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ABSTRACT ix

Abstract

Distributed reactive systems consisting of classes of behaviorally similar interacting

processes arise in various application domains such as telecommunication, avionics

and automotive control. For instance, a telecommunication network with thousands

of interacting phones (constituting a phone class), or a controller managing hundreds

of clients requiring latest weather information in an air-traffic control system. Various

existing modeling notations, such as those included in the UML standard (e.g. State-

machines and Sequence diagrams), are not well equipped for requirements modeling

of such systems, since they assume a fixed number of processes in the system.

Message Sequence Charts (MSCs) and its variants such as UML Sequence-diagrams

are popular notations for modeling scenario-based requirements, capturing interac-

tions among various processes in the system. In this thesis, we develop two UML-like

executable modeling notations based on MSCs for parameterized validation of dis-

tributed reactive systems consisting of classes of interacting processes. These nota-

tions are– (i) Interacting Process Classes (IPC), and (ii) Symbolic Message Sequence

Charts (SMSC), respectively. We propose an abstract execution semantics for both

these notations, where we dynamically group together objects at runtime that will

have similar future behaviors. We also capture static and dynamic association links

between objects, and use class diagrams in a standard way to specify binary inter-

class associations. Finally, we study automated test-generation techniques from our

modeling notations. The test-cases generated from our MSC-based models provide a

crucial link by enabling testing of final implementation with respect to the original

requirements.
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Chapter 1

Introduction

In recent years, the use of model-based techniques for system design and development

has gained wide acceptance and seen increased usage. The popularity of Model Driven

Architecture from the Object Management Group (OMG) [87], various model-driven

development tools such as those from IBM (Telelogic [110] and Rational [95]), and

open-source initiatives such as Eclipse Modeling Framework [33], strongly indicate a

growing trend towards model-driven development.

The key idea behind the model driven system development is a clear separation of

business and application logic from the underlying platform technologies. Specifically,

the Model Driven Architecture (MDA) distinguishes between two kinds of models– (i)

Platform Independent Models (or PIMs), capturing the system description free from

the details of the underlying platform, and (ii) Platform Specific Models (or PSMs),

which include various implementation specific details in addition to the functionality
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captured by PIMs. This separation of concerns immediately offers several advantages.

First of all, the system description captured by PIMs being independent of specific

implementation details, can be reused across various implementation platforms. This

results in a long lasting intellectual property, while the underlying technology keeps

rapidly evolving. Further, PIMs are generally specified using open standard notations

such as UML [77], and are therefore vendor neutral, thus allowing for easy migration

across technologies. However, that is not all; the use of model based techniques

offers various other advantages. Besides serving as initial design documents, system

models are used for — (semi-) automated code generation for obtaining a system

implementation (e.g. [100]), validation of functional and non-functional requirements

through simulation, testing, model-checking etc. (e.g. [69]), and automated model-

based test generation for testing system implementations derived separately from the

same requirements (e.g. [20]).

Various modeling notations used in model-driven system development can be

broadly classified based on– (i) whether they are visual (e.g. Statecharts [48], Message

Sequence Charts [62]) or textual (e.g. CCS [78], Z-notation [121]), and (ii) whether

they specify system behavior (e.g. Statecharts) or structure (e.g. Class-diagrams).

In this work, our focus is on the use of UML-like behavioral modeling notations for

modeling and parameterized validation of distributed systems requirements.
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1.1 The Problem Addressed in this work

Distributed reactive systems consisting of classes of behaviorally similar interacting

processes arise in various application domains such as telecommunication, avionics

and automotive control. For instance, a telecommunication network with thousands

of interacting phones (constituting a phone class), or a controller managing hundreds

of clients requiring latest weather information in an air-traffic control system. The ini-

tial requirements for such systems generally focus on specifying various inter-process

interaction scenarios among system processes, and abstract away from the local com-

putations. Further, at the time of laying out the initial requirements, it is often

unnatural to fix or, specify an upper bound on the number of processes of various

types (e.g. number of phones in a telecommunication network) in the system. Such

systems can also be characterized as parameterized systems, the parameter being the

number of processes in various classes, while the behavior of each class is specified

using a finite state machine. These are well studied in the domain of automated

verification (e.g. [28, 91]).

We find that various existing modeling notations, such as those included in the

UML standard (e.g. State-machines and Sequence diagrams), are not well equipped

for requirements modeling of such systems, since they assume a fixed number of

processes in the system. Hence, while constructing a requirements model using the

existing notations, number of processes of various types need to be fixed artificially.

This has several drawbacks–
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• Problems with validation: For a requirements model obtained by artificially

fixing the number of processes in various classes, in general, it cannot be guar-

anteed to exhibit all possible system behaviors (when a sufficiently large number

of objects are present). Hence, any validation (are we building the right prod-

uct) or verification (are we building the product right) results obtained for the

restricted system cannot be guaranteed to hold for all implementations of the

given system in general.

• Remodeling: For different object configurations (differing in the number of

objects of various types), separate requirements models need to be obtained in

most of the cases. Besides the remodeling effort, various analyses, test genera-

tion etc. done over the existing models, may have to be repeated for any newly

constructed models. Clearly, this leads to a lot of wasted effort.

• Scalability: As the number of objects of various process types is increased in

the system, requirements models may become large and complex, and hence,

difficult to maintain and update. For example, in case of Message Sequence

Charts [62], each process in the system is represented individually. Further,

though various notations provide modeling at the level of classes instead of

individual processes (e.g. Statecharts [48], Live Sequence Charts [27]), their

execution semantics is still concrete. This means, that during the execution of

requirements models obtained using these notations, various objects and their

states in the system are represented individually. Thus, modeling/execution of
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system requirements with a large number of objects may easily become error-

prone or inefficient, severely limiting the use of model based techniques in such

cases.

1.2 Solution Proposed in this dissertation

Message Sequence Charts (MSCs) [62] is a popular visual notation for modeling the

scenario based requirements, capturing interactions among various processes in the

system. In this thesis, we develop two executable MSC based notations for parameter-

ized requirements modeling and validation of distributed reactive systems consisting

of classes of interacting processes.

In the modeling frameworks that we develop, we impose no restrictions on the

number of objects a process class may have. In case, the requirements document does

not specify the number of objects for a class, say p, we allow p to have an unbounded

number of objects (represented as ω). While modeling the requirements themselves,

we do not refer to individual objects of various classes. Instead, we specify the class

and constraints for selecting a subset of objects from that class, to participate in a

given event (or a set of events appearing along a lifeline in a MSC). In our setting,

the constraints for selecting objects to participate in various event(s) may consist

of one or more of the following– (i) a boolean guard regarding the valuation of an

object’s variables, (ii) a history-based guard over the past event-execution history of

an object, and (iii) a constraint regarding an object’s association links (with other
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participating objects).

Thus, a requirements model in our framework may consist of a large or, even an

unbounded number of objects in various process classes. If the execution semantics

of such systems maintains the local state of each object, this will lead to an imprac-

tical blow-up during execution. Instead, we propose an abstract execution semantics,

where we dynamically group together objects at runtime that will have similar future

behaviors. While doing so, we keep track of only the number of objects in each equiv-

alence class and not their identities. This results in considerable time and memory

efficiency of our simulators.

We also capture static and dynamic association links between objects, and use

class diagrams in a standard way to specify binary inter-class associations. Structural

constraints imposed by the system are naturally captured via static associations. For

instance, a node may be able to take part in a “transmit” transaction only with

nodes with which it has a “neighbor-of” association. Dynamic associations on the

other hand are needed to guarantee that proper combinations of objects take part in

a transaction. For instance, when choosing a pair of phone objects to take part in a

“disconnect” transaction, we may have to choose a pair which is currently in the “con-

nected” relation. This relation has presumably arisen due to the fact that they took

part last in a “connect” transaction. The combination of these features together with

the imperative to develop an abstract execution semantics is a challenging task. We

note that this issue does not arise in parameterized verification, since no associations
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are maintained there.

1.3 Contributions of this thesis

Modeling notations. We develop two modeling frameworks, where one can

efficiently simulate and validate a system with an arbitrary number of active

objects, such as a telephone switch network with thousands of phones, an air

traffic controller with hundreds of clients etc. The first modeling notation of

Interacting Process Classes [41, 44] uses labeled transition systems to describe

intra-process control flow of various classes in the system description, while

using a high-level notion of transactions to capture interactions among various

process classes. In our setting we use Message Sequence Charts (MSCs) [62] to

capture transactions, since they form a natural candidate for describing inter-

process interactions and are also widely used. The second notation of Symbolic

Message Sequence Charts [101] is a light-weight extension of the MSC notation.

While, in the case of MSCs, a lifeline can represent only a concrete object,

SMSCs introduce the concept of a symbolic lifeline. Instead of representing a

single object, a symbolic lifeline in a SMSC represents a collection of objects

from a class. During execution, a set of objects to execute an event occurring

along a SMSC lifeline is dynamically chosen based on the event guard.

Maintaining associations in abstract setting. our abstract execution se-

mantics (for both IPC and SMSC notations) do not maintain the identity or
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state of an individual object at runtime. Thus, challenges arise if static and/or

dynamic association links need to be maintained between various objects at

runtime. We address this issue by maintaining over-approximate association in-

formation at runtime, where we maintain links between groups of objects, with

each object-group specifying an object state and number of objects currently

in that state. Though maintaining over-approximate association information

preserves all valid system behaviors, it may give rise to spurious behaviors.

Test-case generation. Finally, we note that the distributed system require-

ments highlighting inter-process interactions are more closely reflected in the

scenario-based models such as MSCs. Given the effort involved in deriving a

system implementation, it is likely to deviate from the requirements and con-

tain errors. Thus, test-cases generated from scenario-based models can provide

a crucial link by enabling testing of final implementation with respect to the

original requirements [45]. We study test-generation from our modeling nota-

tions which are scenario-based [43].

1.4 Organization of the Thesis

In the following chapter we present a discussion of the related work, also comparing

our work with the existing literature. In Chapter 3, we discuss in detail our modeling

notation of Interacting Process Classes (IPC), while the notation of Symbolic Message
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Sequence Charts (SMSCs) is discussed in Chapter 4. Besides presenting the syntax

and abstract execution of semantics of the IPC and SMSC notations, the maintenance

of association links in the abstract setting is also discussed in Chapters 3 and 4.

Automated generation of test-cases from our IPC and SMSC models is described

in detail in Chapters 7 and 8, respectively. Finally, concluding remarks appear in

Chapter 9, along with a discussion on extensions and directions for future research.
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Chapter 2

Related Work

The use of behavioral modeling notations for requirements specification and validation

of complex reactive systems is an important area of research. Use of such models

during the early phases of system development forms an easy and more sound basis

of communication among stake-holders, system designers and end users. Moreover,

such specifications can be used for requirements simulation and validation. This can

provide the user with an early feedback and help detect various design errors in early

stages of system design.

We can broadly categorize various behavioral modeling notations into the fol-

lowing two categories: a) Intra-object (or state-based) notations, or b) Inter-object

(or scenario-based) notations. The state-based notations specify the control flow of

various classes of objects in a system description using finite state machine represen-

tations such as Statecharts [49]. The scenario-based notations, such as, Live Sequence
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Charts [27] and Triggered Message Sequence Charts [106], are used to specify various

interaction scenarios between system processes. There has also been work on using

a combination of state-based and scenario-based notations, where the control flow

for various processes is specified using labeled transition systems and the inter-object

interactions are specified using Message Sequence Charts (MSCs) [103]. All these

approaches deal with concrete objects and their interactions.

2.1 State-based models

Some of the widely used executable state-based notations in the design and analy-

sis of reactive systems are Statecharts [48], Specification and Description Language

(SDL) [2], and Petri-nets [97]. Statecharts provide a hierarchical state-based behavior

description mechanism, allowing user to specify both concurrent (using AND-states)

and sequential (using OR-states) behavior of a process. The execution of system is

event-driven. A transition between two states is generally triggered by an external

event (from the environment), or by a message sent by another process in the system.

There are a number of design methodologies based on some variant of Statecharts, as

exemplified in the commercial tools such as Rhapsody and RoseRT [100, 95].

A Specification and Description Language (SDL) system description consists of

concurrent processes described using notation similar to the extended finite state ma-

chines, and communicating via signal (or message) exchange over FIFO channels. The

following ITU standard [61] provides a formal syntax and semantics for SDL, support-
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ing both textual as well as graphical specification of SDL models. The Telelogic SDL

Suite [3] from IBM is a commercial tool offering a SDL-based design methodology for

real-time communication systems. The tool supports visual modeling of SDL designs,

their simulation, and automated code generation.

Petri-nets are a graphical and mathematical modeling tool, most commonly used

for the description of concurrent distributed systems, and their analysis. A petri-net

description consists of places and transitions, with input-arcs connecting places to

transitions and output-arcs connecting transitions to places. Places generally repre-

sent process states, while transitions represent concurrent activities in which one or

more processes participate together. A transition is enabled for execution if there are

enough tokens (representing processes) in all the places connected to the given tran-

sition via input arcs. Several tools supporting petri-nets based modeling and analysis

are available (see [90]).

There has also been work on using a combination of state-based and scenario-

based notations, where the control flow for various processes is specified using labeled

transition sys- tems and the inter-object interactions are specified using Message

Sequence Charts (MSCs) [103].

Various design methodologies based on above notations do not provide an abstract

execution semantics1, which can facilitate scalable and efficient model-based simula-

tion and validation of systems consisting of classes with a large (or even unbounded)

1Note that, in this work we only consider process abstraction– grouping together of behaviorally
similar processes, and do not consider data abstraction over process variables.
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number of objects. Further, inter-process interactions are specified at a fairly low

level of granularity, typically a single message send/receive. Both our notations of

Interacting Process Classes (IPC) and Symbolic Message Sequence Charts (SMSC),

which we discuss in this thesis, support an abstract execution semantics, allowing

for validation of distributed reactive systems consisting of a large number of behav-

iorally similar processes. The IPC is an object-oriented extension of the work in [103],

and is a state-based notation (unlike SMSCs, which are purely scenario-based). The

IPC notation allows inter-process interactions to be described at a fairly high-level of

granularity, e.g. using Message Sequence Charts (MSCs).

The new standard UML 2.0 advocates the use of “structured classes” where in-

teraction relationships between the sub-classes can be captured via entities such as

ports/interfaces; Our present frameworks do not cater for structured classes but it

can easily accommodate notions such as ports/interfaces.

Here, we also mention various programming frameworks, such as Lustre and Es-

terel2, specifically targeted towards development of reactive control systems. How-

ever, they are more useful in the later stages of system development, when require-

ments have stabilized and focus is on obtaining the system implementation. Fur-

ther, these frameworks assume the perfect synchrony hypothesis, where the compu-

tation/communication for processing all events that occur within one clock tick hap-

pen instantaneously. In our case, we do not make any such assumptions regarding

2http://www.esterel-technologies.com/

http://www.esterel-technologies.com/
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computations or, communication among processes. We target a more high-level ini-

tial system requirements, focusing on inter-process interaction protocols, rather than

computational aspects (e.g. computing output signals in response to input signals).

2.2 Scenario-based Models

The distributed system requirements generally focus on specifying inter-process in-

teractions and abstract away from the local computations, and are therefore more

naturally captured using scenario-based notations such as Message Sequence Charts

(MSCs) [62]. Examples of such requirements are often found in practice, for instance–

• Requirements document for Center-TRACON Automation System (or, CTAS)

[1]. CTAS is a control system aiding in management of arrival air-traffic at busy

airports (discussed in Section 4.2).

• Media Oriented Systems Transport (or, MOST) [79], a multimedia and info-

tainment networking standard for the automotive industry (discussed in Sec-

tion 7.1). One of the specification documents, namely the ‘MOST dynamic

specification’, contains the scenario based requirements for this standard.

The simplest form of MSC specification consists of a basic MSC (or bMSC), repre-

senting a single interaction scenario among a finite set of processes. Various processes

participating in a bMSC are represented as vertical lines (called lifelines), which ex-

change messages among themselves and may also participate in local computation
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a

m

p q

Figure 2-1: An example MSC.

actions [62]. In the following, we refer to a bMSC simply as MSC. A message ex-

changed between two lifelines in a MSC is represented by a horizontal or a downward

sloping arrow, from the sending process to the receiving process. An example of

a MSC is shown in Figure 2-1. It represents two processes p and q, exchanging a

message m (from p to q). Further, process q participates in a local action a.

While an MSC represents a single execution scenario of the system, more complete

system descriptions can be obtained in the form of High-level Message Sequence

Charts (HMSCs). An HMSC is a directed graph, whose nodes are labeled with other

(H)MSCs with a finite level of nesting. Various HMSC nodes can be flattened out

such that, each node simply corresponds to an MSC — the resulting structure is also

referred to as Message Sequence Graph (MSG). In our discussions, we assume HMSC

to be a flattened structure. Further, an HMSC has a unique start node, with a subset

of its nodes designated as final nodes. A path from the start node to a final node

in an HMSC represents an accepting path. The MSC corresponding to an accepting

path in a HMSC [7] represents a valid run of the system.
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Other extensions to HMSC notation, namely Compositional Message Sequence

Charts [47] and Causal Message Sequence Charts [37], have also been studied. Both

these notations improve the expressive power of HMSCs by allowing specification of

MSC protocols which cannot be specified using HMSCs.

2.2.1 Analysis of MSC Specifications

The MSCs are equipped with a formal execution semantics [98], and can be subjected

to various analyses such as detecting race conditions and timing conflicts [7], detecting

non-local choice and process divergence [15], and model checking [8]. Race conditions

in an MSC can exist when the visual event ordering described in the MSC may be

violated at runtime due to the underlying communication architecture. For example,

two messages sent by the same process to another process may not arrive in order, if

the underlying communication is not FIFO. In [7], an MSC analyzer is presented for

detecting such conflicts, given an underlying communication architecture. The non-

local branching choice intuitively refers to the inability of the processes to locally make

a (globally) consistent choice regarding which branch to pursue at a branching node

in an HMSC specification. This leads to problems in directly obtaining a distributed

implementation from an HMSC. Process divergence, on the other hand, refers to the

possibility of a process making unbounded progress relative to other processes in a

given HMSC. In [15], authors give syntax-based analysis algorithms for detecting both

non-local choice and process-divergence. Model-checking HMSC specifications refers
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to validating them against properties that may be described using logics (e.g. Linear

Temporal Logic [23]), as automata, or as HMSCs. Model-checking HMSCs in general

is shown to be undecidable, whereas it is decidable for the bounded subclass of HMSCs

[8]. Consequently, model-checking has been studied for other subclasses of HMSCs

where it becomes decidable (e.g. [38]).

We note that various decidability results for MSCs also apply to our notation of

SMSCs (discussed in Chapter 4), which is an extension of the MSC notation.

2.2.2 Realizability and Implied Scenarios

An HMSC specification is said to be realizable (or, implementable), if there exists a

distributed implementation that generates precisely the specification behaviors [6].

Since, the ultimate goal is to obtain a system implementation satisfying the given

requirements, the synthesis of MSCs has been widely studied, for example, as Stat-

echarts [71, 119] or Communicating Finite State Machines (CFSMs) [6, 81, 38]. A

different approach in this direction is the work on Netcharts [82], which are a visual

formalism for specifying collections of MSCs, similar to HMSCs. However, unlike

HMSCs where control of processes is specified at a global level, Netcharts specify

distributed process control. This leads to a more natural and direct translation of

Netcharts into Communicating Finite State Machines. Further, Netcharts are more

expressive than HMSCs, in the sense that they can specify all regular MSC languages

[53], unlike HMSCs, which can only describe finitely-generated regular MSC lan-
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guages. The above notion of regularity is studied for MSCs, since it directly relates

to their realizability by means of bounded message passing automata.

However, implementations obtained from the HMSC specifications may give rise

to additional behaviors, which are not present in the original scenario specification.

These behaviors are referred to as implied-scenarios [114, 6], which mainly arise be-

cause various components have a local view of system behavior, and may not make

globally consistent decisions (as per HMSC specification). An implied scenario may

be desirable, i.e. an acceptable scenario has been overlooked and needs to be incorpo-

rated in the system specification, or undesirable, representing unacceptable behavior.

An approach for detecting implied scenario is presented in [114]. A distinction be-

tween “positive” and “negative” implied scenarios is made in [115]. If a detected

implied scenario corresponds to a negative scenario specified with the requirements,

then it is not reported (as user is already aware of its presence). For a reported

implied scenario, user classifies it as either positive or negative, accordingly updating

the requirements model to eliminate the implied scenarios.

In our case, since we are adding to the expressive power of MSCs in our notation

of SMSCs, various issues regarding realizability of HMSCs and existence of implied

scenarios also extend to SMSCs. However, in the current work we do not investigate

implementation of SMSC based specifications.
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2.2.3 Scalability of MSC Specifications

The MSC language offers two constructs for dealing with the problem of voluminous

scenarios involving several instances and events: gates and instance decomposition.

The first option allows a message to be split into two parts, with the message send in

one scenario, and the corresponding receive in another scenario, implicitly joined by

a gate. The second option allows an instance in one MSC to be decomposed into a

collection of instances, whose behavior is depicted in another MSC. These are useful

approaches for decomposing a large specification into tractable pieces; however, their

focus is on structural changes to scenarios rather than behavioral abstractions (which

we develop for our notation of SMSCs in Chapter 4), and thus such approaches only

partially address the MSC scalability problems that allow similar interaction patterns

to be concisely represented as in SMSCs. Note that in the conventional usage of MSCs,

conditions can appear in the MSC syntax. However, there is no attempt to integrate

the conditions into the execution semantics of MSCs [98]. On the other hand, we

introduce event guards in SMSCs, which not only refer to conditions on variables

of concrete objects, but also serve as an object selector from a collection of objects

during execution.

2.2.4 Other Notations

In recent years, a number of MSC variants have been proposed (e.g. [18, 106, 27, 115]).

Of these, Live Sequence Charts (LSCs) and Triggered MSCs (TMSCs) are equipped
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with an execution semantics [52, 21]. The notation of Live Sequence Charts (LSCs)

[27, 51] offers an MSC-based inter-object modeling and simulation framework for

reactive systems. LSCs describe system behavior by prescribing existential and uni-

versal temporal properties that the overall system interactions should obey, rather

than giving a per-process state machine. Consequently, the control flow information

pertaining to individual processes is completely suppressed in LSCs. More impor-

tantly, we note that in the LSC framework, though the objects of a process class can

be specified symbolically, the execution mechanism (the play-engine as described in

[51]) does not support abstract execution. The symbolic instances must be instanti-

ated to concrete objects during simulation. The approach taken in [117] maintains

constraints on concrete process identities to alleviate this problem of LSCs. However,

it falls short of fully symbolic execution (as in this paper where no process identities

are maintained), and also requires additional annotations about process identities

in the LSC specification. In the case of two modeling notations –IPC and SMSC–

that we present in this thesis, we do not maintain any process identifiers, leading

to a full symbolic execution semantics. Also, the work on Triggered Message Se-

quence Charts [106] allows for a non-centralized execution semantics, in comparison

to the play-engine of LSCs. However, the TMSC language supports neither symbolic

specifications nor abstract execution of process classes.
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2.3 Parameterized System Verification

In this thesis, we deal with distributed systems consisting of classes of interacting pro-

cesses, where a class may contain unboundedly many processes. The family of systems

with many concurrent processes of the same type, are also known as parameterized

systems. Such systems have mainly been studied in the context of parameterized

verification (e.g. [24]).

Verification of parameterized systems is known to be undecidable [10], and two

distinct approaches are considered to address this problem. We either look for re-

stricted subsets of parameterized systems for which the verification problem becomes

decidable, or we look for sound but not necessarily complete methods.

The first approach tries to identify a restricted subset of parameterized systems

and temporal properties, such that if a property holds for a system with up to a

certain number of processes, then it holds for every number of processes in the system.

Moreover, the verification for the reduced system can be accomplished by model

checking. Systems that are verified with this approach include systems with a single

controller and arbitrary number of user processes [39], rings with arbitrary number

of processes communicating by passing tokens [32, 31], systems formed by composing

an arbitrary number of identical processes in parallel [60], and systems formed by

unbounded processes of several process types where the communication mechanism

between the processes is restricted to conjunctive / disjunctive transition guards [30].

The sound but incomplete approaches include methods based on synthesis of in-
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visible invariant (e.g., [9]) which can be viewed as a combination of assertion synthesis

techniques with abstraction for verification; methods based on network invariant (e.g.,

[75]) that relies on the effectiveness of a generated invariant and the invariant refine-

ment techniques; regular model checking [66, 99] that requires acceleration techniques.

Compositional proof methods have been studied in [14], while explicit induction based

proof methods for parameterized families have been discussed in [102].

The abstract execution semantics that we develop for our IPC and SMSC modeling

notations in this thesis, involve grouping together active objects at runtime into

equivalence classes. This approach is related to counter abstraction schemes developed

for grouping processes in parameterized systems (e.g., see [28, 91]). In such systems,

there are usually unboundedly many processes whose behavior can be captured by a

single finite state machine or an extended finite state machine. It is then customary

to maintain the count of number of processes in each state of the finite state machine;

the names/identities of the individual processes are not maintained. For instance,

in [91] a concrete system consisting of n > 1 identical processes is abstracted into a

finite state system in which for each local state, the process count can be either 0, 1

or 2. The count of 0(1) indicates currently zero(single) process in the corresponding

state, while count of 2 indicates 2 or more processes in a state. In our abstract

execution semantics for IPC and SMSC, we also abstract away process identities, and

maintain only the count of objects in each execution state at runtime. Further, for

a class p with unboundedly many objects, a cutoff number cp is used such that the



26 CHAPTER 2. RELATED WORK

count of objects in a p-state can be a fixed number belonging to [0, cp], or it can

be ω– representing cp + 1 or more objects of class p. Note that, this is similar to

the count-abstraction for parameterized systems as described above (with cp = 1).

However, in our setting, currently we do not employ our abstract execution semantics

for the purpose of parameterized verification. Rather, the focus is on parameterized

requirements modeling, validation and test-case generation for distributed systems

consisting of interacting classes. Additionally, in our setting inter-object associations

across classes have to be maintained — an issue that does not arise in parameterized

system verification. This indeed is one of the key technical challenges in our work:

How does one capture the information, say, “an object i is linked via some association

asc to an object j” when we do not maintain object identities in our abstract execution

semantics?

2.4 Model Checking and Data Abstraction

There are several works which employ data abstraction techniques for the purpose

of model checking [25, 54, 22]. The main aim is to reduce the state space of a

given system-model in order to make model checking tractable. In these approaches,

various data types are replaced with smaller-sized types, thus obtaining an abstract

model of the system in terms of behaviors, which is generally an over-approximation

of the original system. Such an abstraction preserves the correctness of properties, in

the sense that, a property proven correct for the abstract model, also holds for the
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original model. In our present work, we only abstract away the process identities and

dynamically group together various processes having identical states during run-time

(a form of control abstraction [68]). Thus, currently we do not abstract away any

other data types; but it can be easily integrated in to our framework.

2.5 The Semantics of a Class

Finally, we note that both the formalisms proposed in this thesis –Interacting Process

Classes (IPC) and Symbolic Message Sequence Charts (SMSCs)– support object-

oriented modeling of requirements. Hence, a specification in either of these two no-

tations consists of a finite set of classes, whose instances (commonly referred to as

processes in our work) constitute the interacting entities.

In general, two types of semantics are associated with a class in the object-oriented

setting– value-based, or reference-based [107]. In the case of value semantics, a class

is denoted by a set of values, where each value in such a set corresponds to an object

of the class at some stage of its evolution. While, in the case of reference semantics,

a class is denoted by a set of references to values (denoting objects). In our present

work, we assume value semantics for various process-classes in a specification.
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Chapter 3

Interacting Process Classes (IPC)

The notation of Interacting Process Classes (IPC) [41, 44] uses labeled transition

systems to describe the behavior of classes of interacting objects. However, the unit

of interaction rather than just being a message exchange between a process pair, may

involve more than two participants. Further, an interaction unit can describe an

abstraction of a protocol that involves bidirectional flow of signals and data between

the objects taking part in the interaction. In our operational semantics, this unit of

interaction, called a transaction, is executed in an atomic fashion. For illustrative

purposes however, we use the notation of Message Sequence Charts (MSCs) to refine

the transactions.

We develop the IPC modeling language in two steps. First we present the core

modeling language without associations and develop its concrete execution semantics.

We then formulate our abstract execution semantics. As a second step, we introduce
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(static and dynamic) object associations and correspondingly extend the semantics.

Further, we establish results relating the concrete semantics to the abstract semantics.

Finally, we present experimental results demonstrating capabilities of the simulator

for our model.

3.1 The Modeling Language

Our model consists of a network of interacting process classes where processes with

similar functionalities are grouped together into a single class. We will often say “ob-

jects” instead of processes and speak of “active” objects when we wish to emphasize

their behavioral aspects.

In what follows, we fix a set of process classes P with p, q ranging over P. For

each process class p, we let the set of objects in class p to be a finite non-empty set

but do not require its cardinality to be specified; this is a fundamental feature of

our modeling language. We now describe the notion of a transaction for specifying

a unit of execution involving one or more processes in the system. A transaction

γ = (R, I, Ch) consists of three components-

1. A finite set of roles R. Each role r in R is a pair (p, ρ) where p ∈ P is the name

of a class from which an object playing this role is to be drawn. On the other

hand, ρ indicates the functionality assigned to the role r (“Sender”, “Receiver”

etc.).
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2. I is a guard consisting of conjunction of guards, one for each role r in R. The

guard Ir associated with role r = (p, ρ) specifies the conditions that must be

satisfied by an object of class p in order for it to be eligible to play the role r.

3. Ch represents the behavior corresponding to roles R in transaction γ.

The set of all transactions is denoted as Γ.

We require that if (p1, ρ1) and (p2, ρ2) are two distinct members of R , then ρ1 6= ρ2.

We however do not demand p1 6= p2. Thus two different roles in a transaction may

be played by two objects drawn from the same class. Further, for a transaction

γ = (R, I, Ch) ∈ Γ, the way Ch is defined is not central to our modeling notation and

its semantics; any suitable means for specifying the behavior can be used– for example,

Message Sequence Charts (MSCs) specifying the communication/computation actions

to be executed by objects assigned to various roles in a transaction, or, simply post-

conditions specifying change in the variable valuations of objects playing various roles

in a transaction can be used.

For the purpose of exposition we will use Message Sequence Charts (MSCs) for

describing the behavior (Ch) of a transaction. For a transaction γ = (R, I, Ch) ∈ Γ,

we view Ch as a labeled poset of the form Ch = ({Er}r∈R,≤, λ)1 where Er is the set

of events that the role r takes part in during the execution of γ. The labeling function

λ, with a suitable range of labels, describes the messages exchanged by the instances

as well as the internal computational steps during the execution of Ch. Finally, ≤ is

1We often use the expression {Xr}r∈R as an abbreviation for {Xr|r ∈ R}.
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Figure 3-1: Transactions departReqA & noMoreDest; A is an internal computation
event in noMoreDest

the partial ordering relation over the occurrences of the events in {Er}r∈R. Within the

MSCs, the communication via sending and receiving of messages can be synchronous

or asynchronous. This issue is orthogonal to our model. In the operational semantics

of our model, we assume for convenience that the execution of each transaction is

atomic. As a consequence, the concatenation of MSCs in our setting, say, to depict

the execution of a sequence of transactions, will be synchronous [7].

We show an example transaction in Figure 3-1(a). It occurs in our IPC model

of Rail-car example presented in [27, 49]. For the moment, let us ignore the regular

expression at the top portion of this chart. Note that as a notational shorthand we

often write the role (p, ρ) as pρ. This convention has been followed in the transactions

of Figure 3-1. In Figure 3-1(a), the roles are “CarReqSendr”, “CarHandlerReqRecvr” and

“CruiserStartRecvr”. This naming convention is intended to indicate that the function-

ality “ReqSendr” is played by an object drawn from the class “Car”, the functionality

“ReqRecvr” is played by an object belonging to the class “CarHandler”, and so on.
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For each class, a labeled transition system will capture the common sequences

of actions that the objects belonging to the class can go through. An action label

will name a transaction and the role to be played by an object of the class in the

transaction. We use Actp to denote the set of all actions that process class p can go

through. Accordingly, a member of Actp will be a triple of the form (γ, p, ρ) with

γ = (R, I, Ch) ∈ Γ, r = (p, ρ) ∈ R. The action label (γ, p, ρ) will be abbreviated as

γr. When p is clear from the context it will be further abbreviated as γρ.

As mentioned earlier, in a transaction γ = (R, I, Ch), the guard Ir associated

with the role r = (p, ρ) will specify the conditions that must be satisfied by an

object Or belonging to the class p in order for it to be eligible to play the role r.

These conditions will consist of two components: The first one is a history property

of the execution sequence of actions that Or has so far gone through. It will be

captured using regular expressions over the alphabet Actp, the set of all the action

labels corresponding to process class p. We denote it using Λ. The second component

is a propositional formula (denoted as Ψ) built from boolean assertions regarding the

values of the variables owned by Or. Thus, guard of a role r is of the form Ir = (Λ, Ψ).

For instance, consider the transaction “departReqA” shown in Figure 3-1(a)). A

Car object wishing to play the role (Car, ReqSendr) must have last played the role

(Car, DestRecvr) in the transaction setDest or in the transaction selectDest . This is
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captured by the guard

Act⋆
car .(setDestDestRecvr |selectDestDestRecvr)

shown at the top of the lifeline corresponding to role (Car, ReqSendr) in Figure 3-1(a).

As this example shows, we use regular expressions to specify the history component

of a guard. Also, note that in the transaction “departReqA” , the guard does not

restrict the local variable valuation of participating objects in any way. On the other

hand, in the transaction of Figure 3-1(b), the variable “dest” owned by the car-

object intending to play the role (Car,StopSendr) must satisfy “dest = 0”; there is

no execution history based guard for this role. Finally, if for some role no guard

is mentioned (e.g. CruiserStartRecvr in Fig.3-1(a)) then the corresponding guard is

assumed to be vacuously true.

The transition system describing the common control flow of the objects belonging

to the class p will be denoted as TSp. It is a structure of the form

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉.

We first explain the nature of the components Actp, Vp and vinitp . As described earlier,

Actp is the set of action labels, with each label specifying a transaction and a role

in that transaction, that the p-objects can play in the transactions in Γ. The effects

of the computational steps performed by an object will be described with the help
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of the set of variables Vp associated with p. Each object O in p of course will have

its own copy of the variables in Vp. For convenience, we shall assume that for each

variable u ∈ Vp, all the objects of class p assign the same initial value to u. This initial

assignment is captured by the function vinitp . We assume appropriate value domains

for the variables in Vp exist but will not spell them out here. A computational step

can be viewed as a degenerate type of transaction having just one role. Hence we

will not distinguish between computational steps and transactions in what follows.

Returning to TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉, Sp is the finite set of local states,

initp ∈ Sp is the initial state and →p⊆ Sp × Actp × Sp is the transition relation. In

summary, our model can be defined as follows.

Definition 1. The IPC Model Given a set P of process-classes, a set Γ of trans-

actions and a set of action labels Actp for p ∈ P involving transactions from Γ, a

system of Interacting Process Classes (IPC) is a collection of P-indexed labeled tran-

sition systems {TSp}p∈P where

TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉

is a finite state transition system as explained above.
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3.2 Modeling A Rail-Car System: The First-Cut

We discuss here the preliminary modeling of a Rail-car example [27, 49] using the

Interacting Process Classes (IPC) formalism. This example was initially developed

in [49] and used subsequently in [27] to illustrate the modeling capabilities of Live

Sequence Charts. It is a non-trivial distributed control system with many process

classes such as cars, cruiser, terminal etc. The schematic structure is shown in Figure

3-2. There are six terminals located along two parallel cyclic tracks, one of them

running clockwise and the other anti-clockwise. Each adjacent pair of these terminals

is connected by the two parallel tracks. There is fixed number of rail cars for trans-

porting passengers between the terminals. There is a control center which receives,

processes and communicates data between various terminals and railcars.

As shown in Figure 3-3, each terminal has four parallel platforms. At any time

at most one car can be parked at a platform. Further, there are two entrance and
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Process Class # Concrete Objects
Control Center 1

Car 48
CarHandler 48

Cruiser 48
Proximity Sensor 48

Terminal 6
Platform Manager 6

Entrance 12
Exit 12

Exit Manager 6
cDestPanel 48
tDestPanel 6

Table 3.1: Process Classes & Object counts in Rail-car Example with 48 cars

two exit segments which connect the two main rail tracks to the terminal’s platform

tracks. Also, each terminal has a destination board for the use of passengers. It

contains a push button and an indicator for each destination terminal. Each rail-car

also has a similar destination-panel for the use by passengers. Further, a rail-car is

equipped with an engine and cruise-controller to maintain the speed. The cruiser can

be off, engaged or disengaged.

The list of process classes and the number of concrete objects in each process class

for a rail-car system with 48 cars is shown in Table 3.1. Note that tDestPanel repre-

sents the destination panel in the terminal and cDestPanel represents the destination

panel in the rail-car. Thus, with 48 cars and 6 terminals, we have 48 cDestPanel and

only 6 tDestPanel (refer Table 3.1). We have only one ControlCenter object which

is related to all the Terminal and Car objects. Also each Car is associated to a

ProximitySensor, which notifies the car when it arrives within 100 and 80 yards of
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some terminal, and also associated to a Cruiser which maintains the car speed.

When a car is at a terminal or arrives in one, a unique CarHandler gets associated

with the Car to handle communication between the car and the terminal. Once the

car leaves the terminal a CarHandler is no longer associated with it. We have two

Entrance and two Exit objects associated with each terminal. They represent the

entrance and exit segments connecting the rail tracks to the terminal’s platforms.

P latformManager and ExitsManager respectively allocate platforms and exits to

CarHandler, which in turn notifies the Car of these events.

We show a fragment of the IPC model of the Rail-car example in Figure 3-4. Con-

trolling the movement of the cars between the terminals involves a complex descrip-

tion. The classes shown in Figure 3-4 are Car, Cruiser, Terminal and CarHandler.

The Cruiser stands for the cruise control of a car. This will be captured as asso-

ciations via Class Diagrams as discussed in Section 3.5. The CarHandler manages

interaction between an approaching/departing car and the corresponding terminal.

In Figure 3-4, for each process class, we have shown a fragment of the transition

system corresponding to that process class. As explained in the last section, the

action labels of the transition system for a process class specify a transaction and

a role in that transaction (which we model using a Message Sequence Chart). We

have not shown all the transactions corresponding to the (transaction, role) pairs

appearing as action labels in Figure 3-4; there are too many of them. However, two

of these transactions, namely, departReqA and noMoreDest appear in Figure 3-1.
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In this preliminary model, we do not discuss associations; the class associations

for the rail-car example appear in Figure 3-5. The modeling and simulation of pro-

cess classes with associations will be dealt with in Section 3.5 after developing the

execution semantics of the core model.

