
OVERFITTING IN PROGRAM REPAIR AND SYNTHESIS

XIANG GAO

NATIONAL UNIVERSITY OF SINGAPORE

2021

OVERFITTING IN PROGRAM REPAIR AND SYNTHESIS

XIANG GAO

(B.S., Shandong University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2021

Advisor:
Professor Abhik Roychoudhury

Examiners:
Associate Professor Wei Ngan Chin
Associate Professor Ilya Sergey

Professor Martin C. Rinard, Massachusetts Institute of Technology

DECLARATION

I hereby declare that this thesis is my original work and it has
been written by me in its entirety. I have duly

acknowledged all the sources of information which have
been used in the thesis.

This thesis has also not been submitted for any
degree in any university previously.

Xiang Gao

September 2021

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my PhD advisor,
Prof. Abhik Roychoudhury for continuously encouraging and supporting me in
the past several years. I learned almost everything about research and software
engineering from him. Abhik always taught me what valuable research is, how
to think about research problems and how to do influential research. His wise
guidance extended beyond my research to my focus, communication, vision, ideas,
and attitudes towards challenges. Through his invaluable advice, I learned so much
about being professional.

I would like to thank my research intern advisors Sumit Gulwani, Nachiappan
Nagappan, and Mukul R. Prasad for giving me much advice in terms of academics
and industry. Beyond research papers, they gave a view of how valuable research
can become products and make real impacts.

I would like to thank my undergraduate advisor Prof. Lei Ju. Lei taught me
what research is and took me to the academic path. Without the guidance from him,
I will not get a chance to be here and write this dissertation. Further, Lei suggested
Abhik as my PhD advisor, and Abhik gave me exactly what Lei has described and
even more. I would also like to thank my teachers Qingrong Sun and Jinfang Wang,
who taught me how to speak, how to think, how to learn, and more importantly,
how to be a human being. They left the deepest impression on me at my young age.

I am thankful to Wei Ngan Chin, Martin C. Rinard, and Ilya Sergey for taking
time out of their busy schedule to serve in my thesis committee.

I would specially thank Sergey Mechtaev and Shin Hwei Tan. Both of them set
examples for me in terms of focus, thinking, and productivity. At the early stage of
my PhD, Sergey and Shin Hwei always patiently answer my research and technical
questions, gently point out my mistakes and kindly help me improve my thinking,
writing, and communicating.

I would also like to thank Gregory J. Duck, Arjun Radhakrishna, Ripon K. Saha,
and Gustavo Soares for the collaborative works during my PhD journey. It is a great
pleasure to work with them and discuss research questions. Their professionalism,
passion, and kindness inspire me a lot. I also thank my collaborators Zhen Dong,
Ruyi Ji, Yannic Noller, Ridwan Shariffdeen, and Bo Wang. Without them, I would

i

not achieve much alone.
Further, I would like to thank my friends and lab mates Umair Z. Ahmed,

Abhijeet Banerjee, Marcel Böohme, Xiaoyu Du, Zhiyu Fan, Fuli Feng, Mingyuan
Gao, Yang Hu, Yiming Liu, Yu Liu, Yunshan Ma, Ruijie Meng, Manh-Dung Nguyen,
Suyi Ong, Van-Thuan Pham, Jyoti Prakash, Shiqi Shen, Abhishek Tiwari, Edwin
Lesmana Tjiong, Guanhua Wang, Jooyong Yi, Xiao Liang Yu, Pinghai Yuan and
his daughter, Jiang Zhang, Jingfeng Zhang, Yuntong Zhang, etc. Because of all of
them, I have a such wonderful journey at NUS and Singapore.

Last but not least, I would like to thank my family, my parents for raising me
up to more than I can be. They taught me everything via actions instead of words,
they always encourage me to do what I like and always support me. I would also
like to express my biggest thank to Cassie Cheng for her love, her patience and
understanding, her support and encouragement, and for putting up with many
troubles that are due to me following the academic path. Her unconditional love
and support are always my greatest impetus.

(All the names are listed in alphabetical order).

ii

Contents

ACKNOWLEDGEMENTS i

Abstract vii

List of Figures ix

List of Tables xi

Publications Appeared 1

1 Introduction 2

2 Background 8
2.1 Program Repair . 8

2.1.1 Search-Based Repair . 8
2.1.2 Semantic-Based Repair . 10
2.1.3 Learning-Based Repair . 10

2.2 Program Synthesis . 11
2.2.1 Program Synthesis as Second-Order Constraint Solving . . . 11
2.2.2 Program Synthesis for Code Transformation 13

2.3 Greybox Fuzzing . 14

3 Alleviate Overfitting via Intelligent Test Generation 16
3.1 Introduction . 16
3.2 Motivating Example . 18
3.3 Methodology . 22

3.3.1 Integration of Test Generation and Repair 23
3.3.2 Separability of Test Cases 25

iii

3.3.3 Power Schedule . 26
3.3.4 Is Interesting . 27
3.3.5 Sanitizer as Oracles . 28

3.4 Implementation . 28
3.5 Evaluation . 30

3.5.1 Benchmark Selection . 30
3.5.2 Experimental Setup . 31
3.5.3 Results . 33
3.5.4 Threats to Validity . 38

4 Alleviate Overfitting via Symbolic Reasoning 39
4.1 Introduction . 39
4.2 Overview . 42
4.3 Methodology . 45

4.3.1 Crash-Free Constraint Extraction 45
4.3.2 Dependency-Based Fix Localization 48
4.3.3 Crash-Free Constraint Propagation 51
4.3.4 Patch Synthesis . 54
4.3.5 Multiple-Line Fix . 57

4.4 Implementation . 57
4.5 Evaluation . 58

4.5.1 Experimental Setup . 59
4.5.2 Experimental Results . 61
4.5.3 Threats to Validity . 68

5 Alleviate Overfitting Using Semi-Supervised Synthesis 70
5.1 Introduction . 70
5.2 Motivating Example . 76
5.3 The Semi-Supervised Synthesis Problem 79
5.4 Feedback-driven Semi-Supervised Synthesis 82

5.4.1 Semi-Supervised Synthesis 82
5.4.2 Feedback-Driven Semi-Supervised Synthesis 89

5.5 Applications of Semi-Supervised Synthesis 93

iv

5.5.1 ReFazer∗ User-Provided Feedback about Additional Inputs 94
5.5.2 BluePencilcur Semi-Automated Feedback 94
5.5.3 BluePencilauto Fully Automated Feedback 96

5.6 Evaluation . 96
5.6.1 Benchmark Suite . 97
5.6.2 Effectiveness of Semi-Supervised Synthesis 98
5.6.3 Effectiveness of Reward Calculation Function 100
5.6.4 The Effectiveness and Efficiency of Semi-Automated Feedback 102
5.6.5 A Comparison to BluePencil 103
5.6.6 Discussion . 105

6 Alleviate Overfitting Using Output-Oriented Synthesis 107
6.1 Introduction . 107
6.2 Motivating Example . 110
6.3 Output-Oriented Program Synthesis 115

6.3.1 Problem Statement . 115
6.3.2 Domain-Specific Language 116
6.3.3 Output-Oriented Program Synthesis 118

6.4 APIfix: Automated API Usage Adaptation 122
6.4.1 Mining Human API Usage Adaptations and Library Usages 123
6.4.2 Clustering Algorithm . 125
6.4.3 Synthesizing and Applying Transformation Rule 126

6.5 Evaluation . 127
6.5.1 Exp-1: Effectiveness of the Output-Oriented Program Synthesis128
6.5.2 Exp-2: Effectiveness in Automating API Usage Adaptations 131
6.5.3 Exp-3: Comparison with State-of-The-Art Technique 133
6.5.4 Threats to Validity . 135

7 Related Work 137
7.1 Automated Program Repair . 137

7.1.1 Search-Based Program Repair 137
7.1.2 Semantics-Based Program Repair 138
7.1.3 Learning-Based Program Repair 139

v

7.1.4 Static Program Repair . 139
7.2 Alleviate Overfitting in Program Repair 140
7.3 Goal-Directed Test Generation . 142
7.4 Program Synthesis . 142

7.4.1 Semi-Supervised Program Synthesis 143
7.4.2 Interactive Program Synthesis 144
7.4.3 Program Synthesis for Software Refactoring 144

7.5 Program Transformation . 145

8 Conclusion 147
8.1 Summary of Contributions . 147
8.2 Perspectives . 148

Bibliography 151

vi

Abstract

Programming-by-example (PbE) is one of the well-studied auto-programming
techniques. PbE systems attempt to inductively construct programs according to
the specification demonstrated using concrete examples. However, the examples,
which are usually represented in a form of input-output pairs, can only specify part
of the behaviors of the expected program. If the given examples are incomplete,
which is common in practice, the auto-generated program can easily overfit the
given examples, i.e. the auto-generated program shows correct behavior on the given
examples, but cannot be generalized to the inputs outside the given examples.

Early test-driven program repair and program synthesis can be seen as two
instances of PbE systems. Test-driven program repair seeks to rectify program bugs
by automatically generating patches. Repair techniques are driven by a correctness
criterion which is in the form of a test suite. Such test-based repair may produce
overfitting patches, i.e., the patched programs show correct behavior on the given
tests, but still fail on tests outside the test-suite driving the repair. Similarly,
program synthesis, the technique that automatically generates programs according
to given input-output examples, also prone to synthesize overfitting programs. In
the literature of program repair and program synthesis, this is called overfitting
problem.

This work introduces a series of approaches to advance PbE techniques by al-
leviating the overfitting issues in program repair and synthesis. Our approaches
are united by the idea of using program analysis to strengthen the specifications
demonstrated via input-output examples. First, since the tests for repair systems
are usually incomplete, we propose an approach to intelligently generate more tests
to strengthen the given tests. Second, even though test generation can help discard
overfitted patches, it does not provide formal guarantees. To solve this problem, we
present a repair method that completely fixes program vulnerabilities via semantic
reasoning. Third, inspired by semi-supervised learning, we propose semi-supervised
synthesis. Instead of only relying on input-output examples, semi-supervised synthe-
sis also considers the additional inputs, where input-output examples correspond to
labeled data and additional inputs correspond to unlabelled data. Last, we propose

vii

an output-oriented synthesis to synthesize programs relying on both input-output
examples and additional outputs.

Our experiments showed that the proposed techniques advance the state of
the art of program repair/synthesis by discarding overfitted patches/programs and
increasing the quality of automatically generated patches/programs. We think this
is an important step forward to apply program repair in the real world and help
end-users via program synthesis.

viii

List of Figures

2.1 SE-ESOC encoding with four components and three nodes. 12
2.2 Domain-specific language for edit programs 12

3.1 Structure of program repair search space. 16
3.2 Architecture of the integrated testing and repair loop 22
3.3 Energy of a test with different separability and time. 27
3.4 Architecture of tool Fix2Fit . 28
3.5 Percentage of plausible patches that are ruled out by Fix2Fit 33
3.6 Number of patch partitions and generated tests that can break patch

partitions. 35
3.7 Number of plausible patches that can be reduced if the tests are empow-

ered with more oracles . 37

4.1 Workflow example from Coreutils . 44
4.2 Illustration of the fix localization algorithm. 50
4.3 The architecture of ExtractFix. 57

5.1 A scenario with two repetitive edits, additional inputs, and false positive 76
5.2 BluePencilcur implemented as a Visual Studio extension. 77
5.3 Solution for the feedback-driven semi-supervised problem 82
5.4 The partial AST of two inputs and their generalization. 86
5.5 The distribution of number of repetitive edits across the programs . . . 98

6.1 History edits on SqlScriptExecutor that adapt clients from DbUp v3.3.5
or older version to v4.0. 112

6.2 Code from clients that still use DbUp v3.3.5 or older versions 112
6.3 Code from clients that use DbUp v4.0 or newer versions 114

ix

6.4 Domain-specific language for program transformation rule 117
6.5 APIfix: output-oriented program synthesis for automating API usage

adaptations . 123

x

List of Tables

3.1 Plausible patches and their behaviors on new test 20
3.2 Subject programs . 30
3.3 Defect categories of Fix2Fit benchmark 31
3.4 The averaged Â of each project with ten runs. 33
3.5 The averaged number of generated test cases that can rule out plausible

patches . 34
3.6 Percentage of plausible patches ruled out using PR and PF 35
3.7 The percentage of crash-free patches generated by AFL, AFLGo, Fix2Fit 36
3.8 Number of remaining partitions after refinement 38

4.1 Basic crash statements, and corresponding Crash-Free Constraint template. 46
4.2 The subject programs and their statistics 59
4.3 The main evaluation results of ExtractFix. 62
4.4 Patches generated by ExtractFix on ManyBugs Benchmark. 63
4.5 Patches generated by ExtractFix on our benchmark. 64
4.6 The number of patches and correct patches generated by baseline ap-

proaches and ExtractFix . 65

5.1 The effectiveness of semi-supervised synthesis. 99
5.2 The effectiveness of the reward calculation function. 101
5.3 The effectiveness of BluePencilcur . 102
5.4 Summary of the comparison to BluePencil. 104

6.1 Statistics on our dataset used for evaluation 129
6.2 Exp-1: Cross-validation results of output-oriented program synthesis . 130
6.3 Evaluation results of APIfix with different synthesis techniques. . . . 132

xi

6.4 The precision and recall of APIfix, APIfixR, APIfixS and APIfixO+S

in transforming old usages . 134

xii

PUBLICATIONS APPEARED

Publications Appeared

[1] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program repair”,
in Proceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Beijing, China: ACM, 2019, pp. 8–
18.

[2] X. Gao, B. Wang, G. J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury, “Beyond
tests: Program vulnerability repair via crash constraint extraction”, ACM
Transactions on Software Engineering and Methodology (TOSEM), 2020.

[3] X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N.
Nagappan, and A. Tiwari, “Feedback-driven semi-supervised synthesis of
program transformations”, Proc. ACM Program. Lang., vol. 4, no. OOPSLA,
Nov. 2020.

[4] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz testing
based data augmentation to improve robustness of deep neural networks”, in
Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (ICSE), 2020, pp. 1147–1158.

[5] X. Gao and A. Roychoudhury, “Interactive patch generation and suggestion”,
in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 17–18.

[6] X. Gao, A. Radhakrishna, G. Soares, R. Shariffdeen, S. Gulwani, and A.
Roychoudhury, “Apifix: Output-oriented program synthesis for combating
breaking changes in libraries”, Proc. ACM Program. Lang., no. OOPSLA,
2021.

*Note that, the research presented at paper [3] and [4] was in collaboration with
Fujitsu Lab and Microsoft, as part of my internship.

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The world is increasingly dependent on software, from large programs in the
cloud to cell phone applications in our pocket. As every developer knows, developing
and maintaining software are difficult and extremely time-consuming. Researchers
have proposed auto-programming techniques [8] to help developers fix software
bugs [65, 64, 93] (write patches) or even write programs [48, 109, 1]. However, it is
very hard to ensure automatically generated patches or programs reflect the intent
of developers. Automatically generating high-quality programs is crucial to release
developers from burdensome development and maintenance tasks.

