
1

12/10/200712/10/2007 11

CS4272: HW SW Codesign
Software Timing Analysis

Dr. Abhik Roychoudhury
School of Computing

National University of Singapore

12/10/2007 2

Reading
Chapter 7 of Real-time Systems and Software by Alan Shaw

Tulika Mitra and Abhik Roychoudhury, “Worst-case
Execution Time and Energy Analysis”, Chapter in Compiler
Design Handbook (2nd Edition), CRC Press, To appear.

Yau-Tsun Steven Li and Sharad Malik, "Performance
Analysis of Embedded Software Using Implicit Path
Enumeration", in Proceedings of the 32nd ACM/IEEE Design
Automation Conference, June, 1995, pp. 456 - 461.

http://www.princeton.edu/~yauli/publication.html

12/10/2007 3

The context

Architecture

Instance
Application

Mapping

Performance Analysis

Performance
numbers

12/10/2007 4

Performance Analysis
Given a processor architecture A and a
terminating program P

Provide the worst-case execution time
estimate of P on A.

Why do we care to do perf. analysis?
May be we care, why worst-case?

Go for simulation?

May be no simulation, how do we know
the worst-case?
Why is the architecture an issue at all?

12/10/2007 5

Organization
What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

Chronos WCET Analysis tool for C programs

12/10/2007 6

WCET
Worst Case Execution Time of a program for a given
hardware platform.

Sequential Terminating Programs.
Gets input, computes, produces output.

Many inputs are possible.
Leads to different execution times.

WCET : An upper bound on the execution time for all
possible inputs.

2

12/10/2007 7

Why need WCET?
Performance estimation for Embedded system design.

Estimating uninterrupted software execution time on a
given hardware (processor).
A building block for more complicated performance
analysis.
• Communicating multi-processor execution.

Helps estimate performance of a design point.
• Serves as a sub-routine for Design Space

Exploration.

12/10/2007 8

Why need WCET ?
Schedulability analysis of Hard Real-time
systems.

Such analysis assumes knowledge of WCET of each task
being scheduled.
Rate Monotonic scheduling with tasks T1,…,Tn

• Computation times C1,…,Cn

• Period = deadline D1,…,Dn

• Here C1,…,Cn are the WCET (not average execution
times of the programs)

12/10/2007 9

Why need Analysis ?

To find WCET of a program, execute it for all
possible inputs.

WCET by measurement.
Exponentially many possible inputs in terms of input
size.
• Insertion sort program

Similar problems will be encountered for WCET
Analysis via platform simulation.

Need access to platforms/simulators also!
Go for static analysis.

12/10/2007 10

Measuring WCET

What about single path programs such as matrix
multiplication ?

Execution path is independent of input data.
Still execution time can be variable.
• Latency of floating point operation (e.g.,

multiplication) depends on the input data.
Not possible to try it on all possible platforms and then
choose one.
• Often trying to decide the platform as well.

12/10/2007 11

WCET Analysis

Analysis
Employ static analysis to compute an
upper bound on WCET (Estimated WCET)

Observed
Actual
Estimated

12/10/2007 12

OK, analysis but …
… why platform-aware analysis?

Exec. Time of an instr. can depend on
• Operands
• Context with which it is executed

Cache State
Pipeline State
…

Exec Time distribution and WCET very diff.
for diff. processors

3

12/10/2007 13

Why platform-aware analysis

0

2

4

6

8

10

12

3000 3010 3020 3030 3040 3050 3060 3070 3080
Execution Time (cycles)

N
um

be
r o

f I
np

ut
s

0

2

4

6

8

10

12

14

16

2690 2700 2710 2720 2730 2740 2750
Execution Time (cycles)

N
um

be
r o

f I
np

ut
s

Distribution of execution times across inputs in a quicksort
program on a simple and complex processor

12/10/2007 14

But if I only analyze program…
I am still safe ---- No !

Intra-task
• Longest path in the program determined by time of

instructions in the path !

Inter-task
• Additional context switch overhead due to sharing of

HW data structures across tasks
Additional Cache Misses

• What you deem as schedulable is not so !

12/10/2007 15

WCET Analysis
Program path analysis

All paths in control flow graph are not feasible.
Micro-architectural modeling

Dynamically variable instruction execution time.
• Cache, Pipeline, Branch Prediction
• Out-of-order Pipelines

12/10/2007 16

Restrictions
Static analysis need not be on source program.