3.3 Concrete Execution Semantics

We now formulate a concrete execution semantics of the IPC model. Given a set

of transactions Γ and an IPC model {TSp}p∈P as defined in Section 3.1 (Definition 1),

for any class p we define Hp to be the least set of minimal DFAs (Deterministic Finite

State Automata) [58] given by: A is in Hp iff there exists a transaction γ = (R, I, Ch)

and a role r ∈ R of the form (p, ρ) such that the guard Ir of r is (Λ, Ψ) and A is

the minimal DFA recognizing the language defined by the regular expression Λ, the

history part of the guard, i.e.

Hp = {dfa(Λ)|γ = (R, I, Ch) ∈ Γ ∧ r = (p, ρ) ∈ R ∧ Ir = (Λ, Ψ)}. (3.1)

Expression dfa(Λ) in Eq. (3.1) above represents the minimal DFA corresponding to

regular expression Λ.

To capture the state of an object we now define the notion of a behavioral partition
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Definition 2. Behavioral Partition Let the following be an IPC description.

{TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉}p∈P

Let Hp = {A1, . . . ,Ak} be the set of minimal DFAs defined for class p (Eq.(3.1)).

Then a behavioral partition behp of class p is a tuple (s, q1, . . . , qk, v), where

s ∈ Sp, q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Ai and V al(Vp) is the set of all possible valuations

of variables Vp. We use BEHp to denote the set of all behavioral partitions of class

p.

A concrete configuration is used to capture the “local states” of all objects of all

process classes and is defined below.

Definition 3. Concrete Configuration Given an IPC specification

S = {TSp}p∈P such that Op represents the set of objects of process class p, a concrete

configuration of S is defined as follows.

cfgc = {pmapp : Op → BEHp}p∈P ,

where BEHp is the set of all behavioral partitions of class p (Definition 2, page 40).

The set of all concrete configurations of S is denoted as Cc
S .
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The system moves from one concrete configuration to another by executing a

transaction. A transaction γ ∈ Γ can be executed at a concrete configuration cfgc =

{pmapp}p∈P iff for each role r = (p, ρ) of γ where r has the guard (Λ, Ψ), there exists a

distinct object o ∈ Op such that (s, q1, . . . , qk, v) = pmapp(o) and following conditions

hold-

1. s
(γr)
−→ s′ is a transition in TSp

2. For all 1 ≤ i ≤ k, if Ai is the DFA corresponding to the regular expression of

Λ, then qi is an accepting state of Ai.

3. v ∈ V al(Vp) satisfies the propositional guard Ψ.

This implies that there exists a distinct object for each role r of γ, such that these

objects can together execute the transaction γ. We let objects(γ) represent the set

of objects chosen to execute transaction γ. Computing the new configuration cfg′
c

as a result of executing transaction γ in configuration cfgc involves computing the

new state or destination behavioral partition for each object o ∈ objects(γ). For an

object o playing the role r in transaction γ, such that its current state is given by the

behavioral partition pmapp(o) = (s, q1, . . . , qk, v), we use ‘nstateγr
(o)’ to represent

the corresponding destination behavioral partition (s′, q′1, . . . , q
′
k, v

′), where:

- s
(γr)
−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi

(γr)
−→ q′i is a transition in DFA Ai.
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- v′ ∈ V al(Vp) is the effect of executing γr on v.

Thus, an object o in the state given by behavioral partition pmapp(o) moves

to a new state given by behavioral partition nstateγr
(o) by performing role r in

transaction γ. The new concrete configuration cfg′
c

as result of executing transaction

γ in configuration cfgc is obtained as follows-

cfg′
c

= {pmap′p|p ∈ P}, where

∀p ∈ P . pmap′p(o) =















pmapp(o), o ∈ Op\objects(γ)

nstateγr
(o), o ∈ Op ∩ objects(γ)

Thus, for all the objects that do not participate in transaction γ, i.e. they are

in the set (∪p∈POp)\objects(γ), their state in the new configuration cfg′
c

remains

unchanged from cfgc. While for all the objects which execute γ, their states in cfg′
c

are computed as described above.

Example For illustration, consider the example shown in Figure 3-4. Suppose c is

a concrete configuration at which

• Two Car objects Oc1 and Oc2 are residing in state stopped and a third object,

Oc3, is in state s2 of TSCar. Further suppose they have the values 0, 1 and

2 respectively for the variable dest and have no regular expression based his-

tory guards. Then we have– pmapCar(Oc1) = 〈stopped, 0〉, pmapCar(Oc2) =

〈stopped, 1〉 and pmapCar(Oc3) = 〈s2, 2〉.
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• Three Cruiser objects, O1 . . . O3 are residing in state started of TSCruiser such

that the histories of O1 and O2 satisfy the regular expression

(ActCruiser )
⋆.alertStopDisEgRecvr

while the history of O3 satisfies the regular expression

(ActCruiser )
⋆.departAckAGetStarted .

Further, let ‘(ActCruiser )
⋆.alertStopDisEgRecvr ’ be the only regular expression guard

appearing in the Cruiser’s specification. It can be easily verified that the min-

imal DFA, say A1, recognizing the language of this regular expression has only

two states- let these be q1 and q2, where q1 is the initial state and q2 is the

accepting state. Assuming no Cruiser variables, at current configuration c we

have– pmapCruiser(O1) = pmapCruiser(O2) = 〈started, q2〉 and pmapCruiser(O3)

= 〈started, q1〉.

• Six Terminal objects, Ot1 . . . Ot6 are residing in state s1 of TSTerminal. Assum-

ing no history based guards and local variables, we have– pmapTerminal(Ot1) =

. . . = pmapTerminal(Ot6) = 〈s1〉.

Suppose we want to execute transaction noMoreDest shown in Figure 3-1(b) at

configuration c. As for the role (Car,StopSendr), though Oc1 and Oc2 are in the

appropriate control state, only Oc1 can be chosen since it (and not Oc2) satisfies
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the guard dest = 0. For the cruisers, we observe that all the three Cruiser objects

O1, O2, O3 are in the “appropriate” control state at configuration c for the purpose

of executing noMoreDest. However, only O1 and O2 have histories which satisfy the

history part of the guard associated with the role (Cruiser,StopRecvr), i.e. they are

in the accepting state q2 of DFA A1 representing this history guard. Hence either one

of them (but not O3) can be chosen to play this role. For the role (Terminal,Inc),

both the history and propositional guards are vacuous and hence we can choose any

one of the 6 objects residing in the control state s1.

Assume that Oc1, O1 and Ot1 are chosen to execute transaction noMoreDest in

configuration c. In the resulting configuration c′, all objects other than Oc1, O1 and

Ot1 will have their control states, histories and variable valuations unchanged from c,

thus remaining in the same behavioral partitions as c. The objects Oc1, O1, Ot1 will

move to control states idle, stopped, s1 in their respective transition systems. Value of

variable dest for Oc1 remains unchanged, while the state of DFA A1 for O1 is updated

to q1. Thus at the resulting configuration c′ we have– pmap′Car(Oc1) = 〈idle, 0〉,

pmap′Cruiser(O1) = 〈stopped, q1〉 and pmap′Terminal(Ot1) = 〈s1〉.

3.4 Abstract Execution Semantics

We observe that various objects of a process class have same local state (i.e. they map

to the same behavioral partition) at a given concrete configuration during execution,

and are thus behaviorally indistinguishable. Further, for classes with unboundedly
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many instances at run-time, the concrete execution semantics will produce an infinite-

state system. Thus, we formulate an abstract execution semantics of the IPC

model, where we do not maintain states and identities of individual objects. Instead,

during execution, the objects of a class are grouped into behavioral partitions.

Let {TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉}p∈P be an IPC specification S. Now

suppose c is a concrete configuration and an object O belonging to process class p

has an execution history σ ∈ Act⋆p at c. Then at c, the state of object O is given by

the behavioral partition (s, q1, . . . , qk, v) in case- O resides in s ∈ Sp at c, qj is the

state reached in the DFA Aj ∈ Hp when it runs over σ for each j in {1, . . . , k}, and

the valuation of O’s local variables is given by v. Thus, two p-objects O1 and O2 of

process class p map to the same behavioral partition (at a concrete configuration) if

and only if the following conditions hold.

• O1 and O2 are currently in the same state of Sp,

• Their current histories lead to the same state for all the DFAs in Hp, and

• They have the same valuation of local variables.

This implies that the computation trees of two objects in the same behavioral par-

tition at a concrete configuration are isomorphic. We make use of this property for

dynamically grouping together objects of a process class into behavioral partitions.

This is a strong type of behavioral equivalence to demand. There are many weaker

possibilities but we will not explore them here.
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3.4.1 Abstract Execution of Core Model

To explain how abstract execution takes place, we first define the notion of an “ab-

stract configuration”.

Definition 4. Abstract Configuration Let {TSp}p∈P be an IPC specification S

such that each process class p contains Np objects. An abstract configuration of the

IPC is defined as follows.

cfga = {countp}p∈P

- countp : BEHp → N ∪ {ω} is a mapping s.t.

Σb∈BEHp
countp(b) = Np

- BEHp is the set of all behavioral partitions of class p,

- ω represents an unbounded number.

So countp(b) is the number of objects in partition b. The set of all abstract configu-

rations of an IPC S is denoted as Ca
S .

We note that Np can be a given positive integer constant or it can be ω (standing

for an unbounded number of objects). If Np is ω, our operational semantics remains

unchanged provided we assume the usual rules of addition/subtraction (i.e. ω+1 = ω,

ω−1 = ω and so on). For a process class p, Np can be ω if, either a) the initial object

count for p is explicitly specified as ω, in order to model and validate a system with
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any number of p objects, or b) objects of class p can be dynamically created and we

specify a threshold object count, exceeding which the object count of p will become

ω. We discuss the exact mechanism for object creation/deletion for a process class p

later in Section 3.4.2. For convenience of explanation, we assume that Np is a given

constant in the rest of our discussion.

Our abstract execution efficiently keeps track of the objects in various process

classes by maintaining the current abstract configuration; only the behavioral parti-

tions with non-zero counts are kept track of. The system moves from one abstract

configuration to another by executing a transaction. How can our simulator check

whether a specific transaction γ is enabled at an abstract configuration cfg? Since we

do not keep track of object identities, we define the notion of witness partition for a

role r, from which an object can be chosen to play the role r in transaction γ.

Definition 5. Witness partition Let γ ∈ Γ be a transaction and cfga ∈ C
a
S be an

abstract configuration. For a role r = (p, ρ) of γ where r has the guard (Λ, Ψ), we

say that a behavioral partition beh = (s, q1, . . . , qk, v) is a witness partition, denoted

as witness(r, γ, cfga), for r at cfga if

1. s
(γr)
−→ s′ is a transition in TSp

2. For all 1 ≤ i ≤ k, if Ai is the DFA corresponding to the regular expression of

Λ, then qi is an accepting state of Ai.

3. v ∈ V al(Vp) satisfies the propositional guard Ψ.
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4. countp(b) 6= 0, that is there is at least one object in this partition in the config-

uration cfga.

An “enabled transaction” at an abstract configuration can now be defined as

follows.

Definition 6. Enabled Transaction Let γ be a transaction and cfga ∈ C
a
S be an

abstract configuration. We say that γ is enabled at cfga iff for each role r = (p, ρ) of

γ , there exists a witness partition witness(r, γ, cfga) such that

- If beh ∈ BEHp is assigned as witness partition of n roles in γ, then countp(b) ≥

n. This ensures that one object does not play multiple roles in a transaction.

The “destination partition” — the partition to which an object moves from

its “witness partition” after executing a transaction — can be defined as follows.

We denote the destination partition of beh w.r.t. to transaction γ and role r as

beh′ = dest(beh, γ, r). Thus, an object in behavioral partition beh moves to partition

dest(beh, γ, r) by performing role r = (p, ρ) in transaction γ.

Definition 7. Destination Partition Let γ be an enabled transaction at an abstract

configuration cfga ∈ C
a
S and beh = (s, q1, . . . , qk, v) be the witness partition for the role

r = (p, ρ) of γ. Then we define dest(beh, γ, r) — the destination partition of beh

w.r.t. transaction γ and role r — as a behavioral partition beh′ = (s′, q′1, . . . , q
′
k, v

′),

where
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- s
(γr)
−→ s′ is a transition in TSp.

- for all 1 ≤ i ≤ k, qi

(γr)
−→ q′i is a transition in DFA Ai.

- v′ ∈ V al(Vp) is the effect of executing γr on v.

We now describe the effect of executing an enabled transaction γ at a given ab-

stract configuration cfga. Computing the new abstract configuration cfg′
a

as a re-

sult of executing transaction γ in configuration cfga involves computing the desti-

nation behavioral partition beh′ = dest(beh, γ, r) corresponding to witness partition

beh = witness(r, γ, cfga) for each role r of γ, and then computing the new count of

objects for each behavioral partition. In other words, we have

∀b ∈ BEHp . count′p(b) = countp(b)

+ |{x | b = dest(w, γ, x) ∧ w = witness(x, γ, cfg)}|

- |{x | b = witness(x, γ, cfg)}|

where countp(b) and count′p(b) are the number of objects of class p appearing in the

behavioral partition b in the abstract configurations cfga and cfg′
a

respectively. Recall

that BEHp is the set of all behavioral partitions of p. Hence, given the abstract

source configuration cfga, the above formula determines the abstract destination con-

figuration cfg′
a
.

Example Consider TSCruiser shown in Figure 3-4(b). Suppose we simulate the

specification with 24 Cruiser objects (assume that other process-classes are also ap-



50 CHAPTER 3. INTERACTING PROCESS CLASSES (IPC)

propriately populated with objects) using abstract execution semantics. In the tran-

sition system TSCruiser, only the transition noMoreDestStopRecvr is guarded using a

non-trivial regular expression Act⋆
Cruiser .alertStopRcvDisEng ; the corresponding DFA,

say A1, will have just two states as can be easily verified. Initially all the 24 objects

will be in the stopped state of TSCruiser with null history and this will correspond to

the initial state, say q1, of A1. All these objects are in the same behavioral parti-

tion 〈stopped , q1 〉, where we have suppressed the valuation component since there are

no local variables associated with this class in this example. Suppose now a cruiser

object, say O1, executes (in cooperation with objects in other classes) the trace:

“departReqAStartRecvr , departAckAGetStarted , engageEngRecvr , alertStopDisEgRecvr”

O1 will now reside in the control state started. Also, since alertStopDisEgRecvr is ex-

ecuted at the end, O1’s history will correspond to the non-initial state (call it q2)

of the DFA A1. Subsequently suppose another cruiser object, say O2, executes the

trace: “departReqAStartRecvr , departAckAGetStarted”. Then O2 will also end up in the

control state started. However, unlike O1, the execution history of O2 will correspond

to q1, the initial state of A1. After the above executions we have three non-empty

behavioral partitions for cruiser objects — (i) 〈stopped , q1 〉 which has 22 objects

which have remained idle, (ii) 〈started , q2 〉 which has object O1 and (iii) 〈started , q1 〉

which has object O2. Objects in different behavioral partitions have different sets

of actions enabled, thereby leading to different possible future evolutions. Now let

object O1 execute the action noMoreDestStopRecvr . This will result in O1 migrating
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from behavioral partition (ii) to (i) above. Thus, O1 will be now indistinguishable

from the 22 objects which have remained idle throughout. For all of these 23 objects,

the action departReqAStartRecvr is now enabled. This is the manner in which objects

migrate between different behavioral partitions during abstract execution.

Maximum Number of Partitions We shall assume in what follows that the value

domains of all the variables are finite sets. Thus, the number of behavioral partitions

of a process class is finite. In fact, the number of partitions of a process class p is

bounded by

|Sp| × |V al(Vp)| ×
∏

A∈Hp

|A|

where |Sp| is the number of states of TSp, |V al(Vp)| is the number of all possible

valuations of variables Vp, |A| is the number of states of automaton A ∈ Hp. Recall

that Hp is the set of minimal DFAs accepting the regular expression guards of the

various roles of different transactions played by class p (Eq.(3.1)). Note that the

maximum number of behavioral partitions does not depend on the number of objects

in a class. In practice, many regular expression guards of transactions are vacuous

leading to a small number of partitions. For example, the Cruiser class of the Rail-

Car Example shown in Figure 3-4(b) can have at most 14 behavioral partitions since

— (i) TSCruiser has seven (7) states (not all of them are shown in Figure 3-4(b)),

(ii) the Cruiser class has no local variables that is VCruiser = ∅ and (iii) only one of

the regular expression guards involving a Cruiser object results in a DFA with two
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states2; all other regular expression guards involving the Cruiser class are accepted

by a single state DFA. Thus, the number of behavioral partitions of the Cruiser class

is at most 7∗2 = 14 while the number of objects can be very large. In fact, in Section

3.7 we report experiments that the number of behavioral partitions encountered in

actual abstract execution runs is often lower than the upper bound on number of

partitions (48 Cruiser objects are divided into less than 6 partitions, see Table 3.2).

3.4.2 Dynamic Process Creation/Deletion

We also support dynamic process creation and deletion by means of special trans-

actions whose names are prefixed with start p or stop p for all p ∈ P. We let

start pX/stop pX denote any such special transaction name. A transaction

start pX (stop pX) contains a single role r which does not contain any events, though

role r may have a guard Ir = (Λ, Ψ) as any other transaction. Transaction start pX

starts off a new process instance of class p, while transaction stop pX terminates the

process instance executing it. A start pX transaction can appear in the transition

system of a process class q, where q may be different from p (i.e. q 6= p), thus allowing

an object of one process class to create an object of another process class. However,

transaction stop pX can only appear in TSp, the transition system for process class

p. We now discuss the effect of executing these transactions for abstract execution

semantics.

2This is the guard for the role CruiserStopRecvr in transaction noMoreDest, see Figure 3-1(b).
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Let {TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉}p∈P be an IPC specification and trans-

action start pX appearing in TSq (q may be different from p) be enabled at an

abstract configuration cfga with b = (s, q1, . . . , qk, v) as a witness partition. Let Np

be the current object count of process class p, and q0
i be the initial state of DFA

Ai ∈ Hp, where i ∈ {1, . . . , k} and k = |Hp|. Then executing start pX at cfga

with b as the witness partition will result in the new configuration cfg′
a

such that:

i) a process instance of q executing start pX will move from witness partition b to

destination partition b′ = dest(b, start pX, r) resulting in count′q(b) = countq(b)− 1,

count′q(b
′) = countq(b

′)+1, and ii) a new p-process instance will start off in the initial

partition given by bi = (initp, q
0
1, . . . , q

0
k, vinitp) such that, count′p(bi) = countp(bi) + 1,

if the number of objects in process class p (i.e. Np) is less than a given threshold

value (say tp) which is set by the user, and count′p(bi) = ω otherwise. We also update

N ′
p = Np + 1, when Np is less than the threshold value tp; otherwise N ′

p = ω.

Similarly, if stop pX is enabled at an abstract configuration cfga with

b = (s, q1, . . . , qk, v) as a witness partition, then executing stop pX at cfga with b as

the witness partition will result in the new configuration cfg′
a

such that count′p(b) =

countp(b) − 1, when countp(b) is a constant number, and count′p(b) = ω otherwise.

Thus, we just decrement the count of witness partition b by 1 (when it is a constant),

without incrementing the count of its corresponding destination partition. This in-

dicates termination of the process instance executing this transaction. Similarly, we

also update N ′
p = Np − 1, when Np is constant; otherwise N ′

p = ω.
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Figure 3-4: Fragment of Labeled Transition Systems for process classes of the Rail-car
example — (a)Car (b)Cruiser (c)Terminal (d)Carhandler



3.5. ASSOCIATIONS 55

3.5 Associations

We now turn to extending our language with static and dynamic associations. This

will help us to model different kinds of relationships (either structural or established

through communications) that can exist between objects. The ability to track such

relationships substantially increases the modeling power.

3.5.1 Modeling Static and Dynamic Associations

Our notion of static and dynamic associations is similar to the classification presented

in [108].

Static Associations A static association expresses a structural relationship be-

tween the classes. In a class-diagram, a static association is annotated with fixed

multiplicities at both its ends. Static associations, as the name suggests, remain fixed

and do not change at runtime. We can refer to static associations in transaction

guards to impose the restriction that objects chosen for a given pair of agents should

be statically related. The full class diagram for the Rail-car example with 24 cars

appears in Figure 3-5. For example, the following pairs of classes: (PlatformManager,

Terminal), (Terminal, ControlCenter), (Car, ControlCenter) and (Car, Cruiser) are

statically associated in Figure 3-5. In particular, the association between Car class

and the Cruiser class denotes the itsCruiser relation of a car with its cruiser. Note

that we do not allow dynamic object-creation/deletion of a statically associated class–
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such as Car, Terminal etc. in the Rail-car example.
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Figure 3-5: Class diagram for Rail-car example.

Dynamic Associations A dynamic association expresses behavioral relationship

between classes, which in our case would imply that the objects of two dynamically

associated classes can become related to each other through exchange of messages

(by executing transactions together) and then at some stage leave that relation. In

the class-diagram, a dynamic association is annotated with varying multiplicities at

both its ends.

3.5.2 Concrete execution of IPC models with associations

In our concrete execution semantics, for a k-ary association asc relating objects of

process classes p1, . . . , pk, the k-tuple(s) of objects 〈O1, . . . , Ok〉 following the asso-
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ciation are stored in relation asc during execution . We now describe the steps for

handling an arbitrary association asc of arity k involving process classes p1, . . . , pk

during concrete execution.

• Initialization: For a k-ary static association asc, the k-tuples of objects follow-

ing the association are inserted in relation asc. For example, if k = 2 (binary

association), and asc is a one-to-one binary association between two process

classes p1, p2 each containing n objects O1, . . . , On(O
′
1, . . . , O

′
n), we populate

asc with n object pairs, 〈O1, O
′
1〉, . . . , 〈On, O

′
n〉.

If asc is a dynamic association, for convenience we assume that initially asc

does not contain any k-tuple of objects. However, its content can change during

execution.

• Check: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with

the guard (r1, . . . , rk) ∈ asc. If O1, . . . , Ok are the objects chosen to play the

roles r1, . . . , rk respectively, we also require that the the k-tuple 〈O1, . . . , Ok〉 be

present in the asc relation.

• Insert: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with

the post-condition insert (r1, . . . , rk) into asc. Let O1, . . . , Ok be the objects

chose to play the roles r1, . . . , rk respectively. Upon executing γ, we insert

the k-tuple 〈O1, . . . , Ok〉 in the relation asc. Note that the insert operation is

possible only if asc is a dynamic association.
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• Delete: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with

the post-condition delete (r1, . . . , rk) from asc. If O1, . . . , Ok are the objects

chosen to play the roles r1, . . . , rk respectively, we require that the the k-tuple

〈O1, . . . , Ok〉 be present in the relation asc. Furthermore, we delete the above

k-tuple from asc upon executing γ. Note that the delete operation is possible

only if asc is a dynamic association.

Example We now illustrate the use of dynamic associations using the Rail-car

example. During execution, various rail-cars enter and leave the terminals along

their paths. When a car is approaching a terminal, it sends arrival request to that

terminal by executing contactTerminal transaction and while leaving the terminal, its

departure is acknowledged by the terminal by executing departAckA or departAckB

transaction. Hence, the guard of departAck(A/B) requires that the participating Car

and Terminal objects should have together executed contactTerminal in the past.

Since this condition involves a relationship between the local histories of multiple

objects, we cannot capture it via regular expressions over the individual local histories.

Hence we make use of the dynamic relation itsTerminal between the Car and Terminal

classes as part of our specification.

Instead of giving details of the contactTerminal and departAck(A/B) transactions,

we list here relevant roles of these transactions.

• contactTerminal has roles (Car,ReqSendr) and (Terminal,ReqRecvr),
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inserts (O1,O2)  into itsTerminalcontactTerminal
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Figure 3-6: Dynamic Relation itsTerminal

• departAckA and departAckB have roles (Car,AckRecvr) and (Terminal,AckSendr).

Note that transactions departAck(A/B) also involve other roles which we choose

to ignore here for the purpose of our discussion.

In the concrete execution, if car object Oc and terminal object Ot play the roles

(Car,ReqSendr) and (Terminal,ReqRecvr) in contactTerminal, then the effect of con-

tactTerminal is to insert the pair 〈Oc, Ot〉 into the itsTerminal relation (refer to Fig-

ure 3-6). The departAck(A/B) transaction’s guard now includes the check that the

object corresponding to the role (Car,AckRecvr) and object corresponding to role

(Terminal,AckSendr) be related by the dynamic relation itsTerminal; so if objects

Oc and Ot are selected to play the (Car,AckRecvr) and (Terminal,AckSendr) roles in

departAck(A/B), the check will succeed. Furthermore, the effect of departAck(A/B)

transaction is to remove the tuple 〈Oc, Ot〉 from itsTerminal relation.

Thus, for a dynamic relation, the specifications will include the effect of each

transaction on the relation in terms of insertion/deletion of tuples of objects into

the relation. Furthermore, the guard of a transaction can contain a membership
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constraint (‘check’) on one or more of the specified static/dynamic relations. For

execution of concrete objects, it is clear how our extended model should be executed.

The question is how can we keep track of associations in the abstract execution

semantics.

3.5.3 Abstract execution of IPC models with associations

For associations, the key question here is how we maintain relationships between

objects if we do not keep track of the object identities. We do so by maintaining

associations between behavioral partitions. To illustrate the idea, consider a binary

relation D which is supposed to capture some dynamic association between objects

of the process class p. In our abstract execution, each element of D will be a pair

(b, b′) where b and b′ are behavioral partitions of class p; furthermore for all pairs

(b, b′) ∈ D we also maintain a count indicating the number of concrete object pairs

in behavioral partitions b, b′ which are related via D. To understand what (b, b′) ∈ D

means, consider the concrete execution of the process class p. If after an execution σ (a

sequence of transactions), two concrete objects O, O′ of p get D-related (〈O, O′〉 ∈ D)

then the abstract execution along the same sequence of transactions σ must produce

〈b, b′〉 ∈ D where b (b′) is the behavioral partition in which O (O′) resides after

executing σ. The same idea can be used to manage relations of larger arities. Note

that associations are maintained between behavioral partitions, but associations are

not used to define behavioral partitions. Hence there is no blow-up in the number of
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behavioral partitions due to associations.

Formally, the set of abstract configurations (Definition 4, page 46) in our opera-

tional model remains unchanged. Recall from Definition 4 (page 46) that an abstract

configuration is defined as cfg = {countp}p∈P where countp(b) is the number of ob-

jects in partition b ∈ BEHp; BEHp is the set of all behavioral partitions of class p.

In the presence of a k-ary association asc relating objects of process classes p1, . . . , pk

we maintain asc in our abstract execution as

BEHp1
× BEHp2

× . . .×BEHpk
→ N ∪ {ω}

The association is maintained by maintaining counts for k-tuples 〈beh1, . . . , behk〉

where beh1 ∈ BEHp1
, . . . , behk ∈ BEHpk

. Following are the steps for handling asso-

ciations in our abstract execution. We describe the steps for an arbitrary association

asc of arity k involving process classes p1, p2, . . . , pk.

• Initialization: For each process class p we have an initial variable valuation

vinit
p and an initial state initp in the high-level LTS of class p. Consequently, we

can compute an initial behavioral partition behinit
p for each process class p. Now,

if asc is a static association, we initialize the counts of k-tuples of behavioral

partitions in the following way. For every k-tuple other than 〈behinit
p1

, . . . , behinit
pk
〉

we set the asc count to be zero. For the k-tuple 〈behinit
p1

, . . . , behinit
pk
〉, the count

is non-zero and is obtained from the class diagram annotations. For example, if
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k = 2 (binary association), and asc is a one-to-one binary association between

two process classes p1, p2 each containing n objects, we initialize the count for

〈behinit
p1

, behinit
p2
〉 to be n.

Now suppose asc is a dynamic association. For convenience we assume that

initially asc does not contain any k-tuple of objects (which are in their initial

state and have null histories). Consequently, the counts for every k-tuple of

behavioral partitions is set to zero.

• Check: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with

the guard (r1, . . . , rk) ∈ asc. If beh1, . . . , behk are the chosen witness partitions

for r1, . . . , rk respectively, we also require that the asc count maintained for the

k-tuple 〈beh1, . . . , behk〉 be greater than zero. Furthermore, let beh′
1, . . . , beh

′
k

be the destination partitions of beh1, . . . , behk respectively, upon executing γ.

We then decrement the asc count for the k-tuple 〈beh1, . . . , behk〉 by 1; the asc

count for the k-tuple 〈beh′
1, . . . , beh

′
k〉 is incremented by 1.

• Insert: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ

with the post-condition insert (r1, . . . , rk) into asc. Let beh′
1, . . . , beh

′
k be the

destination partitions of the roles r1, . . . , rk respectively, upon executing γ. We

increment the asc count for the k-tuple 〈beh′
1, . . . , beh

′
k〉 by 1. Note that the

insert operation is possible only if asc is a dynamic association.

• Delete: Let γ be a transaction and r1, . . . , rk be the roles in transaction γ with
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the post-condition delete (r1, . . . , rk) from asc. If beh1, . . . , behk are the chosen

witness partitions for r1, . . . , rk respectively, we require that the asc count main-

tained for the k-tuple 〈beh1, . . . , behk〉 be greater than zero. Furthermore, we

decrement the asc count for the k-tuple 〈beh1, . . . , behk〉 by 1, upon executing γ.

Note that the delete operation is possible only if asc is a dynamic association.

• Default: Let γ be a transaction and BEHγ be the set of witness partitions for

the roles in γ. Let τ be a k-tuple in relation asc with association count greater

than zero and BEHτ represent the set of behavioral partitions it contains, such

that, BEH = BEHτ ∩ BEHγ 6= ∅. Then for the k-tuple τ ′, obtained from k-

tuple τ by replacing the partitions in BEH with the corresponding destination

partitions upon executing γ, we increment its asc count by 1.

It might seem that our maintenance of association information will lead to undue

blow-up. This is because we maintain counts corresponding to k-tuples of behavioral

partitions. However, typically we only have binary associations in the class diagrams

of the IPC specifications. So, we only need to maintain counts for pairs of behav-

ioral partitions. Furthermore, very few of these pairs have non-zero counts during

execution, and we only need to maintain pairs which have non-zero counts.

Example As discussed earlier, the dynamic relation itsTerminal is maintained be-

tween the objects of class Car and Terminal (as shown in Figure 3-6). This relation-

ship is established between a Car and a Terminal object while executing contactTer-
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minal and exists till the related pair executes either departAckA or departAckB. For

illustration, suppose one object each from class Car and class Terminal plays the role

(Car,ReqSendr) and (Terminal,ReqRecvr) respectively in the transaction contactTer-

minal. Let bCar (bTerm) be the behavioral partitions in to which the objects of Car

(Terminal) go by executing contactTerminalReqSendr (contactTerminalReqRecvr). So in

our abstract execution, corresponding to pairs of behavioral partitions of the Car and

Terminal class, we maintain a count indicating the number of pairs in the itsTerminal

relation. Thus, for the pair 〈bCar, bTerm〉 we increment its count by 1.

Now when we execute departAck(A/B) transaction, we will pick a pair from this

relation as witness behavioral partitions for the roles (Car,AckRecvr) and (Termi-

nal,AckSendr). We have not maintained information about which Terminal object in

bTerm is related to which Car of bCar. In our abstract execution, when we pick bCar

and bTerm as witness partitions of two roles in transaction departAck(A/B), we are

assuming that the corresponding objects of bCar and bTerm which are associated via

itsTerminal are being picked. Furthermore, after executing departAck(A/B) transac-

tion, we decrement the count for pair 〈bCar, bTerm〉 by 1.

3.6 Exactness of Abstract Semantics

In this section we first show that our abstract execution semantics is an over-approximation

in the sense that every concrete execution can be realized under the abstract execu-

tion semantics but the converse, in general, is not true. We then describe a procedure
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for checking whether an abstract execution run is a spurious one.

3.6.1 Over-Approximation Results

In what follows, we only consider finite sequence of transactions. After all, traces

produced by (concrete or abstract) execution are always finite.

Theorem 1. Suppose σ is a finite sequence of transactions that can be exhibited in

the concrete execution of an IPC model S. Then σ can also be exhibited in the abstract

execution of S.

The proof of Theorem 1 proceeds by induction on N , the length of the execution

sequence σ. The detailed proof appears in Appendix A.1.

We next note that the converse of the above theorem holds in the absence of

associations.

Theorem 2. Suppose S is an IPC model which has no association relations appearing

in the guards of any of the transactions. Then every finite sequence of transactions

under the abstract execution semantics is also an execution sequence under the con-

crete execution semantics.

Proof. The proof follows by a straightforward induction on the length of abstract

execution run. The induction hypothesis is:

Let σ be a finite sequence of transactions allowed in the abstract execution seman-

tics of an IPC model S. Let beh ∈ BEHp be a behavioral partition of class p with
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count = n after the abstract execution of σ. Then σ is also a concrete execution.

Furthermore, after the concrete execution of σ there exists exactly n concrete objects

of class p which reside in partition beh based on their control state, execution history

and variable valuation.

Let σ = σprev ◦ γ and the induction hypothesis holds for σprev. In the induction

step, we need to show that the above holds after the execution of σ = σprev ◦γ as well.

Let r1, . . . , rm be the roles of transaction γ and let beh1, . . . , behm be their witness

behavioral partitions in the abstract execution of γ. By the induction hypothesis, we

have concrete objects o1, . . . , om, whose states are given by the behavioral partitions

beh1, . . . , behm, to play the roles r1, . . . , rm in the concrete execution of γ. Further-

more, if beh′
1, . . . , beh

′
m are the destination partitions of beh1, . . . , behm after the ab-

stract execution of γ, we are guaranteed that o1, . . . , om will move to beh′
1, . . . , beh

′
m

after the concrete execution of γ. This follows from- a) the definition of a destina-

tion partition, Def. 7, and b) the method for computing the behavioral partition

representing the new state of an object in concrete execution semantics (Section 3.3).

Now, in abstract execution, the object count of each of the witness (destination) par-

tition behi(beh
′
i) will be decremented (incremented) by 1 after executing γ. Similarly,

after the concrete execution of γ, the number of objects whose state is given by the

behavioral partition behi(beh
′
i), will be decremented (incremented) by 1. Thus, the

induction step is established.
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Figure 3-7: An example to show spurious runs in our abstract execution semantics

3.6.2 Spurious abstract executions

We now show that the converse of theorem 1 does not hold, i.e. a finite sequence

of transactions exhibited by the abstract execution of an IPC model S may not be

exhibited by the concrete execution of S. Consider a fictitious system consisting of 3

process classes: Cruiser, Car and BrakeControl, such that each Cruiser and Brake-

Control object is associated with a Car object via static associations Asc1 and Asc2.

In other words, Asc1 (Asc2) captures the relationship between a car and itsCruiser

(itsBrakeController). Fragments of the transition systems for these components are

shown in Figure 3-7, along with the checks on the static associations by various trans-

actions. Assume that there are no variables declared in these process classes and that

all the action labels shown in the example have trivial guards, that is they do not
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impose any restriction on the execution history of the object to play that role (of

course the object should be in the appropriate control state). Suppose now, that we

have an initial abstract configuration

c = {(〈sA1〉, 2), (〈sB1〉, 2), (〈sC1〉, 2)}.

Process classes Cruiser, Car and BrakeControl contain 2 objects each, in their initial

states sA1, sB1 and sC1 respectively.

Furthermore, for the association Asc1 (representing itsCruiser relationship), the

count associated with the pair 〈sA1, sB1〉 is 2, and for the association Asc2 (represent-

ing itsBrakeController relationship), the count associated with the pair 〈sB1, sC1〉 is

2.

It is easy to see that the abstract execution semantics allows the sequence of trans-

actions t1, t2, t3. After a car object and its cruiser execute t1, abstract configuration

reached is

c1 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB1〉, 1), (〈sB2〉, 1), (〈sC1〉, 2)}.

Also, for the association Asc1, the count associated with the pair 〈sA1, sB1〉 now

becomes 1 (it is decremented by 1), and incremented by 1 for the pair 〈sA2, sB2〉.

There is no change in the association content for Asc2.

Since the car object executing t1 (call it Car1 for convenience of explanation) is
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now in state sB2 it cannot execute transaction t2 since it is not enabled from sB2.

Suppose now t2 is executed by another car object (call it Car2 for convenience of

explanation). This produces the configuration

c2 = {(〈sA1〉, 1), (〈sA2〉, 1), (〈sB2〉, 2), (〈sC1〉, 1), (〈sC2〉, 1)}.

For association Asc2, the count associated with the pair 〈sB1, sC1〉 is decremented by

1, and incremented by 1 for the pair 〈sB2, sC2〉. There is no change in the association

content for Asc1.

In our abstract execution, the two car objects are not distinguishable at this point

since they are both in state sB2. One of these cars (actually Car1) has its cruiser

in state sA2 from where transaction t3 is enabled; another car (actually Car2) has

its brake controller in state sC2 from where t3 is enabled. But since the distinction

between Car1 and Car2 is not made in abstract execution, transaction t3 (involving

all the classes — Car, Cruiser, BrakeControl) will be executed in the abstract exe-

cution. In particular note that in the association information for Asc1 (Asc2), the

count associated with 〈sA2, sB2〉 (〈sB2, sC2〉) is greater than zero. This will allow t3

to be executed “as per” our abstract execution semantics.

In the concrete execution, however t3 cannot be executed after transactions t1, t2

are executed. After executing transactions t1, t2 there cannot be any concrete car

object which has its cruiser (related by association Asc1) as well its brake controller

(related by association Asc2) in the appropriate control states for executing transac-
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tion t3. Thus, if trace σ is simulated in the concrete execution, it will get deadlocked

after executing the transactions t1, t2. Though in this example we have only con-

sidered static associations, similar incompleteness of our abstract execution can be

shown with dynamic associations.

3.6.3 Detecting spurious abstract executions

Detecting spurious abstract executions is similar in objective to detecting spurious

counter-example traces in abstraction-refinement based software model checking (e.g.

see [54]). In our setting, this can be done effectively.

Theorem 3. There is an effective procedure which accepts as input an IPC S =

{TSp}p∈P and a finite sequence σ which is an execution sequence under the abstract

execution semantics, and determines whether or not σ is a spurious execution se-

quence; in other words, σ is not an execution sequence under the concrete semantics.

Proof. Let σ = γ1 . . . γn be a finite sequence of transactions from an IPC S which is

allowed under our abstract execution semantics.

For each process class p, let nump,σ denote an upper-bound on the number of

p-objects required for exhibiting the execution sequence σ. We define nump,σ to be

the total number of roles (p, ρ) appearing in transaction sequence σ s.t. for each

such role (p, ρ) in a transaction occurrence γi in σ, γi
ρ is an outgoing transition from

the initial state of TSp (the transition system for process class p). This is because,
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the number of unique p-objects that can participate in transactions in σ, must have

initially executed a role (p, ρ) in a transaction γi (occurring in σ) s.t. γi
ρ is an outgoing

transition from the initial state of TSp. Note that, a transaction γ can occur more

than once in an execution trace σ. For computing nump,σ, we treat each transaction

occurrence as distinct.

We now define xp,σ = min(Np, nump,σ) if Np, the number of objects in p is a given

constant. Otherwise the number of objects of p is not fixed and we set xp,σ = nump,σ.