Programming-by-example (PbE) [39] is one of the well-studied techniques that
can automatically generate programs. PbE systems construct programs according to
specifications demonstrated via concrete examples. It inductively infers generalized
programs that can be used on new inputs. Test-driven program repair and program
synthesis can be seen as two instances of PbE systems. Automated program repair
[65] is an emerging area for automated rectification of programming errors. In the
most commonly studied problem formulation, given buggy program P and a set of
passing tests pT and failing test-suite fT , the goal of repair is to find a (minimal)
change to P and make it pass all tests from pT and fT . Instead of generating
patches, program synthesis studies the problem of constructing the whole or partial
programs according to given input-output examples. For a given input domain I
and output domain O, program synthesis systems take as input a set of examples
{i0 7→ o0, . . . , in 7→ on} and produce a program P : I→ O such that P(ik) = ok for
all 0 ≤ k ≤ n.

However, in practice, the given test suite or examples are usually incomplete

2

program specifications. Driven by the incomplete specifications, the fixed program
may pass all the given test-suite, but may still be buggy on the inputs outside pT
and fT . The problem is particularly dangerous when fixing software vulnerabilities.
If the correctness specification driving the repair is incomplete, the patched program
may be still vulnerable. Specifically, Smith, et al [121] show that GenProg [64],
one of the well-studied APR tools, do not generate patches that substantially
improve test suite performance on the held-out set. TrpAutoRepair [102] is likely to
break undertested functionality when patching programs, such that the “patched”
program is even worse than the un-patched program. For automatically generated
fixes of program bugs, we need a stronger level of assurance about the quality
of patches. Similarly, the synthesized programs work on the given input-output
examples {i0 7→ o0, . . . , in 7→ on}, but may not be generalizable to inputs outside
the given examples. The overfitted programs may produce false positives or false
negatives, which will lose the trust of users [33]. In the literature of program repair
and program synthesis, this is called overfitting problem [121, 104, 60]. Overfitting
is one of the most challenging problems that prevent PbE systems from generating
high-quality patches or programs.

Existing approaches have tried to handle the overfitting problem in different
ways. Since the specifications demonstrated via test cases are usually incomplete,
automatically generating more tests is a direct and useful strategy to alleviate the
overfitting problem in program repair. Existing approaches generate additional test
cases using symbolic execution, grey box fuzzing [146] (e.g AFL) or evolutionary
algorithm [147] (e.g. EvoSuite [30]). However, we argue those approaches are
inefficient in generating useful tests for repair systems. This is because existing
test generation techniques are designed for general testing purposes and they do
not consider the semantic of program patches. The second approach to address
overfitting is heuristically ranking candidate patches or programs. Typical approaches
rank patches or programs according to statistical information learned from code
repositories [80, 70, 62, 113] or predefined heuristics [109]. However, there is no
guarantee that patches or programs are ranked in the order of likelihood to be
correct. Another way to address overfitting is by using reference implementation.
In many development scenarios, there exists a reference implementation [77]. The
automatically generated program should not only pass the given tests/examples, but

3

also be compatible with the reference implementation. Unfortunately, the reference
implementations are not always available.

To handle the above limitations, the goals of this thesis are to improve PbE
systems and alleviate the overfitting issues both in program repair and program
synthesis. Specifically, we propose a series of techniques that consist of the following
tightly connected components:

• An approach that alleviates overfitting via intelligent test generation
To efficiently filter out overfitted patches, we propose to tightly integrate testing
and program repair. Specifically, our approach fuses test and patch generation
into a single process, in which patches are generated with the goal of passing
existing tests, and new tests are generated with the objective of filtering out
overfitted patches by distinguishing candidate patches in terms of behavior. We
use crash-freedom as the oracle to discard patch candidates which crash on the
new tests. At its core, our approach defines a grey-box fuzzing strategy that
gives higher priority to new tests that separate patches behaving equivalently
on existing tests. This test generation strategy identifies semantic differences
between patch candidates and reduces overfitting in program repair.

• An approach that alleviates overfitting via symbolic reasoning Even
though test generation can help discard overfitted patches, it does not guarantee
that the generated patches completely fix a bug. To solve this problem, we
present a new mechanism for automatically generating patches to completely
repair security vulnerabilities. Given a program vulnerability witnessed by some
crashing input or exploit, our basic approach relies on extracting a constraint
representation of the underlying cause of the crash. This crash constraint can
then be propagated backward to guide program repair over the space of possible
fix locations. Our method synthesizes patches that are guaranteed to avoid
repeating the original crash, thereby repairing the program for all program inputs
not limited to a specific test suite. As such, our approach helps address the test
overfitting problem.

• An approach that alleviates overfitting via semi-supervised synthesis
Existing program synthesis takes input-output examples as correctness specifica-

4

tion, which may lead to overfitted programs. Inspire by semi-supervised learning
which learns models from both labeled data and unlabelled data, we propose
semi-supervised synthesis. We take a novel view of the overfitting problem as
a semi-supervised synthesis problem: apart from the concrete input-output ex-
amples which correspond to labeled data, the synthesis procedure also exploits
access to additional inputs which correspond to unlabelled data. The main
insight is that the additional inputs are the inputs that should be incorporated
into the input domain of the synthesized programs. We present a procedure to
solve the semi-supervised synthesis problem using anti-unification and existing
programming-by-example synthesis technology. Specifically, our technique first
infers the corresponding outputs for the additional inputs to produce a set of ad-
ditional examples. Then, we use existing synthesis engine to synthesize programs
according to given examples and the inferred additional examples. To eliminate
reliance on access to marked additional inputs, we generalize the semi-supervised
synthesis procedure to a feedback-driven procedure that also generates the marked
additional inputs in an iterative loop.

• An approach that alleviates overfitting via output-oriented synthesis
Apart from additional inputs, we also observe that there are a large number of
available additional outputs. The additional outputs are a set of outputs without
corresponding inputs being available. We explore the research question: whether
the additional outputs can be used to synthesize programs. Our main insight
is that the additional outputs are embedded with human intelligence, which
demonstrates the domain and structure of the expected outputs. We take a novel
view of this problem as output-oriented program synthesis, which synthesizes
programs based on both input-output examples and additional outputs. We solve
the output-oriented program synthesis problem using an approach that is similar
to semi-supervised synthesis. Specifically, our technique infers the corresponding
inputs for the additional outputs to produce additional examples, which are used
to synthesize programs. We show an application of using output-oriented program
synthesis in automated API usage adaptations.

Tools and evaluation. Based on these proposed approaches, we have developed
four tools, Fix2Fit, ExtractFix, BluePencilauto, and APIfix, respectively.

5

Fix2Fit and ExtractFix are then evaluated on a set of real-world vulnerabilities
(CVEs and a set of bugs detected by Google OSS-Fuzz). By generating more test
cases, Fix2Fit rules out a large part (>60%) of overfitted patches that partially fix
the bug or introduce new bugs. While Fix2Fit does not provide formal guarantees
about crash/vulnerability-freedom, cross-validation with fuzzing tools and their
sanitizers provides greater confidence about the produced patches. Meanwhile, with
the guidance of constraints, ExtractFix shows its efficacy in fixing a wide range of
vulnerabilities. Specifically, among 30 bugs, it successfully produces 16 patches that
are semantically equivalent to developer patches, outperforming all the existing patch
generation techniques. Further, we also demonstrate that the presented techniques
can significantly reduce the overfitting problem in program synthesis by showing two
applications on program transformation. First, we applied semi-supervised synthesis
ideas to learn program transformations for automating repetitive edits. Compared to
existing tools, our semi-supervised approach is vastly more effective in synthesizing
correct programs with significantly lesser amounts of examples. It improves the
recall of generating correct edit suggestions from 27% to 100% while keeping high
precision. Second, in the scenario of automating API usage adaptions, our technique
learns adaptation rules according to human adaptations and the usages of the new
library version, and automatically transforms the API usages that are still relying
on the old library version. We show that our tool achieves around 90% accuracy in
correctly adapting API usages, which is much higher than state-of-the-art tools.

The proposed approaches impact the current state of practice by improving the
quality of auto-generated patches/programs. First, the developed system enables
developers to automatically and efficiently repair real-world defects and vulnerabili-
ties, such as CVEs and the bugs detected by the Google OSS-Fuzz infrastructure.
Specifically, our main contribution is to provide more guarantees to completely fix
bugs and increase confidence about the correctness of the auto-generated patches.
Second, the developed system based on program synthesis helps developers to auto-
matically and efficiently maintain software systems, such as code refactoring [83]
and API usage adaptation [92]. Specifically, our approach could synthesize high-
quality transformation rules with fewer human-provided examples. The synthesized
transformation rules can then automate repetitive tasks in the software maintenance
process. One of the developed tools is deploying into the Microsoft Visual Studio.

6

In summary, our approach can impact developers’ productivity and increase the
quality of software.

Research Scope. In this thesis, we restrict our investigation to fix security-related
crashes and vulnerabilities (e.g., CVEs). Fixing crashes and vulnerabilities are usually
more critical than fixing normal bugs, since the delay in fixing security-related bugs
will expose software systems to malicious attacks. Although the presented approaches
are investigated in the context of fixing crashes and vulnerabilities, they have the
potential to be used to fix other kinds of bugs. To fix crashes and vulnerabilities, the
proposed approaches are not guaranteeing to generate correct patches. Instead, they
are designed to decrease the reliance on the test cases and alleviate the overfitting
problem by completely fixing a vulnerability, i.e., not only fixing the given failing
tests, but also fixing all the inputs that can trigger this vulnerability. Furthermore, we
just consider the candidate patches that only modify program expressions, although,
our approaches can be extended to support other forms of patches. Besides fixing
bugs, we also apply the presented techniques to automate program transformations,
including automating repetitive edits and automated API adaptation. Although
those two applications are in different contexts, similar to program repair, we also
focus on the overfitting problem in synthesizing transformation rules according to
examples/tests. Beyond those two use cases, we believe the proposed approaches
can also be used on other software maintenance and development tasks.

Organization. The remainder of this thesis is organized as follows. We first discuss
prerequisite knowledge and background in Chapter 2. In Chapter 3 and 4, we
present our approaches that alleviate the overfitting problem of program repair via
intelligent test generation and semantic reasoning, respectively. Chapter 5 presents
the semi-supervised program synthesis, and Chapter 6 introduces our output-oriented
program synthesis and its application in API usage adaptations. Chapter 7 presents
the related work and Chapter 8 concludes this thesis as well as discuss potential
future research directions.

7

CHAPTER 2. BACKGROUND

Chapter 2

Background
In this chapter, we recap the essential background knowledge including: program

repair, program synthesis, and grey-box fuzzing.

2.1 Program Repair
We denote a program as p and a patched program obtained from p by substituting

an expression e with e′ as p[e 7→ e′]. The substitution (e 7→ e′) of expressions is
called patch of p, and sets of patches are denoted as {p0, p1, ..., pn}. T = {t, t1, ..., tm}
represent a set of program inputs (test suites). Automated program repair techniques
take in a buggy program, and a set of passing and failing tests, and aim to generate
a patched program that passes all the given tests. Several automatic program repair
techniques have been proposed to generate patches for buggy programs.

2.1.1 Search-Based Repair

Search-based repair systems, e.g. GenProg [64], SPR [68] and Prophet [70], first
generate a patch space S [69] and then search among S to find patches that can
pass all the given tests. Typical search-based repair generates patch candidate space
S using a set of predefined repair operators. The operators defines how to mutate or
change the buggy program to generate new program variants as repair candidates.
Among the patch space, it then use a search algorithm to find correct patches based
on some search heuristics. This process terminates when any program patch passes
all given test cases is found or when all patches have been evaluated. Patches that
pass all the given tests are called plausible patches.

This traditional algorithm enumerates and tests patches one by one, which is
not efficient. Therefore, it scales only to small search spaces because of the cost of

8

test execution. Test-equivalence analysis [52, 58, 75] can optimize this process.

Definition 2.1.1 (Test-equivalence) Let p and p′ be programs, t be a test. We
say that p is test-equivalent to p′ w.r.t. t if both p and p′ produce same output by
executing t.

In some cases, the test-equivalence of two programs can be detected without executing
each of them individually, but instead performing dynamic analysis while executing
only one of them, which helps to reduce the number of test executions required for
evaluation. In this work, we consider one such analysis referred to as value-based
test-equivalence [75]. The search space of patches is represented as a collection
of patch partitions. The patch partitions are constructed by using a value-based
test-equivalence relation.

Definition 2.1.2 (Value-based test-equivalence) Let e and e′ be expressions,
p and p′ be programs such that p′ = p[e 7→e′], t be a test. We say that p is value-based
test-equivalent to p′ w.r.t. t if e is evaluated into the same sequence of values during
the execution of p with t, as e′ during the execution of p′ with t.

In this thesis, we consider the search spaces of candidate patches that consist
of only modifications of program expressions. The search space is defined by the
following transformation schemas:

• Change an existing assignment:

x := e; 7→ x := e′;

• Change an existing if-condition:

if (e) {...} 7→ if (e′) {...}

• Add an if-guard to an existing statement S:

S; 7→ if (e) S;

where e and e′ are arbitrary expressions of bounded size.

9

2.1.2 Semantic-Based Repair

Different from search-based repair, the semantic-based program repair techniques
first construct constraints that should be satisfied to fix the defect, and then
they use program synthesis to directly synthesize patches that satisfy the repair
constraints. Typical semantic-based repair, e.g., SemFix [93], Nopol [144], SPR [68]
and Angelix [79], replaces the suspicious expression by a symbolic expression x.
It then executes each test from the beginning. When the execution reaches the
suspicious location, it then starts to execute the program symbolically with x as
the symbolic variable. This execution yields a set of formulas on x that can be
used as a specification of the program semantics. According to the given test oracle
and the formulas on x, it constructs a set of constraints on x that can satisfy
the test oracle (pass tests). Program synthesis techniques, e.g., component-based
synthesis [48], are utilized to find an expression that satisfies the inferred constraints
obtained from the previous step. Replacing the suspicious expression with the
synthesized expression ensures that all the tests can be passed. Similar to search-
based approaches, semantic-based approaches also suffer from the overfitting issue
since they purely rely on test cases as specifications.

2.1.3 Learning-Based Repair

Another line of repair is to learn repair strategies from human patches, such
as Genesis [67], GetaFix [7] and Phoenix [9]. Those techniques take the patch
generation as a code transformation problem. First, they mine human patches
that fix defects in existing software repositories. They then represent the repair
operation as two template abstract syntax trees (ASTs) τi 7→ τo. One template AST
τi matches the code in the original program. The other template AST τo specifies
the replacement code for the generated patch. The abstract template ASTs τi 7→ τo

is then applied to the buggy programs to produce patches. The repairability of those
techniques does not rely on predefined transformation operators. Instead, they can
automatically learn repair strategies from available human patches.

10

2.2 Program Synthesis
Given a set of specifications, program synthesis generates a program satisfying

the specifications. Specifically, for a given input domain I and output domain O, a
program synthesis technique takes as input a set of examples {i0 7→ o0, . . . , in 7→ on}
and produces a program P : I→ O such that P(ik) = ok for all 0 ≤ k ≤ n.