We can perform static analysis on assembly code of a
given program.
The analysis is only for time taken, and not for the
memory locations / values accessed.
No restriction on program data structures used for WCET
analysis.
What about control flow ?

12/10/2007 17

Restrictions
Restrictions on control flow

1. No unbounded loops
• Common sense. Otherwise how to guarantee time?

2. No unbounded recursion
• Similar issue.

3. No dynamic function calls
• Need to statically know the functions called, and the

possible call sites of these functions.

12/10/2007 18

Organization
What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

4

12/10/2007 19

Timing Schema
One of the first works on WCET analysis.
Basically, perform control flow analysis to find the “longest”
program path.
The notion of “longest” is weighted

Take into account the cost of executing individual
program elements.
Timing schema is a simple way of composing these
costs.

12/10/2007 20

Schema: Assignments
Defined for elements in the source code, but considers a
default assembly code.

T(lhs := Exp) = T(addr_lhs) + T(:=) + T(Exp)
T(addr_lhs) is the time to calculate the address of v.
This is 0 if address is known at compile time.
T(:=) is the time to do a store
T(Exp) is the time to evaluate the expression Exp.

12/10/2007 21

Example

A := B + C
Load B, R1

Load C, R2

R1 := R1 + R2

Load [A], R2

Store R1, [R2]

Load B, R1

Load C, R2

R1 := R1 + R2

Store R1, A

T(addr_A) ≠ 0
T(addr_A) = 0

12/10/2007 22

Schema: Procedure Calls
T(p(e1,…,en) =

T(call/ret) + n*T(par)+T(body_of_p) +
T(e1) + … + T(en)

T(call/ret) is the time for call and return.
T(par) is the time for parameter passing.
T(ei) = 0 if expression ei is a variable or constant.

12/10/2007 23

If-then-else
If B then S1 else S2
T(if B then S1 else S2) = max(T1, T2)

T1 = T(B) + T(S1) + T(jump)
T2 = T(B) + T(S2) + T(jump)
Assembly code schematic:
• if B=false then jump to L1
• S1
• jump to L2
• L1: S2
• L2:

12/10/2007 24

Loops

While B do S
Assembly code schematic:

Start: if B = false jump to end
S
jump to start

End:
T(while B do S) =

(n+1)*T(B) + n*T(S) + (n+1)*T(jump)
n = loop bound (which must be provided/computed)

5

12/10/2007 25

Problems with timing schema

Language Level:
Just a control flow analysis.
Insensitive to knowledge of infeasible paths.

Compiler level:
How to integrate effect of compiler opt?

• Easy to handle – schema on optimized code.
Architecture level:

Instructions take constant time – Not true.
Cache hits, pipelining and other performance
enhancing features.

12/10/2007 26

Infeasible paths

SEQ

i = 0 WHILE

B IF

B1 S1 S2

T3 = T0 +
max(T1,T2)

T0 T1 T2

T4

T5 = (n+1)*T4 +
n*T3

T6

T = T5 + T6

What if T1 > T2
and

S1 is executed
only in the first
loop iteration?

12/10/2007 27

Organization
What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

Chronos WCET Analysis tool for C programs

12/10/2007 28

Two steps of …
WCET estimation

Weighted Longest path calculation
• Detecting Infeasible paths.
• Exploiting infeasible path information.

Micro-architectural modeling
• Provides the “weights” for longest path calculation.

How to integrate the two steps ?
• Separated Approach --- more pragmatic
• Integrated Approach (via ILP)

12/10/2007 29

Program Flow Analysis

Determine loop iterations, recursion depths
Identify and exploit infeasible paths.
if (i < 5) A;

else B;

if (i > 10) C; // A and C cannot

else D; // execute together

By manual annotations or automatically
derived from data flow analysis.

12/10/2007 30

Micro-architectural Modeling
To determine the instruction timing

Hardware affects program’s execution:
Clock cycles, ISAs, etc ...
Performance speed-up features: cache, pipeline, branch
prediction, etc ...

How significant?
Cache miss: 5 ~ 20+, ever increasing.
Branch misprediction: 3 ~ 19 clock cycles.

6

12/10/2007 31

Separated Approaches

A phase ordering problem:
Longest path is unknown without Instr. timing.
Instr. timing cannot be determined without path info.