It is worth noting that xp,σ serves as a cutoff on the number of objects of class p only

for the purpose of exhibiting the behavior σ and not all the behaviors of the system.

For the execution trace σ, we can say that σ is a concrete run in the given system

iff it is a concrete run in the finite state system where each process class p has xp,σ

objects. To show this we consider the following two cases:

1. Np ≤ nump,σ for each process class p ∈ P. In this case xp,σ = Np for all p and

hence the given system and the finite state system are equivalent.

2. Np > nump,σ for some process classes p ∈ P. Then xp,σ = nump,σ for the

process classes having Np > nump,σ, and xp,σ = Np for the remaining process

classes. From our earlier argument that nump,σ gives an upper bound on the

number of p-objects for each class p to exhibit the trace σ, if this finite state

system exhibits σ, it must be exhibited by the concrete execution of the given

system with Np objects for each class p. The reverse direction follows from the

reasoning that no more than nump,σ objects of class p can participate in one or
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more transactions of trace σ, even if the system has more than nump,σ objects

of class p.

Using an illustrative example, we now show how a spurious run is detected for

a given IPC system S and a trace σ, by first deriving a finite state system from

S corresponding to σ. Again, we consider the example discussed in Section 3.6.2

(Figure 3-7), consisting of three process classes- Cruiser, Car and BrakeControl. Also,

consider the trace σ = t1.t2.t3 which can be exhibited in the given system following

our abstract execution semantics, as was demonstrated in Section 3.6.2.

Suppose we now want to check whether or not σ is spurious. From Figure 3-7 we

obtain the roles for transactions in σ– for t1, roles are (Cruiser,P1) and (Car,P2),

for t2, roles are (Car,Q1) and (BrakeControl,Q2), and roles in transaction t3 are

(Cruiser,R1), (Car,R2) and (BrakeControl,R3). We now compute nump,σ for each

process class in the system. First, we consider the Cruiser class. It participates

in transactions t1 and t3 in σ, playing the roles (Cruiser,P1) and (Cruiser,R1) in

these transactions respectively. Only one of these roles, (Cruiser,P1) in transaction

t1, is played from the initial state sA1 of the transition system describing Cruiser

(Figure 3-7). Thus, numCruiser,σ = 1. Similarly we can determine that numCar,σ = 2

and numBrakeControl,σ = 1. As NCruiser = NCar = NBrakeController = 2 in the given

system S, we get xCruiser,σ = 1, xCar,σ = 2 and xBrakeControl,σ = 1. Now to detect

whether or not σ is spurious in the given system S, we only need to check if σ is a
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valid execution trace of the finite state system obtained above. Note that we have

already shown σ to be spurious for the given system S in Section 3.6.2. Following the

similar reasoning, σ can easily be shown spurious for this finite state system as well,

leading to a deadlock after the execution of transactions t1, t2.

We have implemented the above procedure using the Murphi model checker [83].

This model checker has in-built support for symmetry reduction [59] which can be

exploited in the IPC setting. We present the details of the implementation in Ap-

pendix A.2.

3.7 Experiments

We have implemented our abstract execution method by building a simulator in

OCaml [85], a general purpose programming language supporting functional, imper-

ative and object-oriented programming styles.

3.7.1 Modeled Examples

For our initial experiments, we modeled a simple telephone switch drawn from [55].

It consists of a network of switch objects with the network topology showing the

connection between different geographical localities. Switch objects in a locality are

connected to phones in that locality as well as to other switches as dictated by the

network topology. We modeled basic features such as local/remote calling as well

as advanced features like call-waiting. Next we modeled the rail-car system whose
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behavioral requirements have been specified using Statecharts in [49] and using Live

Sequence Charts in [27]. As mentioned in Section 3.2, Rail-Car system is a substantial

sized system with a number of process classes: car, terminal, cruiser (for maintaining

speed of a rail-car), car-handler (a temporary interface between a car and a terminal

while a car is in that terminal), etc.

We have also modeled the requirement specification of two other systems - one

drawn from the rail transportation domain and another taken from air traffic control

(see http://scesm04.upb.de/case-studies.html for more details of these exam-

ples). We now briefly describe these two systems. The automated rail-shuttle system

[94] consists of various shuttles which bid for orders to transport passengers between

various stations on a railway-interconnection network. The successful bidder needs to

complete the order in a given time, for which it gets the payment as specified in the

bid; the shuttle needs to pay the toll for the part of network it travels. If an order is

delayed or not started in time, a pre-specified penalty is incurred by the responsible

shuttle. A part of network may be disabled some times due to repair work, causing

shuttles to take longer routes. A shuttle may need maintenance after traveling a

specified distance, for which it has to pay. Also, in case a shuttle is bankrupt (due to

payment of fines), it is retired. The weather update controller [26] is a an important

component of the Center TRACON Automation System, automation tools developed

by NASA to manage high volume of arrival air traffic at large airports. The case study

involves three classes of objects: weather-aware clients, weather control panel and the
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Example Process Class # Concrete Objects # of partitions
in Test Case
I II III

Telephone Phone 60 9 9 7
Switch Switch 30 9 9 9

Car 48 12 10 11
CarHandler 48 3 8 8
Terminal 6 6 6 6
Platform 6 1 3 3
Mngr.
Exits 6 1 2 2
Mngr.

Rail-Car Entrance 12 2 1 2
Example Exit 12 1 2 2

Cruiser 48 1 3 5
Proximity 48 1 1 2

Sensor
cDestPanel 48 1 1 1
tDestPanel 6 1 1 1

Automated Shuttle 60 6 5 6
Shuttle Agent

Weather Clients 20 3 3 3
Update

Table 3.2: Maximum Number of Behavioral partitions observed during abstract sim-
ulation

controller or communications manager. The latest weather update is presented by the

weather control panel to various connected clients, via the controller. This update

may succeed or fail in different ways; furthermore, clients get connected/disconnected

to the controller by following an elaborate protocol.

3.7.2 Use Cases

We used guided abstract simulation on each of our examples to test out the prominent

use cases. The details of these experiments appear in Table 3.2. For the Telephone
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Switch example with call-waiting feature, we consider three possible test cases. In

the first one there were three calls made, each independent of another, and without

invoking the call-waiting feature. In the second and third cases, we have two ongoing

calls and then a third call is made to one of the busy phones, invoking the call-waiting

feature. These two cases differ in how the calls resume and terminate.

For the Rail-car example we simulate the following test cases– (a) cars moving

from a busy terminal to another busy terminal (i.e. a terminal where all the platforms

are occupied, so an incoming car has to wait), while stopping at every terminal, (b)

cars moving from a busy terminal to less busy terminals while stopping at every

terminal, and (c) cars moving from one terminal to another while not stopping at

certain intermediate terminals. In the rail shuttle-system example, again we report

the results for three test runs corresponding to (a) timely completion of order by

shuttle leading to payment, (b) late completion of order leading to penalty, and (c)

shuttle being unable to carry out order as it gets late in loading the order. Finally,

for the weather update controller, we report the results of simulating three test cases

corresponding to (a) successful update of latest weather information to all clients, (b)

unsuccessful weather update where clients revert to older weather settings, and (c)

unsuccessful update leading to disconnecting of clients.

For each test case, we report the object count for each process class as well as

the maximum number of behavioral partitions observed during simulation. We have

reported the results for only process classes with more than one object. Since we are
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Time Memory
Example Setting (sec) (MB)

C A C/A C A C/A
Telephone 60 phones 2.0 1.5 1.3 87 63 1.4

switch 120 phones 4.1 1.5 2.7 189 64 3.0
Rail-Car 24 cars 3.9 2.1 1.9 173 83 2.1

48 cars 7.0 2.2 3.2 353 84 4.2

Automated 30 cars 0.7 0.4 1.6 33 18 1.8
Shuttle 60 cars 1.2 0.4 2.7 69 18 3.8

Weather 10 clients 0.6 0.5 1.2 21 18 1.2
Update 20 clients 0.8 0.5 1.6 27 18 1.5

C ≡ Concrete Exec., A ≡ Abstract Exec.

Table 3.3: Timing/Memory Overheads of Concrete Execution and Abstract Execution

simulating reactive systems, we had to stop the simulation at some point; for each test

case, we let the simulation run for 100 transactions – long enough to exhibit the test

case’s behavior. From Table 3.2, we can see that the number of behavioral partitions

is substantially less than the number of concrete objects. Furthermore, even if the

number of concrete objects is increased (say instead of 48 cars in the Rail-car example,

we have 96 cars), the number of behavioral partitions in these simulation runs remain

the same.

3.7.3 Timing and Memory Overheads

Since one of our main aims is to achieve a simulation strategy efficient in both time

and memory, a possible concern is whether the management of behavioral partitions

introduces unacceptable timing and memory overheads. We measured timing and

memory usage of several randomly generated simulation runs of length 1000(i.e. con-
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taining 1000 transactions) in our examples and considered the maximum resource

usage for each example. We also compared our results with a concrete simulator

(where each concrete object’s state is maintained separately). For meaningful com-

parison, the concrete simulator is also implemented in OCaml and shares as much

code as possible with our abstract simulator. Simulations were run on a Pentium-IV

3 GHz machine with 1 GB of main memory. The results are shown in Table 3.3. For

each example we show the time and memory usage for both the abstract and concrete

simulation. Also, for a given example, we obtained results for two different settings,

where the second setting was obtained by doubling the number of objects in one or

more of the classes, e.g. in the rail-car example with 24 and 48 cars respectively.

We observe that for a given example and a given number of objects, the running

time and memory usage for the concrete simulator are higher than that for the ab-

stract simulator. Also for the same example but with higher number of objects, in

case of abstract execution, the time/memory remain roughly the same, whereas they

increase for the concrete case (as indicated by the increase in ratio C/A for higher

number of objects in Table 3.3).

Furthermore, in the graphs shown in Figure 3-8, we compare the growth in timing

and memory usage in the railcar example, for both concrete and abstract simulations.

Each successive setting is obtained by increasing the number of cars and its associ-

ated components: “car-handler”, “proximity-sensor”, “cruiser” and “dest-panel” by

24. Clearly our abstract execution allows the designer to try out different settings
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Figure 3-8: Execution Time and Memory Usage for different settings of the RailCar
example.

of a model by varying the number of objects without worrying about time/space

overheads.

3.7.4 Checking for spurious execution runs

Recall that in the presence of associations, our abstract execution semantics is sound

but incomplete. Consequently, we may encounter execution runs which are ”spuri-

ous”, that is, do not appear in any concrete system execution. In Section 3.6.3, we

have presented a decision procedure for checking whether a finite sequence of trans-

actions produced by our abstract simulator is spurious. As mentioned, we used the

Murphi model checker to implement this spuriousness check.

During our experiments, we found that the spuriousness check for all the test

cases of all our examples was completed in less than 0.1 second using Murphi. Also,

when simulating an example system against meaningful use cases, the execution run
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produced by our abstract simulator was typically not spurious. In fact, there was

only one false positive among all the test cases we tried for all the examples. This is

to be expected, since we use our simulator to try out meaningful/prominent use-cases

for a given system specification in the IPC model.

3.7.5 Debugging Experience

In this section, we share some experiences in reactive system debugging gained us-

ing our simulator tool. In particular, we describe our experiences in debugging the

weather-update control system [26]. The weather-update control system consists of

three process classes: the communications manager (call it CM), the weather con-

trol panel (call it WCP) and Clients. Both CM and WCP have only one object,

while the Client class has many objects. In Figure 3-9, we show a snippet of the

transition system for CM. Even for the snippet shown in Figure 3-9, the transition

system shown is a slightly simplified version of our actual modeling. We have given

the transactions names to ease understanding, for example Snd Init Wthr stands for

“send initial weather” and so on.

We now discuss two bugs that we detected via simulation. The first one is an

under-specification in the informal requirements document for the weather-update

controller. In Figure 3-9, the controller CM initially connects to one or more clients

by executing the transactions Connect and Snd Init Wthr. In the Connect transaction

CM disables the Weather Control Panel (WCP). If the client subsequently reports that
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that it did not receive the weather information (i.e. transaction Not Rcv Init Wthr

is executed), CM goes back to Idle state without re-enabling the Weather Control

Panel (WCP). Hence no more weather-updates are possible at this stage. This results

from an important under-specification of the weather-update controller’s informal

requirements document. This error came up in a natural way during our initial

experiments involving random simulation. Simulation runs executing the sequence of

transactions

Connect,Snd Init Wthr,Not Rcv Init Wthr,Upd from WCP

got stuck and aborted as a result of which the simulator complained and provided

the above sequence of transactions to us. From this sequence, we could easily fix

the bug by finding out why Upd from WCP cannot be executed (i.e. the Weather

Control Panel not being enabled). We note that since the above sequence constitutes

a meaningful use-case we would have located the bug during guided simulation, even

if it did not appear during random simulation. In this context it is worthwhile to

mention that for every example, after modeling we ran random simulation followed

by guided simulation of prominent test cases.

We found another bug during guided simulation of the test case where connected

clients get disconnected from the controller CM since they cannot use the latest

weather information. This corresponds to the connected clients executing the Dis-

connect transaction with the CM, and the CM returning from Done2 to Idle by ex-

ecuting Enable WCP (Figure 3-9). For this simulation run, even after all clients are
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Figure 3-9: Snippet of Transition System for Weather-Update Controller

disconnected, the CM executes Upd from WCP (update from Weather Control Panel)

followed by Rdy for PreUpd (ready for pre-update). The simulator then gets stuck

at the PreUpd Wthr (pre-update weather) transaction since there are no connected

clients. From this run, we found a missing corner case in the guard for Upd from WCP

transaction – no weather updates should take place if there are no connected clients.

In this case, it was a bug in our modeling which was detected via simulation.

Currently, our simulator supports the following features to help error detection.

• Random simulation for a fixed number of transactions

• Guided simulation for a use-case (the entire sequence of transactions to be

executed need not be given)
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• Testing whether a given sequence of transactions is an allowed behavior.

In future, we plan to employ error localization techniques (e.g. dynamic slicing) on

problematic simulation runs. Full details of the simulator (along with its source code)

are available from the web-site http://www.comp.nus.edu.sg/ release/simulator

3.8 Discussion

In this chapter, we have studied a modeling formalism accompanied by an execution

technique for dealing with interacting process classes; such systems arise in a number

of application domains such as telecommunications and transportation. Our models

are based on standard notations for capturing behaviors and our abstract execution

strategy allows efficient simulation of realistic designs with large number of objects.

The feasibility of our method has been demonstrated on realistic examples.

The notion of “roles” played by processes in protocols have appeared in other

contexts (e.g. [105]). Object orientation based on the actor-paradigm has been

studied thoroughly in [74]. We see this work approach as an orthogonal one where

the computational rather than the control flow features are encapsulated using classes

and other object-oriented programming notions such as inheritance.

We note that, our model can be easily cast in the setting of Colored Petri nets

[65] with our operational semantics translating into an appropriate token game. We

feel however our formulation is simpler and better structured in terms of a network

of communicating transition systems.
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Chapter 4

Symbolic Message Sequence

Charts (SMSC)

Message Sequence Charts (MSCs) are widely used by requirements engineers in the

early stages of reactive system design. Conventionally, MSCs are used in the system

requirements document to describe scenarios — possible ways in which the objects

constituting a distributed reactive system may communicate among each other as

well as with the environment. MSCs may be composed to yield complete behavioral

descriptions. Such compositions may be captured as a High Level Message Sequence

Chart or HMSC. The complete MSC language appears in a recommendation of the

ITU [62]. The syntax and process theory based operational semantics of the language

have also been outlined in [98].

The benefits of MSCs notwithstanding, it has been observed that while describing
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M1

read(addr)

P M2 M3

read(addr)

read(addr)

reply(data)

BC

request

grant

Figure 4-1: An MSC showing read request from a processor to various memory devices
via a bus. The bus controller (BC) controls access to the bus.

requirements of systems containing many objects, MSC specifications tend to grow

too large for human comprehension [98, 109]. We find this problem to be partic-

ularly acute when the system contains several objects which conform to a common

behavioral protocol when interacting with other objects. Such objects may be con-

sidered as instances of a common process class. In the absence of suitable abstraction

mechanisms, similar interactions involving different objects from the same class have

to be repeated to convey all possible scenarios that may occur, thereby leading to

voluminous MSC specifications.

Let us consider an example to illustrate this point. Consider a master-slave proto-

col interaction, where several master processes are competing to get service from the

slave processes. An arbiter controls access to the slaves. Furthermore, whenever any

master needs service and the arbiter grants access to the slaves, a specific slave will

be allocated depending on the kind of service needed. A concrete realization of such
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an interaction can be observed in bus access protocols. The master processes are the

processors hooked to the bus. The slave processes are memory devices from which

the processors are trying to read or write. The arbiter is the bus controller which

decides, according to some scheduling policy, the processor to be granted bus access.

Usually when a processor needs to access a memory address for reading/writing data,

it broadcasts the appropriate address and control signals over the bus to various mem-

ory devices. Then after decoding the address, one of the devices will respond to the

processor’s read/write request.

Figure 4-1 shows an MSC capturing the above-mentioned interaction between a

processor and memory units. Clearly, if there are n processors hooked to the bus,

we will have n such MSCs — all structurally similar! Furthermore, even within each

MSC, there is lot of structural similarity. In fact, since MSCs capture point-to-point

communication, the broadcast of address by a processor to all memory units is not

captured exactly in Figure 4-1. Instead, the processor sends a read request separately

to each of the memory units. In the MSC shown in Figure 4-1, the read request is for

an address which is from the address space of memory unit M2. Since there are two

other memory devices, we would then need to repeat the same interaction to convey

the cases when the read request is in the address space of M1 or M3.

Clearly, as we increase the number of memory devices and processors in the system,

such an approach will not scale up. Individual MSCs will become large, containing

many lifelines, and similar MSCs representing essentially the same interaction will
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have to be repeated. Moreover, since a lifeline may appear in several MSCs, modifying

the specification (for example by adding or removing memory devices) may be error-

prone and will involve considerable effort. Finally, validation of such specifications

will become inefficient as the number of memory devices and processors is increased.

Technical Contributions To address various shortcomings of the MSCs as dis-

cussed in the preceding, we introduce simple yet powerful extensions to the MSC

language to support efficient specification and validation of systems involving classes

of behaviorally similar objects. Our extensions are based on the meaning of a life-

line in an MSC. The MSC standard (now integrated into UML 2.0) suggests that a

lifeline denotes a concrete object. As the above example indicates, this may lead to

voluminous behavioral descriptions that scale poorly. In our extension, we first relax

the meaning of a lifeline to consider three possibilities (i) a concrete object (ii) any k

objects from a class for a given positive constant k (existential abstraction), or (iii) all

objects from a class (universal abstraction). Moreover, guards may be used to further

restrict the object(s) that may engage in the events depicted on the lifeline. Thus, if

we have a universally abstracted MSC lifeline drawn from process class p with guard

gp, it will be played by all object(s) of class p which satisfy gp. These extensions yield

a concise MSC notation called Symbolic Message Sequence Chart (SMSC) [101].

Further, we note that the inter-class associations appear quite commonly in an

object-oriented system description, and are used to convey structural information re-

garding static/dynamic relationships among various communicating processes. How-
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ever, information regarding associations is not made explicit in MSCs. Similar to

the case of IPC (Chapter 3), while modeling a distributed protocol using scenarios,

a designer may want to explicitly specify establishing/removing of association links,

and moreover, constrain the communicating processes to be linked via specific as-

sociations. We address this issue by introducing constraints in our SMSC modeling

notation for- (i) inserting object pairs in a given association, (ii) checking that only

object pairs related via a given association communicate with each other, / and (ii)

removing existing association links between various object pairs.

In the following, we first present the syntax, concrete semantics, and abstract

semantics of SMSCs without associations. The abstract semantics allows for efficient

symbolic simulation of SMSCs showing interactions among process classes with large

(or even an unbounded) numbers of objects. It also serves as a formal execution se-

mantics which can be used to reason about interactions between an unbounded number

of objects. We then present experimental results, discussing SMSC modeling and ex-

ecution of a real-life controller- the CTAS weather controller [26] from NASA, which

is part of a control system for managing high volume air traffic. Experimental results

obtained from the CTAS controller allow us to better understand the issues in mod-

eling, analyzing and debugging real-life control systems involving structurally similar

interactions among many objects. Finally, we introduce associations in our SMSC

modeling framework and discuss in detail an abstract SMSC execution semantics in

the presence of associations.
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Figure 4-2: A Symbolic MSC

4.1 Syntax

The basic building block of our system model is a Symbolic Message Sequence Chart

or SMSC. Like an MSC, a SMSC depicts one possible exchange of messages between a

set of objects. However, while a lifeline in an MSC corresponds to one concrete object

(henceforth called a concrete lifeline), a lifeline in a SMSC may be either concrete or

symbolic.

4.1.1 Visual Syntax

Graphically, we represent SMSCs as in Figure 4-2. This SMSC depicts processor-

memory interaction, corresponding to the MSC discussed earlier in Figure 4-1. One

important difference between these representations is that the three concrete memory

lifelines M1, M2 and M3 appearing in Figure 4-1, have been merged into a single

symbolic lifeline in Figure 4-2, representing the class of memory devices in the system.
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Visually, this is depicted in a SMSC by enclosing the symbolic lifeline name by a

rectangular box e.g. M in Figure 4-2. During simulation, a symbolic lifeline may

be bound to an arbitrary number of objects. Otherwise, if a lifeline is concrete (i.e.,

process class contains a single object) its name will appear as it is, e.g. the lifeline

corresponding to the bus controller BC in Figure 4-2.

Within a SMSC lifeline representing a class of objects, a selected subset of objects

may engage in events appearing along the lifeline. This selection is performed based

on the following criteria associated with each event — (i) valuation of variables of

the object, (ii) execution history of the object, and (iii) an abstraction mode that

specifies whether all objects (universal mode ∀) or, any k objects (existential mode

∃k) satisfying criteria (i), (ii) may perform the event.

We use the shorthand ∃k to denote the existential abstraction of lifelines. This is

to emphasize that exactly k objects will play such a lifeline. Clearly k ≥ 1. For the

examples in this paper, we have only used ∃1 (i.e. selecting one object) whenever we

used existential abstraction. Henceforth we always assume ∃1 since the extension of

our semantics to the general case is trivial. We mention these extensions via footnotes

when we present our semantics. Moreover, in Section 4.8, we mention other variations

of existential abstraction which can be incorporated with minimal modifications to

our modeling language and its semantics.

In Figure 4-2, initially, the concrete processor lifeline P sends ‘read(addr)’ message

to all the memory devices in the system. This is indicated by the universal abstraction
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with guard true for the receive event of message ‘read(addr)’ by symbolic lifeline M .

Subsequently, the memory device in whose address space the read address lies, replies

to processor with the required data. Thus, only one memory device replies. This

is shown by the existential abstraction ∃1 with guard inRange(addr) = true for the

send event of message ‘reply(data)’ by symbolic lifeline M . Note that this single

scenario succinctly represents the possibility of any device M1, M2 or M3 responding

to a processor (refer to Figure 4-1 to see the interactions between concrete objects),

thereby avoiding the need for separate scenarios for each case. Thus SMSCs go far

beyond notational shorthands for message broadcast between scenario lifelines [72].

Furthermore, interaction of the memory devices with different processors can also be

represented in the same SMSC simply by making the processor lifeline symbolic as

well (i.e., the lifeline marked P in Figure 4-2 also becomes symbolic and denotes any

processor object). While using SMSCs, it is often the case that every event which

appears on a lifeline has the same guard and abstraction mode. In such cases, for ease

of specification, the object selection criteria may be written only once, immediately

above the lifeline name, with the intended interpretation that the criteria applies to

every event shown on the lifeline.

Finally, since variable valuation plays an important role in selecting objects in a

symbolic lifeline, SMSCs allow changes in variable valuation to be specified as event

postconditions on the lifeline. For example, in the SMSC shown in Figure 4-2, when

P receives the requested data from one of the memory devices, it sets its variable
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v = data. This is shown as v′ = data in Figure 4-2 since for any variable x we show

its updated value by its primed version x′.

4.1.2 Abstract Syntax

The complete MSC language includes several types of events: message sends and

receives, local actions, lost and found messages, instance creation and termination

and timer events. For SMSCs in this paper, we will only consider message exchange

(sends and receives) between lifelines and local actions on individual lifelines. A

message m exchanged between two lifelines (representing two concrete objects) p and

q in a conventional MSC gives rise to two events: an out(p, q, m) event denoting

the message send event performed by p, and an in(p, q, m) event that denotes the

corresponding receive performed by q. A local action l performed by p is represented

by the event action(p, l). We use AMSC to denote the MSC alphabet consisting of

message sends, receives and local actions, for a given set of MSCs. Ap denotes the

set of events in AMSC that may be performed by objects in class p.

The notions of lifeline abstraction and event guards in SMSCs necessitate changes

in the event syntax as defined above. To explain these, we introduce some auxiliary

notation. Let P denote the set of all process classes1 with p, q ranging over P.

Let GV
p represent the set of all possible propositional formulae built from boolean

predicates regarding the values of the variables owned by p. For example, if p has an

1A process class represents the set of objects following the same behavioral protocol.
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integer variable v, then the element gV
p ∈ GV

p , where gV
p =(v > 5), represents those

objects of p which have a value greater than 5 for v. Similarly, let GH
p represent the

set of all possible regular expression based execution histories of objects belonging

to p. For example, if gH
p =(h = A⋆

p.(out(p, q, m) | out(p, q, n)).A⋆
p), where h denotes

a variable representing the execution history of an object, then gH
p ∈ GH

p , and it

denotes those objects of p whose execution history includes the sending of message

m or n to object(s) q. Here Ap represents the set of events that process class p can

participate in.

Next, we define an object selector of process class p to be an expression of the

form [mode]p.[gp]. The square brackets denote optional parts, where mode is required

only if process class p contains multiple objects (i.e. corresponds to a symbolic

lifeline); otherwise, p may denote the single concrete object in the class p. Further,

mode represents the abstraction mode and may be either ∃1 for existential (∃k in

the general case) or ∀ for universal interpretations. Also, gp represents a guard

which may either be true or consist of a variable valuation constraint gV
p ∈ GV

p

and/or an execution history constraint gH
p ∈ GH

p . For example, os1=∀p.(v1 = 0∧h =

A⋆
p.out(p, q, m).A⋆

p) is an object selector for class p that may be used to specify those

objects of p whose v1 variable is set to 0, and whose execution history (denoted by

h) involves sending of message m to q. In case gp = true, it indicates that there is no

restriction on the variable valuation or the execution history of object(s) to be chosen

to play the symbolic lifeline. We use OSp to denote the set of all object selectors for
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p ∈ P, and OSP denotes the set of all object selectors.

A postcondition updating the state of objects executing a given event is specified

as a sequence of comma separated assignment statements. For each process class

p ∈ P, let Vp be its associated set of variables with function vinit
p giving the initial

assignment of values to the objects of p. For convenience we assume that all the

objects of class p assign the same initial value to any variable u ∈ Vp.
2 Then, an

assignment statement appearing in a postcondition corresponding to an event from

class p is of the form x′ = aexpr, where (i) x ∈ Vp, and (ii) aexpr represents an

arithmetic expression involving variables from Vp, integer constants, and the following

arithmetic operators ‘+,−, /,×’. Let Postp represent the set of postconditions for

class p ∈ P. We define PostP =
⋃

p∈P Postp ∪ {ǫ}, where ǫ represents an empty

postcondition.

We now define the sets of message send events Aout, receive events Ain, and local

action events Aact, that are needed for defining the set ASMSC of atomic actions in

SMSCs.

Definition 8. Let P denote the set of all process classes with p, q ∈ P. Let M and

L denote the set of all message names and local action names, respectively. Then the

2If the initial states of objects in a class are different, we can simply execute additional actions
from our initial state.
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sets Aout, Ain, Aact and ASMSC are defined as follows:

Aout = {out(osi, osj,m, pc) | osi, osj ∈ OSP ,m ∈M, pc ∈ PostP}

Ain = {in(osi, osj ,m, pc) | osi, osj ∈ OSP ,m ∈M, pc ∈ PostP}

Aact = {action(os, l, pc) | os ∈ OSP , l ∈ L, pc ∈ PostP}

ASMSC = Aout ∪Ain ∪Aact

We use ASMSC
p to denote the set of all SMSC events that may be performed by objects

of class p.

The main difference between MSC events and SMSC events is that in the latter,

we use object selectors instead of lifeline names, and include postcondition as part of

an event. However, for defining the history based guard of an event, we can simply

use the normal MSC events, e.g. h = A⋆
p.out(p, q, m).A⋆

p may be used inside a SMSC

event to select object(s) of class p which have previously sent m to some object(s) of

class q. Also, for simplicity, we have not included message parameters in the above

definition, but our approach may be easily extended to richer message structures. We

now formally define a SMSC.

Definition 9 (SMSC). A SMSC sm can be viewed as a partially ordered set sm =

(L, EL,≤), where L is the set of lifelines in sm, EL =
⋃

l∈L El where El ⊆ ASMSC is

the set of events lifeline l takes part in sm, and ≤ is the partial ordering relation over

the occurrences of events in EL, such that ≤= (≤L ∪ ≤sm)⋆ is the transitive closure
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of ≤L and ≤sm, where

(a) ≤L=
⋃

l∈L ≤l, ≤l is the linear ordering of events in El, which are ordered

top-down along the lifeline l, and

(b) ≤sm is an ordering on message send/receive events in EL. If es =

out(osi, osj, m, pc1) and the corresponding receive event is er = in(osi, osj, m, pc2),

we have es ≤sm er.

In our system model, SMSCs may be composed together to yield High-level SMSCs

(or HSMSCs) in the same way that MSCs may be arranged in High-level MSCs

(HMSCs). A HSMSC is essentially a directed graph whose each node is either a SMSC

or (hierarchically) a HSMSC. Formally, a HSMSC is a tuple H = (N, B, vI , vT , l, E)

where (i) N is a finite set of nodes (ii) B is a finite set of boxes (or supernodes)

representing (already defined) HSMSCs (iii) vI ∈ N ∪B is the initial node or box (iv)

vT ∈ N∪B is the terminal node or box (v) l is a labeling function that maps each node

in N to a SMSC and each box in B to another HSMSC (vi) E ⊆ (N ∪B)× (N ∪B)

is the set of edges that describe control flow.

We now define the system specification S.

Definition 10 (System). Given process classes P, the system specification S =

〈H,
⋃

p∈P{Vp, v
init
p }〉 where H = (N, B, vI , vT , l, E) is a HSMSC describing the inter-

actions among objects from process classes in P.
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Expression Template In order to make specifications more readable, we identify

a commonly occurring regular expression template that we have encountered in our

modeling. Consider a process class p ∈ P and e1, e2 ∈ Ap. For regular expressions of

the form h1 = A⋆
p.e1 we write it as h1 = last(e1).

4.2 CTAS Case Study

We now discuss a well known example to illustrate system modeling using SMSCs.

The weather update controller [26] is an important component of the Center TRA-

CON Automation System (CTAS) automation tools developed by NASA to manage

high volume of arrival air traffic at large airports. It consists of a central communi-

cations manager (CM), a weather control panel (WCP), and several weather-aware

clients. The weather-aware clients consist of components such as aircraft trajectory

synthesizer, route analyzer etc. which require latest weather information for their

functioning. Since the number of clients in the system can be large, the power of

lifeline abstraction in SMSCs becomes useful.

Complete behavioral description of the CTAS example as a HSMSC (sans hierar-

chy) is shown in Figure 4-3. Various nodes of this HSMSC are labeled with the SMSC

names. In the CTAS requirements document [1], the requirements are given from the

viewpoint of the CM. All the clients are initially disconnected from the controller

(CM) and the execution sequence -2.6.2, 2.8.3, 2.8.5, 2.8.8- taken from the require-

ments document, forms the scenario in which a client successfully gets connected to
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Connect

SndInitWthr

RcvInitWthr

Update

UsedWthr

RcvWthr

UsednitWthr

NotUsednitWthr

NotRcvInitWthr

NotRcvWthr

NotPostRevrtWthr

NotUsedWthr

No2

No3

No1

PostRevrtWthr

SndNewWthr

Figure 4-3: HSMSC for the CTAS case study. The Connect, UsedWthr and No-
tUsedWthr SMSCs are shown in Figure 4-4, 4-5.

CM. This behavior corresponds to the execution of the left loop (marked using bold

lines) in Figure 4-3, such that the four SMSCs along this marked path correspond

to the above four requirements. For example, SMSC Connect (shown in Figure 4-4)

represents the requirement 2.6.2 shown below.

Requirement 2.6.2: The CM should perform the following actions when a weather-

aware client attempts to establish a socket connection to CM– (a) set the weather-aware

client’s weather status to ‘pre-initializing’3, (b) set the weather-cycle status to ‘pre-

initializing’, (c) disable the weather control panel...

The Client lifeline in Connect appears as a symbolic lifeline with its name appear-

ing in a rectangular box. The two events along the Client lifeline: sending message

3We use integers to represent different status values. For example, in SMSC Connect ‘status=1’
represents the ‘pre-initializing’ status.
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connect to CM and receiving message setStatus 1 from CM, both have existential

abstraction. This is because only one client can get connected at a time to CM.

Also, they both have propositional guard status = 0, showing client status which

gives its current interaction stage with CM. However, the history based guards for

the two events are different. For sending message connect to CM, the regular expres-

sion guard for Client is h = (ǫ | last(e1)), where e1 = in(CM, Client, close) as shown

below SMSC Connect in Figure 4-4. This guard imposes the constraint that either

a fresh Client object (having no execution history, and is therefore disconnected),

or a Client object which has last been disconnected from CM (due to the receipt of

close message) can send the ‘connect’ request to the CM. For the subsequent event of

receiving setStatus 1 message from the CM, the history based guard is h = last(e2),

where e2 = out(Client, CM, connect), which allows only the object(s) which have

recently sent ‘connect’ message to CM to execute this event. Note that in specifying

the regular expression guards, we have used the template expression last(e) described

earlier in Section 4.1.2.

Further, all the connected clients can be updated with the latest weather informa-

tion by WCP via CM. This behavior corresponds to the execution of the right loop

in Figure 4-3 (marked using bold lines) 4. In case any client either fails to use the

original data (in case it has failed to receive the new data), or update itself (having

received the new weather information), all the connected clients get disconnected.

4We do not give the corresponding requirements from the requirements document due to lack of
space.
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Client CM WCP

connect

<status’=1>
setStatus_1

disable
< status’=1,v’=0 >

∃1 Client. status=0 ∧ h = ( ε | last(e1) ) CM.status=0

e1 = in(CM,Client,close)

e2 = out(Client,CM,connect)

∃1 Client. status=0 ∧ h = last(e2)

< enbld’=0 >

WCP.enbld=1

Figure 4-4: Connect SMSC from CTAS.

These latter scenarios correspond to other execution paths in the CTAS HSMSC.

Client CM WCP

done
enable

CM_GROUND_WIND_

SETTING

PGUI_ALTIMETER_

SETTING

yes
CM.status=6

<status’=0>

Client.status=6

< status’=0 >

< enbld’=1 >

WCP.enbld=0

SMSC  UsedWthr

Client CM WCP

enable

yes

no

close

CM.status=6

< status’=0 >
Client.status=6 v=0

< status’=0, v’=0 >

1 Client.status=6 v=1

Client.status=6
< enbld’=1 >

WCP.enbld=0

SMSC NotUsedWthr

Figure 4-5: CTAS SMSCs showing successful and unsuccessful completion of weather
update.

The two SMSCs shown in Figure 4-5 show the successful and unsuccessful com-

pletion respectively of the weather update cycle for the connected clients. Again in

both these SMSCs, the Client lifeline is symbolic. Further in SMSC UsedWthr, since

all events along the Client lifeline have same guarding expression ∀Client.status = 6,
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it appears only once at the top of the lifeline, which is equivalent to specifying it

for each event. The execution sequence in UsedWthr takes place when all connected

clients have responded yes to using the new weather update information, and hence

the universal abstraction for the Client lifeline.

The scenario shown in NotUsedWthr SMSC in Figure 4-5 takes place when one

of the clients is unable to use the new weather information, and hence responds with

message no to CM. This causes CM to send the message close to all the connected

clients, thereby all of them getting disconnected from CM. Note that in NotUsedWthr

SMSC, the first event (sending of message no) of Client has existential abstraction,

whereas the subsequent events have universal abstraction. Thus, the Client lifeline

in the NotUsedWthr SMSC shows the use of mixed abstraction modes within a SMSC

lifeline.

4.3 Process Theory

The semantics of the ITU MSC language is defined using a process theory [98]. This

theory has a signature Σ that consists of a set of constants and a set of operators.

Constants consist of (i) the empty process ǫ (ii) deadlock δ, and (iii) atomic actions

from a set Act. Operators comprise the unary operators iteration ⋆ and unbounded

repetition∞, and the binary operators delayed choice ∓, delayed parallel composition

‖, weak sequential composition ◦, as well as the generalized versions (‖S and ◦S) of

‖ and ◦, which account for ordering of actions coming from different lifelines e.g.
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message sends and receives in MSCs. The set of closed Σ terms is denoted by CT (Σ)

(see [98] for details).

4.3.1 Configurations and Concrete Semantics

To seamlessly integrate our proposed extensions with the ITU framework, we adopt

the above theory, but constrain the execution of process terms in this theory by

associating a configuration element C. As we will see later, we need a notion of

configuration to determine at any given point during execution, which object(s) from

a given process class can perform a particular action.

In a concrete execution semantics, a configuration captures the “local states”

of all objects of all process classes. The question is, in a scenario-based modeling

language like SMSC, how do we capture the local state of an object. Clearly, we

need (a) the object’s control flow (which SMSC it is currently executing and which

events in the current SMSC have been executed), (b) the variable valuations of the

object and (c) a bounded representation of the (unbounded) history of events which

allows us to test the satisfaction of history-based regular expression guards in the

specification. Here we note that the control flow of objects will be captured by terms

in our process theory. The variable valuations will be explicitly captured. Finally,

the history information for an object o can be captured by representing the regular

expression guards as minimal DFAs and then maintaining the states in these DFAs in

which object o lies. Maintaining such information for each individual object for each



104 CHAPTER 4. SYMBOLIC MESSAGE SEQUENCE CHARTS (SMSC)

Table 4.1: Operational Semantics for Constants

Const1.
ǫ ↓

Const2.
C.supports(a) == true, C′ ∈ C.migrates to(a)

C : a
a
−→ C′ : ǫ

Table 4.2: Operational Semantics for Delayed Choice ∓

DC1.
x ↓

x∓ y ↓
DC2.

y ↓

x∓ y ↓
DC3.

C : x
a
−→ C′ : x′, C : y 6

a
−→

C : x∓ y
a
−→ C′ : x′

DC4.
C : y

a
−→ C′ : y′, C : x 6

a
−→

C : x∓ y
a
−→ C′ : y′

DC5.
C : x

a
−→ C′ : x′, C : y

a
−→ C′ : y′

C : x∓ y
a
−→ C′ : x′ ∓ y′

process class will give a notion of concrete configurations, and the transition between

these concrete configurations (using the semantic rules presented below) provides a

straightforward concrete execution semantics. However, we will later develop abstract

configurations to enable (i) efficient simulation of systems with finite number of ob-

jects, and (ii) reasoning about systems with infinitely many objects. For this reason,

at this stage, we do not impose any concrete structure on configuration C.