2.2.1 Program Synthesis as Second-Order Constraint Solv-
ing

Program synthesis is formalized to be a second-order constraint solving problem
in the recent work on SE-ESOC [76]. We build our program synthesizer on top of
the approach proposed by SE-ESOC. Given a set of components C, this approach
first constructs a set of terms and then represents them as a tree. Specifically, each
leaf of the tree corresponds to components without input, and an intermediate node
has as many subnodes as the maximal number of inputs of a component. Figure 2.1
shows a tree with three nodes, and each node is constructed using four components
("x", "y", "+", "-"). The leaf nodes 2 and 3 do not have subnodes, while node 1 has
two subnodes since components "+" and "-" takes two inputs. For each node i with
sub-node {i1,i2,...,ik}, its output is represented as outi, and its inputs is represented
by {outi1 ,outi2 ,...,outik} (the output of subnodes). In addition, boolean variables sji
is the j-th selector of node i, which means j-th component is used in this node, Fj
represents the semantics of j-th component, and N is the number of nodes in the
tree. For the tree in Figure 2.1, with {s3

1, s1
2, s2

3} as true, the output of the root node
will be x+ y. The well-formedness constraint is encoded as ϕwfp := ϕnode ∧ ϕchoice,
such that:

ϕnode :=
N∧
i=1

|C|∧
j=1

(
sji ⇒ (outi = Fj (outi1 , outi2 , ..., outik))

)
(2.1)

ϕchoice :=
N∧
i=1

exactlyOne
(
s1
i , s

2
i , ..., s

C
i

)
(2.2)

For a node, ϕnode describes the semantic relations of each node between its output
and inputs, where the inputs are the outputs of its sub-nodes. ϕchoice restricts that
only exactly one component is selected inside each node. Using the above encoding,

11

+ -

+ - + -

Node 1

Node 2 Node 3

𝑥

𝑥𝑥 𝑦𝑦

𝑦
𝑠$$ 𝑠$% 𝑠$& 𝑠$'

𝑠%$ 𝑠%% 𝑠%& 𝑠%' 𝑠&$ 𝑠&% 𝑠&& 𝑠&'

𝑜𝑢𝑡&

𝑜𝑢𝑡$

𝑜𝑢𝑡%

Figure 2.1: SE-ESOC encoding with four components ("x", "y", "+", "-") and three
nodes.

program := (guard, transformer)

guard := pred | Conjunction(pred, guard)

pred := IsNthChild(node, n) | IsKind(node, kind)

| Attribute(node, attr) = value | Not(pred)

node := Path(input, path)

transformer := construct | select

construct := Tree(kind, attrs, children)

children := EmptyChildren | Cons(node, children)

| InsertChild(Children(select), pos, node)

| DeleteChild(Children(select), pos)

| ReplaceChildren(Children(select), posList, children)

| MapChildren(λ input: transformer, Children(select))

select := Nth(Filter(guard, SubTrees(input)), n)

pos := n | ChildIndexOf(node)

Variables:

AST input; List<int> posList; string kind, attr, value;

int n; XPath path; Dictionary<string, string> attrs;

Figure 2.2: Domain-specific language for edit programs

the output of the root node represents a function f that connects inputs and outputs
of components. Finally, given n input-output pairs {(αk, βk) | 1 ≤ k ≤ n}, the
synthesis goal is to generate function f by traversing the abstract tree and satisfying
ϕcorrect , where

ϕcorrect :=
n∧
k=1

βk = f(αk) (2.3)

12

2.2.2 Program Synthesis for Code Transformation

In chapter 5, we apply program synthesis for code transformations. Here, we
describe how program synthesis techniques can be used to automatically transform
codes. In the domain of code transformation, both input I and output O are fixed
as Abstract Syntax Tree (AST). ReFazer [109] is one of the well-known program
synthesis engine for code transformations. In ReFazer, the programs are drawn
from the domain-specific language (DSL) shown in Figure 2.2. In this DSL, a
transformation program is formulated as a function pair (guard, transformer).

• guard : T→ Boolean The guard defines the context where the transformation
rule is applied. The guard is composed of a set of conjunctive predicates on the
attributes (e.g., Type, Kind, TextValue, etc) of the AST and its sub-trees. The
guard evaluates where an AST satisfy its predicate and return a Boolean value
accordingly.

• transformer : T → T The transformation defines how to transform an input
AST to an output AST. In our setting, transformer recursively constructs the
output AST using two operators: (1) select: A select returns a subtree of the
input. The subtree is identified as the nth node that satisfies a guard, and (2)
construct: A construct returns a subtree that is built by specifying the kind of
node, its attributes and children. The children may be constructed using several
different operators. For example, operator InsertChild(select, pos, node)

selects a node (called parent) from the input and returns the parent’s children
with an additional node at the position pos.

Essentially, the guard determines which AST should be transformed, while the
transformer specifies how the AST should be transformed. Formally, we have
that P (T) = transformer(T) if guard(T) = true, and P (T) = ⊥ otherwise. In
general, given a set of input-output examples {i0 7→ o0, . . . , in 7→ on}, synthesizing a
transformation program P :(guard, transformer) is a generalization process of the
concrete transformation examples, such that guard(ik) = true and transformer(ik)
= ok for all k ∈ 0 . . . n.

We do not provide details on how ReFazer synthesizes programs given examples.
However, one important aspect of the ReFazer synthesis algorithm is that it prefers

13

selections over constructions, i.e., when a particular subtree of the output can be
selected from the input AST, ReFazer returns a program with the selection. The
reader is referred to [109, 100] for further details.

Over-generalization and Under-generalization. Input-output examples are
inherently an under-specification of the intended program, and any program synthesis
technique needs to generalize inductively from the examples. Developers view false
positives more unfavorably than false negatives—it causes them to lose trust in the
tool [10]. Hence, many synthesis techniques, including ReFazer, used in the source
code transformation domain err on the side of under-generalization (for examples,
see [7, 82, 109]).

2.3 Greybox Fuzzing

Algorithm 1: Greybox Fuzzing
Input: seed inputs T

1 while timeout is not reached do
2 t := chooseNext(T);
3 energy := assignEnergy(t);
4 for i from 1 to energy do
5 t′ := mutate(t);
6 if isInteresting(t′) then
7 T := T ∪ t′;
8 end
9 end

Generating more test cases for repair system is one way to alleviate its overfitting
problem. We briefly describe how Greybox Fuzzing (e.g. AFL [132]) generates test
cases in Algorithm 1. Given a set of initial seed inputs T , the fuzzer chooses t
from T (line 2) in a continuous loop. For each selected t, the fuzzer determines the
number of tests to be generated by mutating t, which is called the energy of t, and
its assignment is dictated by a power schedule. The fuzzer generates new inputs by
mutating t according to defined mutation operators and the power schedule. New
input t′ will be added to the circular seed queue (line 7) for further mutation if it is
a “interesting" input, meaning it potentially exposes new control flows as deemed
from the compile-time instrumentation.

14

Directed Grey-Box Fuzzing. AFLGo [11], an extension of the popular grey-box
fuzzer AFL, directs the search to given target locations. In AFLGo, an estimation
of the distance of any basic block to the target(s) is instrumented at compile time,
and these estimates are used during test generation to direct the search to the
targets. Specifically, tests with lower estimated distance to the target are preferred
by assigning more energy to these tests, and this energy difference increases as
temperature decreases. The temperature is controlled by a cooling schedule [55],
which dictates how the temperature decreases over time. Based on cooling schedule,
the current temperature Texp is defined as:

Texp = 20−
ctime
timex (2.4)

where timex is user-defined time to enter "exploitation" (preferring tests deemed
closer to the target) from exploration, ctime is current execution time. Given the
current temperature Texp, normalized distance d(t, Tb) between test t and target
location Tb, AFLGo introduces an annealing-based power schedule (APS):

aps(t) = (1− d(t, Tb)) ∗ (1− Texp) + 0.5Texp (2.5)

and determines the energy assigned to t by multiplying the energy assigned by AFL
with a power factor calculated using APS:

energyaflgo(t) = energyafl(t) ∗ 210∗aps(t)−5 (2.6)

15

CHAPTER 3. ALLEVIATE OVERFITTING VIA INTELLIGENT TEST
GENERATION

Chapter 3

Alleviate Overfitting via Intelligent
Test Generation

To alleviate Overfitting problem in program repair, this chapter present an
intelligent test case generation that can help discard overfitted patches.

3.1 Introduction
Generate-and-validate program repair systems first construct a space of candidate

patches (set S in Figure 3.1) and search for a patch that passes the given tests.
Such patches that pass given tests are called plausible patches (set P in Figure 3.1).
Since a test suite is an incomplete specification, only part of plausible patches may
be correct (set C in Figure 3.1), and the remaining patches merely overfit the tests.
In rare cases, all of the plausible patches are correct. When we repair a program
crash, the overfitted patches may still cause program crashes on the tests outside of
the given test suite. In this work, we propose to use test generation to divide the

S P Pcrash−free

Pcrashing

C

1

Figure 3.1: Structure of program repair search space, where S is a space of candidate
patches, P is a set of plausible patches, Pcrashfree is a set of crash-free patches, C is
a set of correct patches, Pcrashing = P \ Pcrashfree is a set of crashing patches.

16

set of plausible patches P into two subsets Pcrashfree (crash-free plausible patches),
and Pcrashing (crashing plausible patches) and suggest that program repair should
aim to find a patch from the set Pcrashfree, that is a patch that passes given tests
and does not cause crashes for the inputs outside of the repair test suite. Although
crash-freedom is implicitly assumed to hold for correct patches, existing program
repair systems do not guarantee this property and may generate patches causing
crashes or even introduce new crashes and vulnerabilities.

A prominent group of test case generation techniques that were successfully
used to find serious vulnerabilities in popular software is coverage-based greybox
fuzzing [132, 137]. These techniques resort to compile-time instrumentation to track
coverage information and guide the test generation. In these algorithms, inputs
are randomly mutated to generate new inputs, and a higher priority is assigned to
inputs that exercise new and interesting program paths. Whether a generated input
exercise new paths is predicted based on whether new control flow transitions are
exercised. The main intuition of these techniques is that covering more program
paths (that correspond to different semantic partitions of the input space) enables
them to cover more parts of program functionality and therefore find more crashes.

Coverage-based greybox fuzzing can be applied to detect crashes in automatically
generated patches in the following way: (1) generate a high coverage test suite using
fuzzing for the original program, and (2) run this test suite on all plausible patches
P to discard those that introduce crashes, and thus find an over-approximation of
Pcrashfree. However, we argue that this approach is ineffective for the following two
reasons. First, each candidate patch alters the semantics of the original program
and therefore might induce different semantic partitions of the input space, so tests
generated for the original program might not adequately cover the functionality of
the patched program. Second, to divide the set of plausible patches P into subsets
Pcrashfree and Pcrashing (dotted line in Figure 3.1), the generated tests should also
differentiate patches in the search space.

To take the above considerations into account, we suggest that test generation for
program repair should not be based merely on the coverage of the original program,
but also on the coverage of the divergences introduced by the patches in the search
space. Thus, a test suite produced by our method is not just aimed to cover the
functionalities of the original program, but also (1) functionality that is altered by

17

the candidate patches, and (2) functionality that differs across candidate patches.
Since such a test suite is more likely to find divergences among plausible patches P ,
consequently it is more likely to differentiate between Pcrashfree and Pcrashing.

As a practical realization of this concept, we propose a new algorithm that
fuses patch and test generation into a single process. In this process, patches are
generated with the objective of passing existing tests, and new tests are generated
with the objective of differentiating patches. However, since there could be many
plausible patches, it is inefficient to separately generate tests to distinguish each pair
of these patches. Instead, we propose to group patches into test-equivalence classes,
sets of patches that demonstrate equivalent behaviour on existing tests. These are
called patch partitions. When generating tests, we assign higher priority to those
tests that refine patch partitions into finer-grained partitions, since such tests cover
previously uncovered semantic differences between candidate patches. This allows
us to efficiently cover divergences between candidate patches without explicitly
considering all pairs of patches. As shown in our evaluation in section 3.5, our
approach rules out 18% more overfitted patches than the traditional coverage-based
grey-box fuzzing AFL [132].

3.2 Motivating Example
In this section, we give a high-level overview of our approach to generate crash-free

patches by presenting an example from FFmpeg. FFmpeg is a collection of libraries
and programs for handling video, audio and other multimedia files, streams. A buffer
overflow vulnerability is reported by OSS-Fuzz1 in May 2017. This vulnerability
is caused by incorrect bounds checking when FFmpeg decodes DirectDraw Surface
(DDS) files2. Listing 3.1 shows the key code snippet as well as its patch. The decode
method in Listing 3.1 takes four parameters, where gb stores the origin data of the
input image, width and height are initialized based on the information from input
image header, and frame is a buffer to store decoded data. If remaining_space is
equal to width+3 (line 15), an invalid buffer access will occur in line 23, since it
will overwrite the memory locations after frame_end. The correct patch3 for this

1https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1345
2DDS is an image file format for storing texture and environments
3https://github.com/FFmpeg/FFmpeg/commit/f52fbf

18

1 int decode_dds1 (ByteContext ∗gb , u int8_t ∗ frame , int width , int
he ight) {

2 . . .
3 segments = bytestream2_get_ l e16 (gb) ;
4 while (segments−−) {
5 if (b i tbu f & mask) {
6 . . .
7 }
8 else if (b i tbu f & (mask << 1)) {
9 v = bytestream2_get_ l e16 (gb) ∗2 ;
10 if (frame − frame_end < v)
11 return AVERROR_INVALIDDATA;
12 frame += v ;
13 } else {
14 int remaining_space = frame_end−frame ;
15 if (remaining_space < width+3)
16 //"width+3" → "width+4" (correct patch)
17 return AVERROR_INVALIDDATA;
18 frame [0] = frame [1] = frame [width] =
19 frame [width+1] = bytestream2_get_byte(gb) ;
20 frame += 2 ;
21 frame [0] = frame [1] = frame [width] =
22 //buffer overflow location
23 frame [width+1] = bytestream2_get_byte(gb) ;
24 frame += 2 ;
25 }
26 }}

Listing 3.1: Buffer overflow vulnerability in FFmpeg

vulnerability is to modify the condition in line 15 from width+3 to width+4.
Automated program repair (APR) takes a buggy program and a set of test cases

(including failing tests that will cause program crash) as inputs. Since the tests
do not cover all program functionalities, APR tools may generate many overfitted
patches which make the patched program pass all the test suites but do not actually
fix the bug. Given the failing test case and a set of supported transformations, some
existing repair tools, e.g., F1X [75], generate a lot of plausible patches (including the
correct patch). However, it is hard to select the correct one out of the large number
plausible patches. For instance, F1X generates 1807 plausible patches to fix this
buffer overflow vulnerability and only two of them are correct. Column plausible
patch in Table 3.1 shows part of patches that can make the program pass the failing
test. Out of them, the fourth and sixth patches are semantically equivalent to
the developers’ patch. However, other patches overfit the existing test set. Those
patches fix the crash triggered by the existing test set, but they do not completely

19

Table 3.1: Plausible patches and their behaviors on new test

Id plausible patch T1 T2 T3 T4

1 remaining_space>width+1 (T) 3 (F) 7 — —
2 remaining_space>width+2 (F) 7 — — —
3 remaining_space! =width+3 (T) 3 (T) 3 (T) 3 (T) 3

4 remaining_space<=width+3 (T) 3 (T) 3 (F) 3 (F) 3

5 remaining_space>=width+3 (F) 7 — — —
6 remaining_space<width+4 (T) 3 (T) 3 (F) 3 (F) 3

7 remaining_space<width+5 (T) 3 (T) 3 (T) 3 (F) 3

8 remaining_space<width+6 (T) 3 (T) 3 (T) 3 (F) 3

T1: remaining_space=width+2 T2: remaining_space=width
T3: remaining_space=width+4 T4: remaining_space=width+6

fix this vulnerability or even introduce new vulnerabilities (e.g. the patched program
using the first patch still crashes on a test that makes remaining_space equal to
width+2). The fundamental reason is that the search space of candidate patches is
under-constrained.