Common practice in separated approaches:
Determine instr. timing first, then search longest path
Static Classification:

• always hit,
• always miss,
• possible hit/miss.

Drawback: pessimism due to lack of path info.

12/10/2007 32

Separated Approaches

for (i=0; i<100; i++) {

if (...) A; // A maps to cache line X

else B;

C; // C maps to cache line X

}

This path to statement C always leads in a cache miss.

It might be the only path from start of program to statement C.

12/10/2007 33

ILP – An Integrated Approach (1)

ILP: Integer Linear Programming
Variables and linear constraints on them.
Cost function (linear) to optimize.

f = 3x + 5y + z

0 <= x, y, z <= 100

x + y + z = 200

x + 2y <= 160

__

Optimal: f = 520; x = 40; y = 60; z = 100

Non-Optimal: f = 480; x = 80; y = 30; z = 90

12/10/2007 34

ILP – An Integrated Approach (2)

ILP framework: integrated μ-arch modeling (instr. timing
analysis) and longest path calc.

Constraints from Control Flow Graph (CFG).
Constraints from μ-arch modeling.
Functional constraints (loop bounds, recursion depth,
infeasible paths) by manual annotation or automatic
data flow analysis.

Constraints together with the cost function are submitted
to ILP solver.

In both approaches, program flow analysis via ILP.

12/10/2007 35

Organization
What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

Chronos WCET Analysis tool for C programs

12/10/2007 36

Infeasible paths
J = 1;
If (J == 0){

K++; // this branch will never be taken

} else{
K--;

}

Only possible to know via data flow analysis.

7

12/10/2007 37

Infeasible paths

Infeasible sequence of branches in general
If (J== 0) {

K = 1
} else {

K = 10
}
If (K < 5){

J++;
} else {

J--;
}

Cannot be executed
together

Such infeasible paths
should not be a witness
to our WCET estimate.

12/10/2007 38

Control Flow Graph

J == 0 ??

K = 1 K = 10

K < 5 ??

J++ J --

Y N

Y N

12/10/2007 39

An Infeasible path

J == 0 ??

K = 1 K = 10

K < 5 ??

J++ J --

Y N

Y N

12/10/2007 40

Modeling Program Flows

Path-based
Enumerate paths and find longest path
• Expensive !
• Need to remove longest path if it is infeasible.

Tree-based
Bottom-up pass of Syntax Tree
• Timing Schema

How to integrate infeasible path info ?

12/10/2007 41

Modeling Program Flows
Integer Linear Programming

Modeling of control flow.
Can take into account certain infeasible path information
if available.
Efficient solvers available e.g. CPLEX
• Forms the back-end of most state-of-the-art timing

analyzers.

12/10/2007 42

Extending Timing Schema
Timing schema is a Control Flow Analysis.

At each branch, it enumerates both choice to estimate
the time of a code fragment.
These estimates are combined.
Effect of enumerating all possible program paths in the
control flow graph and estimating their times.
But some of these paths are never taken due to data
flow !

8

12/10/2007 43

Path representations
Terminating programs, Finite Paths.
Paths for each control construct can be modeled via simple
regular expressions.
All feasible program paths can also be represented by
regular expressions.
How do we let the user input specific info. about infeasible
paths ?

We are not discussing the issue of infeasible path pattern
detection (yet) !

12/10/2007 44

Example

Procedure Check_data()
{ int i = 0, morecheck = 1, wrongone = -1, datasize =
10;

L: while (morecheck)
LB: {

if (data[i] < 0)
A: { wrongone = i; morecheck = 0; }

else
B: if (++i >= datasize) morecheck = 0;

}
if (wrongone >= 0)

C: { handle_exception(wrongone); return 0; }
C’: else return 1;

}

12/10/2007 45

Example

Procedure Check_data()
{ int ….

L: while (…)
LB: {

if (…)
A: { …. }

else
B: if (…) …;

}
if (…)

C: { …}
C’: else …

}

Set of all paths

= L. (LB.(A +B))* . (C+C’)

This set is obtained from the
structure of the control flow
graph.

Includes many infeasible
paths.