We develop the process theory independent of whether configuration C (which

appears in the rules of the process theory) is concrete or abstract. We only require

C to support two methods (i) a supports method, supports(a), which is true iff C

permits an action a and (ii) a migration method, migrates to(a), which returns the

set of possible configurations that C migrates to through the execution of a. We use

C to denote the set of all configurations.
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4.3.2 Semantic Rules and Bisimulation

The MSC process theory has an operational semantics defined by means of deduction

rules. A deduction rule is of the form
H

Concl
, where H is a set of premises and

Concl is the conclusion. For ITU MSCs, the semantics for constants consists of two

rules (i)
ǫ ↓

, which implies that the empty process may terminate successfully and

immediately; there are no other rules for ǫ as it is unable to perform any action

(ii)
a

a
−→ ǫ

, which expresses that a process represented by the atomic action a can

perform a and thereby evolve into the empty process ǫ. The rules for constants

in our theory are presented in Table 4.1. While the empty process may terminate

immediately, the execution of an atomic action a has to be supported by the associated

configuration C, and this leads to a new configuration C ′.

Beyond this simple extension, the rest of our technical development is along the

lines of the formal MSC theory. For example, our deduction rules for the delayed

choice operator ∓ are shown in Table 4.2. Thus x∓y can terminate if either x (DC1)

or y (DC2) is able to terminate. Except for the addition of the configuration element

for the execution semantics rules, the rules are similar in spirit to the MSC rules for

∓. If C : x can execute a and C : y cannot (DC3), then on execution of a, the choice

is resolved in favor of x. DC4 shows the complementary case when C : y executes

a, and C : x cannot. Finally, if both C : x and C : y are able to execute a, then

the execution of a does not resolve the choice, but rather, delays it (DC5). Semantic

rules for the other operators may be defined similarly (see [98]).
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To account for configurations, we also extend the bisimilarity based term equality

definition in the MSC standard [98]. This definition uses a permission relation
a
→֒ on

terms; intuitively, x
a
→֒ x′ states that an action a is allowed to precede the execution of

actions of x even if this action is composed after x by means of sequential composition.

The reason for allowing this bypass is that the notion of sequential composition is

weak and allows instances to proceed asynchronously. The execution of a, however,

disables all alternatives in x that do not allow the bypass, and as a result, x evolves

to term x′. The deduction rules for →֒ are presented in [98]. We do not reproduce

the details here, but use →֒ for completeness of our modified term equality definition

below.

Definition 11 (Bisimulation). Let C be the set of all possible configurations. A binary

relation BC ⊆ CT (Σ)×CT (Σ) is called a bisimulation relation iff for all a ∈ Act and

s, t ∈ CT (Σ) with sBCt, the following conditions hold

∀s′∈CT (Σ),C,C′∈C(C : s
a
−→ C ′ : s′ ⇒ ∃t′∈CT (Σ)(C : t

a
−→ C ′ : t′ ∧ s′BCt′)) (4.1)

∀t′∈CT (Σ),C,C′∈C(C : t
a
−→ C ′ : t′ ⇒ ∃s′∈CT (Σ)(C : s

a
−→ C ′ : s′ ∧ s′BCt′))(4.2)

∀s′∈CT (Σ)(s
a
→֒ s′ ⇒ ∃t′∈CT (Σ)(t

a
→֒ t′ ∧ s′BCt′)) (4.3)

∀t′∈CT (Σ)(t
a
→֒ t′ ⇒ ∃s′∈CT (Σ)(s

a
→֒ s′ ∧ s′BCt′)) (4.4)

s ↓ ⇐⇒ t ↓ (4.5)

Two closed terms p, q ∈ CT (Σ) are bisimilar in C, denoted by p ↔C q, iff there
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exists a bisimulation relation BC such that pBCq. Note that even though we carry

state information in the form of configuration C in above definition, our notion of

bisimilarity is stateless, which is the most robust notion of equality for state-bearing

processes [80].

Theorem 4. ↔C has the following properties.

(i) ↔C is an equivalence relation.

(ii) ↔C is a congruence with respect to the function symbols from the signature Σ.

Proof. (i) ↔C is an equivalence relation.

To prove this we need to show that following three properties hold–

(a) ↔C is reflexive,

(b) ↔C is symmetric, and

(c) ↔C is transitive.

↔C is reflexive It is easy to see that for any bisimulation BC as defined in Defini-

tion 11 (page page 106), ∀s∈CT (Σ) sBCs and hence, ↔C is reflexive.

↔C is symmetric Let s, t ∈ CT (Σ) and s↔C t. Thus, there exists a bisimulation

BC (see Defn. 11) such that sBCt. By exchanging the order of conditions (4.1) with

(4.2) and (4.3) with (4.4), we can conclude that tBCs. Hence, t ↔C s and ↔C is

symmetric.
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↔C is transitive Let s, t, u ∈ CT (Σ) such that s ↔C t, t ↔C u. Thus, there exist

bisimulation relations BC
1 and BC

2 such that sBC
1 t and tBC

2 u. To show that s ↔C u,

we show that BC
3 = BC

1 ◦BC
2 is also a bisimulation relation (as per Definition 11).

Consider (p, q) ∈ BC
3 . Then, there exists r ∈ CT (Σ) such that pBC

1 r and rBC
2 q.

Using condition (4.1) from Definition 11 we get–

∀p′∈CT (Σ),C,C′∈C(C : p
a
−→ C ′ : p′ ⇒ ∃r′∈CT (Σ)(C : r

a
−→ C ′ : r′ ∧ p′BC

1 r′))

∀r′∈CT (Σ),C,C′∈C(C : r
a
−→ C ′ : r′ ⇒ ∃q′∈CT (Σ)(C : q

a
−→ C ′ : q′ ∧ r′BC

2 q′))

From the above two conditions we get the following–

∀p′∈CT (Σ),C,C′∈C(C : p
a
−→ C ′ : p′ ⇒ ∃q′∈CT (Σ)(C : q

a
−→ C ′ : q′ ∧ p′BC

3 q′))

Note that p′BC
3 q′ since, p′BC

1 r′, r′BC
2 q′ and BC

3 = BC
1 ◦ BC

2 . Hence, condition (4.1)

of Definition 11 holds for BC
3 . Similarly, we can show the remaining conditions of

Definition 11 to hold for the relation BC
3 . Therefore, BC

3 is also a bisimulation.

(ii) ↔C is a congruence with respect to the function symbols from the

signature Σ.

In the following we show that ↔C is a congruence with respect to the delayed choice

operator ∓ (see Table 4.2) over signature Σ. That is, for all p, q, r ∈ CT (Σ) p ↔C q
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implies p∓ r ↔C q ∓ r. We define relation

BC = {(p∓ r, q ∓ r)|p↔C q where p, q, r ∈ CT (Σ)} (4.6)

and show that BC is a bisimulation. To show that condition (4.1) of Definition 11

holds, we consider the following three cases corresponding to rules –DC3, DC4 and

DC5– of the delayed choice operator ∓ (see Table 4.2). Consider (p∓ r, q ∓ r) ∈ BC .

Case I Let C : p ∓ r
a
−→ C ′ : p′ as per rule DC3, Table 4.2 for the delayed choice

operator, which implies C : p
a
−→ C ′ : p′ and C : r 6

a
−→. Now, since p ↔C q,

we know that there exists q′ such that C : q
a
−→ C ′ : q′ and p′ ↔C q′ (see

Definition 11). Further, from the definition of BC above (see Eq. (4.6)), we get

(p′ ∓ r, q′ ∓ r) ∈ BC. Hence,

∀p′∈CT (Σ),C,C′∈C(C : p∓ r
a
−→ C ′ : p′ ⇒

∃q′∈CT (Σ)(C : q ∓ r
a
−→ C ′ : q′ ∧ (p′ ∓ r, q′ ∓ r) ∈ BC)).

Case II Let C : p ∓ r
a
−→ C ′ : r′ as per rule DC4, Table 4.2 for the delayed choice

operator, which implies C : r
a
−→ C ′ : r′ and C : p 6

a
−→. Now, since p↔C q, we

know that C : q 6
a
−→. Hence, we get

∀r′∈CT (Σ),C,C′∈C(C : p∓ r
a
−→ C ′ : r′ ⇒

(C : q ∓ r
a
−→ C ′ : r′ ∧ (p∓ r′, q ∓ r′) ∈ BC)).
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Case III Let C : p∓ r
a
−→ C ′ : p′ ∓ r′ as per rule DC5, Table 4.2 for the delayed choice

operator, which implies C : p
a
−→ C ′ : p′ and C : r

a
−→ C ′ : r′. Now, since

p ↔C q, we know that there exists q′ such that C : q
a
−→ C ′ : q′ and p′ ↔C q′

(see Definition 11). Further, from the definition of BC above (see Eq. (4.6)), we

get (p′ ∓ r′, q′ ∓ r′) ∈ BC. Hence,

∀p′,r′∈CT (Σ),C,C′∈C(C : p∓ r
a
−→ C ′ : p′ ∓ r′ ⇒

∃q′∈CT (Σ)(C : q ∓ r
a
−→ C ′ : q′ ∓ r′ ∧ (p′ ∓ r′, q′ ∓ r′) ∈ BC)).

From the three cases above, we can easily see that condition (4.1) of Definition 11

holds for the relation BC. Similarly, the remaining conditions of Definition 11 can be

easily shown to hold for the relation BC . Hence BC is a bisimulation.

Congruence of ↔C with respect to other function symbols from the signature Σ

can be shown in a similar manner.

The result also follows automatically from [80] by noting that our term deduction

system is in the process-tyft format (with negative premises) presented there and

moreover, is stratifiable [98].

4.4 Abstract Execution Semantics

We develop an operational semantics for SMSCs using the process theory outlined so

far. First, the set of atomic actions Act in the process theory is defined as ASMSC,

the set of SMSC events as defined in Section 4.1. In Section 4.4.1 we explain the
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translation of SMSC specifications to terms in our process theory. Then, Section 4.4.2

presents our notion of configuration and an abstract execution semantics based on

these configurations.

4.4.1 Translating SMSCs to process terms

In general, a SMSC may consist of an arbitrary (but finite) number of events. Se-

mantics is provided for a SMSC body by sequentially composing the semantics of

the first event definition with the semantics of the remaining part of the SMSC

body. The generalized weak sequential composition operator is used to impose

necessary ordering requirements across lifelines. For example, let us consider the

UsedWthr SMSC in Figure 4-5. The first event in the SMSC is the sending of

message yes to CM by all clients with status=6; this is represented by the event

e1=out(∀Client.(status = 6), CM.(status = 6), yes, ǫ). The corresponding receive

by CM is represented by

e2 = in(∀Client.(status = 6), CM.(status = 6), yes, 〈status′ = 0〉)

The constraint that e2 has to follow e1 is represented by the ordering requirement

e1 7→ e2, as in the MSC language. The composition of these two events may be given

by e1◦
{e1 7→e2} e2, using the generalized weak sequential operator ◦S, where S is a set of

ordering requirements that constrain execution. Subsequently, CM sends an enable
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message to WCP , represented by the event

e3 = out(CM, WCP.(enbld = 0), enable, ǫ)

Composing this after e1 and e2, we get e1 ◦
{e1 7→e2} e2 ◦ e3. Since e2 and e3 are both

performed by CM , the sequential operator ensures their correct ordering, and addi-

tional ordering requirements are not needed. Similarly, the subsequent events in the

UsedWthr SMSC may be composed to obtain the complete event-based behavioral

description.

To map HSMSC graphs into event-based descriptions, we follow an approach that

is similar to the way a regular expression is obtained from an automaton. Successive

applications of a rewrite rule [98] are used to convert the graph into a normal form,

ultimately yielding an expression consisting of SMSCs composed via operators like ∓,

◦ etc. Replacing each SMSC by its corresponding event-based description will then

give us the desired event-based representation of the HSMSC graph.

4.4.2 Representing/Updating Configurations

As mentioned in Section 4.3, the execution of terms in our theory is constrained

by a configuration. When we developed our process theory in Section 4.3, we did

not assume a specific definition of configurations, but required our configurations to

provide these two functions supports and migrates to. In particular, these functions

capture the transition between system configurations thereby forming the core of
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our execution semantics. We develop a notion of abstract configurations (Def.

14, page 115) and elaborate an abstract execution semantics over these abstract

configurations.

Since SMSC events carry guards, we maintain a configuration to keep track of the

state of objects during execution, and verify that for each event there are sufficient

objects which satisfy its guard. However, maintaining the state of each individual ob-

ject during simulation can be computationally expensive, and lead to state explosion.

To avoid this, the objects of a class are grouped together into behavioral partitions.

We note that the ability of a p object to perform a SMSC event depends on (i) its

execution history and (ii) valuation of its local variables. A behavioral partition for

class p represents one possible state of a p object in terms of its execution history and

variable valuation.

Definition 12 (Behavioral Partition). Let Vp be a set of variables belonging to class

p. Let Rp denote a set of regular expressions over events Ap (the set of events that

may be performed by objects of class p), with |Rp| = k. For each Ri ∈ Rp, let Di be

the minimal DFA recognizing Ri. Then a behavioral partition behp(Vp, Rp) of class p

defined over Vp and Rp is a tuple 〈q1, q2, · · · , qk, v〉, where

q1 ∈ Q1, . . . , qk ∈ Qk, v ∈ V al(Vp).

Qi is the set of states of automaton Di and V al(Vp) is the set of all possible valuations
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of variables Vp. We use BEHp(Vp, Rp) to denote the set of all behavioral partitions

of class p defined over Vp and Rp. We use BEH to represent the set of all behavioral

partitions.

Let us consider any object O of class p with execution history σ. We say that

the object O belongs to behavioral partition 〈q1, q2, · · · , qk, v〉 ∈ BEHp(Vp, Rp) iff (i)

qj is the state reached in the DFA Dj when it runs over σ for each j ∈ {1, 2, · · · , k}

and (ii) the valuation of O’s local variables in Vp is given by v. The total number of

behavioral partitions of a process class is bounded, provided the value domains of all

variables in Vp are also bounded. Also, this number is independent of the number of

objects in a class.

Next we introduce the notion of a signature; for each process class p, a signature

contains a set of variables belonging to p and a set of regular expressions over Ap.

Definition 13 (Signature). For any class p, let Vp be a set of variables belonging to p

and Rp be a set of regular expressions over Ap. Then the set of tuples T={(Vp, Rp)}p∈P

is called a signature.

Given a signature T={(Vp, Rp)}p∈P , the set of all variables in T is then given

by Tv =
⋃

p∈P Vp. Similarly, the set of all regular expressions in T is given by

Tr=
⋃

p∈P Rp. For any two signatures T = {(Vp, Rp)}p∈P and T ′ = {(V ′
p , R

′
p)}p∈P ,

we define their union as a signature T ∪ T ′ = {(Vp ∪ V ′
p , Rp ∪ R′

p)}p∈P . Also, we say

T ⊇ T ′ if for all p, Vp ⊇ V ′
p and Rp ⊇ R′

p. Intuitively, this means that T is defined

over a larger state space (variables and execution history) than T ′. We now define



4.4. ABSTRACT EXECUTION SEMANTICS 115

the notion of an abstract configuration.

Definition 14 (Abstract Configuration). Let each process class p contain Np objects,

and T={(Vp, Rp)}p∈P be a signature. An abstract configuration over T is defined

as cfg = {countp}p∈P where countp : BEHp(Vp, Rp) → N ∪ {ω} is a mapping s.t.

Σb∈BEHp(Vp,Rp)countp(b) = Np. The set of all configurations over signature T is CT .

Thus, a configuration records the count of objects in each behavioral partition of

each process class. The idea is to dynamically group together objects during execution

based on their variable valuation and execution history. This is similar to abstraction

schemes developed for grouping processes in parameterized systems [91]. We note

that our notion of configurations and execution semantics permits unboundedly many

objects in a system specification. Thus, in the above definition we could have Np = ω,

with ω representing an unbounded number of objects in class p. Further, for class p

with Np = ω, we define a cutoff number cutp ∈ N such that cutp + n = ω, n ≥ 1. By

default, we assume cutp = 1. To apply our execution semantics we define the following

two arithmetic operations– ⊕,⊖ : N∪{ω}×N∪{ω} → N∪{ω}, representing addition

and subtraction involving ω. For all n1, n2 ∈ N ∪ {ω} representing object counts of
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class p:

n1 ⊕ n2 =















































ω, if n1 = ω or n2 = ω

ω, if Np = ω and n1 + n2 > cutp

Np, if Np ∈ N and n1 + n2 > Np

n1 + n2, otherwise

(4.7)

Next, for all n1, n2 ∈ N∪{ω} representing object counts of class p, such that n1 ≥ n2:

n1 ⊖ n2 =































ω, if n1 = ω, n2 6= ω

0, if n1 = n2 = ω

n1 − n2, otherwise

(4.8)

Indeed, in Section 4.5 we present experiments detailing validation of SMSC sys-

tems with unbounded number of objects.

We now explain when a SMSC configuration supports an event a and the new

configuration it migrates to on execution of a. These functions appear in rule Const2,

Table 4.1, and are required for defining the transition between system configurations.

We begin by defining a mapping active : ASMSC → OSP that indicates which object
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selector in an event descriptor “causes” the event to occur:

active(e) =











osi if e = out(osi, osj ,m, pc), action(osi, ℓ, pc)

osj if e = in(osi, osj,m, pc)

For any object selector os = [m]p.[gp], we use the following function.

mode(os) =











m ∈ {∃k,∀} if p is symbolic

concrete otherwise,

We also use a function simple : ASMSC → AMSC to convert a SMSC event to an MSC

event; simple(e) replaces each object selector occurring in e by the corresponding

process class and also removes e’s postcondion. For example, simple(out(∀p.v1 =

0, q, m, pc)) = out(p, q, m).

supports function: Intuitively, a configuration supports an event defined on pro-

cess class p if there is at least one p object5 which satisfies the variable valuation and

execution history criteria on the event guard. Since we do not maintain the states

of individual objects, this is determined by verifying there is at least one behavioral

partition of class p which satisfies the event guard and has a non-zero count of ob-

jects. We call such a behavioral partition a witness partition, which we formally define

below.

Definition 15. Let e ∈ ASMSC
p (i.e., active process class in e is p) be a SMSC event

and cfg ∈ CT be a configuration defined on signature T={(Vq, Rq)}q∈P. Let ϑ and

5To be precise, we need at least one object for events with modes ∃1 or ∀. If the mode is ∃k with
k > 1, we need at least k objects.
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Λ be the propositional and history based guards in event e. We say that behavioral

partition behp = 〈q1, q2, · · · , qk, v〉 is a witness partition for event e at configuration

cfg if

(a) ∃Ri ∈ Rp s.t. L(Ri) = L(Λ) (the set of strings accepted by the two expressions

are same), Qi is the set of states in the minimal DFA accepting Λ and qi ∈ Qi is an

accepting state of the minimal DFA.

(b) v ∈ V al(Vp) satisfies the propositional guard ϑ.

(c) countp(behp) ≥ 1, that is, there is at least one object in the partition behp at

the configuration cfg.

We use Witness(e, cfg) to represent the set of all behavioral partitions that can

act as a witness partition for e at cfg. We are now in a position to define the

supports function. Let e be a SMSC event and cfg ∈ CT be a configuration. Then,

cfg.supports(e)=true iff there exists a behavioral partition beh, such that beh is a

witness partition for e at cfg.6

migrates to function: We next describe the function cfg.migrates to(e),

which returns the set of possible destination configurations that result when e is exe-

cuted at configuration cfg. We first introduce the notion of a destination partition —

the partition to which an object moves from its “witness partition” after executing

an event. We denote the destination partition of beh w.r.t. to e as dest(beh, e).

6This ensures that there is one witness partition with at least one object satisfying the guards
in cfg. If event e’s mode is existential abstraction ∃k with k > 1, we need to consider all possible
witness partitions in cfg and choose a total of k objects from them.
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Definition 16. Let beh = 〈q1, · · · , qk, v〉 ∈ Witness(e, cfg) for a configuration cfg

and event e ∈ ASMSC. Let simple(e)7 = e′. We then define dest(beh, e) (the desti-

nation partition of beh w.r.t to e) as a behavioral partition beh′ = 〈q′1, · · · , q
′
k, v

′〉,

where

(a) for all 1 ≤ i ≤ k, qi
e′

−→ q′i is a transition in DFA Di.

(b) v′ is the effect of e’s postcondition on v.

Let configuration cfg ∈ CT , e ∈ ASMSC
p , active(e) = os and Witness(e, cfg)=

B. Then cfg.migrates to function is defined as follows. In the following count′p(b)

denotes the count of objects in behavioral partition b of process class p after executing

e at configuration cfg.

Case 1: mode(os) = ∀. Then cfg.migrates to(e) returns a unique new configuration

that is computed as follows. Let DP = {d | ∃b ∈ B. d = dest(b, e)} the set of

all destination partitions. Then ∀d ∈ DP , we first set count′p(d) = countp(d) ⊕

Σb s.t. dest(b,e)=d countp(b). Then, for all b ∈ B we deduct countp(b) from count′p(b) to

reflect the migration of these objects from b to dest(b, e).

Case 2: mode(os) = ∃k. For k = 1, 8 cfg.migrates to(e) returns a set of possible

new configurations as follows. Let us choose any b ∈ B, and let dest(b, e) = d. Then

we set count′p(d) = countp(d) ⊕ 1 and count′p(b) = countp(b) ⊖ 1 to obtain a new

7Recall that simple(e) replaces the object selectors in event e by the corresponding process class

names and removes e’s postcondition.
8The case for ∃k with k > 1 is handled in a similar fashion— except that there may be several

witness partitions, and more than one object may be chosen from each witness partition provided
the total number of objects is k.
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configuration (where counts associated with all other partitions remain unchanged).

Repeating this for each b ∈ B gives us the set of all possible new configurations.

Case 3: mode(os) = concrete. Since we are dealing with only one object, we can

employ Case 2 for ∃1.

Thus if mode(e) = ∀, all objects belonging to all witness partitions for e at cfg,

migrate to corresponding new destination partitions. On the other hand, if mode(e) =

∃, then any one object belonging to any one witness partition for e at cfg can migrate

to a new destination partition.

4.4.3 Example

We revisit the CTAS example described in Section 4.2 and show the working of our

abstract execution semantics.

In particular, we illustrate the execution of a message send event e =

out(∃1 Client.gV
1 ∧ gH

1 , CM, connect, ǫ) in SMSC Connect shown in Figure 4-4, at

a given system configuration, where gV
1 : status = 0 and gH

1 : h1 = (ǫ | last(e1)).

Assume that only the history based guards -h1 = (ǫ | last(e1)) and h2 = last(e2)
9-

shown in SMSC Connect appear in the system description for ‘Client’ process class.

Process class ‘CM’ has got no history based guards. Further, ‘Client’ class has vari-

ables status and v, and ‘CM’ has a single variable status. It can be easily seen that

the DFAs corresponding to regular expressions h1 and h2 contain only two states. Let

9e1 and e2 appear at the bottom of MSC Connect in Figure 4-4. Expression last(e) was described
at the end of Section 4.1.2 under ‘Expression Template’.
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these be {q0, q1} and {q′0, q
′
1} respectively, where q0 and q′1 are accepting states. q0 is

the state of a Client object ready to connect to the CM. This may either be a fresh

Client object (with no execution history), or a Client object that has last received

a close message from CM. q′1 is the state reached by a client object that has sent a

connect message to CM in the immediate past.

Assuming 20 client objects in a given system specification s.t. 15 of them are

ready to connect to CM (i.e. are in state q0), we consider the following configuration

for Client class–

cfgClient(b1) = 15, cfgClient(b2) = 5, where b1 = 〈q0, q
′
0, 0, 0〉 b2 = 〈q1, q

′
0, 0, 0〉.

The first two elements in a behavioral partition descriptor above correspond to the

respective states in the two DFAs, while the next two numeric elements represent

the values (0 in each case) of variables status and v respectively. By executing

event e above, a disconnected client sends a connection request to CM. For event e,

active(e) = ∃1 Client.gV
1 ∧gH

1 , i.e., e can be executed by any ‘Client’ object satisfying

the guard gV
1 ∧gH

1 . Following Definition 15, we can determine Witness(e, cfg) = {b1}.

Thus, there is only one behavioral partition b1 that can serve as witness partition for

e. Any client object from b1 can now be chosen to play event e. After the execution of

e, the selected client object will move to states q1 and q′1 in the two DFAs, and the des-

tination partition (following Definition 16) is given by dest(b1, e) = 〈q1, q
′
1, 0, 0〉. The

new configuration cfg′ for Client class (following ‘Case 2’ of migrates to function

described earlier) is as follows–
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cfg′
Client(b1) = 14, cfg′

Client(b2) = 5, cfg′
Client(b3) = 1, where b1 = 〈q0, q

′
0, 0, 0〉,

b2 = 〈q1, q
′
0, 0, 0〉, b3 = 〈q1, q

′
1, 0, 0〉.

Note that one ‘Client’ object from behavioral partition b1 has migrated to a new

partition b3.

4.4.4 Properties of SMSC Semantics

A pertinent question that arises from the above discussion is that given a SMSC spec-

ification S, what is the signature T that we should use to define the configuration

space CT in which S may be simulated? Let us assume that for any class p, Vp(S) rep-

resents the set of all variables that appear on event variable guards or post-conditions

on lifeline p in S. Similarly, let Rp(S) denote the set of regular expressions used

on event history guards of lifeline p in S. We define signature T (S), the signature

derived from S, as T (S) = {(Vp(S), Rp(S))}p∈P . Then T (S) represents a necessary

and sufficient signature to simulate S.

Given such a mechanism for obtaining a signature from SMSC specifications, it

is reasonable to ask the following question. Given two SMSC specifications S1 and

S2, under what signatures T - or, configuration spaces CT - should the bisimulation

equivalence of S1 and S2 be tested? The following theorems try to address this

question.

Theorem 5. Let S1 and S2 be two SMSC systems and let T (S1) 6= T (S2). Then

∀T ⊇ T (S1) ∪ T (S2) S1 6↔CT S2.
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Proof. Note that, for a SMSC specification S having signature T (S) =

{(Vp(S), Rp(S))}p∈P , the variables in Vp(S) and regular-expressions in Rp(S) are part

of various events appearing in S. Now, considering S1 and S2, clearly there exists an

event in S1 not equal to any event in S2 (since, T (S1) 6= T (S2)), or vice-versa. Hence,

from the definition of bisimulation (see Defn. 11) it is easy to see that we cannot

guarantee that S1 6↔CT S2 under a signature T ⊇ T (S1) ∪ T (S2).

Theorem 6. Let S1 and S2 be two SMSC systems such that T (S1) = T (S2) = T and

S1 ↔CT S2. Then for any signature T ′, S1 ↔CT ′ S2.

Proof. Since, S1 ↔CT S2, there exists a bisimulation relation BCT

such that S1B
CT

S2

(see Section 4.3.2). Then, for an action a ∈ Act, from condition (4.1) of Definition 11

we get:

∀S′

1
∈CT (Σ),C,C′∈CT (C : S1

a
−→ C′ : S′

1 ⇒ ∃S′

2
∈CT (Σ)(C : S2

a
−→ C′ : S′

2 ∧ S′
1B

C
T

S′
2)) (4.9)

Next, for any signature T ′ we define a binary relation BCT
′

= BCT

. Let action

a be executable from S1 at some configuration C1 ∈ C
T ′

, leading to configuration

C ′
1 ∈ C

T ′

. Then, a can also be executed from S2 at configuration C1 and leading to

configuration C ′
1. This is because, the event-guards and postcondition being part of

an event itself, following condition (4.9) above if an event can be executed from S1 at

any given configuration C, it can also be executed from S2 at configuration C, with

both executions leading to the same destination configuration. Note that, the set of

actions executable from S1 at a configuration C1 ∈ C
T ′

will be a subset of actions
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executable from S1 at a configuration C ∈ CT . Furthermore, we have S ′
1B

CT
′

S ′
2 (since

BCT
′

= BCT

). Hence, we get

∀S′
1
∈CT (Σ),C,C′∈CT ′ (C : S1

a
−→ C ′ : S ′

1 ⇒ ∃S′

2
∈CT (Σ)(C : S2

a
−→ C ′ : S ′

2 ∧ S ′
1B

CT
′

S ′
2)).

Thus, condition (4.1) of Definition 11 holds for relation BCT
′

. The remaining condi-

tions of Definition 11 can be shown to hold in a similar manner. Hence, BCT
′

is a

bisimulation and S1 ↔CT ′ S2.

Thus, if S1 and S2 have the same signatures under which they are bisimilar, they

are bisimilar under any signature.

4.5 Experiments

The operational semantics for SMSCs has been implemented as Prolog rules in the

XSB logic programming system [4]. XSB supports tabled resolution for query evalua-

tion. This speeds up execution by avoiding redundant computation. The operational

semantics of SMSCs lend themselves naturally to Prolog rules leading to a straightfor-

ward implementation. On the other hand, the underlying well-engineered fixed point

engine in XSB ensures that the evaluation of the rules is done efficiently as well.

Both concrete and abstract execution semantics of SMSCs are implemented in XSB

and they share as much code as possible. We now present the experimental results

obtained for the ‘CTAS weather controller’ example which was described earlier in
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Figure 4-6: (a) Abstract vs Concrete Simulation Times for Different Settings of CTAS
(b) Peak Memory Requirement for Abstract and Concrete Simulation, (c) Abstract vs
Concrete State Space Exploration Times, (d) Peak Memory Requirement for Abstract
and Concrete State Space Exploration.

Section 4.2. All experiments were conducted on a Pentium-IV 3GHz machine with

1GB of main memory.

Modeling effort First we briefly discuss the modeling effort required for the CTAS

example from given requirements document. The requirements [1] are given as a set of

scenarios from the perspective of the controller (or CM - communications manager),
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with precondition(s) given for the occurrence of each scenario. We were able to

directly translate each scenario into corresponding SMSC. The high level control

flow (HSMSC) was easily obtained by following the preconditions given for various

scenarios. Some characteristic features of the modeled example are shown below.

Note that CTAS HSMSC is flat, i.e. each of its node corresponds to a SMSC.

# HSMSC nodes = # SMSCs 17

Total # Events 103

# Events with non-trivial reg. expr. guards 3

# Events with non-trivial propositional guards 65

Simulation The graphs in Figure 4-6(a) and (b) compare the simulation time/mem-

ory for abstract vs concrete semantics for the CTAS example. The use case used

in simulation first connects all the Client objects to the controller (CM) and then

performs the weather updates on all the connected clients (refer to Section 4.2).

Different runs correspond to different settings of the CTAS model with number of

client objects being varied (shown on the x-axis of the graph). As we can easily

observe, for abstract simulation the time/memory remains almost constant (≈ 1.9

sec/40 MB) even as the number of objects is increased from 20 to 100, while it

increases at least linearly (3.5→ 48.7 sec/100→ 900 MB) for concrete simulation. We

recall that in abstract simulation, various objects are grouped together into behavioral

partitions, unlike in concrete simulation where the states of all objects have to be

maintained and manipulated individually.
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State Space Exploration We explored all possible traces up to a certain length,

where each step in a trace is the execution of an SMSC event. The results appear in

Figure 4-6(c) & (d), where the bound on the length of traces explored is set to 20.

We find that abstract exploration time/memory is constant (≈ 4.8 sec/41 MB) across

different settings of CTAS, and increases linearly (19 → 139 sec/ 81 → 590 MB) for

the concrete exploration. Moreover, we found that the exploration time/memory

required for the CTAS model with an unbounded number of client objects is same

as that for the CTAS model with a bounded number of client objects for abstract

execution semantics (4.8 sec/41 MB). Thus, using our abstract execution semantics,

the system designer can try out various system settings (having sufficiently large

or even unbounded number of objects) without worrying about computation costs.

Furthermore, the designer can perform reachability analysis for a system setting with

unbounded number of objects to look for falsification of invariant properties in all

possible system settings with finitely many objects.

4.6 Associations

In many distributed systems, various processes often come together to execute a short

interaction scenario, establishing temporary links amongst them lasting over the pe-

riod of communication. For example, in a telephone network consisting of thousands

of phones and switches, communication links are established between the caller and

the called phones via the intermediate switches for the duration of the call. Thus,
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Student InstructorCourse
10 5 2 1

isTaughtByenrolled

Figure 4-7: Class diagram- Course Management System.

while modeling such distributed protocols, a designer may want to explicitly specify

establishing/removing of such association links, and moreover, constrain the commu-

nicating processes to be linked via such associations. In the object-oriented setting,

such a link between the processes can be viewed as an instance of an association

between the classes to which these processes belong, as depicted in a corresponding

class diagram. An association can be static– representing a static (or permanent)

relationship between the processes of the associated classes, or it can be dynamic–

representing dynamically changing relationship amongst the processes.

In order to allow a designer to specify constraints over associations, we extend our

language of SMSCs to include the following three types of constructs– i) an insert

constraint for establishing association links between various processes, ii) a check

constraint to restrict the pairs of communicating processes to be linked via a given

association, and iii) a delete constraint for removing the existing association links

between processes. Note that, the insert and delete constraints are only required in

the case of dynamic associations. In the case of static associations we can only apply

the check constraint. In the following, we first describe a case study which is used later

while discussing the associations. Then, we discuss various association constraints in

detail and present an extended SMSC execution semantics incorporating associations.
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Figure 4-8: HSMSC specification- Course Management System.

4.6.1 Case Study– A Course Management System

In this case study we model the key aspects of a university course-management system

(CMS) at a high level. It consists of three process classes– i) Instructor, ii) Course and

iii) Student. The class diagram for this example is shown in Figure 4-7. A student

can enroll in a maximum of 5 courses, while a course can be taken by a maximum

of 10 students. Similarly, an instructor can teach up to 2 courses at a time and a

course can be taught only by a single instructor. The HSMSC behavioral description

for this case study appears in Figure 4-8.

We assume a fixed pool of courses, from which an instructor can select a course

to teach (if it has not already been taken up). This selection occurs in the HSMSC

node labeled Initialize (see Fig. 4-8). Once a course has been initialized, students can

register for this course on a first-come first-serve basis. A successful registration occurs

at the node labeled Register. Students can register for a course until its maximum
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Instructor Course

initialize

updtInfo

done

∃1 Instructor.teaching<2 ∃1 Course.active==false

< active’=true >

insert(isTaughtBy)
< teaching’=
teaching+1>

ok

Figure 4-9: SMSC Initialize

capacity (i.e. 10) is reached. Once registration is over, some students might choose

to drop the course as well (node labeled Drop, Fig. 4-8), and a course gets canceled

(node labeled Cancel) if less than 3 students remain registered. Otherwise, the course

is assumed to complete successfully as indicated by the node labeled Complete.

The SMSCs corresponding to the HSMSC nodes labeled Initialize and Drop are

shown in Figures 4-9 and 4-10. To reduce the visual clutter, we have not shown all

event guards.

4.6.2 Association constraints

For our purpose, we consider only binary associations relating pairs of process classes.

In a SMSC system model, an association constraint is specified below a message ar-

row, representing a constraint over process pairs executing the corresponding message

send/receive events.

Association Insert An association insert constraint is specified as insert(asc),

where asc is the name of an association, and appears as a post-condition written
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drop  1 Course.count > 0 1 Student

check(enrolled)

ok

check(enrolled)

delete(enrolled)

 1 Student

< count’= count - 1>

Figure 4-10: SMSC Drop

below a message m in a SMSC. It results in the insertion of object pairs, executing

the send and receive events corresponding to message m, in the binary relation asc.

For example, in SMSC Initialize (shown in Figure 4-9) from the course-management

system (CMS) described earlier, message arrow done is labeled with a post-condition

insert(isTaughtBy). Thus, during execution, an object pair (Oc, Oi) will be inserted

in the binary relation isTaughtBy, such that Oc is the Course object sending the done

message and Oi is the corresponding Instructor object receiving the done message.

Association Check For an association asc, the check constraint is specified as

a pre-condition check(asc), and appears below a message m in a SMSC. This con-

straint requires that the object pairs selected for executing the send and receive events

corresponding to message m, are in the asc relation. For example, in SMSC Drop

appearing in the CMS example (see Figure 4-10), message arrow drop is labeled with

the pre-condition check(enrolled). This pre-condition requires that the object pair

(Os, Oc) is in relation enrolled, where Os and Oc are Student and Course objects,

respectively executing send and receive events corresponding to the message drop.
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Association Delete Similar to an association insert, a delete constraint over an

association asc is specified as a post-condition delete(asc) annotating a message, say

m, in a SMSC. Further, this constraint implicitly requires a check(asc) constraint to

be imposed as a pre-condition for message m. As the name suggests, the effect of a

delete(asc) constraint labeling a message m is to remove the object pairs executing

the send and receive events corresponding to message m from the binary relation

asc. For example, in SMSC Drop shown in Figure 4-10, message ok is annotated with

the delete constraint- delete(enrolled). Thus, the object pair chosen for executing

the send and receive events for message ok, is required to be in the enrolled relation.

Moreover, this object pair will be removed from the enrolled relation after executing

the above events.

For a message m annotated with an association constraint, we require that the

corresponding send and receive events occur synchronously, i.e. the receive event

occurs immediately after the send event. Let es = out(osi, osj, m, pc1) and er =

in(osi, osj, m, pc2) be the send and receive events corresponding to message m anno-

tated with an association constraint ctr. Then, synchronous execution of es and er

is captured as a single synchronous event given by synch(osi, osj, m, pc1, pc2, ctr). Let

Asynch denote the set of all such synchronous events. We extend the set of SMSC

events ASMSC (see Defn. 8) to also include the events in Asynch. Further, while

translating a SMSC to the corresponding process term (as described earlier in Sec-

tion 4.4.1), a synchronous event representing message m is added to the process term
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using the weak sequential operator ◦, such that, all the events preceding send and

receive events corresponding to message m in the SMSC event ordering (see Defn. 9)

have already been added.

In the case of concrete execution semantics, the handling of associations is straight-

forward and follows the approach described in the preceding. However, recall that

in case of our abstract execution semantics, we do not represent various objects as

independent entities, but rather group them together in to behavioral partitions (ref.

Section 4.4.2). Thus, maintaining associations in the presence of abstract execution

semantics poses a challenge. We present one possible approach towards this end in

the following Section.

4.7 Abstract execution semantics with Associations

To integrate associations with our abstract execution semantics, where various objects

are grouped in to behavioral partitions, we maintain association relations between

behavioral partition pairs instead of object pairs. Intuitively, if in a concrete execution

two objects, say O and O′, are present in a binary relation asc after executing a

sequence of events σ. Then, in the abstract execution, following the same event

execution sequence σ, the behavioral partition pair (B, B′) will be present in the asc

relation, such that B (B′) is the behavioral partition containing the object O (O′) in

the abstract execution of σ.