To tighten the search space and rule out crashing patches, one solution is to
automatically generate more test cases. This leads to the following research question:
how to generate test cases that can filter out a large fraction of overfitted patches?

Existing fuzzing techniques are not suitable for efficiently generating tests to
constrain the patch space. Most fuzzing tools (e.g. AFL [132]) favor the mutation of
input with the goal of finding unexplored statements and enhancing code coverage.
Different from program testing, the role that fuzzing plays in repair is to generate
test cases to find discrepancies between patches and filter out overfitted patches
instead of improving code coverage. In this example, we expect tests that can
drive the execution to the patch location with different program states (values of
remaining_space, width).

To efficiently generate test inputs that can filter out overfitted patches and
differentiate patches, we propose a strategy to integrate test generation and program
repair. Our main intuition is, if one test is able to find the discrepancies between
patches, its neighbors are also likely to find discrepancies. Table 3.1 shows the patch
behaviors over four tests. The patch behavior is shown by its effectiveness in repairing
vulnerability and expression value, where 3 and 7 represent whether buffer overflow
vulnerability is triggered or not by each test, T and F represent the value of patch

20

expression (true or false). Suppose these four tests are generated in order, with values
of remaining_space equals to width+2, width, width+4, and width+6 respectively.
For instance, the expression value of patch 2 (remaining_space > width + 2) is
false (F) under test T1, and program fixed by this patch still crashes (7) under T1,
so that patch 2 is filtered out and will not be considered in the following iterations.
Test input T1 is able to find the discrepancies between patches, and rule out two
overfitted patches. Correspondingly, T2 and T3, which are two neighbors of T1 (a
single increment or decrement mutation over width or v on line 9), can also find
discrepancies.

To guide the test generation process, Fix2Fit adopts an evolutionary algorithm
similar to the popular AFL fuzzer [132]. AFL undergoes compile-time instrumen-
tation to capture control flow edges, and at run-time, it uses the instrumentation
to predict whether a newly generated test exposes new control flows. Tests that
expose new control flows are favored and they are retained for further examination
by mutating them further. In addition to the code coverage based heuristic used in
AFL, we propose a new heuristic: we favor tests with greater ability to distinguish
plausible patches. In this example, AFL will not retain T1, since it does not improve
code coverage. However, Fix2Fit will retain T1 for further mutation since T1 can
distinguish patches 2 and 5 from others. Therefore, Fix2Fit has a greater chance of
finding tests like T2 or T3 via mutation. In addition, the chance of generating tests
to find discrepancies across patches can be further increased by assigning higher
“energy” to T1 (meaning more mutations of T1 will be constructed by the fuzzer).

Out of eight patches given in Table 3.1, three plausible patches (1, 2, 5) can be
ruled out, since the program constructed by those patches still crashes over some
tests. For the remaining five plausible patches, the patched program does not crash,
but the semantic behaviors of them are different (two of them are correct). The
remaining incorrect patches cannot be ruled out due to the lack of oracles of the
generated tests (expected outputs of the newly generated inputs). If the oracle of
certain tests such as T3 is provided (could come from more fine-grained program
analysis or developers), all the incorrect patches can be ruled out.

21

Mutators

Test suite
(Seeds)

Mutated files

Input Queue

(IsInteresting)
Enqueue

Dequeue

Pool of Patches

}
Refine

patch pool

Assign
energy

the boundary of patch partitions
Figure 3.2: Architecture of the integrated testing and repair loop

3.3 Methodology
Fix2Fit is designed to generate new test cases to efficiently rule out overfitted

plausible patches and generate crash-free patches. Our goal is to strengthen the
filtering of patches by adding additional test cases. Specifically, Fix2Fit observes
the semantic differences across plausible patches, and then guides the test gener-
ation process. Fix2Fit utilizes the notion of separability: the ability of a test to
find semantic discrepancies between plausible patches. To represent the semantic
discrepancies, we group all patches showing the same semantic behavior under all
available test cases into an equivalence class, which is called a patch partition. More
formally,

Definition 3.3.1 (Patch Partition) Let T be a set of available test cases and P
be a set of plausible patches of program p. The patched program by patch pi ∈ P is
denoted as p[e 7→ei]. ∀pi, pj ∈ P , pi and pj belong to same equivalent patch partition
if and only if ∀t ∈ T . p[e 7→ei] is value-based test-equivalence to p[e 7→ej] w.r.t t.

The ability of a test to find semantic discrepancies is formalized as its effectiveness
in refining patch partitions. For any two patches pi, pj from the same equivalence
partition EP , if p[e 7→ei] is not value-based test-equivalence (refer to Definition 2.1.2)
to p[e 7→ ej] w.r.t new test t, we say test t refines partition EP . Different from
existing fuzz testing techniques that maximize the code coverage (AFL), or minimize
distance to the target location (AFLGo), Fix2Fit is designed to maximize semantic
discrepancies across patches (thereby refining patch partitions). To find more

22

Algorithm 2: Patch-aware Greybox Fuzzing
Input: test suite T , program p

1 Par := genPlausiblePatches (p, T); // generate set of patch partitions
2 pLocs := extractPatchLocs (Par); // extract set of patch locations
3 p′ := instrument (p, pLocs); // instrument fuzzing targets
4 Tnew := { };
5 while true do
6 t := chooseNext(T);
7 for i from 1 to t.energy do
8 t′ := mutate(t); Tnew := Tnew ∪ {t′};
9 (isReached, distance, coverage) := exec(p′, t′);

10 if isReached then
11 Par := refine_and_filter(Par, t′);

// Break patch partitions & remove overfitted partitions
12 sep := separability(t′, Tnew) // Equation 3.1

13 end
14 t’.energy := powerSchedule(sep, distance, coverage); // Sec 3.3.3
15 if isInteresting(coverage, sep) then

// Sec 3.3.4
16 T := T ∪ {t′};
17 end
18 end
19 if timeout || sizeOf(Par) == 0 then
20 break;
21 end
22 Output: remaining patch partitions Par

semantic discrepancies between plausible patches, we essentially generate test cases
that can make the execution reach the patch location with divergent program states.

3.3.1 Integration of Test Generation and Repair

Figure 3.2 presents the architecture of our integrated testing and repair loop.
Given a buggy program and a set of test cases, Fix2Fit first constructs a pool of
plausible patches (patch generation). Just like existing grey-box fuzzers, Fix2Fit
mutates the given test suite to generate a set of mutations (test generation). Fix2Fit
then applies these mutations to the patch candidates to measure their ability to
distinguish patches. In this way, the tests which can distinguish existing patches are
prioritized and saved as seeds for further mutation. This loop continues with the
goal of further breaking patch partitions and ruling out overfitted patches.

Algorithm 2 shows the key steps of Fix2Fit. The main procedure is built on
top of an automated patching technique and directed greybox fuzzing technique.
Given a buggy program p, a test-suite T , and at least one test case in T that can

23

trigger a bug, this algorithm will return a set of plausible patch partitions for fixing
the bug. Fix2Fit generates the initial set of plausible patches by inheriting the
traditional Generate and Validate approach, where a set of patch candidates are
generated and evaluated using a provided set of test cases (line 1). Incorrect patches
are filtered out in the evaluation process, and a set of plausible patches are returned
back. Besides plausible patches, it groups patches with the same semantic behavior
into a set of patch partitions (as per the value-based test equivalence Definition
3.3.1). The plausible patches may be overfitting, and the patch partitions can be
broken by generating more tests.

To filter out overfitted patches by generating new tests, the newly generated tests
must at least reach the patch location. We instrument program p with the patch
location as target (Line 3) to produce an instrumented program p′. At runtime,
the instrumentation is used to calculate code coverage and the distance to the
patch location (line 9), and also the separability for each newly generated test. The
separability of a test t′ captures its ability to find semantic discrepancies between
plausible patches.

For each newly generated input t′, Fix2Fit first evaluates whether t′ drives the
execution to the patch locations (isReached). If test t′ reaches any target(Lines
10-12), procedure refine_and_filter is invoked, which refines the patch partitions
and also filters out patch partitions as follows: (1) refine_and_filter refines the
current patch partitions Par using test t′. The refinement process may break the
existing patch partition into several sub-partitions since the underlying value-based
test-equivalence relation now also considers the newly generated test t′; (2) After the
patch partitions are refined using t′, the procedure refine_and_filter checks which
of the patch partitions can be shown to be overfitting (patches which crash on test
t′) and filters out those patch partitions.

Separability of a generated test t′ (the patch-awareness in our fuzzing method)
is exploited along two dimensions: (1) it is used in power schedule to determine
the energy assigned to new test t′ as shown in line 14, and (2) it is used to
determine whether the generated input t′ is added to the seed input set T for further
investigation/mutation (Lines 15-16).

The integrated fuzzing and repair algorithm is terminated on timeout, or when
all plausible patches are filtered out.

24

3.3.2 Separability of Test Cases

In Algorithm 2, test generation is guided by the behavioral differences across
plausible patches. The ability of a test to find semantic discrepancies between
plausible patches is formalized as separability. We now explain how the separability
is calculated.

When a new test t′ is introduced, its effects on the current patch partitions can
be captured in two ways: (1) patch filtering: rule out crashing patches (2) partition
refinement: refine existing patch partition into several sub-partitions. Both of these
can be used to calculate the separability of test t′, which in turn determines the
“energy” assigned to t′ in fuzzing.

We argue that the partition refinement is a better heuristic than patch filtering
for the purpose of guiding fuzzing (see RQ1 of Section 3.5). In the fuzzing process,
by mutating a test with high separability, we hope that the generated neighbors are
also tests with high separability. If we define separability in terms of the number of
overfitted/crashing patches filtered, we note that whether the patch crashes on new
test t′ or not often depends on very specific values, for instance, a divide-by-zero
error can only be triggered when input is 0. Therefore, we cannot assume that by
mutating a test that exposes crashes, we are also likely to get tests exposing crashes.

Compared to patch filtering, partition refinement is a smoother metric, since
the patches are grouped into partitions using test-equivalence relation, and whether
partitions can be refined only depends on the values of patch expressions. In other
words, if one test t′ is able to pin-point semantic differences between patch candidates
(refine patch partitions), its neighbors (obtained by mutating t′) also have a high
chance to find semantic differences between patch candidates. Once we generate one
test that can refine patch partitions, it is more likely that we can distinguish the
crash-free patches from crashing patches, and as a result, rule out overfitted patches.
Based on this intuition, we define the separability of a test as its ability to refine
test-equivalence based patch partitions.

Our notion of separability judges how much refinement is observed on the patch
partitions once a new test is introduced. Given a set of patch partitions {P1, P2, ...Pn},
and a newly generated test t′, if the patches in partition Pi show different behaviors
on test t′, we say t′ refines partition Pi. We use b(t′) to represent the number of

25

patch partitions that can be refined by test t′. Fix2Fit always maintains a set Tnew

of newly generated tests, as shown in Algorithm 2. We define the separability of test
t′ as b(t′) divided by maximum b(t) of any pre-generated test t ∈ Tnew:

separability(t′) = b(t′)
maxt∈Tnew b(t) (3.1)

3.3.3 Power Schedule

We now define the notion of power schedule, which is a measure of the “energy”.
The energy represents the number of neighborhoods of a test that are investigated
(line 14 of Algorithm 2). Our goal is to prioritize the test that can differentiate
between plausible patch candidates by mutating it more times and generating more
neighborhoods.

To differentiate plausible patches in the search space, we should first generate tests
that reach patch location. Therefore, we inherit the power schedule of the directed
grey-box fuzzer AFLGo [11], which directs the search to given target locations.
Specifically, tests with a lower estimated distance to the target are preferred by
assigning more energy to these tests. Apart from reaching patch locations, generating
different program states in the patch location is necessary to differentiate plausible
patches. Fix2Fit prioritizes the tests with higher separability by assigning more
energy to these tests.

To generate different program states at the patch location, two kinds of tests
are needed: (1) tests that make execution reach patch location following various
paths (2) tests that make execution reach patch location following the same path but
with different values (to refine value-based test-equivalence relation). To take both
kinds of tests into consideration, we utilize the cooling schedule [55] notion adapted
from simulated annealing. In the cooling schedule, the degree to which a test with
high separability is preferred over a test with low separability. The energy of a
test with non-zero separability is increased over execution time, i.e., “temperature
decreases" using the simulated annealing terminology. In other words, Fix2Fit
performs exploration at the very beginning to explore various paths, and gradually
changes to exploitation to differentiate plausible patches. Given current temperature

26

0.0 0.2 0.4 0.6 0.8 1.0
separability(t)

0.0

0.2

0.4

0.6

0.8

1.0
sc
he

du
le
(t)

ctime=0

ctime=20

ctime=120

0 20 40 60 80 100 120
current time(min)

0.0

0.2

0.4

0.6

0.8

1.0

sc
he

du
le

(t)

seperability=0

seperability=0.5

seperability=1

Figure 3.3: (a) energy of a test with different separability at 0min, 20min, 120min
(b) energy of a test t at different time when separability(t)=0, 0.5, 1. timex=60min

Texp (as defined in Equation 2.4) as well the separability(t’), our power schedule is:

schedule(t′) = separability(t′) ∗ (1− Texp) (3.2)

Thus schedule(t′) ∈ [0, 1]. The high-level behavior of this power schedule is
illustrated in Figure 3.3. We describe the integration of this power schedule into a
fuzzer. Suppose energyaflgo(t′) is the energy assigned to t’ by AFLGo, we define the
integrated energy as:

energy(t′) = energyaflgo(t′) ∗ 2schedule(t′)∗log2Max_Factor (3.3)

where Max_Factor is the user-defined max factor integrated to existing energy, and
energy(t′)

energyaflgo(t′) ∈ [1,Max_Factor].