Alphabet=Control labels in code

12/10/2007 46

User information
loop L [1,10] times

Bound on loop iterations
Samepath(A, C)

A and C are executed together
(not A) imply loop L 10 times

If A is not executed, L is iterated 10 times.
Execute A [0,1] times inside L

A is executed at most once inside L

12/10/2007 47

Overall Approach
1. Describe all paths in the CFG as a Regular Expression ψ
2. Allow the user to input annotations in a “Description
Language” : I1,…,In

3. Convert I1,…,In to Regular Expressions ϕ1,…, ϕn [Easy
stuff : Not discussed here]
4. Set of feasible paths then given by

ψ ∩ ϕ1 ∩ … ∩ ϕn

How to use this for WCET Analysis ?

12/10/2007 48

Overall approach
5. Eliminate intersections in ψ ∩ ϕ1 ∩ … ∩ ϕn to produce an
equivalent disjunctive form

X1 ∪ X2 ∪ … ∪ Xk

Each Xi should be a regular expression
6. Compute Ti = T(Xi) using timing schema approach.

WCET = max {T1, T2,…, Tk}

Step 5 has high complexity.

9

12/10/2007 49

Complexity issues
(a + b)^100 ∩ ((a+b)* a (a+b)*)
Models a loop with 100 iterations

Captures every path via a in some loop iteration.
Removal of intersection operator leads to enumeration of
many cases.

Essentially loop unrolling (undesirable !)
No easy solutions to this problem

But you can …

12/10/2007 50

Complexity issues

A) Choose an user-annotation description language
whose corresponding regular expressions can be
intersected efficiently

Loop path information is problematic
B) Delay the intersection removal until WCET analysis
and perform approximations

T(ψ ∩ ((a+b)*a (a+b)*) ∩ ((a+b)* b (a+b)*)) :=
min(T(ψ∩((a+b)*a(a+b)*)), T(ψ∩((a+b)*b(a+b)*)))

So, it is difficult to integrate infeasible path
information into Timing Schema.

12/10/2007 51

And now to ILP !

We are dealing with aggregated execution counts of
nodes/edges of CFG.

Basic Blk

e1 e2

e3 e4

x
x = e1 + e2

= e3 + e4

12/10/2007 52

ILP modeling of Control Flow

1

2

3 4

5

6

X1 = E(entry) = 1

X2 = E(loop) + E(entry) = X3 + X4

X5 = X3 + X4 = E(loop) + E(exit)

X6 = E(exit) = 1

Need a loop bound

Say E(loop) ≤ 100

For a loop of the form

I = 0

while (I < 100 && not flag) { ….

12/10/2007 53

Timing Analysis via ILP
Subject to these constraints

Maximize
• c1*X1+c2*x2+c3*X3+c4*X4+c5*X5+c6*X6

c1 = Execution time of block 1 (constant).
X1 = Execution count of block 1 (ILP variable).

How to get c1,c2,c3,c4,c5,c6 ?
• Accurate estimates via micro-arch modeling

How to integrate infeasible path info ?

12/10/2007 54

Infeasible path info.

1

2 3

4

5 6

7

Assuming loop-bound =100

Add the constraint

X2 + X6 ≤ 100

Not an exact encoding of the
infeasible path information,
though

10

12/10/2007 55

User information
Many of the user information can be gleaned through
(limited) dataflow analysis.

E.g. loop [1,10] follows from value of datasize and loop
termination condition.

The discussion is not how to analyze infeas. paths
Less ambitious goal: if some info. resulting from data
flow anal. is known, how to integrate it into WCET
analysis.

Infeasible path detection,
Many approaches exist, based on constraint propagation
and solving.

12/10/2007 56

Infeasible path detection -
Example

J == 0 ??

K = 1 K = 10

K < 5 ??

J++ J --

Y N

Y N
K ≥ 5

K ≥ 5 ∧ K=1

12/10/2007 57

Constraint Propagation

Over Control Flow Graph
Start from an outgoing edge of a branch
This gives an initial constraint.
Traverse the CFG backwards by transforming the
constraint at each step.

• How?
Stop when constraint store is unsatisfiable.

Many issues –
Constraint solvers ?
Full-fledged loop unrolling ?

• Heuristics to stop after few iterations
• Limited detection – infeasible paths within a loop/ loop-

iteration.