Let A denote the set of all associations and asc ∈ A be an association between
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Figure 4-11: Example class diagram.

process classes p and q. Further, let cp and cq be the count annotations labeling

association asc at class p’s and q’s end respectively (see class-diagram in Fig. 4-11).

We now define the function maxasc : N ∪ {ω} × N ∪ {ω} → N ∪ {ω} such that for

n1, n2 ∈ N ∪ {ω}:

maxasc(n1, n2) = MIN{n1 × cq, n2 × cp, n1 × n2}, (4.10)

where we assume ω × = ω.

The value returned by maxasc(n1, n2) is the maximum number of asc links that

can be established between n1 p-objects and n2 q-objects. The first term n1×cq in the

MIN expression in Eq.(4.10) gives the maximum number of asc links that n1 objects

of class p can establish with (sufficient number of) objects of class q. Second term

of the MIN expression gives the similar quantity for n2 objects of class q. Finally,

the third term gives maximum number of links that can be established between n1

and n2 objects. Thus, a minimum of these three quantities determines the maximum

possible asc links that can be established in the given setting. We now define the

notion of an extended abstract configuration.

Definition 17 (Extended Abstract Configuration). Let each process class p con-



4.7. ABSTRACT EXECUTION SEMANTICS WITH ASSOCIATIONS 135

tain Np objects, T={(Vp, Rp)}p∈P be a signature, and A be the set of all associ-

ations. An extended abstract configuration over T and A is defined as cfgx =

({countp}p∈P , {acountasc}asc∈A) where

1. countp : BEHp(Vp, Rp)→ N ∪ {ω} is a mapping s.t. Σb∈BEHp(Vp,Rp)countp(b) =

Np, and

2. acountasc : BEHp(Vp, Rp) × BEHq(Vq, Rq) → N ∪ {ω}, where asc ∈ A is

an association between process classes p and q and ∀(b, b′) ∈ BEHp(Vp, Rp) ×

BEHq(Vq, Rq). acountasc(b, b
′) ≤ maxasc(countp(b), countq(b

′)).

The set of all extended abstract configurations over signature T and associations

A is denoted as CT
A.

Thus, besides maintaining the object count in each behavioral partition of various

process classes, an extended abstract configuration also keeps track of count of object

pairs in various behavioral partition pairs for each association.

We now discuss operational semantics of SMSCs in the presence of associations.

Various semantic rules describing execution of SMSCs in the absence of associations

(ref. Section 4.3, Tables 4.1 and 4.2), remain unchanged in the presence of associ-

ations, except for rule Const2, Table 4.1, which is modified as follows– (i) the con-

figurations C, C ′, now represent extended abstract configurations from CT
A instead of

simple object configurations from CT , and (ii) the supports and migrates to methods

are replaced by their extended versions– supportsext and migrates toext respectively to
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take associations into account. Hence, supportsext and migrates toext methods form

the core of our association handling in the abstract semantics. In the following, we

discuss these methods for different association constraints.

4.7.1 Association Insert

An insert constraint insert(asc) is taken into account when executing a synchronous

event of the form e = synch(osi, osj, m, pc1, pc2, insert(asc)). Let es =

out(osi, osj, m, pc1) and er = in(osi, osj, m, pc2) denote the send and receive events

constituting the synchronous event e, and C ∈ CT
A be a given extended abstract con-

figuration. Then the method call C.supportsext(e) returns true if there exist witness

partitions (see Definition 15, page 117) for both es and er at C. Note that, in case

a common behavioral partition, say beh ∈ BEHp, is chosen as a witness partition

for both es and er, we require that countp(beh) > 1. This is to ensure that distinct

objects execute es and er. If this is possible, then C.migrates toext(e) returns a set of

possible destination configurations considering the effect of postconditions pc1, pc2,

and the insert(asc) constraint at C.

Let C ≡ (cfg = {countp}p∈P , acfg = {acountasc}asc∈A), WPs = Witness(es, cfg)

and WPr = Witness(er, cfg). Here WPs and WPr represent the set of possible

witness partitions for the events es and er at C. To simplify our discussion we assume

that the send and receive events (i.e. es and er) are executed by two different process

classes, say p and q s.t. p 6= q, and hence, WPs ∩WPr = ∅.
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We now discuss the effect of migrates toext method, which depends on the abstrac-

tion modes of the send and receive events (i.e. mode(osi) and mode(osj)), giving rise

to the following three cases–

1. (mode(osi), mode(osj)) = (∃, ∃), i.e. both send and receive events have existen-

tial abstraction modes.

2. (mode(osi), mode(osj)) = (∃, ∀) or (mode(osi), mode(osj)) = (∀, ∃), i.e. one of

the send or receive events has existential abstraction mode, and the other has

universal abstraction mode.

3. (mode(osi), mode(osj)) = (∀, ∀), i.e. both send and receive events have universal

abstraction modes.

In the following, we discuss Case-2 from above in detail, the other two cases are

handled in a similar manner.

One of the event (send or receive) has existential mode and the other one has universal

mode- (∃, ∀). Let ex and ea represent the events having existential and universal

execution modes respectively. Without any loss of generality, we assume that ex is

executed by an object of process class p, while ea is executed by the objects of class q.

Further, let WPx/WPa be the set of possible witness partitions corresponding to the

event ex/ea. Recall that, when there are no association constraints, we can choose all

objects from all the witness partitions in WPa to execute ea, and for executing ex,

we can select any partition from WPx and an object from that partition. However,
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due to the insert constraint, the number of objects that can execute ea is bounded.

In this case we need to take in to consideration the count annotations for association

asc between classes p and q (e.g. see class diagram in Figure 4-11). This is used to

determine the maximum number of objects of the class q that can be linked with a

single object of the class p via asc (which is cq in this case), and hence the maximum

number of q-objects that be chosen to execute ea. For illustration, consider the class

diagram for the CMS example shown in Figure 4-7. If p (q) corresponds to Student

(Course) class, then a maximum of 10 Student objects can be chosen to execute ea.

In case
∑

b∈WPa
countp(b) ≤ cq then we can select all objects from all partitions in

WPa to execute ea. Otherwise, we may have different choices for– a) selecting a subset

of witness partitions from WPa for executing ea, and b) choosing the number of objects

to execute ea from each selected witness partition. Since, these non-deterministic

choices may lead to a large number of alternatives, we over-approximate and consider

all possible choices in a single execution step. For each partition b ∈WPa, we compute

a minimum min(b) and a maximum max(b) number of objects that can be chosen to

execute ea. Clearly, for any partition b ∈WPa,

max(b) = MIN{countp(b), cq} (4.11)

The minimum number of objects is determined as follows– min(b) = MAX{0, cq −

∑

b′∈WPa\{b}
countp(b

′)}. Essentially, min(b) is 0 if it is possible to select cq objects

from other partitions in WPa. Otherwise, there are not enough number objects in



4.7. ABSTRACT EXECUTION SEMANTICS WITH ASSOCIATIONS 139

all partitions in WPa (excluding b), and a minimum of cq −
∑

b′∈WPa\{b}
countp(b

′)

objects are required from b. Note that, when
∑

b∈WPa
countp(b) ≤ cq, for all b ∈ WPa

we set min(b) = max(b) = countp(b). Let DPa = {d| b ∈ WPa ∧ d = dest(b, ea)}

represent the set of destination partitions corresponding to WPa. For a destination

partition d ∈ DPa, we define B(d) = {b| b ∈ WPa ∧ dest(b, ea) = d}. In case of

existential event ex, we do not over approximate and choose any partition bx ∈WPx

as a witness. Let, dx = dest(bx, ex) be the corresponding destination partition.

The count of various behavioral partitions is updated via migrates toext method

as follows. For each witness partition b ∈ WPa we decrement its count by min(b),

i.e. count′p(b) = countp(b) ⊖min(b). In case of a destination partition d ∈ DPa, we

determine the number of objects that can move in to d as

incr(d) = MIN{cq,
∑

b∈B(d)

max(b)}.

Then we compute count′p(d) = countp(d) ⊕ incr(d). The counts of bx and dx are

updated as follows– count′q(bx) = countq(bx) ⊖ 1 and count′q(dx) = countq(dx) ⊕ 1.

The object counts of all other partitions remain unchanged.

Next, we discuss the update of asc relation content which also occurs via mi-

grates toext method in our operational semantics. Consider the illustration shown

in Figure 4-12, depicting various behavioral partitions involved in the execution of

ex/ea and possible asc links existing among them. These links are classified into the

following four categories, based on the pair of behavioral partitions involved in a link–
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wpx wp1

“asc” linksex ea

wpk

…

dpx

pk

dp1

dpm

…

Figure 4-12: The (∃, ∀) case for associations.

(i) 〈wpx, wp〉, wp ∈ WPa (linked via plain lines),

(ii) 〈dpx, dp〉, dp ∈ DPa (linked via curved lines),

(iii) 〈wpx, dp〉, dp ∈ DPa (linked via dashed lines), and

(iv) 〈dpx, wp〉, wp ∈WPa (linked via double lines).

We now describe the update of association counts for tuples in (ii) above, i.e.

〈dpx, dp〉, dp ∈ DPa (linked via curved lines). Association count updates for various

other tuples follow the similar approach.

acount′asc(dpx,dp),dp ∈ DPa: From the association links shown in Figure 4-12,

we observe that there three potential sources from which asc links can be added

to the tuple 〈dpx, dp〉. These are– (a) 〈wpx, dp〉, (b) 〈wpx, wp〉, wp ∈ B(dp), and

(c) 〈dpx, wp〉, wp ∈ B(dp). We now determine the contribution from each of these

sources–
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From (a). x1 = MIN{cq − 1, acountasc(wpx, dp)}. Assuming that the object

executing ex is inserted in asc link with at least one object executing ea, it can

not be linked to more than cq − 1 objects in dp.

From (b). x2 = MIN{cq,
∑

wp∈B(dp) max(wp)}, where max(wp) is computed

as defined earlier in Eq. (4.11). The summation term in the MIN expression

here computes the maximum number of objects that can migrate in to dp, and

it can not be greater than cq objects. Note that, this quantity is same as the

value x computed in Eq. (4.13).

From (c). Let n =
∑

wp∈B(dp) max(wp), i.e. the maximum number of objects

that can possibly migrate into dp. If n ≤ cq, then all these objects are chosen

to move to dp, and their contribution to asc count from tuples 〈dpx, wp〉, wp ∈

B(dp) to tuple 〈dpx, dp〉 is determined as–

x3 =
∑

b∈B(dp)

MIN{acountasc(dpx, b), max(b) × (cp − 1)}.

We know that for each b ∈ B(dp), all objects in b executing ea will be inserted

in association asc with the object executing ex. Hence, each such object in b

can not be linked to more than cp − 1 objects in dpx.

In case n > cq, we compute the maximum possible asc link contribution from

any cq objects out of these n objects. For this, we first compute for each

b ∈ B(dp)– s(b) = MIN{acountasc(dpx, b), max(b) × (cp − 1)}/max(b). The
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term s(b) determines per object asc link contribution for a given partition b. Let

Bs = 〈b1, . . . , b|B(dp)|〉, such that 1 ≤ u < v ≤ |B(dp)| =⇒ s(bu) ≥ s(bv). Next,

we determine the index value i, such that
∑i

r=1 max(br) < cq <
∑i+1

r=1 max(br),

and compute–

x3 =
i

∑

r=1

(max(br)× s(br)) +

MIN{(cq −
i

∑

r=1

max(br))× (cp − 1), acountasc(dpx, bi+1)}

Finally, the asc count for the tuple 〈dpx, dp〉 is updated as–

acount′asc(dpx, dp) = MIN{maxasc(count′p(dpx), count′q(dp)), x}, where

x = acountasc(dpx, dp) + x1 + x2 + x3.

A set of configurations will be returned by the migrates toext method due to choice

in the selection of a witness partition for existential event ex.

4.7.2 Association Check/Delete

We discuss the association check and delete constraints together since, a delete con-

straint delete(asc) specified as a message m’s post-condition in a SMSC specification,

implies a check constraint check(asc) as message m’s pre-condition.
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The check(asc) constraint requires that the object pairs selected to synchronously

execute the send and receive events corresponding to message m, are related via asc.

On the other hand, delete(asc) constraint removes the object pairs related via asc

from the asc relation. A check constraint is taken into account when executing a

synchronous event e with check or delete as the association constraint. Again, let

es and er be send and receive events corresponding to the synchronous event e, and

C ∈ CT
A be the extended abstract configuration when executing e. Then the method

call C.supportsext checks whether there exist two (disjoint) sets of objects that can

execute es and er at C, such that objects across the two sets are related via asc. If

this is possible, then witness behavioral partitions for both these events are selected

and corresponding destination partitions are updated by the migrates toext method.

In addition, migrates toext updates the asc relation contents of various witness and

destination partitions participating in the execution of e.

Similar to the insert constraint, handling of check and delete constraints depends

on the abstraction modes of the send and receive events. Let mode(osi) and mode(osj)

be the abstraction modes for the send (es) and receive (er) events respectively. Then,

the following three cases arise.

1. (mode(osi), mode(osj)) = (∃, ∃), i.e. both send and receive events have existen-

tial abstraction modes.

2. (mode(osi), mode(osj)) = (∃, ∀) or (mode(osi), mode(osj)) = (∀, ∃), i.e. one of

the send or receive events has existential abstraction mode, and the other has
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universal abstraction mode.

3. (mode(osi), mode(osj)) = (∀, ∀), i.e. both send and receive events have universal

abstraction modes.

We now describe handling of check and delete constraints for the case with one

of the send or receive events having existential mode, and the other universal. Other

cases are handled similarly.

Let ex and ea denote the events having existential and universal abstraction modes

respectively. Without any loss of generality, we assume that ex is executed by an

object of process class p, while ea is executed by the object(s) of class q. Further,

let WPx/WPa be the set of possible witness partitions corresponding to the event

ex/ea, such that for each partition wp in WPx (WPa) there is a partition wp′ in

WPa (WPx) with asc links between wp and wp′, i.e. acountasc(wp, wp′) > 0. Then,

we can choose any behavioral partition from WPx, say wpx, to act as the witness

partition for ex; and the subset of partitions WP x
a ⊆ WPa for ea, such that ∀wp ∈

WP x
a .(acountasc(wpx, wp) > 0).

Let dpx be the resulting destination partition corresponding to wpx after exe-

cuting ex. Then migrates toext will decrement the object count of wpx by 1 (i.e.

count′p(wpx) = countp(wpx) ⊖ 1) and increment the object count of dpx by 1 (i.e.

count′p(dpx) = countp(dpx) ⊕ 1). Now, in the case of ea, in order to satisfy the

check(asc) constraint we can only select objects in WP x
a which are linked via the

asc association to the object executing ex. However, due to over-approximation in
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maintaining the association links– (a) the existence of linked object pairs in two be-

havioral partitions b and b′ can not be guaranteed, even if acountasc(b, b
′) > 0, and

(b) we loose the precise structure of association links between objects. Thus, for each

partition wp ∈ WP x
a we determine a minimum min(wp) and a maximum max(wp)

number of objects that can potentially execute ea. From condition (a) above we get

min(wp) = 0, i.e. there might be no object in wp linked with the object executing

ex. Further, we compute

max(wp) = MIN{cq, countq(wp), acountasc(wpx, wp)}. (4.12)

Above, first term in the MIN expression is cq, which is the maximum number of

q-objects, that an object of class p executing ex can be linked with. However, from

wp we cannot choose a number of objects greater than its count, i.e. countq(wp), or

greater than the number of asc links between wpx (partition from which object to

execute ex is chosen) and wp. Thus, max(wp) is computed as the minimum of these

three quantities.

We compute the new count of each partition wp ∈WP x
a as count′q(wp) = countq(wp)⊖

min(wp), which is same as countq(wp). Let DP x
a be the set of all destination parti-

tions corresponding to the partitions in WP x
a with respect to the execution of ea. Con-

sider a behavioral partition dp ∈ DP x
a . Let B(dp) = {wp|wp ∈WP x

a ∧ dest(wp, ea) =



146 CHAPTER 4. SYMBOLIC MESSAGE SEQUENCE CHARTS (SMSC)

dp}. Then, we compute

x = MIN{cq,
∑

wp∈B(dp)

max(wp)} (4.13)

as the maximum increment in the object count of dp. Note that, due to association

check constraint we are sure that no more than cq objects can migrate to a destination

partition. Finally, count′q(dp) = countq(dp)⊕ x.

Next, we discuss the update of asc relation content which occurs via migrates toext

method in our operational semantics. Consider the illustration shown in Figure 4-12,

depicting various behavioral partitions involved in the execution of ex/ea and possi-

ble asc links among them. As mentioned earlier, these links are classified into the

following four categories, based on the pair of behavioral partitions involved in a link–

(i) 〈wpx, wp〉, wp ∈ WP x
a (linked via plain lines),

(ii) 〈dpx, dp〉, dp ∈ DP x
a (linked via curved lines),

(iii) 〈wpx, dp〉, dp ∈ DP x
a (linked via dashed lines), and

(iv) 〈dpx, wp〉, wp ∈WP x
a (linked via double lines).

The association counts for tuples in (ii) above are updated as described in the

following; updates for other cases are handled in a similar manner.

acount′asc(dpx,dp),dp ∈ DPx
a: From the association links shown in Figure 4-12,

we observe that there three potential sources from which asc links might be added
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to the tuple 〈dpx, dp〉. These are– (a) 〈wpx, dp〉, (b) 〈wpx, wp〉, wp ∈ B(dp), and

(c) 〈dpx, wp〉, wp ∈ B(dp). We now determine the contribution from each of these

sources–

From (a). x1 = MIN{cq − 1, acountasc(wpx, dp)}. Assuming that the object

executing ex is linked via asc to at least one object which is executing ea, it can

not be linked to more than cq − 1 objects in dp.

From (b). x2 = MIN{cq,
∑

wp∈B(dp) max(wp)}, where max(wp) is computed

as defined earlier for a witness partition. The summation term in the MIN

expression computes the maximum number of objects that can migrate in to

dp, and it can not be greater than cq objects. Note that, this quantity is same

as the value x computed in Eq. (4.13).

From (c). Let n =
∑

wp∈B(dp) max(wp), i.e. the maximum number of objects

that can possibly migrate into dp. If n ≤ cq, then all these objects are chosen

to move to dp, and their contribution to asc count from tuples 〈dpx, wp〉, wp ∈

B(dp) to tuple 〈dpx, dp〉 is determined as–

x3 =
∑

b∈B(dp)

MIN{acountasc(dpx, b), max(b) × (cp − 1)}.

We know that for each b ∈ B(dp), all objects in b executing ea are linked via

asc to the object executing ex. Hence, each such object in b can not be linked

to more than cp − 1 objects in dpx.
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In case n > cq, we compute the maximum possible asc link contribution from

any cq objects out of these n objects. For this, we first compute for each

b ∈ B(dp)– s(b) = MIN{acountasc(dpx, b), max(b) × (cp − 1)}/max(b). The

term s(b) determines per object asc link contribution for a given partition b.

Let Bs = 〈b1, . . . , b|B(dp)|〉, such that 1 ≤ u < v ≤ |B| =⇒ s(bu) ≥ s(bv). Next,

we determine the index value i, such that
∑i

r=1 max(br) < cq <
∑i+1

r=1 max(br),

and compute–

x3 =
i

∑

r=1

(max(br)× s(br)) +

MIN{(cq −
i

∑

r=1

max(br))× (cp − 1), acountasc(dpx, bi+1)}

Finally, if there is no delete(asc) constraint present, the asc count for the tuple

〈dpx, dp〉 is updated as–

acount′asc(dpx, dp) = MIN{maxasc(count′p(dpx), count′q(dp)), x}, where

x = acountasc(dpx, dp) + x1 + x2 + x3.

Otherwise, in the presence of the delete(asc) constraint, we do not consider the

asc link contribution from the tuples 〈wpx, wp〉, wp ∈ B, and compute x above as–

x = acountasc(dpx, dp) + x1 + x3.
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4.7.3 Default case

In general there might be no association constraints specified with a message in a

SMSC specification. Then the execution of associated send and receive events remains

asynchronous, and the object counts of the witness and the destination partitions are

updated as in the case of no associations. However, if the witness partition(s) chosen

for executing the event are involved in any association links, then we accordingly

update the association contents.

4.8 Discussion

In this chapter, we have presented Symbolic Message Sequence Charts (SMSCs) as

a lightweight syntactic and semantic extension to conventional MSCs. SMSCs are

particularly suitable for behavioral description of systems with many behaviorally

similar objects. In such systems, similar MSC specifications become too voluminous

for human comprehension. First, we presented an abstract execution semantics for

SMSCs without involving associations, in which objects are dynamically grouped to-

gether and executed following a process theory based operational semantics. Our

approach was validated through a detailed case study and experiments involving a

non-trivial weather controller specification. We then extended the notation of SM-

SCs with various association constraints and discussed in detail the abstract SMSC

execution semantics in the presence of associations.
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We observe that there are several extensions of SMSCs which add substantial

modeling power but involve minimal changes in the execution semantics. One ex-

tension will be to handle requirements of the form “at least (or at most) 10 objects

will play a certain role”. We can handle it by exploiting the delayed choice operator

in our process algebra. Yet another kind of requirement might be “some objects (an

unknown number) will play a certain role”. If the total number of objects is bounded,

our execution semantics requires minimal modification to handle such requirements.

In future, we will investigate other requirement templates involving similar processes

and integrate/support them systematically in our framework.

Finally, recall that, our notation of Interacting Process Classes, presented earlier

in Chapter 3, is a hybrid notation in which the behavior of a process class is specified

by a labeled transition system and unit interactions between processes are described

by MSCs. However, the IPC model does not support universal abstraction of lifelines

as in the case of SMSCs — only existential abstraction is supported. Also, there is

no explicit structuring of MSCs in the IPC model — it is inherent in the control flow

of process classes. This brings the model closer to state-based notations (rather than

MSC-based notations).
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Chapter 5

IPC vs SMSC

In this chapter, we present a comparative study between our IPC and SMSC modeling

frameworks, which were discussed earlier in Chapters 3 and 4 respectively.

5.1 Local vs Global control

One distinction that can be immediately made when comparing the two notations is

local (IPC) vs global (SMSC) control. While, in the case of IPC, the control flow of

various process classes is explicitly specified by means of a Labeled Transition System,

SMSCs provide a global view of system execution where local control flow of various

process classes may not be inferred. Further, unlike MSCs, where an initial attempt

towards determining local control flow of a process can be made by projecting events

along the lifelines representing the process (e.g. [114]), in case of SMSCs events along

a lifeline may not even be executed by the same (set of) objects, making it harder to
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infer the control flow.

Having said that, we observe that the execution of IPC models is not entirely local

— the transactions are selected for execution in a global manner. This is because,

in an IPC transaction multiple processes can participate, and need to synchronize at

the beginning of a transaction execution. Further, in the Labeled Transition Systems

describing the control flow of various process classes, there may be non-deterministic

choice between several outgoing transitions (labeling a role in a transaction) from a

control state. Hence, problems similar to non-local choice as in case of HMSCs [15]

may arise, with different processes making locally inconsistent choice of executing a

transaction. This issue in IPC needs to be addressed, for instance by means of ad-

ditional synchronization messages from a control process, for obtaining a distributed

system implementation

5.2 Granularity of Execution

A key feature of IPC formalism is that it allows communication among processes

to be specified as short protocol snippets (modeled as transactions), rather than a

single message send or receive; which is a desirable property in modeling of various

control protocols involving bi-directional flow of information. Taking advantage of

this abstraction, the execution of IPC models is defined in terms of transactions

(described using MSCs in our case), in which multiple processes from distinct classes

may participate together. On the other hand, execution of SMSCs is defined at the
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Figure 5-1: Showing approximation of a SMSC broadcast message in IPC model.

level of individual send or receive events, with each event being executed by a subset

of objects from a process class, as determined by the associated event guard. An

exception to this asynchronous event execution in SMSCs occurs in the presence of

association constraints, where the send and receive events corresponding to a message

annotated with an association constraint are executed synchronously.

5.3 Lifeline Abstraction

Another important difference between IPC and SMSC notations is the introduction

of symbolic lifelines in SMSCs. A lifeline in an MSC describing a transaction in an

IPC model is always concrete, and represents a single object. While, lifeline in a

SMSC description can be symbolic, representing a subset of objects belonging to the

process class represented by that lifeline. Further, the universal (∀) abstraction mode

associated with an event appearing along a symbolic lifeline in a SMSC, allows spec-

ification of broadcast messages in a more direct and natural manner. The similar

behavior cannot be captured exactly in our IPC framework. However, it can be ap-
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proximated in IPC by repeatedly sending the broadcast message using loops in the

transition systems of the involved process classes. For illustration, consider the SMSC

shown in Figure 5-1(a), in which process-class P containing a single process, broad-

casts message m to all processes of type Q satisfying the guard G. In Figures 5-1(b)

and (c), we depict a possible way to model the broadcast of message m (shown in

the SMSC in Fig. 5-1(a)) in a IPC model. An IPC transaction γ in Figure 5-1(b)

captures the sending of message m from a process of type P to a process of type Q.

Notice that lifeline Qr2 of transaction γ (in Fig. 5-1(b)) is guarded by the same guard

G, as appearing in the guard of receive event for message m in the SMSC shown

in Figure 5-1(a). Partial transition systems for process classes P and Q in an IPC

model appear in Figure 5-1(c). The loops shown in these partial transition systems

are labeled with roles γr1 and γr2 for process classes P and Q, respectively. These

loops will allow repeated execution of transaction γ, and hence in sending of message

m by P to all processes of type Q satisfying the guard G. Also, the executions corre-

sponding to existential abstraction mode ∃k, k ∈ N, in SMSCs cannot be translated

to an IPC execution. This is because k is a global parameter, and processes cannot

decide locally whether or not a message has been sent k times.

5.4 Which is more expressive?

As discussed in the preceding, clearly models described using SMSCs may not be

described using IPC notation. In the following, we show that it is possible to construct
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a SMSC model corresponding to an IPC model such that, the execution of SMSC

model includes the event traces from the execution of corresponding IPC model.

Let {TSp = 〈Sp, Actp,→p, initp, Vp, vinitp〉}p∈P be an IPC model, with Γ denoting

the transactions appearing in TSp (see Definition 1, page 35). Then, we define PR =

〈SPP ,→sp〉, the synchronous product of the Labeled Transition Systems describing

the control flow of various process classes p ∈ P as follows–

• (initp1, . . . , initpn) ∈ SPP is the initial state of PR, where pi ∈ P and |P| = n.

• →sp⊆ SPP × Γ × SPP , such that, s
γ
→sp s′, where S = (s1, . . . , sn), S ′ =

(s′1, . . . , s
′
n) iff,

– ∃si1 , . . . , sik ∈ S, γ ∈ Γ · sij

γij

→ s′ij , where γi1 , . . . , γik represent all distinct

roles in transaction γ1,

– s′m = s′ij for m = ij, and s′m = sm otherwise.

Thus, PR represents a labeled transition system, whose edges are labeled with

transactions from Γ. It is now straightforward to construct a HSMSC H corresponding

to PR, which together with Vp, vinitp} from the definition of TSp, can be used to obtain

a HSMSC specification 〈H,
⋃

p∈P{Vp, v
init
p }〉 (see Definition 10, page 97). Note that,

the above translation is possible since, SMSCs are more expressive than the MSCs

used for describing transactions in our IPC modeling framework. Further, since SMSC

1Note that, here we assume that all roles in a transaction correspond to distinct process classes.
Extensions for considering transactions with multiple roles from the same class are straightforward,
and will involve having multiple state components from the same process class in PR.
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execution semantics is event based, the execution traces of the HSMSC specification

obtained above will include the execution traces of the original IPC model.
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Model-based Test Generation
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Model-based testing is a well-known software development activity. The key idea

in model-based testing is to develop an explicit behavioral model of the software from

informal requirements. This forms a precise specification of the software’s intended

behaviors. The behavioral model is searched to generate a test-suite or a set of test

cases. These test cases are tried on the software (which might have been constructed

manually or semi-automatically) to check the software’s behaviors and match them

with the intended behaviors as described by the model. A collection of contributions

in this area appears in the book [20].

Researchers have studied the methodological and technical issues in model-based

test generation, focusing on how a given model can be best exploited for constructing

test suites of real applications. In these works, different kinds of state machine like

executable models have been used. Each process of the system-under-test is modeled

as a (finite) state machine or I/O automata, or as a process algebraic expression

(which can be compiled into a state machine). A common thread linking all these

works is that they rely on intra-process behavioral models.

However, there has been little effort in utilizing inter-process behavioral models,

such as the ones using Message Sequence Charts (MSCs) [62] based notations, for

the purpose of test generation. Visually, a Message Sequence Chart depicts commu-

nicating processes as vertical lines; communication between processes are shown by

horizontal or downward sloping message arrows between these vertical lines. Thus,

MSCs emphasize inter-process communication. In the following chapter, we discuss
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related work in the domain of model-based testing. In the next two chapters, we

study test generation from our notations of Interacting Process Classes (Chapter 7)

[43] and Symbolic Message Sequence Charts (Chapter 8) respectively, presented earlier

in Chapters 3 and 4.
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Chapter 6

Testing: Related Work

Model based testing of reactive systems is a well studied and an active area of re-

search [20]. Majority of these approaches use state-based notations, which are more

suited for detailed and complete system descriptions. On the other hand, there are

relatively few scenario based notations suited for complete behavior descriptions [42].

Note that, our current work falls in the latter category.

6.1 State-based

These approaches use some variant of state-based notations for modeling system be-

haviors. In [93], underlying system behavior is described using Extended Finite State

Machines (or EFSM) — the test generation involves translating the system model

into a Constraint Logic Programing (CLP) specification, adding in constraints corre-

sponding to a test-purpose, and executing resulting CLP program. Specifications in
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AutoLink [70] are written in SDL [2], wherein a system is specified as a set of intercon-

nected abstract machines which are extensions of finite state machines. On the other

hand, a test-purpose in [70] is described using a MSC– the test generation proceeds by

state space exploration of system model, while trying to satisfy the test-purpose. The

notation of Labeled Transition Systems (or LTS) and its derivatives, such as IOTS

(Input-Output LTS), are used for formally describing specifications, implementations,

as well as test-purposes in [112, 64]. The test-generation is automated and driven by

a conformance relation, which formally defines the notion of an implementation being

correct with respect to a given specification. The state space explosion problem due

to the presence of data variables is addressed in [104, 35]. They introduce symbolic

versions of IOTS, called IOSTS (Input Output Symbolic Transition Systems), which

include explicit notion of data and data-dependent control flow.

Statecharts [48] and its UML variant are popular notations widely used for be-

havioral system description. As such, there is a large body of work dealing with test

generation from them; here we mention a few of them. An initial work in this di-

rection is [86], involving test generation based on coverage criteria such as transition

and predicate coverage. In [56] Statecharts are transformed into flow-graphs captur-

ing both control and data flow in a Statechart. Tests are generated from resulting

flow-graphs based on conventional data (control) flow analysis techniques. A com-

plementary approach in [57] uses symbolic model checking for test generation from

Statecharts. In TesTor [88], test cases are generated from UML state diagrams by
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recovering missing information in partially specified test-purposes, represented using

sequence diagrams. UML state machines are used for specifying a system model in

[89], and a test-purpose consists of a set of Accept and Reject scenarios, respectively

specifying positive and negative criteria for generating test-cases. Interaction test-

ing among classes modeled as state-machines, also taking into account the states of

collaborating objects, is studied in [36, 5].

6.2 Scenario-based

In TOTEM [19], test cases are derived from use cases, which are structured and

detailed using UML activity and sequence diagrams. Sequence diagrams are used

in SeDiTeC [34] and SCENTOR [120] for describing test specifications, which are

extended with method parameters, and return values for method calls for actual

testing. COWSuite [12] uses UML sequence diagrams for describing system use-

cases. Corresponding to each use case, a set of test cases for testing that use case are

then derived. The UBET tool [113] supports test generation from a HMSC model, in

which test generation is primarily driven by the edge-coverage criteria in a HMSC. In

[73], the play-engine tool for Live Sequence Charts (LSCs), which are an extension of

MSCs, has been extended to support testing of scenario-based requirements.
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6.3 Combined notations

A testing framework involving use of state and scenario based notations is presented

in [17]. A multi-paradigmatic approach towards model based testing was proposed

in [46], which, besides state/scenario based notations, also allows models to be de-

scribed using other diagrammatic notations and/or program fragments.

6.4 Symbolic Test Generation

A number of model-based testing approaches support symbolic test generation from

system specifications involving data variables [104, 92, 35]. All these approaches

use state-based description of system behaviors and involve abstraction over data-

domains as a means for avoiding state-explosion during test generation for data-

intensive systems. However, various processes in a system are still represented in

a concrete manner as individual entities. Hence these approaches do not scale as

the number of processes (say of a class) is increased. One cannot directly use these

approaches for symbolic test generation of systems with large number of behaviorally

similar processes.

To the best of our knowledge, there is no existing work dealing with symbolic test

generation for systems with large number of behaviorally similar processes. Various

approaches towards symbolic testing via data abstraction address a different problem

— explosion in number of tests due to large number of data values.
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Chapter 7

Test Generation from IPC

As described earlier in Chapter 3, in the IPC notation we describe each process-class

(i.e. a collection of processes) in the system-under-test as a labeled transition system.

However, each action label in a labeled transition system denotes a guarded Message

Sequence Chart (MSC) instead of an atomic action, such as a message send or receive.

Thus, if a MSC γ involves processes p and q, γ will appear in the action labels in

the transition systems for process p and process q. A global system execution trace in

this model is a sequence of MSCs. Further, we can symbolically execute such models

without maintaining the states of individual processes in a process class.

One of the main advantages of using such MSC-based models over State-based

models for test generation is that, we can represent test cases and test case specifica-

tions at a higher level than conventional model-based test generation methods. A test

case specification is a user input used for guiding the test generation process [112].
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Given an IPC system model where the set of all MSCs appearing in the model is

Γ, we present a test case as a finite sequence of MSCs drawn from Γ. A test case

specification is also a sequence of MSCs drawn from Γ where any sequence of charts

containing the test case specification as a subsequence is said to satisfy the test case

specification. This high level view of a test case can be helpful in providing a quick

and intuitive understanding of its behavior. The user can get a fairly good idea of

a test case behavior by looking at the sequence of MSCs it contains, rather than

having to examine the low level details involving message send/receive events or local

computations.

Also, since our IPC models can be executed symbolically, we can efficiently gen-

erate symbolic test cases for process classes with many (active) objects. As we have

already mentioned earlier, such interacting process classes are common in many ap-

plication domains — telecommunication (phone and switch classes), avionics (class of

aircrafts being controlled) and automotive infotainment (class of multimedia devices

operating inside a car). We note that, our notion of symbolic test case groups to-

gether various concrete test-cases with similar behavior, differing only in the identities

of objects of various classes participating in a test case. This makes our technique

particularly suitable for testing control systems with many similar interacting pro-

cesses.

Finally, since our behavioral model itself is MSC-based, we are able to exploit

the (fragments of) MSCs present in the requirements as MSCs in the behavioral
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model. This establishes a tighter connection between informal software requirements,

formal software models, and the test cases generated from such models. Such rela-

tionships enable easy traceability of the test execution results back to the original

requirements [42].

Finally, we would like to mention that our focus in the current chapter is on the

test case generation in the form of MSCs from the MSC-based executable models of

process classes. There are existing works (e.g. [89] ) covering test case execution and

assigning test verdicts for the test cases derived in the form of MSCs.

7.1 Case Study – MOST

In the following, we first present a case-study which is used as a running example

in our following discussion. The MOST (Media Oriented Systems Transport) [79] is

a networking standard that has been designed for interconnecting various classes of

multimedia components in automobiles. It is currently maintained by the “MOST

Cooperation”, an umbrella organization consisting of various automotive companies

and component manufacturers like BMW, Daimler-Chrysler and Audi. The MOST

network employs a ring topology, supporting easy plug and play for addition and

removal of any new devices. It has been designed to suit applications that need to

network multimedia information along with data and control functions.

A node (or the device) in the MOST network is a physical unit connected to

the network via a Network Interface Controller (NIC). A MOST system may consist
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of up to 64 such nodes with identical NICs. A network device generally consists

of various functional blocks, such as a tuner, an amplifier, CD player etc. Each

such functional block provides a number of functionalities which may be directly

available to user via human-machine interface or for use by other devices in the net-

work; for example, a CD player provides Play, Stop and Eject functions. A special

function block called the NetBlock is present in all the devices and provides func-

tions related to the entire device. Various specification documents for MOST are

available at http://www.mostcooperation.com/publications/ One of the specifi-

cations, namely the ‘MOST Dynamic Specification’, presents the general description

of the dynamic behavior in a MOST network, encompassing: a) Network Manage-

ment, b) Connection Management, and c) Power Management. Network management

ensures secure communication between applications over the MOST network by main-

taining and providing most recent information about various nodes, whereas Connec-

tion Management deals with the protocols for establishing communication channels

between nodes in the network. Network wake-up and shutdown are handled by the

Power Management component.

For our experiments, we modeled only the Network management part of MOST.

From the network management perspective the system consists of: (i) Network Mas-

ter (NM), a specific node which maintains the central registry containing network

address information about various devices and their functional blocks in the network,

and (ii) Network Slaves (NS), which are the remaining nodes in the network. The
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NM has two main functions: (a) maintaining the central registry with most up-to date

information, and (b) providing this information to various nodes when requested. The

requirements document describes the NM using two parallel processes: one requests

the configuration from NS when required, and other receives the registration infor-

mation sent by them. The configuration information received from slaves is checked

for various errors, such as invalid or duplicate functional block addresses etc. The

validity of the central registry is reflected in the NM variable ‘System State’ which

is set to ‘OK’ when registry is valid and ‘NotOK’ otherwise. At system startup the

state is always ‘NotOK’, and subsequently becomes ‘OK’ once NM is able to com-

plete the network scanning and update the central registry without any errors. Also,

some network slave may enter/leave the network resulting in ‘Network Change Event’

(NCE), which causes the NM to re-scan the network and communicate the changes

in the registry, if any.

Modeling MOST. The behavior description in the requirements document for

MOST is given in the form of “high-level MSCs from the view-point of a partic-

ular process”. Interestingly, the “high-level MSCs” in the requirements document

are actually not HMSCs. In reality, they are rather mistakenly called as “high-level

MSCs”, and they reflect -at a very high level- the control flow within a process. In

addition, several “scenario MSCs” in system execution are provided in the require-

ments document. The “scenario MSCs” of the requirements document correspond to

a sequence of MSCs in our modeling, that is, a scenario in system execution. Using
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Figure 7-1: Transition system fragments: (a) Network Slaves: TSNS, and (b) Net-
work Master process responsible for receiving configuration from slaves: TSNM−B.
Transaction roles are not shown in action labels to reduce visual clutter.
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these scenarios, we elaborated on the very high-level per-process control flow given

by the “high-level MSCs” of the document. This gave us the labeled transition sys-

tem for each process class and the MSCs corresponding to the action labels of these

transition systems. There was however some additional work involved in our mod-

eling since the requirements document used both message passing as well as shared

variables for inter-process communication, whereas our modeling language does not

support shared variables.