3.3.4 Is Interesting?

Coverage-based greybox fuzzers always maintain a seed queue to save “interest-
ing” tests for further mutation and investigation. This appears as the procedure
isInteresting in line 15 of Algorithm 2. In existing coverage-based grey-box fuzzers, a
test is deemed “interesting”, if it is predicted to expose new control flows (and hence
improve code coverage); the prediction about discovering new control flows is aided
by compile-time instrumentation. Apart from tests that improve code coverage,
Fix2Fit also regards the tests with non-zero separability as “interesting” and adds
them to the seed queue for further mutation. As a result, we retain tests that are
capable of distinguishing between existing patch partitions, and the mutations of
such tests are examined by the fuzzer in Algorithm 2.

27

OSS-Fuzz

Test suite

Candidate
generator

Mutator Guidance
engine

Runtime

Buggy
program

Program
(instrumented)

Patch pool
instrument

refine

cov, dis, sep

Figure 3.4: Architecture of tool Fix2Fit

3.3.5 Sanitizer as Oracles

The absence of program crashes may not be sufficient to guarantee program
correctness. To mitigate this problem, we enhance patch checking by introducing
sanitizers. Sanitizers can detect various vulnerabilities at run-time with the help of
compile-time instrumentation. Generally, sanitizers convert the software vulnera-
bilities into normal crashes, e.g. AddressSanitizer crashes the program if a buffer
overflow is detected. By using sanitizers we can rule out the patches that introduce
vulnerabilities. As compared to only filtering patches based on crashes, more patches
can be filtered out.

The sanitizers used by Fix2Fit include UndefinedBehaviorSanitizer4 (UBSan)
and AddressSanitizer5 (ASan). UBSan is used to catch various kinds of undefined
behaviors during program execution, e.g. using a misaligned or null pointer, signed
integer overflow. ASan is a tool that detects memory corruption bugs such as
buffer overflows or accesses to a dangling pointer. The patch partitions are not
only checked for crashes but are also checked against all available sanitizers, so that
remaining patches are guaranteed not to introduce security vulnerabilities in terms
of all available tests.

3.4 Implementation
The architecture of Fix2Fit is shown in Figure 3.4. Fix2Fit takes as inputs the

buggy program and test suites extracted from OSS-Fuzz benchmark, and generates
a set of crash-free patches. The initial test-suite is composed of available developer
test cases and the failing tests generated OSS-fuzz. Fix2Fit consists of three

4UBSan website: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
5ASan website: https://clang.llvm.org/docs/AddressSanitizer.html

28

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html

main components: Candidate generator, Runtime and Guidance engine. Candidate
Generator takes the buggy program and tests as inputs and generates a pool of
patch candidates. The Runtime executes test on the instrumented program and
collects necessary information (e.g. code coverage and separability). Accordingly,
the Patch pool is refined after executing each test. Guidance engine is used to guide
the fuzzing according to all the information collected at runtime.

Instrumentation: To enable Fix2Fit’s grey-box guidance, we first of all
instrument the buggy program to gather run-time information. To collect the distance
to patch locations, we inherit the instrumentation strategy used in AFLGo [11],
where the estimated distances between basic blocks are calculated and injected
at compile-time. Besides, we insert a logging instruction after each basic block
to collect the execution trace, which is then used for fault localization and for
determining whether the patch location is reached. To enhance the checking of patch
candidates, we instrument the buggy program using Clang’s sanitizers, including
Undefined Behavior Sanitizer (UBSan) and Address Sanitizer (ASan). After the
instrumentation with sanitizers, we can treat the violation of sanitizer as normal
program crash.

Candidate Generator We first generate the search space according to pre-
defined transformation operators. The transformations supported in our prototype
include: changing the right-hand side of an assignment, condition refinement and
adding if-guard. All the operators are borrowed from Prophet [70], Angelix [79] or
F1X [75]. The plausible patch candidates are grouped into patch partitions based on
their runtime value. To collect the run-time values of patches, Fix2Fit synthesizes
a procedure, say procallpatch enumerating all plausible patches, and generates a
meta-program by dynamically replacing the to-be-fixed expression with a call to this
procedure. At runtime, the procedure procallpatch is invoked when the patch location
is reached. By controlling the enumeration strategy, this procedure procallpatch can
generate run-time values for all the patches with one run and can select the run-time
value of one particular patch to return. This mechanism enables us to generate and
refine patch partitions with one run for each test. Patch partitions are maintained
in the patch pool, as in the F1X repair tool [75]; different from F1X, patch partitions
are used to guide test generation with the objective of ruling out patches.

Runtime and Guidance engine The main procedure of fuzzing is built on

29

Table 3.2: Subject programs

Subject #Defect #Test Description

Proj.4 10 3 cartographic projection and geo-
detic transformation library

FFmpeg 26 11 audio & video processing library
Libarchive 12 4 multi-format archive library

Openjpeg 12 13 open-source library to encode and
decode JPEG 2000 images

Libssh 8 23 C library for the SSHv2 protocol
Libchewing 13 11 phonetic input method library
Total 81 — —

top of the directed greybox fuzzer AFLGo [11]. Besides the heuristic used in AFLGo,
the Guidance engine also takes separability (Equation 3.1) into account.

3.5 Evaluation
We evaluate the effectiveness of Fix2Fit in generating test inputs, filtering

out overfitted patches and refining patch partitions. Our research questions are as
follows:

RQ1 What is the overall effectiveness of Fix2Fit in ruling out overfitted patches?

RQ2 Is Fix2Fit effective for generating crash-free patches?

RQ3 How far can Fix2Fit reduce the pool of patch candidates, if the oracles of
only a few (e.g. 5-10) tests are available?

3.5.1 Benchmark Selection

To evaluate our technique, we do not use existing benchmarks for two reasons.
First, some existing benchmarks are over-engineered in terms of test-suites. For
instance, each subject from the ‘ManyBugs’ benchmark has 1234 tests, on average.
Second, we focus on generating crash-free patches for software crash or vulnerabilities,
while most of the defects in existing subjects are logic errors e.g., ManyBugs [63]
and Defects4j [53]. Instead, we select a set of real-world subjects from the OSS-Fuzz

30

Table 3.3: Defect categories of Fix2Fit benchmark

Defect Type Integer overflow Buffer overflow Unknown address
#Defects 29 20 4
Defect Type Invalid array access Arithmetic error Others
#Defects 3 4 21

(Continuous Fuzzing for Open Source Software) dataset6. OSS-fuzz, which has
recently been announced by Google, is a continuous testing platform for security-
critical libraries and other open-source projects. We select projects which contain a
large number of bugs and try to reproduce the defects by installing the corresponding
versions in our environment. We drop the defects that cannot be reproduced.
Furthermore, we focus on subjects which are written in C, since our repair infra-
structure works on C programs.

Eventually, we select six well-known open source projects: Proj.4, FFmpeg,
Libarchive, Openjpeg, Libssh and Libchewing. Brief descriptions of those projects
are given in Table 3.2. Column #Test denotes the number of tests from developers
accompanying each software project in the OSS-Fuzz repository. For each project,
we select a set of reproducible defects based on the above criteria. Column #Defect
shows the number of selected defects for each project. Totally, 81 unique defects
are selected as our subjects. Besides, the bug type of the selected defects is various.
Table 3.3 shows the number of defect for each bug type. Specifically, 49 defects are
caused by integer overflow or buffer overflow, 7 of them are caused by invalid access,
and 25 by arithmetic error or other bugs (e.g. memory leak).

3.5.2 Experimental Setup

To answer RQ1, we compare Fix2Fit with AFL7 and AFLGo8 based approaches
in generating tests to rule out overfitted patches. AFL (AFLGo) based approach
constructs candidate patch space using same operators as Fix2Fit, but rules out
patches using tests generated by AFL(AFLGo). We choose AFL as our baseline,
since it is a fuzz testing which is widely used in industry and academia. AFLGo, a
directed greybox fuzzer, can be used for patch testing.

6https://bugs.chromium.org/p/oss-fuzz/issues/list
7http://lcamtuf.coredump.cx/afl/
8https://github.com/aflgo/aflgo

31

As a post validation process of APR, to determine whether a generated patch
is overfitted, people can manually analysis it to check its correctness. To reduce
the human burden, our goal is to automatically rule out the overfitted patches as
much as possible. Hence, at the patch generation process, it is required to define
a overfitting measure. Opad [146] proposes a new overfitting measure(O-measure),
which is built based on the assumption that a correctly patched program should not
behave worse than the buggy program. Given a test suite T, suppose:

B: the set of test cases that make the buggy version pass (B ⊂T)

P: the set of test cases that make the patched version fail(P⊂T)

O-measure is defined as the size of B ∩ P. Opad regards a patch as overfit if it has
a non-zero O-measure, i.e., there are tests from T that pass on the buggy version
but fail on the patched version. That is, a patch is regarded as overfitted if it
introduces new bugs. In our experiment, we utilize a similar metric, but we change
the definition of B as the set of test cases that (i) either make the buggy version
pass, or (ii) make buggy version crash due to “same" defect as the one we try to fix
(by comparing stack trace). The intuition is as follows: if the patched program still
crashes due to same defect, we regard the corresponding patch as overfitted patch.

To address RQ2, we compare the number of crash-free patches generated by
Fix2Fit, AFL and AFLGo-based approach. In our experiment, cross-validation
is used to evaluate the crash-free property, where the remaining patches after the
filtering of one approach is validated by the tests generated by other techniques.
Specifically, suppose (T , P) is a pair of test set and plausible patch set, where the
patched program using any patch p ∈ P does not crash under any test t ∈ T . Let
(T1, P1), (T2, P3) and (T3, P3) be the test-patch pairs generated by Fix2Fit, AFL
and AFLGo, respectively. We regard p ∈ Pi as crash-free patch, if and only if the
patched program by p does not crash under any test t ∈ T1 ∪ T2 ∪ T3. Then, we
evaluate the percentage of crash-free patches of different techniques.

We answer RQ3 by evaluating how many plausible patches can be further ruled
out if the newly generated tests are empowered with a few oracles. For any test case
which is able to break one partition into several sub-partitions, it finds semantic
discrepancies between patches. However, the sub-partitions cannot be ruled out if

32

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Proj4 Libarchive FFmpeg Openjpeg Libssh Libchewing

Fix2Fit(24) Fix2Fit(8) AFLGo(24) AFLGo(8) AFL(24) AFL(8)

Figure 3.5: Percentage of plausible patches that are ruled out by Fix2Fit

Table 3.4: The averaged Â of each project with ten runs.

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
Â12 0.70 0.79 0.74 0.68 0.61 0.54

the patched programs do not crash, even though they show different behaviors. We
can thus study the reduction in the pool of candidate patches if detailed oracles
(such as expected output) for a few (say 5) tests are available. Assuming better
oracle of test is given and each subpartition has equal probability to be filtered out,
we evaluate the number of patches that can be ruled out (Fig. 3.7).

All the experiments are conducted in the crash exploration mode9 of fuzzer. We
start the fuzzing process with the failing test case as seed corpus, and terminate it on
timeout. As in state-of-the-art fuzzing experimentation, we set timeout as 24 hours;
at the same time we report the effectiveness of our patch pool reduction for smaller
values of timeout such as 8 hours. Meanwhile, we set time (timex in Equation 2.4)
to enter "exploitation" as four hours. The experiments are conducted on a device
with an Intel Xeon CPU E5-2660 2.00GHz process (56 cores) 64G memory and 16.04
Ubuntu.

3.5.3 Results

RQ1: Effectiveness in ruling out plausible patches. Figure 3.5 shows the
percentage of the plausible patches that are ruled out by AFL, AFLGo, and Fix2Fit
within 8 and 24 hours, where the percentage of the filtered patches within the first 8

9https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html

33

hours is marked using diagonal stripes. Note that the AFL-based approach is almost
the same as Opad [146], except that we utilize a more precise overfitting measure.
For each project, we give the average number of all defects. Compared with AFL
and AFLGo, Fix2Fit rules out more plausible patches for all those six subjects
within both 8 and 24 hours. For instance, Fix2Fit filters out 61% plausible patches
for FFmpeg, while only 52% of them are ruled out by AFL and 53% by AFLGo
within 24 hours. Since fuzzing algorithms involve random decisions, we run each
experiment ten times independently and report the Vargha-Delaney statistic measure
(Â12) [130] in Table 3.4. Vargha-Delaney statistic is a recommended standard
measure for evaluating randomized algorithms [6], which measures the probability
that running Fix2Fit rules out more patches than running AFL. Fix2Fit performs
better than AFL when Â12 is greater than 0.5. The evaluation results show that
Fix2Fit outperforms AFL on all six subjects.

Table 3.5: The averaged number of generated test cases that can rule out plausible
patches

Projects AFL(Opad) AFLGo Fix2Fit
Proj.4 4.8 5.9 12.5
Libarchive 11.2 12.8 16.0
FFmpeg 9.8 10.2 13.8
Openjpeg 35.3 35.8 50.3
Libssh 5.1 7.9 8.6
Libchewing 10.7 11.5 11.5

To investigate the reason why Fix2Fit is able to rule out more patches, we
give the number of tests generated by each technique that can filter out plausible
patches in Table 3.5. On average, Fix2Fit generates 23% more tests that can rule
out patches than AFL, and 18% more than AFLGo.

To filter out overfitted patches, fuzzing in Fix2Fit is guided to generate tests that
can uncover semantic discrepancies between plausible patches. Therefore, we also
evaluate the patch partition refinement effectiveness of AFL, AFLGo and Fix2Fit.
Figure 3.6 shows the number of generated tests that can refine partitions and the
number of patch partitions after refinement. Origin is the number of test-equivalence
patch partitions with respect to the provided test suite. The histogram represents the
number of partitions after refinement, which corresponds to the primary axis (left),

34

Libchewing #Partition #Test Libchewing %Patches #Test
Origin 40.15 AFL 0.90 10.69
AFL 81.08 9.90 AFLGo 0.90 11.46
AFLGo 80.31 10.00 H_pr 0.92 11.77
H_pr 85.38 11.77 Fix2Fit 0.95 11.46
Fix2Fit 93.00 13.08

f

0
2
4
6
8
10

0
8

16
24
32
40

Origin AFL AFLGo Fix2Fit

Proj4
#Partition
#Test

0
16
32
48
64
80

0
50

100
150
200
250

Origin AFL AFLGo Fix2Fit

Libarchive

0
20
40
60
80
100

0
60

120
180
240
300

Origin AFL AFLGo Fix2Fit

FFmpeg

0
16
32
48
64
80

0
60

120
180
240
300

Origin AFL AFLGo Fix2Fit

Openjpeg

0

5

10

15

20

0
20
40
60
80

100

Origin AFL AFLGo Fix2Fit

Libssh

0
3
6
9
12
15

0
20
40
60
80

100

Origin AFL AFLGo Fix2Fit

Libchewing

N
um

be
r o

f p
la

us
ib

le
pa

tc
he

s

Figure 3.6: Number of patch partitions and generated tests that can break patch
partitions.