12/10/2007 58

Weakest pre-condition

Constraint accumulated ϕ(X1,…,Xk)
One step weakest pre-condition computation w.r.t.
statement s

Effect constraint of s is
• ψs(X1,…,Xk,X1’,…,Xk’)
• Effect constraint of X = X+1 over vars. {X,Y,Z} is

ψs(X, Y, Z, X’, Y’, Z’) == (X’=X+1 ∧ Y’ = Y ∧ Z’ =
Z)

WP(X1,…,Xk) =
∀X1’,…,Xk’ ψs(X1,…,Xk,X1’,…,Xk’) ⇒ ϕ(X1’,…, Xk’)

12/10/2007 59

Constraint Solvers
Simplify Theorem Prover – Compaq SRC

Integrates automatic decision procedures.
• Equality
• Arithmetic
• Arrays

Sound, incomplete
• Unsatisfiable constraint may not be detected.
• Incomplete detection of infeasible path patterns – OK

!

12/10/2007 60

Loop Bound Detection

Specific kind of infeasible path information
Develop offline customized analysis on source code instead
of using generic constraint solvers.
Need to care for

• Multiple exits of loop.
• Dependence of loop counter on outer loop counters.
• Full-fledged data-flow (never done, always

overestimate)

for (I =1; I <= N ; I++){

for (J=I; J <= N; J++){

∑1 ≤ I ≤ N ∑I≤ J≤ N 1

= ∑1 ≤ I ≤ N (∑1≤ J ≤ N 1 –

∑1≤ J < I 1)

11

12/10/2007 61

Summary so far

Program Flow analysis
Control flow modeled as ILP equations.
Limited data flow modeled as ILP inequalities.

• Involves offline infeasible path detection.

Maximize objective function – Linear function of
execution counts of basic blocks.

Micro-architectural modeling
Constants denoting exec. time of basic blocks.
How to estimate these constants ?

• We will discuss this now

12/10/2007 62

Why not use ILP alone?

For many micro-architectural features.
Timing effects captured by ILP inequalities.
Plug these with the program flow modeling, and
solve one huge ILP to get WCET estimate.
Not scalable in terms of solution time for modern
processor features.

• Big issue.
Problem size may explode --- varying of parameters
of arch (cache size).

• Smaller issue but the problem file itself may
explode.

12/10/2007 63

Organization

What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

Chronos WCET Analysis tool for C programs

12/10/2007 64

Micro-architectural modeling
Cost of an instruction is not constant.

LD R2 [X] (I0)
R1 := R2 + R3 (I1)
R4 := R1 – R5 (I2)

Execution of each instruction may hit/miss in I-cache
Execution of I0 may hit/miss in D-cache
Pipeline stall may/may not occur at I2.

12/10/2007 65

Basic ideas
For each instruction find out the maximum possible time I
can take in any execution

Exec. Time of I estimated to a constant
specialize I w.r.t. diff. contexts (approximation of paths
leading to I)

For each exec of I with context c, find the maximum
exec. Time
Need to find out # of times I is exec. with c

12/10/2007 66

Basic ideas
Let the possible execution times of I under differing

hardware states be T1< T2 < …<Tn
Easy to enumerate this set for prediction based
hardware data structures (cache, branch prediction)
Expensive for pipeline modeling, particularly consider
pipelined execution of variable latency instructions …

12

12/10/2007 67

One possibility

If we find that the possible execution times of I are T1(hit)
< T2(miss)

Find the maximum number of times I can miss #miss(I)
Then the contribution of I to WCET is
• #miss(I)*T2 + (#I – #miss(I))*T1

Specialize an instruction based on hardware states
rather than program paths

• Need to develop bounds on #miss(I) !

12/10/2007 68

Another possibility
Statically analyze program flows to verify whether

Instruction I will always hit
Instruction I will always miss
…

Reduce Execution time of I to constant.
More approximate, but more scalable.
Abstract Interpretation based approach.

12/10/2007 69

Instruction-Cache
One concrete hardware data structure.
With no hardware modeling, all instructions should be taken
as misses.
Instead we can categorize some instructions as “always hit”

Coarse modeling.
For certain instructions, even the “worst case” may not
be a miss !

12/10/2007 70

Categorization …
… of instructions

AH (always hit)
AM (always miss)
PS (Persistent: second and all further executions are
guaranteed to produce a hit)
• Effect of cold misses

NC (not AH, AM, PS)

12/10/2007 71

Cache-basics

Redundant storage to reduce memory access time.
Many memory blocks map to a single cache line
F: Memory Block → Cache lines

Given a memory block m, F(m) returns the set of cache
lines it can map to.
If F(m) is always a singleton set, then we have a direct
mapped cache.
If |F(m)| is n, we have n-way set associative cache.
If F(m) = Set of all cache lines, then we have a fully
associative cache (any memory block can map to any
cache line).