As described earlier (Section 7.1), the MOST system consists of a network-master

NM and several network-slaves (NS). We modeled NM using two process classes:

‘NM-A’, for requesting configuration from slaves and ‘NM-B’ for receiving responses

from slaves. Also, environment is modeled as a separate process class, which takes

part in network on/off events and causes the network change event (NCE) whenever

a node leaves or joins the network. All network slaves are modeled as a single process

class ‘NS’; the number of slaves can be varied easily by changing the number of objects

of this class.
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Fragments of the transition system descriptions of the NS class, and the NM-

B (process responsible for receiving the configuration information from slaves), are

shown in Figure 7-1. The edges in these transition systems are labeled with transac-

tions or guarded MSCs. Recall that the edges in the high-level transition systems of

a process class in our IPC model are labeled with (transaction, role) pairs; here we

have not shown the roles in each transaction to reduce visual clutter. The transac-

tions corresponding to various transitions were easily obtained from the descriptions

given in the requirements document. However obtaining the control flow for the per-

process transition systems was not so straightforward. The “scenario MSCs” in the

requirements document (which correspond to sequences of MSCs describing overall

system behavior) were helpful in modeling the per-process control flow correctly.

For illustration, two transactions– FBRcvDuplId and FBInvldSetNotOK, from the

MOST example are shown in Figure 7-2. Transaction FBRcvDuplId (Fig. 7-2 (a))

represents a scenario in which the address information provided by a network slave

clashes with that of another slave which has replied earlier. Note that, in this trans-

action lifeline NM-B has a boolean guard InitScan = false. Thus, in order to execute

this transaction, NM-B’s local variable InitScan must be false. In case of transac-

tion FBInvldSetNotOK (Fig. 7-2 (b)), a network slave replies with an invalid address

information. This represents an error situation, such that NM-B keeps track of the

error count using variable NumErr. If NumErr < 2, then this transaction is executed

setting the system state to ‘NotOK’.
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Overall, the IPC specification for MOST comprises of 53 transactions (or guarded

MSCs) with process classes NS, NM-A and NM-B containing 18, 6 and 21 control

states respectively.

Example For illustration, consider process class NS with 50 network-slaves in a

MOST network. Assume that currently all slaves are residing in the control state S8

of its transition system TSNS in Figure 7-1 (a), while process NM-B is in the control

state RcvRegist of its transition system TSNM−B (Fig. 7-1 (b)). Let the values of

NM-B’s local variables InitScan and NumErr be false and 0 respectively. Further,

assume that there are no local variables in the NS class and no regular expression

guard for any transaction. Then, this configuration corresponds to

c = {〈S8→ 50〉, 〈(RcvRegist, InitScan = false,Numerr = 0)→ 1〉}.

For process class NS, its behavioral partition is described using only the control state

S8 from TSNS. For process class NM-B, a behavioral partition consists of control state

RcvRegist from TSNM−B and the values of its local variables InitScan and NumErr.

Note that we have only shown behavioral partitions with non-zero objects, which is

how we keep track of them during simulation. Also, we have omitted NM-A’s state for

the purpose of illustration. We can now execute the transaction FBInvldSetNotOK

(transition S8 → S4 in Figure 7-1(a) and RcvRegist → S1 in Figure 7-1(b)) which

is shown in Fig. 7-2 (b), with any one slave object executing the lifeline marked NS.
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The resulting configuration is

c′ = {〈S4→ 1, S8→ 49〉, 〈(S1, InitScan = false,Numerr = 1)→ 1〉}.

Thus, the slave object participating in FBInvldSetNotOK moves to control state S4

in TSNS, while NM-B moves to control state S1 in TSNM−B with the value of its

variable NumErr getting updated to 1. This captures the basic idea in our symbolic

execution semantics (note that we did not maintain the local states of 50 slave objects

separately).

7.2 Meeting Test Specifications

In this section we describe the automatic generation of test cases from an IPC model

based on a user-provided test case specification. The user gives a sequence of trans-

actions, as a test specification. The test generation procedure makes use of guided

search to generate a transaction sequence containing the user-provided test specifi-

cation sequence as a subsequence. Note that it is possible that there is no execution

sequence that can satisfy a given test specification.

7.2.1 Problem Formulation

The user gives a sequence of transactions τ1, τ2, . . . , τn as the test specification. The

test-case generation procedure aims at producing one or more test sequences of the
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form– τ 1
1 , . . . , τ i1

1 , τ1, τ
1
2 , . . . , τ i2

2 , τ2, . . . , τ
in
n , τn.

This problem can be viewed as finding a witness trace in the IPC model satisfying

the Linear-time Temporal Logic (LTL) [23] property F(τ1∧F(τ2∧(. . . (Fτn) . . .))). We

always generate only finite witness traces (i.e., a finite sequence of transactions) such

that any infinite trace obtained by extending our finite witness trace will satisfy the

above-mentioned LTL property. This can be accomplished by standard search strate-

gies like breadth-first or depth-first search. Breadth-first search produces shortest-

possible test traces (the sequence of MSCs generated), but it is expensive in time

and memory. On the other hand, depth-first search can help us find test-cases effi-

ciently, but the generated sequence of MSCs may not be optimal in length. Hence,

we investigate intelligent search heuristics for this problem.

7.2.2 A∗ search

Various well-known heuristic search strategies such as best-first, and A∗ (pronounced

A-star) [84] have been shown to be useful in test-case generation [92], and model

checking [29]. The heuristics mainly differ in the evaluation function used by them,

which gives the “desirability” of expanding a node in the state graph. The search pro-

ceeds by expanding the graph choosing the most desirable node first. The evaluation

function f(s) used in A∗, which evaluates the state s during state-space exploration

(lower score is better), consists of two parts– (i) g(s), giving the shortest generating
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path length for state s, i.e. length of the shortest path from start-state to s, and (ii)

h(s), the estimated cost of the cheapest path to the goal state from s. The evaluation

function f(s) = g(s) + h(s) gives the estimate of cheapest path from start state to

the goal state, passing through s. If h∗(s) is the actual cost of the cheapest path from

a state s to the goal state and h(s) ≤ h∗(s), for all states s, then the heuristic is said

to be admissible and guarantees to find the shortest path to goal state, if one exists.

We adapt and modify the A∗ algorithm to guide our test-selection process. While

searching for witness traces, we break the search into steps, such that each step aims

at generating a transaction sequence up to the next uncovered transaction in the test

specification. So if the test specification is τ1, τ2, . . . , τn and so far the search has

produced a witness for τ1, . . . , τi−1 (where i ≤ n), the “goal” is the next transaction

in the test specification — τi. The search for this “goal” will of course start from a

state appearing at the end of the witness trace found for τ1, . . . , τi−1. Then, for a state

s visited while searching for a path to τi, the value of function g(s) in A∗’s evaluation

function determines the length of the shortest path to s seen so far from the initial

state, and covering the test specification transactions that have already executed (in

the order of their occurrence). While, for computing the h function, we only focus on

the next goal (τi) instead of the whole remaining sequence to be covered (τi, . . . , τn).

During the search we maintain a global search tree T capturing the states visited

so far. A global state and the successor of a global state, appearing in T during

the test generation are defined as follows.
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Definition 18. Global state Given an IPC system model and a test case specifica-

tion τ1, . . . , τn, a global state s = (c, i) consists of: (i) an abstract system config-

uration c in the IPC model (see Section 3.4) and (ii) i, the index of the next goal

transaction τi (while searching for the test case) in the test case specification, where

1 ≤ i ≤ n.

Definition 19. Successor state Given a global state s = (c, i) as defined above,

a global state s′ = (c′, i′) is a successor state of s if and only if: (i) c′ is obtained

from c in our symbolic execution semantics by executing some transaction τ ′, and (ii)

i′ = i + 1 if τ ′ = τi (i.e. the next goal transaction), and i′ = i otherwise. We use

Succ(s) to denote the set of all possible successors of s.

In the search tree T , each edge from a state s to its successors is labeled with

the transaction name that was executed at s leading to that successor. Also for each

state s in T we maintain the values g(s) and h(s).

Computation of heuristic function h. To compute h(s) for a given a state

s = (c, i), we consider the process classes involved in the transaction τi, that is, the

process classes whose objects should appear as the lifelines of the MSC in τi (the

next goal transaction). Let this set of classes be classes(τi). For each process class

p ∈ classes(τi), we determine the length of the shortest path in TSp from current

control state(s)1 of p-objects to the source state(s) of the transition(s) which appear

1TSp is the transition system describing process class p.
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s1
s2

s3

s4

s5

����ρ
γ
ρ

n1
np1- n1

Figure 7-3: Transition system fragment for process class p1

as a lifeline in τi. Note that, we pre-compute the shortest paths between all state-pairs

in the Labeled Transition Systems (LTSs) of different process-classes once and for all,

at the beginning of the test generation. Clearly, different objects of a process class

p can be in different control states — so we need to consider all the control states

in which any object of a process class p is currently in. Let the shortest distance

computed in this way for process class p be denoted as dτi
p .

For illustration, consider a fragment of transition system describing a process

class p1 as shown in Figure 7-3. Assume that p1 has np1 objects such that n1 (> 0)

p1-objects are currently in control state s1, while remaining np1 − n1 objects are in

control state s2 (see Fig. 7-3). Let the next goal transaction be γ and (p1, ρ) be the

only lifeline involving process class p1 in transaction γ (i.e. p1 ∈ classes(γ)). Now,

in the transition system of p1 (fragment of which is shown in Fig. 7-3), the shortest

paths to the control state(s) with an outgoing transition γρ from states s1 and s2

respectively are— s1.s3 and s2.s4.s5, having path lengths one and two (see Fig. 7-3).

Hence, we get dγ
p1 = 1.
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Finally, we define

h(s)
def
= maxp∈classes(τi)d

τi
p and f(s) = g(s) + h(s) (7.1)

Intuitively h gives a lower bound on the trace length required to execute τi from s,

and therefore, gives us an admissible heuristic.

7.2.3 Test generation Algorithm

We now discuss the overall test generation procedure described using two functions,

one top level or driver function genTest presented in Algorithm 1 which makes use

of the second function genTrace described in Algorithm 4 (appears in Appendix B).

In particular, the function genTest (Algorithm 1) takes as input three parameters: a

set S of global states, i is the index of the current goal transaction and n is the length

of the test-case specification τ1, . . . , τn. During test generation, states s = (c, i) from

the set S are evaluated (i.e. f(s) is computed using Equation 7.1), and the one with

the minimum value of function f is chosen and explored (i.e. all its successors are

generated). The initial call to this procedure is genTest({sinit},1,n) where sinit =

(cinit,1), cinit is the initial configuration in our IPC system model. The search tree T

is also initialized, having a single root node sinit.

For finding a trace from states in the set S to the next goal transaction τi, genTest

calls genTrace(S,τi) (line 2 of Algorithm 1). The function genTrace described in

Algorithm 4 then tries to find a path leading to the execution of transaction τi from
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Algorithm 1: genTest(S,i,n)

1: while S 6= φ do
2: 〈GoalStates, UnExplored〉 ← genTrace(S,τi)
3: if GoalStates = ∅ then
4: if i = 1 then
5: report Failure and Exit
6: else
7: return
8: end if
9: else if i < n then

10: genTest(GoalStates,(i + 1),n)
11: S ← UnExplored
12: else
13: output witness(GoalStates) and Exit /*i = n*/
14: end if
15: end while

states in S (see Appendix B). It returns: (a) GoalSet, the set containing the states

reached after successfully finding a path from a state in S to the transaction τi, and

(b) the set UnExplored, which contains states that were reached but not explored

when searching for the trace. If GoalSet is empty, this means that genTrace failed

to generate a trace from S reaching τi. In this case, if i = 1, the genTest algorithm

reports failure and exits, since it cannot find any trace up to the first transaction in the

test specification; otherwise, the genTest algorithm backtracks (line 7 of Algorithm 1)

and tries to find another trace for the previous goal transaction using the remaining

unexplored states from that step. This occurs by assigning the set Unexplored to S

when a failed recursive call returns (line 11 of Algorithm 1). The new S is explored

further due to outermost while loop. If GoalSet is not empty, genTest is called

recursively using the set GoalSet as the starting states for finding the next transaction
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(τi+1) in the test specification. In this way if we have encountered τn and GoalSet is

still not empty, a witness trace satisfying the test specification has been found. The

genTest algorithm then outputs the witness trace and exits.

7.3 Experimental Results

We now discuss various results from the experiments we performed for (a) generating

test cases corresponding to various test specifications, and (b) comparing test case

generation for symbolic vs concrete model execution for a given test specification.

Witness trace generation. Besides the MOST network-management protocol, we

also performed experiments using the following four examples, which were discussed

earlier in Section 3.7– Telephone Switch, Rail-Car, Automated Shuttle, and Weather

Controller. For the purpose of experiments, we considered three test specifications for

all examples modeled, each attempting to cover a meaningful use-case. Test cases were

successfully derived for these test specifications using the A∗-based heuristic approach.

Experimental results showing the witness trace lengths and test-generation times

corresponding to various test specifications are shown in Table 7.1 in the columns

under ‘RESULTS A’. Recall that each witness trace contains the corresponding test

specification as a subsequence. All experiments were performed on a machine with

3GHz CPU and 1 GB of memory.

We also generated witness traces for the same test specifications using breadth-
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first (BFS) and depth-first strategies (DFS). In most of the cases A∗ based approach

generated optimal length traces, i.e. same as those generated using BFS2, taking only

a fraction of time. On the other hand, test cases generated using DFS were up to 3

times longer than those generated using A∗ heuristic.

RESULTS A RESULTS B
Example Test Spec. Witn. trace Test gen. Expl. # Witnesses Exec. Times(sec)

# Length length Time(sec) Depth S C S C

MOST 1 2 28 67 30 16 – 272 > 10 min.
(3 slaves) 2 2 19 4.5 19 7 21 28 480

3 3 32 312 32 4 – 460 > 10 min.

Telephone 1 2 4 0.04 5 70 560 1 28
Network 2 4 14 8.1 14 – – > 10 min. > 10 min.

(5 phones) 3 4 9 1.42 9 12 80 17 212

RailCar 1 3 17 136 18 6 – 380 > 10 min.
(6 cars, 2 3 12 5 15 32 – 19 > 10 min.

3 terminals) 3 3 11 4 15 62 – 19 > 10 min.

Automated 1 4 14 0.1 15 5 11 0.7 15
Shuttle 2 3 12 0.07 15 9 18 0.72 15

(5 shuttles) 3 4 23 0.91 23 12 – 78 > 10 min.

Weather 1 2 4 0.02 20 5 129 0.1 2.5
Controller 2 3 13 0.03 20 2 3 0.1 2.5
(10 clients) 3 3 15 0.03 25 3 7 0.15 12

Table 7.1: RESULTS A: Witness test generation– test lengths & generation times.
RESULTS B: Comparing Symbolic/Concrete test generation, S ≡ Symbolic, C ≡
Concrete.

For illustration, let us consider the following test specification from our mod-

eling of MOST protocol (corresponding to the first test specification for MOST in

Table 7.1): FBRcvDuplId, ConfigStatusOk. As discussed in Section 7.2, for a given

test specification (given as a sequence of transactions), test generation procedure at-

tempts to find a witness trace (another sequence of transactions) containing the test

2Given a test specification τ1, . . . , τn, we employ A∗ based search to find a smallest path to τ1,
search from that occurrence of τ1 to find a smallest path to τ2 and so on. Clearly, adding up these
smallest paths may not produce the minimal path containing τ1, . . . , τn as a subsequence.
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specification as a subsequence. The transaction FBRcvDuplId (transition S8 → S8

in Figure 7-1(a) and RcvRegist→ RcvRegist in Figure 7-1(b)) corresponds to the sce-

nario shown in Figure 7-2 (a)– which takes place when the configuration information

sent by slave to master clashes with the configuration information for some other

slave node already registered with the master. In response, when it is not the first

time that the system is being scanned after the network was powered on (as indicated

by the guard ‘InitScan = false’ of lifeline NM-B in Figure 7-2 (a)), network master

assigns a new id for this slave and sends this value for acceptance to the slave via

message FBlockIDs.SetGet. This new value may be accepted or rejected by the slave

node. In case it is accepted, then the new value is entered in the central registry by

NM-B. The transaction ConfigStatusOk (whose MSC is not shown here) corresponds

to the communication of ‘SystemState = OK’ by network master to the slave nodes,

once all the nodes have responded correctly. As shown in Table 7.1, a test-case MSC

sequence of length 28 was obtained within 67 seconds for this test specification. In

this manner, the test specifications, though small in length, can be used to derive test

cases representing complex system behaviors.

Symbolic nature of our tests. Recall that our IPC models inherently support

symbolic execution of process classes (Section 3.4) and hence generation of symbolic

tests where processes are grouped together in terms of behavior. To evaluate the

advantage of symbolic test generation, we generated all possible witness traces corre-
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sponding to the given test specifications using both symbolic and concrete3 execution

semantics. This was done by exploring various system models up to a given depth

bound. For a given test specification, in order to guarantee the generation of at least

one witness trace during exploration, the length of its witness trace derived from

A∗-based test generation was used as a cut-off for the depth bound.

The results comparing the test-suite size and test generation times appear in

Table 7.1 in the columns under ‘RESULTS B’. As we can observe, the time to generate

the test cases is much lower in symbolic execution as compared to concrete execution.

In fact, for almost half of the cases the concrete execution did not even terminate

within 10 minutes (shown as ‘–’ in Table 7.1 under RESULTS B). More importantly,

using symbolic execution many behaviorally similar tests were grouped together into

a single test case. For example, in case of the first test specification for the Telephone

Network example (see Table 7.1, RESULTS B), 560 concrete test cases are grouped

into 70 symbolic tests. Note that the number of concrete tests is not always an exact

multiple of the number of symbolic tests. This is because different symbolic tests may

be blown up into different number of concrete tests.

Use of our tests We note that the tests generated from our IPC model can be

executed on a distributed system implementation, that is, executable code in a pro-

gramming language. This is the case where the system implementation is generated

manually using the informal system requirements as a guide. In this case, the tests

3The state of each object is maintained separately in concrete execution semantics.
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increase our confidence in system implementation. Alternatively, it is conceivable

that the system implementation is generated from the system model, and so are the

test cases. In this case, the tests can be used to increase our confidence in the sys-

tem model itself (which is generated manually from the informal requirements). For

more detailed discussion on the use of model-based tests in model-driven software

development, the reader is referred to [42].
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Chapter 8

Test Generation from SMSC

In this chapter, we present a method for model-based testing of reactive systems

of process classes based on Symbolic Message Sequence Charts (SMSCs). Various

challenges arise in the model-based test case generation of distributed reactive systems

involving process classes, or collections of behaviorally similar interacting objects. In

general the requirements specification for such systems only describe the interactions

between classes of objects and do not constrain their size, which may be large and

can even vary dynamically with time. Therefore, to begin with, there is the need for

flexibility; we cannot impose an artificial limit on the number of process class objects

in the requirements specification and derive test cases only for that configuration,

as the runtime configuration can differ. Secondly, test cases need to be reusable;

if objects are added or removed, then we should not have to regenerate test cases

from scratch provided the test-purpose (or, property to be tested), remains the same.
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Finally, the set of test cases should be optimal: they should include all interesting

behaviors corresponding to the test-purpose, but at the same time, the test cases

should be behaviorally distinct. This last property is important because process class

objects being behaviorally similar, there is always a possibility of redundant test

cases - depicting the same interaction pattern but involving different combinations of

objects - being generated. This may lead to significant wastage of resources, both in

the generation of redundant test cases, as well as their subsequent detection/removal

or their execution.

Our approach begins with modeling process class requirements (which typically

focus on inter-class communication) using SMSCs. As discussed earlier in Chapter

4, SMSCs extend Message Sequence Charts (MSCs) with the concept of a symbolic

lifeline. Unlike MSCs, where a lifeline represents a concrete object, a symbolic lifeline

in SMSCs may represent a group of objects from a class. This extension, along with an

abstract execution semantics, allows SMSCs to succinctly specify and simulate inter-

process behavior in systems consisting of classes of large (even unbounded) number

of objects. Apart from a SMSC-based system model, a second input to our testing

framework is a user-provided test-purpose that aids in selecting interesting behaviors

against which the user wishes to test a system implementation. The test-purpose,

which may include negative messages denoting forbidden behavior, is also modeled

using SMSCs.

Given a system model and test-purpose, our test generation method first auto-
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matically generates a set of abstract test cases that satisfy the purpose. These are

generated by exploring the system model to determine execution traces that contain

all the test-purpose events (except the negative events) in the appropriate order, pos-

sibly interspersed with other events from the model. Next, we perform a novel step

called template generation. Here, an abstract test case is refined into set of templates,

where each template represents a behaviorally distinct realization of the abstract

test case and also encodes the minimum number of concrete objects of each class that

would be needed to realize the test case fully. Moreover, taken together, the generated

templates represent all possible realizations of the abstract test case that may occur

in practice. The templates thus bring to our test generation framework the much

desired characteristics of flexibility, reusability and optimality – they do not impose

any limit on the number of process class objects, they may be re-used to generate

concrete test cases for different configurations, and they are behaviorally distinct from

each other, while together representing all system behaviors that satisfy the abstract

test case. Finally, for generating a set of concrete test cases, the user has to provide

a set of concrete objects for various process classes. A minimal set of concrete test

cases corresponding to the test-purpose is then generated by instantiating lifelines

in the templates with concrete objects. Further, all possible concrete test cases can

be generated from the minimal set by simply exchanging different object identities.

The concrete MSC test cases are used for testing the system implementation, which

is derived either manually, or generated (semi-automatically) from a system model
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different from the one used for test-case generation.

To summarize, the main technical contribution of the current chapter is a model-

based testing methodology, targeting reactive systems consisting of many behaviorally

similar objects. It consists of automated generation of abstract test cases, their step-

wise refinement to concrete test cases through template generation and test execution.

Our approach avoids (a) deriving different system models representing different con-

figurations for test generation and, (b) redundant generation of behaviorally similar

test cases.

Organization In the next section, we introduce the case-study used for illustrating

our approach and also describe our test-purposes, while Section 8.2 provides an end-

to-end view of our test generation process using a running example. Section 8.3

discusses the technical details of our approach, including test generation algorithms.

In Section 8.4 we elaborate our test execution setup and provide empirical validation

of our approach in Section 8.5 on a real life case-study.

8.1 Test-purpose specification

In this section, we first present the CTAS case-study, which is used as a running

example throughout the chapter. We then discuss a test purpose, which is specified

using an extended version of SMSCs, and is used for selecting the relevant test case(s)

from a SMSC model. A SMSC model and test purpose are the two inputs to our test
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generation method.

8.1.1 CTAS Case Study

Note that, the CTAS case study was discussed earlier in Section 4.2, while discussing

the SMSC notation. For the purpose of our discussion, we briefly describe it again in

the following.

The CTAS or Center TRACON Automation System is a set of tools developed at

NASA to aid the air traffic controllers in managing high volume of air traffic flows

at large airports. Various processes such as TS (Trajectory Synthesizer), RA (Route

Analyzer) etc. in the CTAS system require latest weather updates for their function-

ing. The weather updates are provided to these processes by WCP (Weather Control

Panel) via the CM (Communications Manager) which is the central controller respon-

sible for communications among these processes. Both WCP and CM are also part of

the CTAS system. We refer to various processes requiring the weather updates sim-

ply as Clients. Thus, we consider the CTAS system to be consisting of three classes

of objects– (i) WCP and (ii) CM classes with one object each, and (iii) Client class

consisting of multiple client objects.

The CTAS requirements for the weather control logic are described informally in

English in [1]. The requirements are structured as short snippets, describing com-

munication scenarios among CM, WCP and Client objects. Each such requirement
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Client CM

Yes

No

ClientPostRvrt

CM.status=5

<status’=7>
∀ Client.status=5 ∧ v=0

<status’=7>

∃1Client.status=5 ∧ v=1

∀ Client.status=5

(b) SMSC NotRcvWthr

CTAS_USE_OLD_WTHR∀ Client.status=7

(a) CTAS Requirement 2.8.13

Client1 CM

No

Client2Client3

ClientPostRvrt

Yes
Yes

ClientPostRvrt

ClientPostRvrt

CTAS_USE_OLD_WTHR

CTAS_USE_OLD_WTHR

CTAS_USE_OLD_WTHR

(c) MSC - CTAS Requirement 2.8.13

The CM should perform the following actions when the Weather 

Cycle status is “updating” and any connected weather-aware 

clients have responded No to the CTAS_GET_NEW_WTHR 

messages:

(i) it should set the Weather Cycle status to `post-reverting’.
(ii) it should set the weather status of all connected weather-
aware clients to `post-reverting’.
(iii) it should send CTAS_USE_OLD_WTHR messages to all 
connected weather-aware clients.

Figure 8-1: A CTAS requirement and its modeling as an MSC and a SMSC.

first states a pre-condition, followed by a set of events to be executed when the given

pre-condition holds. For illustration, we partially reproduce a CTAS requirement

(Requirement 2.8.13) in Figure 8-1(a). It describes the events, stated as items (i),

(ii), and (iii), to be executed when the pre-condition (specified in italics) holds true.

As described in Chapter 4, the language of Symbolic Message Sequence Charts

(SMSCs) [101] is a light-weight extension of the MSC notation, having the following

key features– i) the notion of a symbolic lifeline, and ii) an abstract execution seman-

tics. In the case of MSCs, a lifeline can represent only a concrete object [62], thus

making it difficult to capture scenarios with a large number of concrete objects. For

illustration, consider the MSC shown in Figure 8-1(b). It represents a scenario with

3 Client objects corresponding to the CTAS requirement 2.8.13 (Fig. 8-1(a)). Here

one of the client objects (Client1 in this case) replies in negative to a request sent by

the controller CM, with the remaining clients replying in positive. The SMSC corre-

sponding to the CTAS requirement 2.8.13 in Fig. 8-1(a) is shown in Figure 8-1(c).

Comparing with the MSC in Fig. 8-1(b) capturing the same requirement, all Client
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objects are now represented using a unique symbolic lifeline.

The complete CTAS system description is obtained by first deriving SMSCs corre-

sponding to various requirements (as illustrated above) and then composing together

these SMSCs to form a High-level SMSC (HSMSC). The HSMSC for CTAS case-

study appears in Figure 8-2. This HSMSC is flat, i.e. all its nodes represent a SMSC

(and not another HSMSC). For example, SMSC NotRcvWthr shown in Figure 8-1(c)

corresponds to a node (encircled in bold lines) in the CTAS HSMSC.

Recall that the complete SMSC system model is represented as Spec =

〈H,
⋃

p∈P{Vp, v
init
p }〉, where H is a HSMSC describing the interactions among pro-

cess classes p ∈ P, and Vp denotes the set of variables of a class p with vinit
p giving an

initial assignment of values to objects of p (see Chapter 4).

Init

No No

No

Connect

SndInitWthr

NotRcvInitWthr

RcvInitWthr

UsednitWthr

NotUsedInitWthr Update

SndNewWthr

NotRcvWthr PostRevrtWthr

NotPostRevrtWthr

RcvWthr

UsedWthr

NotUsedWthr

Figure 8-2: HSMSC for the CTAS case study.

Let CSpec denote the set of all possible abstract system-states1 of a SMSC model

Spec, ΣSpec be a set of process expressions describing the HSMSC model, and ActSpec

1In our description of SMSCs in Chapter 4, abstract system-states were referred to as abstract
configurations (4.4).
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denote the set of events appearing in Spec. Then, in the current chapter, we use

transition relation ‘→Spec⊆ (CSpec × ΣSpec) × ActSpec × (CSpec × ΣSpec)’ to describe

the abstract execution semantics of Spec, moving from one abstract system-state to

another by executing a SMSC event enabled at the current process expression (and

also determining the resulting process expression). The details of SMSC operational

semantics were discussed earlier in Chapter 4.

8.1.2 Test-purpose Specification

Once a system model Spec has been derived from the informal system requirements

using SMSCs, a test-purpose is used to drive the test-generation process. A test-

purpose [112] usually corresponds to an important use-case, or some corner-case sce-

nario more likely to contain errors. In our setting, a test-purpose TP is specified as a

SMSC STP, and represents a template behavior, for which the user wants to generate

the test-case(s). In addition to the usual SMSC elements, a test-purpose SMSC may

contain following elements.

1. A forbidden message, say m, that is not allowed to occur at specified locations in

a test case satisfying the given test-purpose. Visually this corresponds to a cross

appearing on the message m’s arrow. For example, message Done (from CM

to Client) in the test-purpose shown in Figure 8-3(a) is a forbidden message.

2. The guard g of an object selector [m]p.[g] in a test-purpose event can be specified

as ‘*’ (or don’t care), indicating that it represents any guard expression. A test-
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(b) Partial LTS for TP: LTP

t1

t3t2

¬(e1 \/ e3)
Client CM WCP

UpdateCM.(cm_status=0) WCP.(enabled=1)

No∃1 Client. * CM.*

(a) A test-purpose: TP

e
1

e
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e
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e
4

e
5
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invalid

accept

Done∀ Client. *

Disconnect∀ Client. * e
7

e
8

t5

e
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t6
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3

t7

e
4

t8

e
7

t9
e

8

t10
e

5

¬(e5 \/ e7)

¬e8

Figure 8-3: A test-purpose and its LTS.

purpose event with a don’t care guard can match multiple events differing only in

guard(s). For example, consider the object selector ‘∃1Client.*’ corresponding

to the sending of message No by lifeline Client in the test-purpose shown in

Figure 8-3(a).

For illustration, consider the test-purpose SMSC shown in Figure 8-3(a). This

test-purpose corresponds to a use-case for an unsuccessful weather update of the

Clients connected to CM in the CTAS system described earlier. The initial Update

message from WCP to CM represents a weather update request initiated by WCP.

The following message No indicates the failure of a Client object to either receive new

weather information, or revert back to using old weather information — eventually

resulting in all Clients getting disconnected (indicated by the Disconnect message sent

by CM to all connected Clients). The forbidden Done message appearing between

the exchange of No and Disconnect messages checks against the erroneous possibility

of a Done message being sent by CM to the connected Clients, indicating a successful
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weather update.

For the purpose of test generation, we are checking whether an execution trace of a

system model Spec contains a linearization of the test-purpose STP as a subsequence.

To obtain the test-purpose linearizations we consider the operational semantics for

MSCs [62, 98], and extend them to handle the forbidden events. All these event

linearizations are captured using a labeled transition system (LTS) LTP. A trace in

LTP either ends with a forbidden send event leading to an invalid state, or it contains

all the test-purpose events except for the forbidden events and ends in an accept state.

Thus, if the send event of a forbidden message is encountered in the system model

(during test generation) and there is an outgoing transition labeling this send event

from the current state of test-purpose LTS LTP, then LTP will move to an invalid end

state. For example, the LTS corresponding to the test-purpose shown in Figure 8-3(a)

appears partially in Figure 8-3(b). In state t7 of the LTS, we see three possibilities —

(a) event e5 occurs (which corresponds to sending of forbidden message Done) leading

the test-purpose LTS to an invalid end state t10, (b) the next non-forbidden event in

the test-purpose, event e7 (sending of message Disconnect) occurs, progressing the

test-purpose eventually to an accept state t9, or (c) any other event occurs, leaving

the test-purpose LTS in its current state t7.

Let ActTP be the set of events appearing in the test-purpose SMSC STP. Then, we

define LTP = (T,→TP, t1, I, A), where T is the set of LTP states,→TP⊆ T×ActTP×T

is the transition relation describing LTP, t1 is the initial LTP state, I ⊆ T is the
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(possibly empty) set of invalid states, and A ⊆ T is the set of accept states such that

I ∩A = ∅.

8.2 Test Generation Overview

In this section, we describe the steps in our test generation methodology (see Fig-

ure 8-4) with the help of an example based on the CTAS case-study discussed earlier

in Section 8.1. The goal is to provide readers with a high-level overview of the end-

to-end process, before the technical details of the approach are presented in Section

4. The test generation starts with the following two inputs– (i) a system model

Spec = 〈H,
⋃

p∈P{Vp, v
init
p }〉 with each process class p ∈ P having np ∈ N ∪ {ω}

number of objects (ω represents an unbounded number), and (ii) a user provided

test-purpose TP (see Section 8.1). The overall flow of our test generation method

appears in Fig. 8-4. We now briefly discuss the three steps of this method.

8.2.1 Deriving abstract test case SMSC

Given the system model (as an HSMSC) and the test-purpose (as an SMSC), we

first generate a set of abstract test cases in the form of SMSCs. The abstract test

generation procedure (described in Section 4.1) involves execution of system model

Spec guided by the test-purpose TP (oval 1 , Fig. 8-4). An abstract test case

SMSC corresponds to a finite path in HSMSC H describing the system model and

contains all the test-purpose events (except for the forbidden events) according to the
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Figure 8-4: Overall test generation flow.

partial order specified by the test-purpose SMSC (possibly interspersed with other

events appearing in H). For example, an abstract test case SMSC generated from

the CTAS HSMSC corresponding to the test-purpose shown in Figure 8-3(a) appears

in Figure 8-5(a). The message names appearing in bold italics in the test case SMSC

(Fig. 8-5(a)) represent the matching events in the test-purpose (Fig. 8-3(a)). To

reduce visual clutter, we have omitted the object selectors and post-conditions for

certain events. Further, various intermediate messages exchanged are also not shown

in the test case SMSC; these are represented as broken line segments (≈) along

lifelines in Figure 8-5(a). The abstract test case shown in Figure 8-5(a) represents an

unsuccessful weather update scenario for the Clients connected to CM.
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Figure 8-5: An abstract test case (corresponding to test-purpose shown in Fig. 8-3(a))
and two templates for it.

8.2.2 Deriving templates

For testing a system implementation, concrete test cases need to be derived in the

form of MSCs from the abstract test case SMSCs. A straightforward approach for

doing this is by executing an abstract SMSC S with an initial configuration com-

prising of concrete objects. During execution, we maintain the individual state of

each object, instead of monitoring only the count of objects in a given state as in

the abstract SMSC semantics (explained in Section 2). We will thereby obtain differ-

ent MSC execution traces that will represent various possible concrete instantiations

of the abstract test case, for the given configuration. In such a concrete test case

MSC, a symbolic lifeline representing process class p in S, is replaced by concrete

lifeline(s) representing the p objects specified in the initial configuration. However,

this approach of directly deriving concrete tests from the abstract test cases suffers
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from several major drawbacks.

First, it may be difficult to determine the minimum number of objects for various

process classes that guarantees generation of at least one concrete test case from an

abstract test case. Note that a single object in a process class may not be able to

execute all the events shown on the process class lifeline.

Second, many of the concrete test cases generated corresponding to an abstract test

case may be redundant, differing only in the identities of objects playing various

lifelines, but representing essentially the same behavior. For example, if we switch

the lifeline names of the 3 clients shown in Fig. 1(b), we will get a new MSC scenario,

which will however, depict the same core behavior (a client object sending a No

message).

Third, the whole test generation has to be repeated each time there is a new object

configuration, consisting of a different number of objects. This will make testing very

inefficient, since it will involve repeated execution of the abstract test case, while

maintaining the individual states of a potentially large number of objects.

In order to avoid the above drawbacks, we introduce an intermediate representa-

tion between abstract and concrete test cases, called templates (oval 2 , Fig. 8-4).

A set of templates derived from an abstract test case represent behaviorally distinct

realizations of the test case, without requiring object identities to be maintained. For

example, let us consider the abstract test case in Figure 8-5(a). It is obtained from

the CTAS model with an unbounded number of Client objects (i.e. nClient = ω) and,
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one object each in the CM and WCP classes (i.e. nCM = nWCP = 1). On the Client

lifeline, the two No events with existential abstraction indicate the possibility of two

distinct ways in which this abstract test case may be realized; in one case, we can

have the same concrete client object executing the two No events, while in the other,

we may have two different client objects for the two events. The exact identities of

these objects are irrelevant, what matters is whether the same or different concrete

object(s) are selected, since from a testing perspective, they represent two different

system behaviors. We capture these behaviors through templates.

The two templates corresponding to the abstract test case in Figure 8-5(a) are

shown in Figures 8-5(b) and 8-5(c). Figure 8-5(b) depicts the case when a single

Client object sends two No messages to the CM. This object is represented by the

concrete lifeline labeled ’Client’. In contrast, Figure 8-5(c) depicts the case when

two different Client objects (both labeled ’Client’) send the two No messages to the

CM. In both these cases, all other Client objects are symbolically represented by the

marked lifeline (’Client+’); they execute the other events shown on the Client lifeline

in the abstract test case, and are behaviorally similar.

Templates offer a number of advantages in generating concrete test cases from

abstract ones:

1. The minimum number of objects required to derive concrete test cases from

each template is evident from the template itself. For each process class, this

is the number of lifelines of that class (including the marked lifeline) present in
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the template. For example, the minimum number of Client objects required to

generate a concrete test case from the template in Figure 8-5(b) is 2, and that

from the template in Figure 8-5(c) is 3.

2. Each template represents a behaviorally distinct realization of the corresponding

abstract test case such that, a concrete test case derived from one template

cannot be derived from another. Further, in Section 4.2 we will present an

algorithm to automatically generate all possible templates from an abstract

test case.

3. Concrete test cases for different object configurations (differing in number of

objects in certain classes) are obtained directly from templates (which need to

be generated only once). This involves simple instantiation of the templates

with concrete objects, and involves no execution of behavior, as explained in

Section 4.3.

We now formally define templates and present some key properties.

Definition 1 (Templates). Let S be an abstract test case SMSC. The templates

derived from S is a set T of MSCs where — a template captures a projection of

events from a symbolic lifeline lp representing process class p in S, to one or more

lifelines from process class p (represented as Cp) such that,

1. The projected events (from lp to lifelines in Cp) follow the top-down event or-

dering along lp.
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2. An existential event from lp appears along exactly one lifeline in Cp, while a

universal event from lp appears along all lifelines in Cp such that– the event se-

quence (from top to bottom) along a lifeline l in Cp captures a feasible execution

path in the control-flow of process class p (i.e. events along l can be executed by

a single p-object).

A lifeline with only universal events projected along it is called a marked lifeline,

while we refer to the remaining non-marked lifelines as concrete lifelines.

Note that, while a concrete lifeline denotes exactly one object, a marked lifeline

from process class p represents all objects of class p other than those representing

the concrete p-lifelines. Consequently, for each class p a template has either one or

zero marked lifeline, depending on whether or not the remaining p-objects (i.e. those

not assigned to any concrete p-lifeline) participate in the given template by executing

some common events.

Since our template generation involves checking feasible control flows, a comment

on this matter is in order. Our template generation procedure does not involve

expensive static checks on infeasible/feasible control flows. Instead, we execute the

abstract test case SMSC (using SMSC operational semantics), and infeasible flows are

found in course of the execution. The detailed description of our template generation

algorithm appears later in Section 8.3.2.