Table 3.6: Percentage of plausible patches ruled out using partition refinement (PR)
and patch filtering (PF) based heuristic

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
PF 68% 27% 56% 55% 51% 92%
PR 71% 28% 61% 56% 51% 95%

while the line chart shows the number of partition-refining tests, which corresponds
to the secondary axis (right). Fix2Fit performs better than AFL and AFLGo in
both generating partition-refining tests and refined partitions. On average, Fix2Fit
breaks 34% and 30% more partitions than AFL and AFLGo, respectively.

Although we argue that partition refinement is a better heuristic than patch
filtering for the purpose of guiding fuzzing, we also evaluate heuristics based on patch
filtering. For patch filtering based heuristic, we change the definition of separability
in Equation 3.1 to

separability(t′) = r(t′)
maxt∈Tnew r(t) (3.4)

where r(t′) represents the number of crashing (hence overfitted) patches that are
ruled out by test t′. Table 3.6 shows the percentage of patches that are ruled out
using the heuristic based on patch filtering (PF) and partition refinement (PR).
The results show PR outperforms PF on five subjects and performs equally on one
subject.

35

RQ1: Fix2Fit is able to rule out 18% and 12% more overfitted patches than
AFL and AFLGo based approaches.

RQ2: Crash-free patches.

Table 3.7: The percentage of crash-free patches generated by AFL, AFLGo, Fix2Fit

Subject AFL(Opad) AFLGo Fix2Fit
Proj.4 92% 90% 99%
Libarchive 88% 96% 97%
FFmpeg 84% 86% 95%
Openjpeg 82% 85% 91%
Libssh 83% 83% 99%
Libchewing 94% 94% 99%

To fix a bug, new bugs or security vulnerabilities should not be introduced.
If one generated test makes the patched program crash, a patch will be directly
ruled out. However, since fuzzing does not exhaustively generate all possible tests,
the remaining patches may still cause program crashes or introduce new software
crashes and vulnerabilities. In this experiment, we evaluate the crash-freedom
of patches generated via cross-validation. Based on cross-validation, a crash-free
patch should not make the program crash under any test cases generated by any
techniques. Table 3.7 shows the percentage of crash-free patches generated by AFL,
AFLGo, Fix2Fit. Compared with AFL and AFLGo, our technique significantly
improves the percentage of crash-free patches. On average, Fix2Fit generates 96.3%
crash-free patches, while 85.4% and 87% patches generated by AFL and AFLGo
are crash-free. Especially for Proj.4, over 99.5% patches generated by Fix2Fit is
crash-free, compared with 92% of AFL and 90% of AFLGo.

Although most of the patches generated by Fix2Fit are crash-free, there are some
patches (3.7%) that cause the program to crash under the tests generated by AFL
or AFLGo. Fix2Fit may miss some corner cases since it enters the “exploitation”
mode after sufficient “exploration”, while AFL and AFLGo keep broadly searching.

RQ2: Fix2Fit could significantly improve the percentage of crash-free
patches, and more that 96% patches are crash-free.

36

FFmpeg 941.4615 585 368 252 182 144 122
Openjpeg 467.1 242 149 97 68 50 37
Libssh 741 381 201 144 116 102 92
Libchewing 139.3846 89 74 64 58 55 53

f

0

120

240

360

480

600

0 1 2 3 4 5 6 7 8 9 10

Openjpeg

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

Number of oracles

Libssh

0

30

60

90

120

150

0 1 2 3 4 5 6 7 8 9 10

Libchewing

75

81

87

93

99

105

0 1 2 3 4 5 6 7 8 9 10

Proj.4

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

FFmpeg

0

300

600

900

1200

1500

0 1 2 3 4 5 6 7 8 9 10

Libarchive

N
um

be
r o

f p
la

us
ib

le
pa

tc
he

s

Figure 3.7: Number of plausible patches that can be reduced if the tests are
empowered with more oracles

RQ3: Improvement with better oracles. The ability of test cases to filter
out overfitted patches is limited by the non-availability of oracles (or expected output)
of the generated tests. We also evaluate whether the automatically generated test
case can further reduce plausible patches if empowered with better oracles (for at
least a few of the generated tests).

Figure 3.7 shows how the number of patch candidates reduces as the number
of tests is empowered with oracles. For a test that can break a patch partition
into several sub-partitions, we assume only one of sub-partitions is correct if the
correct behavior of this test is given. This is because the patch partitions rely on a
value-based test equivalence; it is highly possible that only one of the sub-partitions
produces an output value same as the expected output. We select the top-10 tests
with highest separability (heuristic based on partition refinement), and collect the
number of patches if one, two...ten oracles are given. Generally, the plausible patches
for most of the defects can be reduced to a reasonable number. For defects in
Openjpeg, the number of plausible patches can be reduced to around 20. In other
words, if the oracles of a few tests are available, the pool of candidate patches can
be reduced sufficiently so that the remaining patches can be examined manually by
the developers.

For the defects which are left with a large number of plausible patches, we are
faced with the task of examining these remaining plausible patches. Fortunately,

37

Table 3.8: Number of remaining partitions after refinement

Projects Proj.4 Libarchive FFmpeg Openjpeg Libssh Libchewing
#Partition 4.8 74.4 98.9 47.3 28.3 1.3

developers do not need to examine the remaining patches one by one. They can
first find the partition that include the correct patches by examining the patches
in the same patch partition together, since they show the same behaviors over all
the available tests. Then, only the patches from this partition need to be evaluated
one by one to determine the correct patch. Table 3.8 shows the average number of
remaining patch partitions after the partition refinement by Fix2Fit. The number
of remaining partitions, and hence the number of patches to examine, varies between
1-100 in each project. We feel that there might be opportunities for visualization
techniques to choose from these remaining 1−100 patch partitions, using criteria
such as syntactic or semantic "distance" from the buggy program.

RQ3: The plausible patches can be reduced to a reasonable number if few
tests (<10) are empowered with better oracles.

3.5.4 Threats to Validity

Our current experiments have been conducted for one-line fixes. While an
extension of our approach to multi-line fixes is entirely feasible, it can blow up the
search space. Second, although we have compared with Opad [146], we could not
directly compare with [141, 140] which improve patch quality by test generation;
the tools for those approaches are geared to repair Java programs while our repair
infra-structure operates on C programs. Finally, our reported results are obtained
from the OSS-Fuzz subjects in Table 3.2, and more experiments could be conducted
on a larger set of subject programs.

38

CHAPTER 4. ALLEVIATE OVERFITTING VIA SYMBOLIC REASONING

Chapter 4

Alleviate Overfitting via Symbolic
Reasoning

Even though test case generation can help discard overfitted patches, it does
not provide formal guarantees. To solve this problem, this chapter presents a repair
method which fixes program vulnerabilities based on semantic reasoning.

4.1 Introduction
In this chapter, we propose a general approach to combat the overfitting problem

in program repair via symbolic reasoning, specifically for fixing security vulnerabilities.
Our key insight is that information about the underlying cause of vulnerability can
be automatically extracted, and the extracted information can then be used to guide
Automated Program Repair. The information is extracted in the form of a crash-free
constraint, representing the abstracted constraint that is violated by the witnessed
vulnerability. In order to avoid repeating the vulnerability, the goal of repair is to
ensure the constraint is always satisfied at the location of the vulnerability.

Challenges Our constraint-driven program repair methodology involves several
challenges that need to be overcome.

• Constraint extraction: The first challenge is to extract a crash-free constraint or
CFC from an observable crash/vulnerability. The observable program failure is a
concrete property violation when executing a failing test or exploit. In contrast,
CFC should capture the properties that all program inputs must satisfy at the
crash location, in order to avoid the observed vulnerability.

39

• Fix localization: Our second challenge lies in fix localization (FL). Fix localization
finds one (or more) suitable location(s) to introduce patches. Typically, existing
FL approaches, e.g. spectrum-based FL [107], determine fix location according
to the execution trace of a large number of test cases. However, a large number
of tests are not always available. For an observable vulnerability, there is usually
only one test in the form of an exploit. Therefore, it is a challenging task to infer
fix locations with only one failing test.

• Constraint propagation: After determining the CFC at the buggy location and the
fix locations, we then use CFC to guide the patch generation at the fix locations.
However, this is not straightforward because the fix locations can be different from
the buggy location. For instance, the following code shows a bug where the source
and destination of memcpy overlap 1. The bug is witnessed at line 4, but the
correct patch was applied at line 1. We could extract a constraint at the crash
location (line 4) to ensure source and destination do not overlap, however, the
constraint cannot be directly used to guide patch generation at fix location (line
1).

1 - for (i = 3; i < size / 2; i *= 2) // the correct fix location

+ for (i = 3; i <= size / 2; i *= 2)

2 memcpy (r + i, r, i);

3 if (i < size)

4 memcpy (r + i, r, size - i); // the crash location

Since fix location(s) could be different from the crash location, the extracted
constraint must be propagated and transformed to guide patch generation at
fix location(s). Although a patch at the crash location can also fix this bug
(e.g., change the condition at line 3 to i<size&&size<=2 ∗ i) by disabling the
condition to trigger it, such kind of patch actually does not resolve the root cause.

• Patch synthesis: The final challenge is to use program synthesis to generate
candidate patches that ensure that the constraint is satisfied for all possible
inputs.

Tackling the challenges To address the above challenges, our workflow begins
with the detection of an exploitable vulnerability in the form of a crash, i.e., unex-

1http://www.cplusplus.com/reference/cstring/memcpy

40

pected program termination due to control flow reaching an invalid state. With the
help of sanitizers, such as AddressSanitizer (ASAN) [115] or UndefinedBehaviourSan-
itizer (UBSAN) [136], we could convert vulnerabilities into normal program crash.
In the rest of this chapter, we generally regard a vulnerability as a crash and regard
an exploit as a failing test. After witnessing a crash in an exploit, we extract its
corresponding CFC (first challenge) using a template-based approach. According to
pre-defined templates, a constraint representation of the violated condition—i.e.,
the crash-free constraint—can then be extracted from either the program itself (e.g.
user assertion failure), API documentation, or safety properties enforced by dynamic
analysis tools such as sanitizers. For example, a buffer overflow can be formalized
as a violation of constraint:

access(buffer) < base(buffer) + size(buffer)

This constraint is extracted at run-time when the crash is witnessed, and it represents
the precise condition that all patched programs must satisfy in order to avoid
repeating the same crash. We address the second challenge (Fix localization) by
examining program dependencies, instead of purely relying on the execution trace
of test suites. Specifically, we take as input one failing test, and use the crash
location as a starting point and find candidate fix locations using control/data
dependency analysis. Once the fix locations are determined, to solve the third
challenge (Constraint propagation), we propagate the extracted constraint backward
from the crash location to one or more suitable fix locations by calculating the
weakest precondition. To address the last challenge (Patch synthesis), we integrated
the second-order program synthesis with counterexample guided inductive synthesis.
We synthesize a patch so that the weakest precondition, i.e., the extension of crash-
free constraint, cannot be violated, thereby guaranteeing that the patched program
cannot repeat the same crash, and thus resolving the vulnerability. Our workflow
allows the program repair system to decide between single-line and multi-line fixes
as shown by experiments. We instantiate the proposed approach in a prototype
named ExtractFix.

Our technique is designed to completely fix security vulnerabilities and alleviate
the well-known overfitting problem in program repair [121]. As shown in our
evaluation, ExtractFix completely fixes more vulnerabilities, and hence produces

41

more correct patches, than existing repair techniques.

4.2 Overview
For our purposes, a crash is broadly defined to be any program termination

due to control flow reaching certain illegal states where conditions/properties are
violated. A crash can be caused by the violation of an explicit user assertion
(e.g., assert(C)), an implicit assertion enforced by the operating system (e.g.,
illegal memory access), or instrumented check inserted by sanitizers to enforce some
safety properties. Typical sanitizers, such as AddressSanitizer (ASAN) [115] and
UndefinedBehaviorSanitizer (UBSAN) [136], instrument the program with implicit
assertions that enforce additional properties, such as memory safety, type safety,
integer overflows protection, etc. If a sanitizer assertion is violated, the program
will abort (i.e., “crash”), usually with an error message indicating the problem.
The underlying cause of a “crash” can be automatically extracted in the form of a
crash-free-constraint (CFC). The CFC represents the condition that should be satisfied
at the crashing location in order to avoid repeating the crash. For example, for a user
assertion violation (assert(C)), the CFC is C itself, for a NULL-pointer de-reference
on p the CFC is (p 6=0), and for an array bounds overflow error on a[i] the CFC is
(i<SIZE) where SIZE is the size of array a. If the crashing program is patched so
that the CFC is always satisfied at the crash location, then the same crash cannot
be repeated for any program input.

Workflow Our basic workflow consists of several components/steps, including:

1. Constraint Extraction. Given a program and a single input that exercises
the crash, the first step is to extract the “crash-free constraint” (CFC). The
observable program crash is a concrete property violation when executing a failing
test or exploit, while CFC should capture the properties for all possible inputs.
The CFC is the symbolization or abstraction of the concrete violations. We
extract CFC according to predefined templates which formulate the underlying
cause of the defect.

2. Fix Localization. Once the CFC is generated, one (or more) candidate fix

42

location(s) will be generated using a dependency-based fix localization algorithm.
Unlike the widely used spectrum-based fault localization (SBFL) [107], we take
one failing test as input, and use the crash location as a starting point and find
candidate fix locations using control/data dependency analysis.

3. Constraint Propagation. The CFC is a constraint over the program state at
the crash location. The CFC at the crash location is propagated to a CFC ′ at a
given fix location satisfying the following Hoare triple:

{{CFC}′}{P}{{CFC}} (CFC-Propagation)

Here, P represents the program between fix location and crash location. CFC’ is
the least restrictive (weakest) precondition that will guarantee the postcondition
CFC [17]. Finding CFC’ involves solving CFC-Propagation. For multi-line
repair, the approach is generalized and propagation is applied to multiple fix
locations.

4. Patch Synthesis. Once the fix location and propagated CFC’ have been decided,
the next step is to generate patch candidates. Patch synthesis involves rewriting
the fix location statement ρ into an alternative f such that the following Hoare
triple holds:

{true} [ρ 7→ f] {CFC ′} P {CFC} (CFC-Repair)

The generated patch ρ 7→ f fixes the buggy program by substituting expression
ρ with the synthesized expression f . The precondition before the patch is set
as true to ensure the patch fix the bug regardless of the context. The patch is
guaranteed to ensure that CFC ′ is satisfied, meaning that the CFC condition at
the crash location cannot be violated in the patched program.

Workflow Example To illustrate our workflow, we consider an example bug
from Coreutils. The buggy code snippet is shown in Figure 4.1a. Here, the
snippet attempts to fill a buffer r with a pattern determined by variable bits using
repeated calls to memcpy. The length of each memcpy operation is doubled inside the
for-loop, and the final memcpy handles any remaining unfilled space in the buffer.
Unfortunately, the code snippet contains a bug 2. For certain inputs (e.g., size=13),

2https://debbugs.gnu.org/cgi/bugreport.cgi?bug=26545

43

1 void fillp (char *r, size_t size){

2 ...