12/10/2007 72

The cache
Fully associative with LRU policy.
Cache lines = L1, L2, …, Ln

L1 is the youngest line
Ln is the oldest line
Do not refer to physical cache lines

Memory blocks = S1, …,Sm

Any block Si can map to any cache line Lj during
program execution

13

12/10/2007 73

Concrete cache update

z

y

x

t

s

z

y

x

s

s is not in cache

youngest

oldest

Removed from cache

12/10/2007 74

Concrete cache update

z

s

x

t

s

z

x

t

s

s is in cache

youngest

oldest

12/10/2007 75

Abstract cache state
In the concrete cache state c, if a block is in cache line x,
its age is x

Cache line 1 is youngest.
In the abstract cache state c’, each line x contains a set of
memory blocks

B ∈ c’(Lx) at a program point p means …
When control reaches p, B may (must) be in cache with
min (max) age = x
Direction of approximation in abstraction.

12/10/2007 76

May analysis

{a}

{c,f}

{}

{d}

{c}

{e}

{a}

{d}

{a,c}

{e,f}

{}

{d}

1. In cache in some path.

2. If so, take min. age

youngest

oldest

12/10/2007 77

Must analysis

{a}

{}

{c,f}

{d}

{c}

{e}

{a}

{d}

{}

{}

{a,c}

{d}

youngest

oldest

1. In cache in both paths

2. If yes, take max age.

12/10/2007 78

High-level view
… of may/must analysis.

For each program point, initialize a default
abstract cache state (empty cache)
Update abstract cache states at each program
point by propagation based on control flow
• Propagation at control flow merge points shown in

past 2 slides.
• Propagation done differently for may and must

analysis.

Iterate the updates over and over, until the
abstract cache states for all basic blocks
become stable.
• Why is termination guaranteed?

14

12/10/2007 79

How to use such analysis ?
Let I be an instruction at control loc. CL
Let M be the memory block containing I.

Consider abstract cache state at CL obtained via “must
analysis”.
• If M is in some cache line within this abstract cache

state, then I is Always Hit.
For cache state at L obtained via “may analysis”
• If M is not in any cache line within this abstract cache

state, then I is Always Miss.

How to categorize an instruction as
“persistent”?

• Misses the first time, but hits subsequently.
• Need to conservatively model removal of cache

blocks from cache.

12/10/2007 80

Persistence Analysis

{e}
{b}

{c}
{d}
{a}

{c}

{e,f}
{a}
{d}
{b} Possibly

removed

Oldest

Youngest

{}

{e,f}
{c}
{d}

{a,b}

1. In cache in some path

2. If yes, take max age

12/10/2007 81

Use of may-must analysis
Separate micro-architectural modeling
from program path analysis.

Use may-must analysis to find worst-case cache
behavior of each instruction.
Sum up to get WCET with cache modeling.
Objective function = ∑ I #I * wcetI

• wcetI is a constant
• #I is a ILP variable as before, flow equations defined.

We can slightly better this formulation easily

12/10/2007 82

Use of may-must analysis

Let hit_time = t1, miss_time = t2
Number of accesses of I == #I (ILP variable)

I is AH
• #I * t1 = contribution of I to WCET

I is AM
• #I * t2 = contribution of I to WCET

I is PS
• (#I -1)*t1 + t2 = contribution of I to WCET

Formulation is still linear, solve via ILP.

12/10/2007 83

Can we improve precision ?

If we can bound the number of misses of instr. I (via
constraints)

No need to reduce exec. Time of I to constant
Contribution of I to WCET
• #miss(I)*t2 + (#I – #miss(I))*t1

Takes the idea of PS categorization one step further
(distinguish between the different executions of I).
How to develop such constraints ?

• ILP, Expensive !!

12/10/2007 84

Summary so far
Modeling timing effects of I-cache

Abstract Interpretation to categorize instr
ILP based modeling is more expensive.

I-cache does not have timing anomalies
Can assume all accesses are misses.
Very pessimistic, but estimate still safe !

For certain processors, even this is not true !
Adding worst-case of each instruction may produce an
estimate lower than the global worst-case !

15

12/10/2007 85

Organization
What is Timing Analysis ?
An Early solution -- Timing Schema.
The two main steps.