We now state some key properties of our templates.
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Theorem 1. Let S be an abstract test case SMSC and T be the set of templates

derived from S. Then,

1. For a process class p, a template in T contains at most one marked lifeline.

2. The number of lifelines in each template in T is finite.

3. The number of templates in T is finite (i.e. |T | ∈ N).

Proof. Let np
e (np

u) be the total number of existential (universal) events from process

class p appearing in the abstract test case SMSC S.

1. For a process class p, a template in T contains at most one marked lifeline. We

prove this by contradiction. Let there be more than one marked lifeline from

process class p in a template. Recall that each lifeline in a template represents

a feasible execution path in p’s control flow. Further, events along a marked

lifeline will be executed by all the p-objects other than those assigned to the

concrete (or unmarked) lifelines. Now, all p-objects are initially in the same

execution sate and it is not possible for any p-object to simultaneously execute

along more than one path in p’s control flow. Hence, the contradiction.

2. From the definition of templates (Defn. 1, p. 202) we know that each existential

event in the abstract test case SMSC S appears along exactly one (concrete)

lifeline in a template. Hence, the total number of concrete lifelines from process

class p in a template is bounded by the number of existential p-events in S,

i.e. |np
e|. Further, from (1) above we know that there can be at most one
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marked lifeline from class p in a template. Hence, the number of p-lifelines in

a template lie between 1 to 1+|np
e|, thus bounding the total number of lifelines

in a template.

3. From (2) above, the existential events from a process class p can appear along

k ∈ [1, |np
e|] lifelines in a template corresponding to the abstract test case S.

Further, from the definition of templates (see Defn. 1, p. 202) we know that a

universal p-event appears along all lifelines (including the marked p-lifeline) if

permitted by the p’s control flow. Therefore, to determine an upper bound on

the number of templates of a given abstract test case, it is sufficient to determine

for each process class p all possible ways in which existential p-events can appear

along k ∈ [1, |np
e|] lifelines. For a given k we denote this quantity as Uk

p , which

is same as the number of ways in which |np
e| distinct objects can be distributed

into k identical boxes such that each box contains at least one object. Value of

Uk
p is determined by the expression S|np

e |,k defined as follows [67]:

(1) Sn,1 = 1, Sn,n = 1

(2) Sn,m = m× Sn−1,m + Sn−1,m−1

Since k varies from 1 to |np
e|, there are a maximum of Up =

∑|np
e|

i=1 U i
p ways

in which existential p-events can appear along concrete lifelines in a template.

Hence, the total number templates is bounded by
∏

p∈P Up where P is the set

of processes appearing in the abstract test case S.
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8.2.3 Deriving concrete tests

The final step in our test generation process involves deriving concrete test case MSCs

from various templates (oval 3 , Fig. 8-4). It takes as input a user provided object

configuration (defined in the following), specifying the number of objects in a process

class p, if the number of objects in p is originally unbounded.

Definition 2 (Object configuration). Let Spec = 〈H,
⋃

p∈P{Vp, v
init
p }〉 be a system

model with np ∈ N ∪ {ω} objects in class p. An object configuration with respect

to Spec is defined as
⋃

p∈P Op, where Op is a set of objects of class p in their initial

state (determined by vinit
p ) such that |Op| ∈ N : |Op| = np, if np ∈ N and |Op| ≥ 1

otherwise (i.e. when np = ω).

Given an object configuration
⋃

p∈P Op, a concrete test case MSC is derived from

a template M by simply assigning concrete objects from Op to lifelines corresponding

to class p in the template. For each concrete lifeline l in template M involving p

we assign one concrete p-object. Once the (unmarked) concrete p-lifelines have been

assigned objects, all the remaining p-objects are assigned to the marked lifeline in p

(replicating the marked lifeline and the events appearing along it). Recall that there

can be at most one marked lifeline for a process class p (Thm. 1).

For example, for an object configuration with three Client objects (and one object

each of type CM and WCP) concrete test cases are obtained from the two CTAS
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templates shown in Figure 8-5. In the first template (Fig. 8-5(b)), one Client object

is assigned to the concrete Client lifeline labeled ‘Client’ and, the remaining two

objects are assigned to the marked lifeline labeled ‘Client+’. In the second template

(Fig. 8-5(c)), two objects are assigned to the two concrete lifelines labeled ‘Client’, and

the only remaining Client object is assigned to the marked lifeline labeled ‘Client+’.

We now elaborate on our test generation method.

8.3 Test Generation Method

In the following, we elaborate the various steps in our test generation methodology.

The steps include abstract test generation (oval 1 , Fig. 8-4), template generation

(oval 2 , Fig. 8-4) and concrete test generation (oval 3 , Fig. 8-4).

8.3.1 Abstract test-case generation

Let Spec = 〈H,
⋃

p∈P{Vp, v
init
p }〉 be a system model with process class p ∈ P having

np ∈ N ∪ {ω} objects, and TP be a user provided test-purpose. Abstract test case

generation involves exploring various paths in the HSMSC H modeling the system

requirements up to a given depth bound. A path in H is reported as a test-case if

it contains all the test-purpose events (except for the forbidden events) according to

the partial order specified by the test-purpose SMSC STP, possibly interspersed with

other events appearing in H .

For generating abstract test cases, we exploit the abstract execution semantics of
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Algorithm 2: testGen(n,C,t,d,p): abstract test generation

Input: n – current node of HSMSC H
Input: C ∈ CSpec – current abstract system-state
Input: t – current state of test-purpose LTS LTP

Input: d – current exploration depth of HSMSC H
Input: p – current path being generated in HSMSC H
Output: Set of abstract test-cases

if d ≤ D then /* D: user given depth-bound */1

(t′, C ′)← execute(t, C, n);2

if t′ = accept then3

addTest(p.n) ; /* Add abstract test-case corresponding to the4

current path in H, obtained by concatenating node n to path

p generated so far */

return;5

else if t′ = invalid then6

genWarning();7

return;8

else9

forall sn ∈ succ(n) do /* succ(n) returns all successor nodes of10

n in HSMSC H */

testGen(sn, C ′, t′, d + 1, p.n);11

SMSCs [101]. This allows us to generate abstract test cases for system configurations

with process classes having an unbounded (i.e. ω) number of objects. At the core of

our test generation process is the comparison of test-purpose events with the events

appearing in the system model. Let ActTP, ActSpec denote the set of events appearing

in TP and Spec respectively. We define a relation ‘≈⊆ ActTP × ActSpec’ such that

(a, a′) ∈≈ iff the two events match exactly, or differ only in guards specified as ‘*’

(don’t care) for the test-purpose event a. Recall that, CSpec denotes the set of all

abstract system-states of Spec (see Section 8.1).

The abstract test generation proceeds by exploring paths of increasing lengths
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Figure 8-6: Abstract test case generation.

in the HSMSC H , from length 1 up to a user given depth bound D. A path

l = n0.n1 . . . nk in H corresponds to a sequence of HSMSC nodes (ni’s), where n0

is the initial node. The overall abstract test generation procedure is described in

Algorithm 2. It takes as input five parameters– (i) a node n in the HSMSC H , (ii) an

abstract system-state C ∈ CSpec, (iii) a node t in labeled transition system (LTS) LTP

describing the event linearizations of test-purpose SMSC STP (see Section 8.1.2), (iv)

current exploration depth d of HSMSC H , and (v) current path p (of length d−1) be-

ing generated in H . The procedure is initially invoked using testGen(n0, Cinit, t0, 1, ǫ),

where n0 is the initial node of H , Cinit ∈ CSpec is the initial abstract system-state, t0

is the initial state of LTS LTP and ǫ represents the empty path.

At each step during exploration, when a node ni is visited, the algorithm considers

the SMSC Si associated with node ni, the current abstract system-state C ∈ CSpec,

and current state t in LTP. SMSC Si is then executed at state C following the SMSC
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operational semantics (using transition relation →Spec as described in Section 8.1),

resulting in abstract system-state C ′ ∈ CSpec. While executing SMSC Si, the test

generation algorithm tries to find events in Si, which are equivalent (as per the relation

≈) to the test-purpose events emanating from the current state t in the test-purpose

LTS LTP; the execution of these events advances the test-purpose LTS to a new

state t′ (abstracted as line 2 in Algorithm 2). It is possible that none of the events

in Si is equivalent to an outgoing event from t in LTS LTP, in which case t′ = t.

This is essentially what is captured in the node annotations of the form ‘ni,
(C,t)

(C′,t′)
’

in Figure 8-6, which represents a sample exploration for test generation. One of the

following cases may arise while processing a HSMSC node ni visited during search.

Case 1: (Alg. 2, lines 3–5) All the test-purpose events are matched, i.e. an ac-

cept state is reached in LTP. In this case, the SMSC obtained by the asynchronous

concatenation [8] of SMSCs corresponding to HSMSC nodes along the current path

being explored, is reported as a test case. Moreover, the current path is not further

explored. For example, in Figure 8-6, a test case is found at a depth of 3 at node

labeled with n2, and corresponds to a SMSC S = S0.S1.S2.

Case 2: (Alg. 2, lines 6–8) Execution of an event in Si matches a forbidden event in

LTP leading to an invalid state in LTP. At this point a warning message is generated

(Alg. 2, line 7), so that user may inspect the system model for the possibility of

any error. The search then backtracks and continues along an alternate path. For

example, at node labeled with n3 in Figure 8-6, a forbidden event is matched causing
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the search process to backtrack.

Case 3: (Alg. 2, lines 9–11) Otherwise, the current path is continued to be explored

in a similar manner up until the depth bound of D is reached, at which point it

backtracks (see node labeled with nk in Figure 8-6).

Thus, the abstract test case SMSCs derived contain all the test-purpose events

(except for the forbidden events) according to the partial order specified by test-

purpose SMSC STP, possibly interspersed with other events appearing in the SMSC

model.

The running time for Algorithm 2 is O(|EH|
D.NH .|ET |.D), where EH is the max-

imum number of outgoing edges from a node in the HSMSC H , ET is the maximum

number of outgoing edges from a node in the test-purpose LTS LTP, and NH denotes

the maximum number of events in a SMSC corresponding to a node in HSMSC H .

The term |EH |
D determines the maximum number of paths that can be explored

in HSMSC H for a depth bound of D. While for each path explored, NH .|ET |.D

determines the maximum possible comparisons between the system-model and test-

purpose events.

To formally describe the test generation process discussed above, we define a satis-

faction relation between a test-purpose TP and a system model Spec in the following.

Recall that, ΣSpec represents the set of process expressions describing Spec, CSpec de-

notes the set of system-states of Spec and →Spec captures the abstract execution

semantics of Spec (Section 8.1).
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Definition 20. Satisfaction relation. Let Spec be a given system model and LTP =

(T,→TP, t1, I, A) be the test-purpose LTS corresponding to a test-purpose TP. Then,

relation ≃⊆ T × (ΣSpec × CSpec) is a satisfaction relation s.t. ∀t ∈ T\I, s1 ∈ ΣSpec,

c1 ∈ CSpec: t ≃ (s1, c1) iff

1- t ∈ A∨

(∃ a ∈ ActTP, t′ ∈ T\I,

w = b1 . . . bn ∈ Act+Spec, si ∈ ΣSpec, ci ∈ CSpec, 1 < i ≤ n + 1•

2- (c1 : s1
b1→Spec c2 : s2 . . .

bn→Spec cn+1 : sn+1

3- ∧ ∀a′ ∈ ActTP, t′′ ∈ T, 1 ≤ i < n· (t
a′

→TP t′′ =⇒ ¬(a′ ≈ bi))

4- ∧ t
a
→TP t′

5- ∧ a ≈ bn

6- ∧ t′ ≃ (sn+1, cn+1)

)

).

Intuitively, the satisfaction relation holds between a test-purpose LTS LTP’s state

t ∈ T and a process expression s1 ∈ ΣSpec describing the system model Spec at a

given system-state c1 ∈ CSpec (i.e. t ≃ (s1, c1)) in the following cases–

a) t ∈ A (Defn. 20, line 1), i.e. t is an accepting state in the test-purpose LTS LTP.

This indicates that all (non forbidden) test-purpose events have been matched,

and hence the test-purpose is satisfied.
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b) There exists an event execution sequence b1 . . . bn from s1 at system-state c1, re-

sulting in process expression sn+1 and system-state cn+1 with s2, . . . , sn (c2, . . . , cn)

as the intermediate process expressions (system-states)– see (Defn. 20, line 2).

In this case, none of the following events –b1, . . . , bn−1– are equivalent (as per

relation ≈) to any test-purpose event labeling an outgoing transition from state

t in the test-purpose LTS LTP (Defn. 20, line 3). Only event bn is equivalent

to a test-purpose event a, labeling an outgoing transition from t, with t′ as

the destination state in LTP (Defn. 20, lines 4 & 5). Further, the satisfaction

relation t′ ≃ (sn+1, cn+1) holds recursively (Defn. 20, line 6).

8.3.2 Template generation

Once abstract test cases are obtained in the form of SMSCs as described above, we

derive a set of templates (see Def. 1, p. 202) corresponding to each abstract test case.

The template generation takes place in two phases– (i) execution of the given ab-

stract test case SMSC S using our abstract SMSC execution semantics (see Sec. 8.1),

followed by (ii) derivation of templates from various system states reachable after ex-

ecution of S (from a given initial state) in step (i). We now discuss these two phases

in more detail.
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Abstract test case execution

In the first phase of template generation, the given abstract test case SMSC S is exe-

cuted using our abstract execution semantics for SMSCs (see Section 8.1). However,

for template generation, an extended version of the abstract system-states is used

during the execution. For convenience, we refer to an extended abstract system-state

simply as extended-state. Compared to the abstract system-state, in addition to

maintaining the local state information, an extended-state also maintains the list of

events executed by various objects. During template generation, this additional in-

formation enables distinguishing among the objects based on the events executed by

them.

We now describe the concept of extended-states with the help of an example.

Consider the Client class consisting of variables cl status and v from the CTAS case

study. An abstract system-state for the Client class consists of tuples of the form

〈val, n〉, where val ∈ V al(VClient) and n ∈ N ∪ {ω} (ref. Section 8.1). Let EClient

denote the set of all Client events occurring in the CTAS system model. Then, an

extended-state for the Client class will consist of triples of the form 〈val, h, n〉, where

val ∈ V al(VClient), h ∈ E∗
Client and n ∈ N ∪ {ω}. For a given triple 〈val, h, n〉,

h is the list of events executed by the objects represented by this triple. Consider

the execution of an event e corresponding to the receive of message ClientPostRvrt

in SMSC NotRcvWthr (see Fig. 8-1(c)), at an extended-state for Client class given

by– {〈(cl status = 5, v = 0), h1, 3〉, 〈(cl status = 5, v = 1), h2, 1〉}, where h1, h2
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are some execution histories. The resulting extended-state after execution of e is

{〈(cl status = 7, v = 0), h′
1, 3〉, 〈(cl status = 7, v = 1), h′

2, 1〉}, where h′
1 and h′

2 are

obtained by concatenating event e to event list h1 and h2 respectively.

The algorithm for executing a SMSC using extended-states is outlined in Algo-

rithm 3. It takes as input an abstract test case SMSC S and set of initial extended-

states ES given by– {
⋃

p∈P{〈v
init
p , [], np〉}}, where vinit

p is an initial valuation of vari-

ables of process class p, [] represents an empty event list, and np ∈ N ∪ {ω} is the

number of objects in class p, where ω represents an unbounded number of p objects in

their initial state. At any point during the execution of the abstract test case SMSC

S, the procedure maintains the set of all reachable extended-states from the initial

set of extended-states. At each step during execution while considering an event e

from S, the set of all reachable extended-states is derived from the current set of

extended-states (Alg. 3, lines 3–31). This is done by considering each extended-state

E in the current extended-state set ES one by one, and various triples within it that

can execute e. If e is an existential event (Alg. 3, lines 5–18), for each triple in E

which satisfies the guard of e, an object from it is chosen to execute e. This results

in a new extended-state, with local state (val) and event history (h) of the executing

object updated with the effect of execution of e (Alg. 3, lines 7–18). In this case,

multiple extended-states may be generated from a single extended-state. This is be-

cause multiple object-states in an extended-state may satisfy the guard of e. If e

is a universal event (Alg. 3, lines 19–30), then a single extended-state is generated
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Algorithm 3: SMSC execution using extended-states

Input: S – abstract test case SMSC
Input: ES – initial set of extended-states
Output: Updated set of extended-states
T ES ← ∅ ; /* Temporary set of extended states */1

while not all S events have executed do2

e← next S event to be executed ; /* e: an enabled-event chosen3

according to partial ordering of S */

forall E ∈ ES do /* E: extended-state */4

if e is an existential event then5

forall 〈val, h, n〉 ∈ E do6

if val satisfies the guard of event e then7

val′ ← effect of execution of e on val;8

if 〈val′, h.[e], k〉 ∈ E then /* k ∈ N */9

E ′ ← E\{〈val′, h.[e], k〉} ∪ {〈val′, h.[e], k + 1〉};10

else11

E ′ ← E ∪ {〈val′, h.[e], 1〉} ;12

n′ ← n− 1 ; /* ω − 1 = ω */13

if n′ == 0 then14

E ′′ ← E ′\{〈val, h, n〉}15

else /* n′ > 0 otherwise */16

E ′′ ← E ′\{〈val, h, n〉} ∪ {〈val, h, n′〉};17

T ES ← T ES ∪ {E ′′};18

else if e is a universal event then19

bool check ← false;20

E ′ ← ∅ ; /* Temporary extended-state */21

forall 〈val, h, n〉 ∈ E do22

if v satisfies the guard of event e then23

v′ ← effect of execution of e on val;24

E ′ ← E ′ ∪ {〈val′, h.[e], n〉};25

E ← E\{〈val, h, n〉};26

check ← true;27

if check == true then28

E ′ ← E ′ ∪E;29

T ES ← T ES ∪ {E ′};30

ES ← T ES; T ES ← ∅;31

return ES;32
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from a source extended-state containing triple(s) satisfying e’s guard; the local states

and event histories of all objects that can execute e are updated with the effect of

execution of e in the resulting extended-state.

We now illustrate the above process using a small example. Consider a sample

abstract test case SMSC shown in Figure 8-7. It contains a lifeline representing pro-

cess class A with an unspecified number of objects, and a lifeline representing process

class B with a single object. Assume, that A contains a local variable x initialized

to 0, while B has no local variables. We now consider execution of the SMSC in Fig-

ure 8-7, from the initial set of extended-states given by {{〈x = 0, [], ω〉A, 〈ǫ, [], 1〉B}}.

For convenience, we have added process-class name as subscript to each object-state

triple within an extended-state. The first element of B’s object state is empty (or ǫ)

since there are no local variables in B. For executing event e1 (see Fig. 8-7), since

its guard is true, any A object can be chosen to execute it. An object from A-state

〈x = 0, [], ω〉, present in the only available initial extended-state, is chosen to execute

e1. The resulting extended-state with the state and event-set of the executing object

updated is {〈x = 1, [e1], 1〉A, 〈x = 0, [], ω〉A, 〈ǫ, [], 1〉B}. Next, e2 is executed by the

object in B-state 〈ǫ, [], 1〉. The resulting set of extended-states is shown as the first

entry in Table 8.1. In a similar manner various events in Figure 8-7 are executed

one by one. Some other extended-state sets reached during execution are shown in

Table 8.1. Note that, the final set of extended-states (third entry, Table 8.1) contains

two extended-states. These arise due to two different choices of object-states of A for
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Figure 8-7: Example test case SMSC.

Table 8.1: Extended-states reachable during template generation.
Sets of reachable Extended-states

1. After e1, e2 {{〈x = 1, [e1], 1〉A, 〈x = 0, [], ω〉A, 〈ǫ, [e2], 1〉B}}
2. After e1–e4 {{〈x = 1, [e1], 1〉A, 〈x = 2, [e3], ω〉A, 〈ǫ, [e2, e4], 1〉B}}
3. Finally {{〈x = 3, [e1, e5], 1〉A, 〈x = 2, [e3], ω〉A, 〈ǫ, [e2, e4, e6], 1〉B},

{〈x = 1, [e1], 1〉A, 〈x = 3, [e3, e5], 1〉A, 〈x = 2, [e3], ω〉A,
〈ǫ, [e2, e4, e6], 1〉B}}

executing event e5, at the extended-state reached after executing events e1 to e4.

Constructing templates

In the second phase, corresponding to each final extended-state E obtained after

executing abstract test case SMSC as described above, we construct a template (see

Def. 1, page 202) TE as follows. For each triple 〈 val, h, k〉 in E we do the following. If

k is finite, we add k lifelines (along with the events appearing in the execution history

h) in the template TE . If however, k = ω (i.e., 〈 val, h, k〉 represents unbounded

number of objects), we create a single lifeline representing one or more objects for

this triple provided the execution history is non-empty (i.e., h 6= []). This corresponds

to our interpretation of ω as n ≥ 1 objects, where the number n is unbounded. Note
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that, the event execution list of a triple with an unbounded number of objects will

contain only universal events. This is because, in an abstract test case an existential

event can occur only a finite number of times, with each occurrence executed by a

single object. We call a lifeline representing one or more objects as a marked lifeline

(see Def. 1, p. 202) and annotate it with a + sign in the template. During concrete

test generation, these marked lifelines are blown up into several lifelines depending

on the supply of objects in the concrete system. There is at most one marked lifeline

for each process class.

Once the lifelines are created in the template along with the events they participate

in, completing the template SMSC is trivial. We simply connect the send events with

their corresponding receive events as per the partial order prescribed by the abstract

test case SMSC.

Theorem 2. A template derived corresponding to an abstract test case S using the

approach described in Section 8.3.2 satisfies the properties specified in Definition 1

(page 202. That is, a template T captures a projection of events from a symbolic

lifeline lp representing process class p in S, to one or more lifelines from process class

p in T (represented as Cp) such that,

1. The projected events (from lp to lifelines in Cp) follow the top-down event or-

dering along lp.

2. An existential event from lp appears along exactly one lifeline in Cp, while a

universal event from lp appears along all lifelines in Cp such that– the event se-
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quence (from top to bottom) along a lifeline l in Cp captures a feasible execution

path in the control-flow of process class p (i.e. events along l can be executed by

a single p-object).

Proof. 1. Template T is constructed from a final extended-state E reached after

execution of abstract test case S as described in Sections 8.3.2 and 8.3.2. Each

lifeline l in T corresponds to a triple tr = 〈val, h, n〉 in E such that h 6= [],

with the sequence of events in execution list h appearing along the lifeline l.

Assuming that triple tr represents objects of process class p– (i) events in h will

be the events appearing along symbolic lifeline lp from class p in S, and (ii) the

event sequence (in h) would follow the top-down ordering along lp as per our

SMSC operational semantics [101].

2. From lines 4–18 of Algorithm 3 we observe that exactly one object is chosen to

execute am existential event from a triple satisfying the event guard (lines 6–7,

Alg. 3) in a given extended state E (line 4, Alg. 3). Therefore, each occurrence

of an existential event can appear in execution history of exactly one object.

Note that, a triple tr = 〈 val, h, k〉 containing existential events in its event

execution list h represents k ∈ N objects executing k distinct occurrences of

an existential event (in h) appearing along a symbolic lifeline in S. Further, tr

will be blown up into k concrete lifelines in T . Hence, each occurrence of an

existential event in S will appear along exactly one lifeline in T . The different

object choices (modulo object identity) for executing an existential event are
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mutually exclusive and lead to different possible final extended states (and thus

resulting in different templates).

On the other hand, while executing a universal event e, all object choices that

can execute e from a given extended-state E are considered together to execute

e, resulting in a new unique extendbed state E ′ (lines 19–30, Alg. 3).The ex-

ecution histories of all triples whose state satisfies e’s guard (line 22, Alg. 3)

will be appended with e after its execution. Thus, eventually when template

lifelines are created from the final extended states, the event e will appear along

all lifelines that executed e.

Furhter, at any point during the execution of abstract test case SMSC S for

template generation (Section 8.3.2), the execution history of a triple withing

an extended-state contains only the sequence of events that can be executed by

the objects of that triple from their initial states (thus representing a feasible

execution in their control flow). This can be easily shown using induction on

the event execution sequence.

Lemma 3. For an abstract test case S, our template generation procedure constructs

the set of templates T as defined in Definition 1 (page 202).

Proof. As shown in Theorem 2, a tempate generated by our procedure satisfies the

propperties specified in Definition 1 (page 202). We now only need to show that our

template generation procedure constructs the complete set T . From the definition
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Figure 8-8: Templates for abstract test case shown in Fig. 8-7.

of templates and Theorem 1 we can easily see that different templates arise due to

different possible projections of existential events from a symbolic lifeline in S to

corresponding lifelines (of the same process class) in a template in T . Our template

generation procedure constructs a template from a final extended-state (see Sec. 8.3.2)

reahced after executing S (see Sec. 8.3.2). Now, while executing S, for each existential

event e we consider all reachable extended states at that point and each object within

an extended state (modulo the object identity) that can execute e (lines 4–18, Alg. 3).

These choices capture all possible projections of e in the final resulting templates.

For illustration, recall that the final extended-states of the abstract test case SMSC

in Figure 8-7 were captured in the third entry of Table 8.1. Now, one template test

case each is generated for the two final extended-states in Table 8.1. The two template

test cases appear in Figure 8-8.

8.3.3 Concrete test case generation

Once templates are obtained from an abstract test case, concrete test cases in the

form of MSCs are then derived from the templates. Given (i) a template derived from
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an abstract test case T , corresponding to a system model Spec and test-purpose TP,

and (ii) an object configuration
⋃

p∈P Op (see Def. 2, p. 206) corresponding to Spec,

we generate concrete test case MSC(s) from the given template as follows. Given

the set of objects Op for each process class p, we simply assign concrete objects to

the lifelines of the template which correspond to class p. For each lifeline l involving

p we assign one concrete p-object, provided l is not a marked lifeline. Recall that

there can be at most one marked lifeline for a process class p. If class p has a marked

lifeline we assign all remaining p-objects to it once the unmarked lifelines involving

p are assigned objects. Note that, the number of objects in Op should be equal to

or greater than the total number lifelines representing process class p in the given

template in order to obtain concrete test case(s) from it. Next, we define the set

of minimal concrete tests, which are derived from the set of templates (see Def. 1,

p. 202).

Definition 3 (Minimal concrete tests). Given an abstract test case SMSC S derived

from system model Spec, and an object configuration OC (see Def. 2, p. 206) for

Spec, the set of minimal concrete tests consists of concrete test cases obtained by

instantiating each template T derived from S exactly once (if for each process class

p, the configuration OC has at least as many p-objects as the number of p-lifelines in

T ), or zero times (otherwise).

The set of all concrete test cases can be generated from the minimal concrete tests

by considering all possible object choices for various lifelines.
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Figure 8-9: Minimal concrete test cases.

For the abstract test case shown in Figure 8-7, two template tests were generated

(Figure 8-8). Then, for a concrete configuration with four A objects, two concrete

test cases are generated (shown in Fig. 8-9) for these two templates. As can easily be

inferred from the guards of A-events e1, e3 and e5 (see Figure 8-7), any object can be

chosen to execute events e1 and e5, while e3 is to be executed by all objects that have

not executed e1. Thus, with four A objects, a total of 4 × 1 × 4 = 16 concrete test

cases can be generated, out of which we only test the two test cases of Figure 8-9.

We deem two concrete test cases as behaviorally distinct, if one cannot be derived

from another simply by switching object identities. Further, we call a set C of concrete

test cases generated from an abstract test case S to be optimal, if all test cases in C

are (pair-wise) behaviorally distinct and no new behaviorally distinct test case (with

respect to C) can be generated from S.

Theorem 4. Given an abstract test case S, a set of minimal concrete tests derived

from S is optimal.

Proof. Let T be the set of templates derived from S. From the definition of templates

(see Def. 1, p. 202) we know that each template captures a projection of events from
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a symbolic lifeline in S to one or more lifelines in a template in T . For a template

t ∈ T and a process class p, let Ct
p denote the set of lifelines from class p in t. Then,

following holds–

∀t1, t2 ∈ T , ∃p ∈ P such that :

(i) ∃l ∈ Ct1
p · ∀l

′ ∈ Ct2
p , l 6= l′, and

(ii) ∃l ∈ Ct2
p · ∀l

′ ∈ Ct1
p , l 6= l′.

Thus, clearly a concrete test derived from t1 cannot be derived from t2, since here

will be at least one lifeline in a concrete test case MSC derived from t1 (t2) which will

be behaviorally distinct from all lifelines in t2 (t1). Hence, the minimal concrete tests

(see Def. 3, p. 223) derived from S are all behaviorally distinct. Further, we know

that for a given object configuration (see Def. 2, p. 206) the concrete tests derived

from a template will only differ in object identities of various lifelines, and hence are

not behaviorally distinct. Thus, if the set of minimal concrete tests is not optimal,

this implies there exists another template corresponding to S not present in T , which

is a contradiction.
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Figure 8-10: Summary of our test generation flow.
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8.3.4 Summary

To summarize, we recapture our overall test generation flow in Figure 8-10. While the

left column outlines the steps involved in test case generation, the right column indi-

cates if a step needs to be repeated to generate tests for different object configurations

(see Def. 2, p. 206). As can be easily seen, once templates have been generated for

a given abstract test case, concrete test cases for different object configurations can

be obtained directly from these templates without re-modeling or re-executing the

system. This makes our approach highly portable, as evidenced by our experiments

(see Section 8.5.2).

8.4 Test-execution Setup

Having derived the concrete test case MSCs as described in the last section, we briefly

discuss the experimental setup for testing a system implementation using these test

cases. As mentioned earlier, the implementation under test (or, IUT) can either be

constructed manually, or generated (semi-) automatically from another system model.

Initially, the lifelines in a test-case MSC are divided into two categories– (a) those

representing the components constituting the implementation under test (IUT), and

(b) tester lifelines, representing the test environment for the IUT components. The

tester-components are then generated from these tester lifelines to interact with, and

test the IUT components. Further, a master-tester component is also generated for
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Figure 8-11: Design flow with detailed Test execution architecture.

the purpose of giving the test verdicts.

The overall test-architecture consisting of IUT components, tester-components

and the master-tester, is shown in Figure 8-11. The IUT components labeled as

Ck+1 . . . Cn, correspond to the IUT lifelines in a test-case MSC (numbered k + 1 . . . n

in the test-case MSC in Figure 8-11). The double solid (dashed) arrows represent the

flow of input (output) messages with respect to IUT, among various components in

the test setup. The IUT input events are also referred to as controllable events, as

sending inputs is under the control of the tester-components. Similarly, the output

events from IUT are called observable events, since they can only be observed by the

tester components. This setup corresponds to a distributed testing architecture [116],

where multiple testers are used to stimulate and observe the IUT components. We
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Figure 8-12: Generation of tester-components from a test-case MSC.

now discuss the derivation of tester components corresponding to tester lifelines.

Tester Component To obtain the tester components from a test case MSC, we

follow a distributed tester synthesis approach similar to [63]. The test case MSC is

viewed as a partial order 〈E,≤〉 over various events E appearing in it. The partial

order ≤≡ (≤l ∪ ≤m)∗ is the transitive closure of ≤l and ≤m, where ≤l is the linear

ordering of events from top to bottom along all lifelines, and ≤m represents the

ordering between a message send es and its corresponding receive er, s.t. es ≤m er. A

sample test-case MSC and its corresponding partial order are shown in Figures 8-12(a)

and 8-12(b). Note that a send (receive) event corresponding to a message m is shown

as !m (?m) in Figure 8-12.

For generating the tester components, a reduced partial order 〈ET ,≤T 〉, called test

graph, is obtained from the test-case MSC’s partial order. It contains only controllable

and observable events ET (⊆ E) with respect to the IUT components in test case

MSC, and a partial ordering ≤T over them such that, ∀e, e′ ∈ ET , e ≤T e′iff e ≤ e′.

For the test-case example shown in Figure 8-12(a), where lifelines A and B represent

the tester lifelines, its test graph is shown in Figure 8-12(c).
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Figure 8-13: Generated tester-components for test-case MSC shown in Fig. 8-12(a).

In the next step, synchronization messages are introduced in the test graph to

preserve the causality constraints between the events appearing along the distinct

tester lifelines. For a direct ordering between two events appearing along different

lifelines, a synchronization send is introduced after the first event along its lifeline,

while the corresponding receive is added before the second event along its lifeline.

Further, after the last event along each tester lifeline in the test graph, sending of a

pass message is also added. These messages are received by the master-tester (not

shown here) based on which it gives test verdicts. The test graph for the above

example, with synchronization messages (s1 and s2), and pass verdicts appears in

Figure 8-12(d).

From the resulting test graph detailed in the preceding, a local test graph for each

tester lifeline is derived by taking a projection over the events appearing along that

lifeline (shown in Figure 8-12(e)). A tester component is then derived as a sequential

automaton from each local test graph by considering all possible event linearizations.
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Further, in these automatons, from each node with an outgoing transition labeled

with a receive event ?er, two outgoing edges labeled with θ and ?¬er respectively, are

added. Here θ represents a timeout event, which occurs if no input is received within

a given timeout value. On the other hand, ?¬er represents the receipt of a test case

event other than er. Both these events (θ and ?¬er) result in sending of fail verdict

to the master-tester. The automata for tester lifelines A, B are shown in Fig. 8-13.

Test verdicts The master tester gives the final test verdict based on the test ver-

dicts received from various tester-components during test execution. Possible verdicts

given by the master-tester are– (i) pass, if master-tester receives a pass verdict from

all tester components, (ii) fail, if master-tester receives a fail verdict from any tester

component, or (iii) inconclusive, if master-tester receives an inconclusive verdict

from some tester components and no tester component sends a fail verdict. These

verdicts are assigned in accordance with the formal conformance relation ioco [111].

An implementation ioco-conforms to a specification (or, system model), if after the

execution of an implementation trace allowed by the specification, the possible imple-

mentation outputs are those allowed by the specification. The absence of any output

(e.g., due to a deadlock) is also treated as an observable output.
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8.5 Experiments

In this section, we report on three classes of experiments. The first deals with the

performance of our test generation algorithms, the second explores the portability

of our approach across different system configurations, and the third reports on the

efficacy of the concrete test cases we generate in debugging system implementations.

8.5.1 Test generation

Since we use SMSCs for system modeling as well as for test-purpose specification,

our test generation engine is built on top of SMSC operational semantics [101]. The

SMSC operational semantics was encoded earlier as Prolog rules in the XSB logic

programming system [4]. We build our test generation framework (also in Prolog)

on top of these Prolog rules encoding SMSC operational semantics. All experiments

were conducted on a Pentium-IV 3GHz machine with 1GB of main memory.

We consider the overall test generation flow as summarized in Figure 8-10. For the

CTAS example, we derived five test-purposes with the aim of covering its major use-

cases. Test-purposes (TP) 1 and 2 were designed to generate test cases for successful

and unsuccessful connection requests respectively, from a Client object. The remain-

ing three test-purposes (TP-3, 4, and 5) were used to elicit test cases corresponding

to (un)successful weather updates of connected clients via CM. TP-3 represents a

scenario where some Clients are unable to receive the weather update. Subsequently,

all Clients revert back to using the old weather information. In TP-4, all Clients
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are successfully updated with the new weather information. Finally, TP-5 (shown in

Fig. 8-3(a)) captures the scenario where at least one Client fails to either use the new

weather update, or revert back, leading to all Clients getting disconnected.

Abstract test generation For all five test-purposes, abstract test cases were gen-

erated using the procedure outlined in Section 8.3.1. Abstract test-generation results

are shown in Table 8.2 (columns 2–4). For each test-purpose, paths in the CTAS

HSMSC were explored up to a depth of 20. Execution times are reported for gener-

ating either a single (Tab. 8.2, col. 2), or all (Tab. 8.2, col. 3–4) abstract test cases

corresponding to a test-purpose.

Table 8.2: Symbolic Test Generation for CTAS example with exploration depth set
to 20. For generating the concrete tests, we consider 3 Clients.

1 Abst. All Abst. All
TP # test case test cases # Templates Concrete

Time(s) Time(s) Total # Test Cases
1 11.92 46 1 1 3
2 0.02 33 2 2 6
3 3.8 55 4 14 84
4 3.8 58 8 14 84
5 3.9 56 5 20 120

Template and concrete test generation As discussed in Section 8.3.2, from an

abstract test case we first generate a set of templates. A set of minimal/all concrete

test cases is then derived from these templates for a given object configuration (Sec-

tion 8.3.3). In Table 8.2 (col. 5), we report the total number of templates generated

for all abstract test cases for each test-purpose. Concrete test cases were generated
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Figure 8-14: Ratio of All/Minimal no. of concrete test cases for Test-purpose 4.

from these templates for an object configuration consisting of– three Client objects,

one CM object and one WCP object. The number of minimal concrete test cases

obtained for this configuration is same as the number of templates (Tab. 8.2, col. 5),

since all the templates can be instantiated to a concrete test for the given configura-

tion with three clients. We also show the total number of all possible concrete test

cases for each test-purpose (Tab. 8.2, col. 6).

By comparing columns 5 and 6 in Table 8.2 we see that for a given test-purpose

the number of all concrete test cases generated can be significantly greater than the

minimal number of test cases. Moreover, this gap increases as the number of objects

in the system configuration is increased. This is because, the number of minimal test

cases is bounded by the number of templates generated for a given test-purpose (see

Sec. 8.3.3). On the other hand, the number of all possible tests keeps on increasing

with the increasing number of objects. For illustration, ratio of the all to the minimal

number of concrete test cases for test-purpose 4 (TP-4), with increasing number of

clients, is plotted in Figure 8-14.
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Figure 8-15: Test-purpose 4 and a corresponding Concrete test case.

Example. Consider test-purpose 4 (TP-4), shown in Figure 8-15(a). The first two

Done messages in TP-4 reflect the successful connection of two clients to controller

CM (more clients can also be connected, but we need at least two clients for this

test-purpose). The subsequent Update message corresponds to the weather update

request initiated by WCP. Then we have a forbidden message No with don’t care

guards (∗) for both the Client and CM lifelines. Thus, it would match, and hence

avoid generating test cases with any No message sent by a client to CM during the

weather update.

A concrete test case MSC corresponding to TP-4 is partially shown in Figure 8-15(b).

The message names appearing in bold italics represent the matching events in the test-
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Table 8.3: No. of nodes and edges in the (S)MSC-based models constructed for
CTAS.

HSMSC HMSC (3 Clients) HMSC (4 Clients)
# Nodes

18 108 201
(# SMSCs/MSCs)

# Edges 24 157 285

purpose (Fig. 8-15(a)). Initially, two clients c1 and c2 get connected to CM (cm1) by

sending the Connect message, eventually receiving the Done message. Various inter-

mediate messages exchanged during these connection setups are not shown; these are

represented via dotted line segments along lifelines in Figure 8-15(b). Subsequently,

the two connected clients are successfully updated with the latest weather information

via CM.

8.5.2 Portability

We now evaluate one of the key benefits of our approach — portability. By portability,

we mean the relative ease of generating concrete tests for different object configura-

tions, once our templates are generated.

For the purpose of these experiments we constructed two concrete models of the

CTAS case-study using HMSCs. These two models differed in the number of Client

objects– consisting of three and four Clients respectively . In the Table 8.3, we report

the number of nodes and edges in our SMSC based CTAS system model and the two

HMSC models constructed above.