3 r[2] = bits & 255;

4 for (i = 3; i < size / 2 ; i *= 2)

5 memcpy(r + i, r, i);

6 if (i < size)

7 memcpy(r + i, r, size - i) ;

8 }

(a) Buggy code snippet.

failing test
size=13

prog.c
source

prog.exe
input

compile +

sanitize

crash

CFC
size <= 2*i

propagate

propagated
CFC'

fix
localization

fix
location * synthesis

(1)

(2) (3) patch
i <= size/2

(4)

(b) ExtractFix workflow overview.

Figure 4.1: Workflow example from Coreutils

the source and destination regions for the final memcpy will overlap— an undefined
behaviour under the memcpy specification. This bug may cause a program crash
on some platforms. Specifically, when size=13, the for-loop will terminate in the
second iteration with i=6 and size/2=6 (integer division). Then, at line 7, the source
and destination of memcpy overlap because r+(13−6)>r+6. Using an appropriate
sanitizer (UBSAN), this program will crash on the final memcpy call.

Figure 4.1b shows the overall workflow of our approach. We start with the
single crashing input (size=13) that triggers the crash on line 7 (highlighted).
Step (1) generates the CFC corresponding to the crash according to a predefined
template. The CFC template (shown in Section 4.3.1) of memcpy(p, q, s) is defined
as p+s ≤ q ∨ q+s ≤ p. In this case, CFC is

(r+i+size−i≤r ∨ r+size−i≤r+i) ≡ (size ≤ 0 ∨ size≤2*i)

Since size is an unsigned integer (size_t) value, we only focus on the second clause
size≤2*i in this example. Step (2) determines candidate fix locations. One
promising fix location is the for-condition on line 4 (highlighted) since there exists a
control dependency with an assignment (i *= 2, line 4) that has a data dependency
with the crash location. Step (3) propagates the CFC to the fix location along
all feasible paths. In this case, the CFC is propagated along one path with path
constraint i<size, and CFC remains unmodified. Step (4) synthesizes a patch f to
replace the for-condition. To completely fix the bug, we should ensure size≤2*i
is always satisfied after applying f . In this case, the synthesizer gives i <= size/2.
Thus, the program can be patched as follows:

44

- for (i = 3; i < size / 2; i *= 2)

+ for (i = 3; i <= size / 2; i *= 2)

The resulting patch is equivalent to the developer patch. In contrast, test-driven
program repair approaches may produce overfitting patches. For example, the
following patch generated by Fix2Fit [34] fixes the bug for size=13, but does not
generalize to other crashing inputs, e.g. size=7.

+ for (i = 3; i < size / 2 || i == 6; i *= 2)

4.3 Methodology
Our workflow for program repair involves constraint extraction, propagation,

and patch synthesis. In this section, we discuss each step in more details.

4.3.1 Crash-Free Constraint Extraction

Our workflow begins with a vulnerable program and a single crashing input. The
first step is to extract both (1) the crashing location (e.g., filename/lineno), and (2)
the crash-free constraint (CFC) representing the condition that was violated and
the underlying cause of the crash. For (1), the crash location is extracted according
to debugging information when the crash is triggered, meaning that the program
must be compiled with debugging enabled (-g). For (2), the CFC extraction is
template-based, and is instantiated from the crashing expression/statement. Our
repair technique currently considers crashes due to:

(1) Developer-induced crashes, i.e., assert(C) failure;

(2) Sanitizer-induced crashes caused by the program violating a sanitizer-enforced
safety property (e.g., memory safety, type safety, etc.);

A summary of the different kinds of crashes and the corresponding CFC -templates
are shown in Table 4.1. Here, the crash expression is matched against the correspond-
ing crashing expression/statement from the buggy program, and the CFC -template
is instantiated accordingly. We choose those templates because they cover the com-
mon errors and vulnerabilities in C/C++ programs, e.g. null pointer dereference,

45

Table 4.1: Basic crash classes, crash expressions/statements, and corresponding
Crash-Free Constraint CFC -template. We consider seven types of crash: explicit
developer assertion violation, sanitizer-induced crash such as buffer overflows/under-
flows, integer overflows, API constraint violation.

Class Template ID Expression CFC Template
developer T1 assert(C) C

sanitizer

T2 *p
p+sizeof(*p) ≤ base(p)+size(p)
p ≥ base(p)

T3 a op b MIN ≤ a op b ≤ MAX (over Z)
T4 memcpy(p, q, s) p+s ≤ q ∨ q+s ≤ p
T5 *p (for p=0) p 6= 0
T6 a / b (for b=0) b 6= 0

integer/buffer overflow. In this thesis, we restrict to fix the bugs supported by these
templates. Our tool can also fix other kinds of bugs by extending the templates.

For Example 4.2, the crashing statement memcpy(r+i, r, size−i) is matched
against the template from Table 4.1 using the substitution p=r+i, q=r, and
s=size−i. This yields the following CFC after substitution and simplification:

(r+i+size−i≤r ∨ r+size−i≤r+i) ≡ (size ≤ 0 ∨ size≤2*i)

We now discuss the CFC generation step in more details.

User-Assertion. The CFC for user assertions is relatively straightforward to
generate. Assuming the crash is caused by a user assertion failure assert(C), the
CFC can be read directly from the assertion statement itself, i.e., CFC=C.

Sanitizer Constraint Extraction For our purposes, a sanitizer is any dynamic
analysis tool that instruments/modifies the program with additional runtime checks
enforcing certain safety properties, such as memory safety, preventing integer over-
flows or other undefined behavior avoidance. Typically, sanitizers insert instrumented
checks/assertions before relevant operations. For example, as shown in the following
figure, the instrumentation (left part) of most spatial memory safety sanitizers
(a.k.a., bounds-check sanitizers) track object bounds information (i.e., the size and
base address of each allocated object) using a disjoint metadata store or related
method. At run-time (right part of the following figure), this metadata is used
to look up the object bounds corresponding to the dereferenced pointer, and this

46

pointer (access) is checked against these bounds (base+size). If the instrumented
check fails, the program is terminated, i.e., “crashes”. Crashes can be caused by

meta-dataobject
Memory space

0xffb0(base), 5(size)
Instrumentation-time

meta-dataobject

Run-time

Memory space

access access<0xffb0+5?

hardware failure such as NULL-pointer dereference and divide-by-zero are detected
using an appropriate santizer or signal handler, e.g., SIGSEGV with si_addr=0 and
SIGFPE with si_code=FPE_INTDIV respectively. The corresponding CFC ensures
that the crashing symbolic pointer/divisor is not zero.

Sanitizers can only detect “crashes” on concrete program state, e.g. specific
values of size and base on a certain test. We then symbolize the safety condition that
sanitizer enforces by mapping the concrete state back to variables/memory relevant
to the crash. For the example in Figure 4.1a, a sanitizer detects source/destination
memory regions overlap when size=13 . We then generate CFC by mapping the
concrete value of source/destination back to program variables r and r+i, respectively.
To map a concrete crashing state back to symbolized variables, we extend the
metadata by also restoring the corresponding program variable information (e.g.
variable name, type) representing size and base. When the crash is detected, we
can simply construct the crash-free constraints using the symbolized program states
(program variables). However, in some cases, we may fail to symbolize constraints
because some variables used to construct CFC are not accessible at the crashing
points, i.e. the variables stored in metadata have already been killed at the crashing
points. For example, a buffer is dynamically allocated with a local variable in
one function as buffer length, while the error is observed in a different function.
Therefore, when generating CFC , the variable representing buffer length is not
available at the crash location. In this case, we could symbolize the CFC using an
extended program state.

Sanitizer Constraint Language In the context of program verification, ghost
codes are a set of auxiliary codes that are added to the original program for the
purpose of verification [28]. Ghost code does not interfere with regular code, in the
sense that it can be erased without observable difference in the program outcome.

47

Inspired by ghost codes, we insert a set of auxiliary codes to help us produce patches
at the fix location. Specifically, we regard the sanitizer-inserted extended state as
auxiliary codes. The extended state, that is managed by a runtime library, is used
by Sanitizers to check program properties. For instance, AddressSanitizer uses
function the sizeof(buffer) from the runtime library to detect buffer overflow.
This extended state is not part of the original program itself, and it is only used
to help to check program properties. We also allow the generated CFC to include
such extended states, including functions/types/variables that do not necessarily
appear in the original program. For example, in the case of bounds-check sanitizers,
we introduce two new abstract functions:

- base(p): the base address of the object referenced by p; and

- size(p): the size (in bytes) of the object referenced by p.

The generated CFC will be over these extended functions (see Table 4.1). Another
example is integer-overflow sanitizers, where the generated CFC (e.g., a+b ≤ MAX)
is over arbitrary precision integers (Z) rather than the original 32bit integer type.
With the help of the extended language based on instrumentation, our technique is
able to produce CFC regardless of the scope of the referenced variables. For the
purpose of CFC -generation, we utilize a sanitizer-like instrumentation and extract
the extended-language constraints “as-is”, and defer further simplification/handling
to the latter stages of our workflow.

4.3.2 Dependency-Based Fix Localization

Once the crash location and CFC have been determined, the next step is to
decide one (or more) fix location(s) where the patch(es) are to be applied. Typically,
existing FL approaches, e.g. spectrum-based FL [107], find candidate fix locations
by analyzing the execution trace of passing and failing tests. The FL results depend
on the quality of the tests, but high-quality tests are not always available. Unlike
traditional FL approaches, we make a minimal assumption that only one failing test
(exploit) is available, which is a very common scenario when security vulnerabilities
are found.

48

Algorithm 3: Fix localization algorithm
Input: A crash location (crashLoc) and an Inter-procedure Control Flow Graph

(ICFG)
Output: A set of candidate fix locations (fixLocs)

1 fixLocs := {crashLoc};
2 repeat
3 fixLocsPrev := fixLocs;
4 foreach fixLoc ∈ fixLocsPrev, loc ∈ ICFG − FixLocsPrev do
5 if depends(loc,fixLoc) ∧ dominates(CFG, loc, crashLoc) then
6 fixLocs := fixLocs ∪ {loc};
7 end
8 end
9 until fixLocsPrev = fixLocs;

10 rFixLocs := rank(fixLocs);
11 return rFixLocs;

The main intuition of our dependency-based fix localization is that the fix
location(s) ought to exhibit a control or data-dependency with the crash location,
such that, the statement at fix location can influence the truth value of the CFC .
We are also looking for fix location(s) which appear on the execution path of the
crashing test. As a practical realization of these intuitions, our repair technnique
uses the crash location as the starting point and performs backward control and
data-dependency analysis along with crashing path. Algorithm 3 summarizes the
fix localization algorithm to decide candidate fix locations. Here, the algorithm
takes as input an Inter-procedure Control Flow Graph (ICFG) and a crash location
(crashLoc). Since the ICFG may be large in practice, partial ICFG is constructed by
considering locations visited by the failing test (exploit) and dependency analysis
is performed with the crashing statement as the slicing criterion. The algorithm
iteratively builds a set of potential fix locations (fixLocs) by adding nodes that (1)
have a (transitive) dependency with the crash location, and (2) dominate the crash
location. Finally, the algorithm generates a sequence of fix location candidates,
which are ranked according to the distance to the crash location.

Dependency Closure Our algorithm also considers the transitive closure of static
data and control dependencies [127] of the crashing statement to compute potential
fix locations. Data dependencies are determined using the standard def-use-chain
traversal algorithm over a Single Static Assignment (SSA) representation of the

49

program. We detect control dependencies using the standard Control Dependence
Graph (CDG) [18] program analysis as part of the LLVM compiler infrastructure.
Considering Figure 4.1a once more, the for-condition (line 4) is a control dependency
on the assignment statement (i *= 2, also line 4), and the crash location (line 7)
is data dependent on this assignment. Thus, the for-condition is a potential fix
location.

fix location

P1 P2 P3 ... Pn
Pother

crash location

Figure 4.2: Illustration of the fix localization algorithm. The algorithm attempts to
find a node (fix location) that (1) is a dependency of, and (2) dominates the (crash
location). All paths from the entry point to the crash location must pass through
the fix location. There can be more than one path (Pi) between the fix and crash
locations. It is allowable that some paths, including loops, from the fix location do
not pass through the crash location (Pother).

Crashing Path and Dominance The set of all (transitive) data and control
dependencies of the crash location can be quite large, leading to many potential
fix locations. To reduce the number of potential fix locations, we restrict the fix
location(s) should exist somewhere along the concrete path belonging to the original
crashing test case. Furthermore, in order to guarantee that the patched program
satisfies the CFC , our fix localization algorithm only considers statements that
dominate the crash location—i.e, all paths from the entry point to the crash location
must also pass through the fix location, as illustrated in Figure 4.2. Considering
Example 4.2, the for-condition (line 4) dominates the crash location, since all paths
from the entry will visit the for-condition at least once. There are usually multiple
nodes that dominate the crash location in real-world programs, meaning there are
multiple potential fix locations. Note that, there are always at least two nodes that
dominate the crash location: the entry point, and the crash location itself.

50

4.3.3 Crash-Free Constraint Propagation

The weakest precondition of a formula ϕ is the least restrictive precondition
that will guarantee ϕ [17]. We consider the problem of backward propagation as
finding the weakest precondition CFC ′ at fix location l that necessarily drives the
program to the crash location and satisfies CFC at the crash location. As shown in
[45] (Theorem 9), for all deterministic programs P and any desired post-condition
Q: wp(P,Q)=fwd(P,Q), where wp represents the weakest precondition that drives
program P to satisfy Q, while fwd is the result generated by forward symbolically
executing P from the first statement to the last and substituting the used variables
in Q with symbolic state of variables.

Example 4.3.1 Consider the following program P :(x=x+x;x=x+x;x=x+x) and
post-condition Q: x<8, the weakest precondition to guarantee Q is wp(P,Q) = {x <
1}. Similarly, if we set x to be a symbolic variable and symbolically execute P from
the beginning, we would get 8x < 8. That is, fwd(P,Q) = {x < 1}.

In this chapter, we use forward symbolic execution to calculate the weakest pre-
condition. Given a fix location l, crash location c, and CFC , we perform symbolic
execution between l and c, and calculate the weakest precondition CFC ′ at l. Our
symbolic execution starts concrete execution with a concrete input t until the fix
location l. The concrete input t can be the exploit of the vulnerability, or any test
that can drive the program to l. From the fix location, we insert symbolic variables
and start symbolic execution to explore all the paths Π from fix location l to crash
location c.

