
all problems which cannot be scheduled using static priorities/RMS, 
but can be scheduled using dynamic priorities/EDF are examples where 
OurSchedAlgo will produce a schedule, but RMS will not. 

One such example is given in next slide
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Answers

P1 = (3,9,9), P2 = (5,18,18), P3 = (4,12,12).

2 4 6 8 10 12 14 16 180

P1

P2

P3

Using RMS, P2 is not finished (1 time unit left) when its deadline is reached at 18
Since the utilization factor is 3/9 + 5/18 + 4/12 = 0.944 < 1, OurSchedAlgo is
guaranteed to produce a schedule.
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Midterm Examination
¾ 11th Oct Thu 9 AM, SR 3B

z Basics, Modeling, StateCharts, Scheduling, 
Partitioning

z Open Book --- bring in any material.
z 2 hour exam.