At this point we note that, our SMSC based test generation approach already saves
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us considerable time and effort by avoiding re-modeling the system requirements for

different object configurations. Moreover, we measure the time saved in terms of test

generation for a given object configuration, due to our template-based approach (see

Fig. 8-10). In Table 8.4, we compare “the time taken to generate the minimal set of

concrete tests (see Def. 3, page 223) from our SMSC based model” with “the time

taken to generate the corresponding set of test cases from the HMSC models”. Note

that, for our SMSC based approach, we report the execution times for generating test

cases directly from the templates for different object configurations (since templates

need to be generated only once).

Table 8.4: Comparison of test generation times between a regular MSC-based and
our SMSC-based approach.

HSMSC
HMSC

3 Clients 4 Clients
TP1 0.033 s 38 s 148 s
TP2 0.12 s 35 s 144 s

Only the results corresponding to test-purposes 1 and 2 are shown in Table 8.4,

since exploration did not even terminate (after running for 30 min.) for the other

three test-purposes in the case of HMSC models. This is because of the blow-up in

the number of paths in the concrete HMSC models.

8.5.3 Test execution

We also performed experiments to evaluate the efficacy of our generated tests for

debugging system implementations. In this set of experiments, we worked with two
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models of CTAS — a Statechart model was used to automatically generate a C++

implementation using the Rhapsody tool [100] and a SMSC model was used to gener-

ate test cases which were tried on the C++ implementation. Note that the Statechart

model was derived separately, by a person other than the authors.. We begin by first

explaining our test execution setup.

Table 8.5: Key features of the CM’s Statechart.
No. of No. of No. of No. Unique No. Unique
States Trans. Guards events sent events recvd

25 34 3 13 6

In our experiments, we focused on testing the central controller (CM) compo-

nent of CTAS C++ implementation. The implementation code was generated auto-

matically from the Statechart model of the CTAS requirements using the Rhapsody

tool [100]. In Table 8.5, we present the key features of the CM’s Statechart model.

The C++ code for CM was tested against our minimal set of concrete test cases,

derived using the five test purposes discussed earlier. This testing process led to the

discovery of some significant bugs in the Statechart model of CM, such as missing

transitions, states etc.

We now discuss one of the more subtle bugs discovered while testing against

one of the test cases (see Figure 8-15(b), this was a test case corresponding to the

fourth test-purpose in Fig. 8-15(a)). The execution of this test case resulted in an

fail verdict. The output log produced by the test driver indicated that the tester

components corresponding to– a) Client objects c1 and c2 timed-out while waiting for
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Figure 8-16: Test execution and tracing of test results for Test case 4.

message ClientPostUpd from CM (cm1), and b) WCP object wcp1 timed-out waiting

for the WCPEnable message from cm1. The partially executed trace depicting the

tester components is shown in Figure 8-16(a). The boxes shown group together the

events that correspond to a particular node in the CTAS HSMSC, with the node

name appearing at the top right corner of the box. The last box drawn using dashed

line in Figure 8-16(a) represents an incomplete set of events executed from SMSC

RcvWthr.

For convenience, we show the mapping of various SMSCs to the original CTAS

requirements from which they were derived. From there, the source of error was

discovered in the Statechart description of the CM. The part of the Statechart where
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Figure 8-17: Taxonomy of bugs introduced in Statechart models for the CTAS case
study.

fault was located is shown in Figure 8-16(c). In state s1 the CM waits to receive

the message Yes, and updates a counter count to check if all the clients have replied.

However, we found that Rhapsody interprets this as another (supposedly equivalent)

structure (shown in Figure 8-16(d)). Now, in this case the counter is incremented

after checking the guard count < nClients, instead of doing so before this check. To

ensure that the guards of outgoing transitions from the condition node (marked with

c) are evaluated after count is incremented, a new state s3 was introduced between

state s1 and the condition node, which corrected this fault. The updated structure is

shown in Figure 8-16(e).

Fault-injection and debugging To further test the bug-detection capability of

the test cases derived using our approach, we derived various buggy versions of CM’s
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implementation by manually injecting bugs in CM’s Statechart and generating code

from that via Rhapsody tool. Three different category of bugs (see Table 8.6) were

systematically introduced in the CM’s Statechart for this purpose. The taxonomy of

these bugs is shown in Figure 8-17. Majority of the bugs were introduced by modifying

a transition label in the Statechart, which is of the form trigger[guard]/action.

Here trigger represents the event whose reception triggers this transition, provided

the guard evaluates to true. The action is a set of events (C++ code) executed if

this transition is taken. All these three parts of a transition label are optional.

The first category of bugs involved modification of transition triggers, or of actions

which involved sending event triggers. A total of 33 buggy versions were constructed

in this category. The second category of bugs (6 in all) were constructed by mod-

ifying the guard of each outgoing transition individually from a condition node in

the Statechart. To obtain the third category of bugs, the structure of the Statechart

was modified. Specifically, the targets of various transitions were changed to point to

another node in the Statechart, such that the original target node was still reachable

from the initial Statechart node via an alternate path. A total of 19 buggy versions

were thus constructed.

In order to test the above-mentioned buggy implementations, we used the five

(5) test-purposes discussed earlier. These test-purposes correspond to the main use-

cases of the CTAS example. For these five test-purposes, assuming a concrete system

with two (2) client objects, we derived seven (7) concrete test cases using our test
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generation method. Note that the generation of these seven concrete test cases in-

volved (a) constructing an abstract test case SMSC for each test-purpose (b) deriving

template test case MSCs from the abstract test case SMSCs, and (c) finally deriving

concrete test case MSCs from the template test MSCs by considering the objects in

the concrete implementation being tested.

All the buggy CM implementations mentioned in the preceding were tested against

our minimal set of concrete tests, derived using the five test-purposes discussed earlier.

We deem to have detected a buggy implementation, if it fails at least one test from the

set of minimal concrete test cases we generate. We summarize the results in Table

8.6.

Table 8.6: Use of our generated concrete tests for detecting bugs in C++ implemen-
tation

Bug Total # of # of buggy versions
category buggy versions detected
1. Event 33 33
2. Guard 6 4
3. Structure 19 16

All bugs in the first category were detected. This is because, our test-cases covered

all the main use-cases in CTAS model, thereby covering all messages exchanged in the

system at least once. Since, bugs in the first category involved modifications relating

to send or receive of various messages in the system, they were all detected. For the

second category, two buggy versions remained undetected. Recall that, this category

of bugs involved modifying transition guards. For the two buggy versions which
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remained undetected, the guard modification caused them to ignore some inputs2

sent by the tester components. However, their response to various tester components

was still in accordance with the test cases. Thus, they appeared to behave correctly

based on their outputs and passed all test cases. In the third category, three cases

were left undetected. For these three buggy versions, none of our test cases exercised

the CM’s code beyond the point, where bugs could be detected. CTAS being a

reactive system involves non-terminating executions, detection of these bugs would

require executing more than one test-cases in succession.

As we can observe, using our test generation methodology, we detected over 90%

of the buggy implementations. Note that these implementations were derived from

a Statechart model (independently constructed by a person other than the authors),

different from the SMSC based model used for deriving the test cases.

Instead of trying out minimal number of concrete tests for the five test-purposes,

if we had tried out all possible concrete tests — no more buggy implementations

would have been detected. This is because the total set of concrete tests is simply

obtained by switching the object identities of the minimal set of concrete tests (ref.

Section 8.3.3), and do not test any more behavior than the minimal set of concrete

tests. Thus, our strategy of computing/testing the minimal number of concrete tests

for a given test-purpose can lead to significant productivity enhancement in testing.

2This is allowed by the Statechart semantics in the Rhapsody tool.
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8.6 Discussion

In this chapter, we have presented a model-based test generation methodology for

distributed reactive systems with many behaviorally similar objects, based on our

notation of SMSCs. The key aspect of our approach is the automated generation of

abstract test cases from a system model, followed by generating test case templates

from them. A minimal set of behaviorally distinct concrete test cases can then be

derived directly from these templates for various system configurations.

Our approach benefits the designer by grouping together behaviorally similar tests,

thereby helping him/her comprehend the implementation under test. More impor-

tantly, if the system configuration changes (due to change in number of objects in one

or more classes), the concrete tests can be generated from our templates with very

minimal effort. Various experimental results illustrate the efficacy of our approach.

Acknowledgments Liang Guo constructed the StateChart model of the CTAS

case study.
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Chapter 9

Conclusions and Future Work

The Model-driven design and development of systems is becoming increasingly pop-

ular, and gaining widespread usage due to its various advantages. Various modeling

notations, such as UML, which were earlier used mainly for requirements gathering

and documentation purposes, have now become the main focus of various model-

driven development methodologies. However, it is also becoming clear, that in order

to fully utilize various benefits of model-driven development, directly using existing

notations may not suffice. This is because, the modeling notations are often too

generic, or may simply lack features to support development for a certain category of

systems. The use of Domain Specific Languages (or DSLs) is seen as an important

step in this direction, with major organizations providing initial tools to support de-

sign and development of DSLs, for example, Microsoft’s Domain Specific Language
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Tools1 and Eclipse Modeling Framework2.

In this thesis, we have developed two scenario-based behavioral modeling nota-

tions, targeted towards distributed reactive systems consisting of classes of interacting

processes. Both our notations– Interacting Process Classes (IPC) and Symbolic Mes-

sage Sequence Charts (SMSC), are equipped with an abstract execution semantics

(unlike most of the existing notations), which allow for efficient and scalable vali-

dation of initial system requirements. While IPC supports state-based modeling of

systems with inter-process interactions being specified at a higher level of granularity

than a single message send/receive, SMSC supports purely scenario-based modeling.

We note that, often deciding which notation to use for modeling, depends on the

requirements specification itself [42].

Another interesting and challenging aspect that we have attempted to address

in this thesis is the maintenance of associations in the abstract execution setting.

Though, it is relatively straightforward to handle associations when dealing with

concrete objects, in our abstract execution where objects’ identities or states are not

maintained individually, we over-approximate association information by maintaining

association links among groups of objects. Consequently, spurious behaviors may

arise during abstract execution, which can be detected by checking if there exists

any concrete realization of the given execution trace. Interestingly, we have not seen

association based constraints being explicitly specified or used in various popular

1http://www.domainspecificdevelopment.com/
2http://www.eclipse.org/modeling/emf/

http://www.domainspecificdevelopment.com/
http://www.eclipse.org/modeling/emf/
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notations such as Statecharts or Live Sequence Charts (LSCs).

Finally, we observe that majority of model-based test generation works use state-

based notations as the underlying system model, while scenario-based notations may

be used to specify a test-purpose. In our case, we support automated test case gener-

ation from both IPC and SMSC, where SMSC is entirely a scenario-based notation,

while in case of IPC, inter-process interactions are modeled as transactions specified

using MSCs. Since, distributed reactive system requirements are more naturally cap-

tured using a scenario-based notation, the test cases generated from our models can

serve as a means to test a system implementation against the original requirements.

Further, abstraction at both syntactic and semantic level in case of SMSCs, allows us

to generate a minimal set of concrete test cases capturing all distinct relevant behav-

iors corresponding to a given test-purpose (modulo the maximum test-case length).

9.1 Future Work

9.1.1 Extensions

Timing Constraints. In order to be able to capture and reason about the real-time

behavior, we need to include support for modeling and execution of timing constraints

in our modeling notations. For instance, integrating timing features in our modeling

frameworks to enable us to specify timing constraints such as: message delays and

upper/lower bounds on a process to engage in certain actions. Note that, handling
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of real time constraints becomes more challenging in the presence of our abstract

execution semantics.

Behavioral Subtyping. Also, currently we do not support class inheritance, either

structural or behavioral. The structural inheritance primarily aims at reusing exist-

ing class definitions and possibly adding new behaviors, or redefining existing ones.

However, this does not guarantee any form of behavioral conformance between the

subtype and the supertype. On the other hand, the notion of behavioral subtyping

plays a crucial role in object oriented systems by allowing an object of a subtype to

replace the object of its parent type, without changing the overall system behavior.

One of the early works in this area is by Liskov and Wing [76] which focuses on passive

objects objects whose state change is only via method invocation by other objects.

Subsequently, behavioral subtyping of active objects has been studied in many works

(e.g. [13, 50, 118]). These works mostly exploit well-known notions of behavioral

inclusion (such as trace containment or simulation relations) to define notions of be-

havioral subtyping. In future, we aim to incorporate similar notion(s) of behavioral

inclusion to allow reuse of existing process classes, and define an efficient mechanism

for checking substitutability of a subtype for its supertype. Behavioral subtyping has

mainly been studied in the intra-object setting, where the behavior of each class is

explicitly specified, for example, using a finite state machine. It would be interesting

to study the behavioral notion of a subtype in the scenario-based setting (such as

SMSCs), where intra-object behavior is not explicitly described.
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Model checking. Another interesting extension to our present work can be the de-

velopment of a verification frameworks centered on our abstract execution semantics,

that will exploit the abstraction-refinement based approach to software model check-

ing. The abstraction refinement framework can be used to find which associations

need to be tracked in the abstract execution semantics, in order to avoid spurious

run(s). For instance, in case of IPC we may have transaction guards of the form

(r1, r2) ∈ asc1 ∧ (r2, r3) ∈ asc2 where r1, r2, r3 are transaction roles. Consequently,

it will not be sufficient to track only associations asc1 and asc2 appearing in the

system specification. Instead, we also need to track “derived” associations during

abstract execution; in the above example the relation formed by the join of the asc1,

asc2 relations is one such association. This is similar in flavor to predicate abstrac-

tion based abstraction refinement [11, 54] — where tracking the predicates/conditions

appearing in the program is not sufficient, and abstraction refinement gradually finds

out the additional predicates to track.

9.1.2 Applications

In recent years, the concept of providing computing as a service has become in-

creasingly popular, with several organizations such as IBM3 and Microsoft4, working

towards providing various services and development tools in this direction. Various

Cloud computing and Service Oriented Architecture (SOA) frameworks present a

3 http://www-01.ibm.com/software/solutions/soa/
4http://www.microsoft.com/azure/default.mspx

http://www-01.ibm.com/software/solutions/soa/
http://www.microsoft.com/azure/default.mspx
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major step in this direction, where the main idea is to provide software as services

(computing) over the Internet/network (cloud) in a homogeneous and trustworthy

manner. Thus, in the framework of service based computing, a software function-

ality (possibly implementing a service itself) is realized by utilizing other services

over the network. This creates a kind of global distributed computing environment

with various services collaborating to accomplish a common goal. Clearly, several

challenges arise in this framework, for instance those pertaining to security, relia-

bility, performance etc. which need to be investigated. We observe that various

model-based design and analysis techniques from the domain of distributed reactive

systems can be applied directly or adapted to the domain of cloud computing. For

instance, scenario-based notations such as MSCs can be used to specify global in-

teractions between collaborating services, while state-based notations such as Finite

State Machines are useful for high level specification of individual service behaviors

[96].

Based on our modeling notations and the associated abstract execution semantics,

we are interested in pursuing the following research directions:

Symbolic pattern discovery in Service Oriented Architectures (SOA).

Discovering or identifying service engineering patterns in existing service ori-

ented systems can be beneficial in a number of ways, such as, for behavioral

validation of services, for service-reuse by identifying services that follow spe-

cific execution pattern, etc. Since, interaction patterns can be described quite
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naturally using scenario-based notations, we would like to investigate the use

of our notations for generic pattern description and discovery.

Parameterized Model-based Performance and Security Analysis of

Web Services. Similar to the class of distributed reactive systems targeted this

thesis, many web-services may involve an arbitrary number of services at run-

time. For example, an e-business system where a supplier-service may consult

various warehouse-services in relation to an order placed by a customer-service.

Works on performance and security analysis of web-services (e.g. [40, 16]) gener-

ally fix the number of various services in the system for the purpose of analysis.

We would like to investigate approaches for performance and/or security anal-

ysis in the parameterized setting for the number of services in a given system.

Model-based testing of services. Study model-based testing of services,

where the number of participating services of a certain type is not known be-

forehand (e.g. warehouse-service in the e-business scenario mentioned above).

Finally, we note that, even though here we have only focused on Services, our

modeling notations can be utilized in any other suitable domain.
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[64] C. Jard and T. Jéron. TGV: theory, principles and algorithms: A tool for the

automatic synthesis of conformance test cases for non-deterministic reactive

systems. Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005.

[65] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Prac-

tical Use, volume 1. Springer-Verlag, 1995.

[66] B. Jonsson and M. Saksena. Systematic Acceleration in Regular Model Check-

ing. In Computer Aided Verification, volume 4590 of Lecture Notes In Computer

Science, pages 131–144, 2007.

[67] K. D. Joshi. Foundations of Discrete Mathematics. Wiley-Interscience, 1989.

[68] Y. Kesten and A. Pnueli. Control and data abstraction: the cornerstones of

practical formal verification. International Journal on Software Tools for Tech-

nology Transfer (STTT), 2(4):328–342, 2000.



BIBLIOGRAPHY 263

[69] A. Knapp, S. Merz, and C. Rauh. Model Checking Timed UML State Machines

and Collaborations. In W. Damm and E. R. Olderog, editors, Proc. 7th Int.

Symp. Formal Techniques in Real-Time and Fault Tolerant Systems, volume

2469 of Lecture Notes in Computer Science, pages 395–416, 2002.

[70] B. Koch, J. Grabowski, et al. Autolink: A Tool for Automatic Test Generation

from SDL Specifications. In IEEE Workshop on Industrial Strength Formal

Specification Techniques (WIFT), pages 114–125, 1998.

[71] I. Krueger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. In In-

ternational Workshop on Distributed and Parallel Embedded Systesms (DIPES),

pages 61–71, 1999.

[72] I. Kruger, W. Prenninger, and R. Sander. Broadcast MSCs. Formal Aspects of

Computing, 16(3):194–209, 2004.

[73] H. Kugler, M. Stern, and E. Hubbard. Testing Scenario-Based Models. In Fun-

damental Approaches to Software Engineering (FASE), volume 4422 of Lecture

Notes In Computer Science, pages 306–320, 2007.

[74] E. Lee and S. Neuendorffer. Classes and subclasses in actor-oriented design.

Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. Proceed-

ings. Second ACM and IEEE International Conference on, pages 161–168, 23-25

June 2004.



264 BIBLIOGRAPHY

[75] D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of param-

eterized linear networks of processes. In POPL ’97: Proceedings of the 24th

ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 346–357, 1997.

[76] B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.

Program. Lang. Syst., 16(6):1811–1841, 1994.

[77] S. Mellor and M. Balcer. Executable UML: A Foundation for Model Driven

Architecture. Addison-Wesley, 2002.

[78] R. Milner. A Calculus of Communication Systems, volume 92 of Lecture Notes

in Computer Science. Springer, 1980.

[79] MOST-cooperation. Media oriented system transport.

http://www.mostcooperation.com/.

[80] M. R. Mousavi, M. A. Reniers, and J. F. Groote. Congruence for SOS with

data. In IEEE Symposium on Logic in Computer Science (LICS), pages 303–

312, 2004.

[81] M. Mukund, K. N. Kumar, and M. A. Sohoni. Synthesizing Distributed Finite-

State Systems from MSCs. In Concurrency Theory (CONCUR), volume 1877

of Lecture Notes In Computer Science, pages 521–535, 2000.

http://www.mostcooperation.com/


BIBLIOGRAPHY 265

[82] M. Mukund, K. N. Kumar, and P. Thiagarajan. Netcharts: Bridging the Gap

between HMSCs and Executable Specifications. In Concurrency Theory (CON-

CUR), volume 2761 of Lecture Notes In Computer Science, pages 296–310, 2003.

[83] Murphi. Murphi description language and verifier, 2005.

http://verify.stanford.edu/dill/murphi.html.

[84] N. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, 1993.

[85] OCaml. The OCaml programming language, 2005.

http://caml.inria.fr/ocaml/index.en.html.

[86] J. Offutt and A. Abdurazik. Generating Tests from UML Specifications. In UML

The Unified Modeling Language, volume 1723 of Lecture Notes In Computer

Science, page 76, 1999.

[87] OMG. Object Management Group. website: http://www.omg.org.

[88] P. Pelliccione, H. Muccini, A. Bucchiarone, and F. Facchini. TeStor: Deriving

Test Sequences from Model-Based Specifications. In Component-Based Software

Engineering (CBSE), volume 3489 of Lecture Notes In Computer Science, pages

267–282, 2005.

[89] S. Pickin, C. Jard, T. Jeron, J.-M. Jezequel, and Y. Le Traon. Test Syn-

thesis from UML Models of Distributed Software. IEEE Trans. Softw. Eng.,

33(4):252–269, 2007.

http://verify.stanford.edu/dill/murphi.html
http://caml.inria.fr/ocaml/index.en.html
http://www.omg.org


266 BIBLIOGRAPHY

[90] PN. Petri Nets Tools Database.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/.

[91] A. Pnueli, J. Xu, and L. D. Zuck. Liveness with (0, 1, ∞)-counter abstraction.

In International Conference on Computer Aided Verification (CAV), volume

2404 of Lecture Notes In Computer Science, pages 107–122, 2002.

[92] A. Pretschner. Classical search strategies for test case generation with constraint

logic programming. In In Proc. Formal Approaches to Testing of Software, pages

47–60. BRICS, 2001.

[93] A. Pretschner, W. Prenninger, et al. One Evaluation of Model-based Test-

ing and its Automation. In International conference on Software engineering

(ICSE), pages 392–401. ACM, 2005.

[94] RailShuttle System. New rail-technology Paderborn.

http://nbp-www.upb.de/en/.

[95] Rational Rose. IBM Rational Rose.

website: http://www-01.ibm.com/software/rational/.

[96] I. Rauf, M. Z. Iqbal, and Z. I. Malik. UML Based Modeling of Web Service Com-

position - A Survey. In Sixth international Conference on Software Engineering

Research, Management and Applications, pages 301–307, 2008.

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/
http://nbp-www.upb.de/en/
http://www-01.ibm.com/software/rational/


BIBLIOGRAPHY 267

[97] W. Reisig. Petri Nets: An Introduction. vol. 4 of EATCS Monographs in

Theoretical Computer Science, 1985.

[98] M. A. Reniers. Message sequence chart: Syntax and semantics. PhD Thesis,

TU/e, 1999.

[99] Y. Resten, O. Maler, M. Marcus, A. Pnueli, , and E. Shahar. Symbolic model

checking with rich assertional languages. In Computer Aided Verification, vol-

ume 1254 of Lecture Notes In Computer Science, pages 424–435, 1997.

[100] R. Rhapsody. Model driven development tool from IBM.

www.ibm.com/software/awdtools/rhapsody/.

[101] A. Roychoudhury, A. Goel, and B. Sengupta. Symbolic Message Sequence

Charts. In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering, pages 275–284. ACM, 2007.

[102] A. Roychoudhury and I. Ramakrishnan. Automated inductive verification of

parameterized protocols. In International Conference on Computer Aided Ver-

ification (CAV), LNCS 2102, pages 25–37, 2001.

[103] A. Roychoudhury and P. S. Thiagarajan. Communicating transaction processes.

In ACSD ’03: Proceedings of the 3rd International Conference on Application of

Concurrency to System Design, page 157, Washington, DC, USA, 2003. IEEE

Computer Society.

www.ibm.com/software/awdtools/rhapsody/


268 BIBLIOGRAPHY

[104] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test gen-
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Appendix A

IPC

A.1 Proof of Theorem 1

Proof. The proof is by induction on N , the length of the execution sequence σ. It

will be convenient to strengthen the induction hypothesis by assuming the following

two properties to hold inductively as well:

• Property (1) Let n be the number of objects whose local states are given by

the behavioral partition beh ∈ BEHp after the concrete execution of σ.1 Then,

after the abstract execution of σ, the object count for behavioral partition beh

is also n.

• Property (2) After the concrete execution of σ, let there be n tuples of the form

〈o1, . . . , ok〉 following association asc, where o1, . . . , ok are concrete objects, and

1Recall that whether an object resides in beh is determined by its control state, history and
valuation at the end of executing σ
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the states of o1, . . . , ok are defined by the behavioral partitions beh1, . . . , behk.

Then, after the abstract execution of σ, the association information maintained

is such that the asc count for the k-tuple 〈beh1, . . . , behk〉 is ≥ n.

The result is obvious if N = 0. Hence assume that N > 0 so that σ = σprev ◦ γ

and the induction hypothesis holds for σprev. Let o1, . . . , om be the concrete objects

used to play the roles r1, . . . , rm in the concrete execution of transaction γ. If the

states of o1, . . . , om are given by behavioral partitions beh1, . . . , behm (beh′
1, . . . , beh

′
m)

in the concrete execution before (after) execution of γ, the following holds:

• beh1, . . . , behm can serve as witness partitions of lifelines r1, . . . , rm of transac-

tion γ under the abstract semantics after the execution of σprev. This follows

from properties (1) and (2) above in the induction hypothesis.

• beh′
1, . . . , beh

′
m are the destination partitions of beh1, . . . , behm in the abstract

execution of γ. This follows from the definition of destination partition (Defi-

nition 7, page 48).

Now, in the concrete execution of γ, corresponding to each participating object oi,

whose state changes from behi to beh′
i, the count of objects whose state is given by

the behavioral partition behi (beh′
i) is decremented (incremented) by 1. Note that

it is possible that there are more than one objects participating in γ whose state

is given by the same behavioral partition beh (beh′) before (after) execution of γ.

Suppose, there are n1 (n2) concrete objects (participating in γ) whose state is given



A.1. PROOF OF THEOREM 1 273

by the behavioral partition beh (beh′) before (after) execution of γ. Then, after the

execution of γ, the count of beh (beh′) will be decremented (incremented) by n1(n2).

Similarly, in the abstract execution of γ, corresponding to each role ri in trans-

action γ, the object count of the witness (destination) partition, behi (beh′
i) will be

decremented (incremented) by 1. Again, it is possible for a behavioral partition beh

(beh′) to be the witness (destination) partition for more than one roles in γ. Suppose,

there are n1(n2) roles having same witness (destination) partition, beh (beh′). Then,

after the execution of γ, the count of beh (beh′) will be decremented (incremented) by

n1(n2). Thus, we can conclude that Property (1) of the induction hypothesis therefore

holds after the execution of σ = σprev ◦ γ.

To show that property (2) also holds, we consider the four cases according to the

ways in which a k-ary association asc may be altered via the concrete execution of γ.

Let r1, . . . , rm be the roles of transaction γ.

• Case A: We have a guard (ri1 , . . . , rik) ∈ asc as part of γ. Suppose that there are

n1 and n2 number of k-tuples of concrete objects in association asc, whose local

states are given by the behavioral partitions beh1, . . . , behk and beh′
1, . . . , beh

′
k

respectively, before concrete execution of γ. Now, suppose a k-tuple of con-

crete objects 〈o1, . . . , ok〉 in association asc is chosen for concrete execution of

γ, s.t. the local states of objects o1, . . . , ok are given by the behavioral parti-

tions beh1, . . . , behk (beh′
1, . . . , beh

′
k) before (after) execution of γ. Thus, after
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the concrete execution of γ, the count of k-tuples in asc whose objects’ states

are given by beh1, . . . , behk (beh′
1, . . . , beh

′
k) is decremented (incremented) by 1,

resulting in association counts of ‘n1 − 1’ (n2 + 1).

By the induction hypothesis, the asc count for the k-tuple 〈beh1, . . . , behk〉

(〈beh′
1, . . . , beh

′
k〉) in the abstract execution is na(nb) after σprev, such that na ≥

n1 (nb ≥ n2). Further, we can choose the behavioral partitions beh1, . . . , behk as

the witness partitions for roles ri1 , . . . , rik to execute γ. Then, from Property (1),

the corresponding destination partitions after executing γ are beh′
1, . . . , beh

′
k.

Thus, after the abstract execution of γ, the asc count for the k-tuple

〈beh1, . . . , behk〉 (〈beh′
1, . . . , beh

′
k〉) is updated to ‘na − 1’ (nb + 1) (see the case

for “Check” in the handling of associations, Section 3.5.3).

• Case B: We have insert (ri1 , . . . , rik) into asc as the post-condition of γ. Sup-

pose o1, . . . , ok are the objects chosen to play the roles ri1, . . . , rik in the con-

crete execution of γ and their local states are given by the behavioral partitions

beh1, . . . , behk (beh′
1, . . . , beh

′
k) before (after) execution of γ. Then a new k-tuple

〈o1, . . . , ok〉 will be inserted in asc in concrete execution, thereby incrementing

the count of k-tuples in asc, whose objects’ states are given by beh′
1, . . . , beh

′
k, by

1. Due to induction hypothesis, in abstract execution we can choose the behav-

ioral partitions beh1, . . . , behk as the witness partitions for the roles ri1, . . . , rik

for executing γ. This means that beh′
1, . . . , beh

′
k will be the destination partitions

of roles ri1 , . . . , rik in the abstract execution; the asc count of the corresponding
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k-tuple is incremented by 1 in the abstract execution as well.

• Case C: We have delete (ri1 , . . . , rik) from asc as the post-condition of γ. Sup-

pose o1, . . . , ok are the objects chosen to play the roles ri1 , . . . , rik in the con-

crete execution of γ and their local states are given by the behavioral par-

titions beh1, . . . , behk before execution of γ. Then the k-tuple 〈o1, . . . , ok〉 is

in asc before executing γ and is removed from asc after executing γ, thus

decrementing the count of k-tuples in asc, whose objects’ states are given by

beh1, . . . , behk, by 1. Again, in abstract execution we choose the behavioral

partitions beh1, . . . , behk as the witness partitions for the roles ri1 , . . . , rik for

executing γ, and decrement the count of k-tuple 〈beh1, . . . , behk〉 by 1 after

executing γ.

• Case D: Suppose Oγ is the set of objects chosen to play the roles in the concrete

execution of γ. Let τc be a k-tuple consisting of objects Oasc in association asc

such that, {o1, . . . , oj} = Oγ ∩Oasc, and the local states of objects o1, . . . , oj are

given by the behavioral partitions beh1, . . . , behj (beh′
1, . . . , beh

′
j) before (after)

concrete execution of γ. Further let the local states of objects in k-tuple τc

(i.e. Oasc) be given by the k-tuple τ (τ ′) of behavioral partitions before (after)

concrete execution of γ. Then the k-tuple τ (τ ′) will contain the behavioral par-

titions beh1, . . . , behj (beh′
1, . . . , beh

′
j) representing the states of objects o1, . . . , oj

before (after) concrete execution of γ. Note that τ and τ ′ may only differ in

behavioral partitions corresponding to the objects o1, . . . , oj. Thus, after the
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concrete execution of γ, the count of k-tuples of objects in asc whose objects’

states are given by the k-tuple τ (τ ′) of behavioral partitions, is decremented

(incremented) by one.

By the induction hypothesis, we can choose the witness partitions BEHγ repre-

senting the local states of objects Oγ chosen above, to play the respective roles

in abstract execution of γ. Further, let BEHτ be the set of behavioral partitions

in the k-tuple τ . Then BEHγ will contain behavioral partitions {beh1, . . . , behj}

(= BEHγ∩BEHτ ) corresponding to objects o1, . . . , oj above. Then, from Prop-

erty (1), the corresponding destination partitions after executing γ are given by

beh′
1, . . . , beh

′
j . Thus, after the abstract execution of γ, k-tuple τ will result in

τ ′, and the asc count for τ ′ is incremented by 1 (see the case for “Default” in

the handling of associations, Section 3.5.3).

Note that we do not decrement the asc count of k-tuple τ in the abstract exe-

cution of γ. This is to consider the case where the objects chosen from witness

partitions beh1, . . . , behj may not be in association asc. In this case there will be

no update in asc content in concrete execution. However, since precise associa-

tion information is lost in abstract execution, we consider both the possibilities

–the participating objects may or may-not be in asc– in updating the association

content for asc.

This concludes the induction step for Property (2).
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A.2 Checking spuriousness of execution runs in

Murphi

Here we elaborate how we can check whether an execution run produced by our ab-

stract simulator is spurious (i.e. cannot be realized in concrete executions). We have

implemented the spuriousness check using the Murphi model checker [83]. The reason

for using Murphi is its inherent support for symmetry reduction via the scalarset data

type. We now discuss how Murphi’s support of symmetry reduction is exploited to

perform our spuriousness check efficiently.

We define the following data types for each process class.

• A scalarset type to act as an object identifier having the cut-off number2 as its

upper limit. For example, for Car class containing N objects, following type

will be declared:

Car: Scalarset(N); –index for process class Car

• Enumeration variable types which define sets of states of its LTS and various

DFAs. Assuming that the LTS of process class Car contains M states and one

of its DFAs, say dfai has Di states, the following translation will result:

stCar: Enum {st car1,...,st carM}; –states for LTS of Car

dfai Car: Enum {d car i1,...,d car iDi}; –states for dfai of Car

2The number xp,σ for process class p and execution run σ, defined in Section 3.6.3
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Based on the types defined above, following variables are declared for each process

class:

• An array of enumeration type representing the LTS states, indexed by the

scalarset type corresponding to this process class. For example, LTS states

for objects of process class Car will be represented using the following array

variable:

Car lts: Array [Car] of stCar;

• Similarly, array variables are defined to represent the DFA states.

• Arrays corresponding to the variables in the IPC model. Murphi supports only

integer/boolean variables and the range for integer type needs to be specified

in declaration. For example, variable mode3 for the Car is declared as follows:

Car mode: Array [Car] of 0..1;

Associations are represented using two dimensional arrays having the value range

0..1. For an association “Asc” between two process classes A and B, assuming that

A and B have been declared as appropriate scalarset types, this array is declared as

follows:

Asc: Array [A] of Array [B] of 0..1;

3A car’s mode indicates whether the car will stop or pass through its current terminal.
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An array entry of 1 will indicate the existence of an association between the objects

of A and B, whose identities are represented by the index values of that particular

array element.

For each transaction-occurrence in the trace σ being checked, a corresponding

rule is defined in Murphi (representing a guarded command) using the witness and

destination partitions’ information: control states, dfa states and variable valuations

for the participating agents, obtained from the abstract execution. The initial con-

figuration for the Murphi execution is given as the “Startstate” declaration, where

the initial control states, dfa states and variable valuations for various objects are

defined. If an execution run σ produced by our abstract simulation is suspected to

be spurious by the user, (s)he can submit it to Murphi for spuriousness check. Given

our encoding of the reduced concrete IPC model to Murphi, if σ is indeed spurious

it will correspond to a deadlocked run in Murphi, with Murphi getting stuck at a

spurious transaction. By slight modification in the Murphi code we are able to pre-

cisely identify the transaction that σ got stuck at and furthermore report the system

state at that point. This can then be analyzed by the user to determine the cause of

spuriousness.

For illustration, we analyzed the trace σ = t1.t2.t3, corresponding to the example

discussed in Section 3.6.3, for spuriousness using Murphi-based approach outlined in

the preceding; as expected, σ was indeed found to be spurious.
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Appendix B

IPC Test generation Algorithm

genTrace

The function genTrace described in Algorithm 4 takes as input two parameters: a

set S of states to be explored, and the current goal transaction τ . It then tries to

generate a trace to the current goal transaction τ from a state in S. It maintains the

set Open containing the states yet to be explored and the set GoalSet to store the

state(s) reached after executing the goal transaction τ . The set GoalSet is initially ∅.

At the end of each iteration of the while loop (lines 2–35, Algorithm 4) if GoalSet is

not empty, then we have found a trace up to the current goal transaction. We return

the set GoalSet and also the set Open containing the unexplored states (lines 32–33,

Algorithm 4).

In each iteration of the while loop, a state s with minimum value of f(s) (=

g(s)+h(s)) is chosen and removed from Open (line 3, Algorithm 4). All successors of
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Algorithm 4: genTrace(S, τ): adapted from A∗

1: Open← S; GoalSet ← ∅
2: while Open 6= ∅ do
3: s← getMinf (Open); Open ← Open− {s}
4: for all m ∈ successors(s) do
5: setSuccessor(m,s) /* Add m as a successor of s*/
6: if notVisited(m) then
7: /* Case 1: m not visited yet */
8: if (m is a destination state of a τ transaction) then
9: GoalSet ← GoalSet ∪ {m}

10: h(m)← distance from m to next goal transaction (after τ), use
Equation (7.1)

11: else
12: Open ← Open ∪ {m}
13: h(m)← distance from m to τ , use Equation (7.1)
14: end if
15: g(m)← g(s) + 1 /* length of generating path */
16: setParent(m,s)
17: else if m ∈ Open then
18: /* Case 2: m reached earlier, successors not explored */
19: if (g(s) + 1) < g(m) then
20: /* we have found a shorter path to m via s */
21: g(m)← g(s) + 1; setParent(m,s)
22: end if
23: else
24: /* Case 3: m reached earlier and successors explored */
25: if (g(s) + 1) < g(m) then
26: /* we have found a shorter path to m via s */
27: g(m)← g(s) + 1; setParent(m,s);
28: updateAllg(m) /*Update value of function g and parent of nodes from

m downwards*/
29: end if
30: end if
31: end for
32: if GoalSet 6= ∅ then
33: return (GoalSet,Open)
34: end if
35: end while
36: return (∅,∅)
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s are generated and the search tree capturing states visited so far is updated. Note

that in the search tree capturing the states visited so far, we maintain one of the

predecessors of each visited state s as the “parent” of s. This is done to remember

the shortest path from the start state to state s, such that it includes all previous goal

transactions (i.e. transactions appearing in the test specification that have already

been executed) in the order of their occurrence.

Thus, the parent pointer of each state s is set to a state x such that (a) s is a

successor of x and (b) the current shortest path from start state to s consists of the

current shortest path from start state to x (covering the previous goal transactions

in the order executed) and the edge x → s. For each successor m of state s, the

following updates need to be performed.

Case 1: (line 7, Algorithm 4) If m has not been reached earlier, it is added either to

GoalSet or Open (lines 9 and 12, Algorithm 4), depending on whether m is reached by

executing the current goal transaction τ or not. The value of h function (appearing

in A∗’s evaluation function) is also computed accordingly. Finally, we compute the

value of g function of A∗’s evaluation function, and set the node s as m’s parent in

the search tree capturing visited states.

Case 2: (line 18, Algorithm 4) Otherwise, we check if m ∈ Open and if so, we know

that m has been reached earlier via an alternate path. In this case if the new path

to m is shorter, we accordingly update the function g for m. Note that the function

h remains unchanged since it estimates the length of the path from m to τ , which is
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Figure B-1: Updating parent pointers in search tree — line 28 of genTrace (Alg. 4).

not affected by the path through which m is reached from the start state.

Case 3: (line 24, Algorithm 4) In case m is not present in Open also, then it was

reached and its successors were explored earlier. Again, we check if the new path to m

is shorter. If it is so, then its g value is updated and parent pointer set to s. Further,

in this case we check the children of m in the search tree capturing the visited states.

For all the successors already pointing to m as their parent, their g value is updated.

For all other successors, if the new path to them via m is shorter, then m is set as

their parent, also updating their g value. This process is repeated for successors of

these successors and so on (see Figure B-1 for a pictorial explanation).
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