Path Analysis.
Micro-architecture modeling.

Modeling Program Flows.
Primarily Control flow.

Modeling timing effects of Micro-architecture.
Cache, pipeline.

Chronos WCET Analysis tool for C programs

12/10/2007 86

Chronos WCET estimation tool
Program path analysis

All paths in control flow graph are not feasible.
Advanced Micro-architectural modeling

Dynamically variable instruction execution time
• Cache, Branch Prediction
• Out-of-order Pipelines

http://www.comp.nus.edu.sg/~rpembed/chronos/

12/10/2007 87 12/10/2007 88

Pipeline + IC + BP

RatioEst. WCETObs. WCETProgram

1.121195810646fdct

1.121329971098567fft

1.11106219933647whet

1.59135768514minver

1.421741412254ludcmp

1.376367946642fir

1.10111779101673matsum

Parameters:
Functional Units: ALU: 1 cycle; MUL: [1, 4]; FPU: [1, 12]
4KB I-Cache: 4-way, 32 sets, 32bytes/line, cache miss: 10 cycles
Gag dynamic branch predictor: 4-bit BHR, 16-entry BHT

12/10/2007 89 12/10/2007 90

16

12/10/2007 91 12/10/2007 92

Summing up …
Program flow modeling (typically by ILP)

Combine reasoning about timing of program fragments.
Exploiting Infeasible path information.
Difficult to use model checking for this purpose.

Micro-architectural modeling (customized analysis)
Exec. Time of each instruction is not constant.
Worst-case not found by adding up worst-cases of code
fragments – non compositional.

• Efficient analysis tools (Chronos) to overcome this.

12/10/200712/10/2007 9393

Processor Pipelines
Additional Slides

Abhik Roychoudhury

12/10/2007 94

Pipelined exec.

Divide the execution of an instruction into stages

Instruction I+1 can proceed before I completes

Increased throughput, lower overall execution time

I
I

I
I

I

I+1
I+1

I+1
I+1

I+2
I+2

I+2
I+3

I+3I+4

IF
ID

EX

WB
CM

0

1

2

3

4

SIMPLIFIED
VIEW !!

12/10/2007 95

An O-o-O pipeline

I-1

headtail

I-4

I-2 I-3

IBUF

GPR

FPR

ROB

ALU

MULT

FPU

I+1
I

IF

ID

EX

WB

CM

Mem => I-buffer (inorder)

IBUF => ROB (in-order)

ROB => FU (out-of-order),
(Instr still in ROB)

FU => ROB (out-of-order)
(forward data)

Update register file, free
ROB entry (in-order)

12/10/2007 96

O-o-O exec.
Several instructions may reside in the same pipeline stage
in the same clock cycle.

An ADD instruction and MUL instruction in the EX stage
since they use different func. units

Pipeline stalls
Instruction I+1 may not proceed to EX since it depends
on the result of instruction I

Mask stall latency by out-of-order exec
If I+1 cannot proceed, let I+2 proceed if all its operands
are available.

17

12/10/2007 97

O-o-O execution (1)

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

MULTU

ALU
D

A

B C

E

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

Partial order of dependences

A
B

C

D

E

12/10/2007 98

O-o-O execution (2)

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

D

Instruction A executes 3 cycles

Instruction sequence

A
B

C

D

E

12/10/2007 99

Difficulty in modeling

Ready Instruction
Cycle

A 0 mult r3 r1 r2
B 1 add r3 r3 8
C 2 and r3 r3 0xff
D 3 addu r5 r4 8
E 4 mult r5 r5 r6

Latencies

MULTU 1 ~ 4 cycles
ALU 1 cycle

0 1 2 3 5 6 7 8 9 104

MULTU

ALU
B C

A E

MULTU

ALU
D

D

A

B C

E

Instruction A executes 3 cycles

Instruction A executes 4 cycles

Instruction sequence

0 1 2 3 5 6 7 8 9 104

12/10/2007 100

Timing Anomaly
Overall WCET of an instruction sequence cannot be
obtained from WCET of each instruction
Need to consider all possible execution times of each
instruction to safely estimate WCET !

Expensive enumeration
Very different from cache modeling

Worst-case cache behavior of an instruction sequence
can be safely estimated by considering all cache
accesses as misses

Modeling of out-of-order pipeline behavior is
extremely complex, and not discussed here !