Symbolic Variable Insertion At fix location, existing semantics-based repair
techniques, e.g. Semfix [93], Angelix [79] and [76], represent the to-be-repaired
expression as (either a first-order or a second-order) symbolic variable. Symbolic
execution captures the constraint of passing a given test suite T by exploring
alternate paths from the fix location along which the execution of T could be driven
in the fixed program. In contrast, in our approach, symbolic execution computes
the weakest pre-condition of the crash-free constraint CFC, by exploring all paths
between fix location and crash location. We apply the following transformation
schemes to introduce second-order symbolic variable ρ:

51

• changing the right-hand side of an assignment:

x := E; 7→ x := ρ(v1, . . . , vn);

• changing a condition:

if(E){. . . } 7→ if(ρ(v1, . . . , vn)){. . . }

• adding an if-guard:

S; 7→ if(ρ(v1, . . . , vn)){S; }

• adding an if-return:

insert : if(ρ(v1, . . . , vn)){return C; }

where S is statement, E is expression, C is constant and v1, . . . , vn are the live
variables at the fix location. We use if-return transformation only if the others fail to
generate a correct patch, and the error handling code C is generated using Talos [43].
Apart from generating a (second-order) symbolic variable ρ at the fix location (to
capture the to-be-synthesized expression) we also set the live variables V (on which
CFC is dependent) as symbolic variables. We might introduce multiple symbolic
variables. If a variable v at the fix location may affect the truth value of CFC at
the crash location, we will set v as a symbolic variable. This strategy introduces a
minimal number of symbolic variables while ensuring that all relevant paths between
fix and crash location are explored. With these symbolic variables, we can explore
and navigate the paths between fix and crash location.

Symbolic execution scope To avoid exploring irrelevant paths, all the paths
that never reach crash location, e.g. Pother in Figure 4.2, are terminated early
(whether a path can reach c is determined by analyzing control flow graph). With
the help of symbolic variable injection and early termination, the explosion of paths
is reduced. Furthermore, since fix locations are usually close to the crash location,
we can further alleviate the path explosion problem which is common in symbolic
execution.

52

Constraint collection After symbolic exploration, we collect the path constraints
pcj for each path πj ∈ Π (all feasible path from l to c). Besides, following each πj,
all the variables used in CFC can be represented using the symbolic variables (V
and ρ). By replacing the elements in CFC with the symbolic representations of V
and ρ, we rewrite CFC as CFC ′j . Then, pcj ⇒ CFC ′j will be exactly the same as
the constraint by backward propagating CFC from crash location to fix location
along path πj. Consider the following program

input x, i; if(i>0) y=x+1; else y=x−1; output y;

Suppose the CFC is (y > 5), along the if-then branch, we will get the constraint
(i>0⇒ x+ 1 > 5).

Constraint Simplification (Optional) The propagated constraints may still
contain extended sanitizer-supplied functions (e.g., base(p)/size(p)) or types (e.g.,
Z for integer overflow). There are two basic approaches to handling the extended
constraint language: (1) Synthesize the patch “as-is”. If necessary, extra functionality
can be supplied using a suitable runtime library; or (2) translate the extended
constraints into the native language if possible.

Approach (1) is the most general. For example, runtime implementations of the
base(p)/size(p) are available using a suitable library, meaning these functions can
be used in a patch. The downside is that this introduces an additional dependency
on the patched program, which may be undesirable for some applications. The
alternative (2) approach is to rewrite the extended constraints back into the native
language if possible. For example, using a simple static analysis, our tool searches
for a dominating CFG node where the object associated to p is first allocated, e.g.,
ptr=malloc(len). If such a node is found, then our tool can substitute base(p)=ptr
and size(p)=len. This approach is less general than (1) since it depends on a suitable
substitution to be found.

Note that the weakest precondition calculation inherits the limitation(s) of how
symbolic execution is performed. For instance, we may generate incomplete weakest
preconditions if there are loops between fixing location and crash location. In our
setting, we also inherit the solution from symbolic execution by adding a bound to
the number of loop iterations, which may result in incorrect patches as shown in

53

Section 5.

4.3.4 Patch Synthesis

After backward propagation of crash-free constraints, patch synthesis is used to
rewrite the statement at fix location and guarantee:

{true}[ρ 7→ f]{CFC ′}

Although our reasoning is performed on a partial program (from fix to crash
location), the synthesized patch will be also effective for the whole program, because
the precondition (true) is applied. Once {true}[ρ 7→ f]{CFC ′} is satisfied, CFC ′ is
guaranteed to hold under any context.

Instead of satisfying input-output relations as shown in Equation 2.3, the synthe-
sizer is used to produce a patch satisfying a certain constraint. Suppose Π is the set
of feasible paths between fix and crash location, for each path πj ∈ Π, the generated
patch f should imply CFC ′j under all input space. Then, we change the definition
of ϕcorrect defined in Section 2.2 to:

ϕcorrect :=
|Π|∧
j=1

((
ρ = f(V) ∧ pcj

)
⇒ CFC ′j

)
(4.1)

where f represents the to-be-synthesized function and V is the set of variables used
by f . For the example 4.2, ϕcorrect will be:

ϕcorrect = (ρ = f(size, i) ∧ ¬ρ ∧ i < size)⇒ size ≤ i ∗ 2

Since f is a function and the implication should hold for all inputs, ϕcorrect is
actually a second-order formula. To solve this formula, ExtractFix uses the idea
of second-order solver [76] to convert ϕcorrect to a first-order formula, and then uses
counter-example guided inductive synthesis (CEGIS) [48] to find proper patches.
By synthesizing f satisfying ϕcorrect, we can handle all bug-triggering inputs that
violate CFC ′, hence CFC .

Though the generated patch makes CFC hold, we may still have a wide choice of
candidate patches. For fixing the bug in example 4.2, several patches satisfying the
ϕcorrect (equation 4.1) could be generated, such as {1, i ≤ size/2}. Obviously, the
second one is more likely to be correct. To further improve the quality of patches,

54

Algorithm 4: Extension of second-order synthesizer
Input: The original buggy expression e, the constraint ϕcorrect
Output: A patch f which satisfies ϕcorrect

1 hard := ϕwfp;
2 soft := ϕsyn ;
3 patches := ∅ ;
4 while |patches| ≤ N and (timeout not reached) do
5 fc := pMaxSMT(hard, soft) ;
6 I := SMT(¬ϕcorrect [f 7→ fc]) ;
7 if I 6= None then
8 hard := hard ∧ ϕcorrect [V 7→ I] ;
9 else

10 patches := patches ∪ {fc} ;
11 end
12 end
13 return semSelect(patches) ;

the intuition is that the correct patch should be similar, both syntactically and
semantically, with the original program. To generate “similar” patches, ExtractFix
extends the second-order solver proposed by Mechtaev, Griggio, Cimatti, and
Roychoudhury by further considering the distance between the patched and original
program.

The overall workflow of our synthesizer is shown in Algorithm 4, which takes as
input the suspicious expression e and ϕcorrect , and generates a patch f . ExtractFix
first generates a patch candidate by solving combined hard and soft constraints using
MaxSMT[31] (line 5 of Algorithm 4). The hard constraint is initialized as ϕwfp (refer
section 2.2), which ensures the candidate is well-formed. The soft constraint ϕsyn

formulates the syntax distance between buggy expression e and candidate patch.
More formally, we build abstract tree Te for e, and Tc for the patch candidate, and
define

ϕsyn :=
|Te|⋃
k=1

{
T ke == T kc

}
(4.2)

where T ke (T kc) denotes the k-th node of tree Te(Tc). MaxSMT constructs a patch
candidate fc which strictly satisfies the hard constraint, and satisfies the maximum
number of soft constraints (shortest distance). The candidate f is then validated by
Satisfiability Modulo Theories (SMT) solver [90] to check whether an input that
violates ϕcorrect exists (line 6). If such a counter-example I exists (line 7-8), the
counter-example I is first encoded into first-order logic and then added into the

55

hard constraint. Consider the example shown in Figure 4.1a, in the first iteration,
assume fc = λi. λsize. i<size/2 , then

ϕcorrect = (ρ = (λi. λsize. i < size/2) ∧

¬ρ(i, size) ∧ i < size)⇒ size ≤ i ∗ 2

is violated when i = 6 and size = 13. Therefore, we add

(ρ = f ∧ ¬ρ(6, 13) ∧ 6 < 13)⇒ 13 ≤ 12

i.e. f(6, 13) = true, into the hard constraints. With the refined hard constraints,
the candidate fc generated in the next iteration will ensure ϕcorrect must be satisfied
under I, i.e. fc(6, 13) = true. Eventually, a plausible patch fc is thereby generated,
which will be added into the patches list (line 10). The process continues until
timeout is reached or we find N plausible patches, where timeout and N are defined
by users.

The patch synthesis of ExtractFix is built on top of SE-ESOC [76]. The difference
with SE-ESOC is two-fold. First, we introduce a set of soft constraints (Equation 4.2)
to formulate the distance between original expression and patch candidates. Such
that, we can generate patches that are syntactically similar to the original program.
Second, SE-ESOC is designed to solve a problem with existential quantifiers, i.e.,
generate patches to pass existing tests. In contrast, the synthesis in ExtractFix
generates patches that fix the bug for all the valid inputs. Thus, we integrate
counterexample guided inductive synthesis into SE-ESOC to make it support solving
problems with universal quantifiers, i.e., generate patches to fix the bug under all
input space.

Among N plausible patches, the most likely to be the correct one is selected
according to its semantic distance to the origin buggy expression e (semSelect line
13). Specifically, we (1) generate a set of inputs In that can distinguish plausible
patches in terms of their semantics (2) for each in ∈ In, calculate the values of each
plausible patch and expression e (3) calculate the value distance between each patch
with e (4) select the patch with the shortest distance.

56

KLEE

Test case LLVM pass

Buggy
program

No

Patch

𝐶𝐹𝐶

Crash info
Fix locs Ingredients

𝐶𝐹𝐶′
LowFat,
UBSan

Verify

Runtime

Propagation
engine

Controller Second-order
synthesizer

Z3

Fix locator

Sanitizer

Figure 4.3: The architecture of ExtractFix.

4.3.5 Multiple-Line Fix

The proposed work-flow can be easily extended to support bug-fixing in multiple
locations. Fix localization can be generalized as a set of nodes that collectively
dominate the crash location, i.e., all paths must go through one of the nodes from the
set. Suppose we are introducing patches at location {l1, . . . , ln}, when propagating
CFC , multiple second-order variables {ρ1, . . . , ρn} are introduced to represent the
to-be-synthesized expressions at {l1, . . . , ln}, respectively. Correspondingly, the
generated CFC ′ will involve multiple second-order variables {ρ1, . . . , ρn}. Then, the
goal of synthesizer is to generate a set of function {f1, . . . , fn} to satisfy:

ϕcorrect :=
|Π|∧
j=1

((n∧
i=1

(
ρi = fi(Vi)

)
∧ pcj

)
⇒ CFC ′j

)
(4.3)

4.4 Implementation
We have implemented our approach in a tool named ExtractFix, whose

architecture is shown in Figure 4.3. ExtractFix takes as input the vulnerable
program, exploit (test case) and produces patches. ExtractFix is composed of
four main components: constraint extractor, fix locator, propagation engine and
patch synthesizer.

Constraint extractor takes as inputs the vulnerable program and exploit,
generates a crashing location, and a crash-free constraint CFC. The constraint
extractor is mainly implemented on top of sanitizers: Lowfat [21, 22] for buffer
overflow/underflow and UBSAN [136] for integer overflow, null pointer dereference

57

and etc. Although our prototype supports a specific set of defects, other bugs can be
supported by integrating new sanitizers and corresponding templates. Once a crash
is detected, the concrete crash condition is symbolized into crash-free constraint
CFC by mapping the concrete value back to program variables. To enable the
mapping, the programs should be compiled using clang with the debug option.

Fix locator takes as inputs the buggy program and crash information, and
produces a set of ranked fix location candidates. The fix locator is a static analysis
tool and is implemented as an LLVM pass 3. We implement it on top of LLVM
because LLVM provides a set of interfaces to generate control flow graphs and data
dependency graphs.

Propagation engine is built on top of KLEE [13]. For the purpose of generating
the weakest precondition, we modify the path exploration of KLEE in the following
two aspects. First, we change the constraint collection by only considering the path
constraints between fix and crash location. Second, we early terminate the paths
that cannot reach a crash location. The execution scope is controlled by Controller.

Patch synthesizer is a second-order synthesizer which is implemented accord-
ing to the approach proposed in [76]. Besides, ExtractFix implements three new
features: (1) taking the CFC as correctness criterion (2) combining with counter-
example guided synthesis and (3) taking into account the distance between patches
and original buggy expression. In our implementation of the synthesizer, we use
Z3 [90] as a backend SMT solver.

4.5 Evaluation
We evaluate the effectiveness and efficiency of ExtractFix and answer the

following research questions.

RQ1 What is the overall effectiveness of ExtractFix in fixing vulnerabilities?

RQ2 Compared with state-of-the-art techniques, can ExtractFix alleviate the
overfitting problem in automated program repair?

RQ3 What is the efficiency of ExtractFix in generating patches?
3LLVM Pass: http://llvm.org/docs/WritingAnLLVMPass.html

58

4.5.1 Experimental Setup

We evaluate our approach on two sets of benchmarks: ManyBugs [63] and our
own constructed benchmark. ManyBugs is a C program benchmark suite that is
widely used to evaluate automated program repair techniques, such as GenProg [64],
Prophet [70] and Angelix [79]. Since we are focusing on vulnerabilities, we only
select bugs that relate to vulnerabilities as our subjects. We therefore select our
subjects based on the following criteria:

(1) we only consider bugs related to vulnerabilities, including segmentation fault,
buffer overflow/underflow, integer overflow;

(2) the target application can be compiled into LLVM [57] bitcode and executed
by KLEE [13];

(3) the target vulnerability can be reproduced in our environment.

We omit two applications of the benchmark (python and fbc) because they used
some intrinsic functions (e.g., fabs) that KLEE does not support. In total, we select
26 defects from three applications: Libtiff, Lighttd, and Php.

Table 4.2: The subject programs and their statistics

Program #Vul Loc Description
Libtiff 11 81K library for processing TIFF files

Binutils 2 98K a set of programming tools for creating
and managing binary programs

Libxml2 5 299K XML C parser and toolkit
Libjpeg 4 58K C library for manipulating JPEG files
FFmpeg 2 617K library for processing audio & video
Jasper 2 29K library for coding & manipulating image
Coreutil 4 78K GNU core utilities
Total 30 — —

Besides ManyBugs, we also constructed an additional vulnerability benchmark
suite from a set of popular applications by searching the online databases [134,
133, 135]. Those databases provide a list of entries, and each of them contains
an identification number, a short description of the bug and optional reproducer
(i.e. exploit). We obtain our candidate bugs by searching for the bug types

59

(including buffer-overflow/underflow, integer-overflow, divide-by-zero, null pointer,
and developer assertion) that our prototype supports. We just consider the bugs
reported after 2010 because the earlier bugs are harder to reproduce. Then, we
randomly select and manually filter the subjects based on the following four criteria:

(1) exploit(s) to trigger the vulnerability is available or exploit(s) can be con-
structed from the available information;

(2) the target vulnerability has already been fixed by developers so that we have
the ground truth on how to fix it;

(3) the target application can be compiled into LLVM [57] bitcode and executed
by KLEE [13];

(4) the target vulnerability can be reproduced in our environment.

Finally, 30 unique vulnerabilities across seven applications are selected as our
benchmark, which includes 16 buffer-overflow/underflow, 4 integer-overflow, 5 divide-
by-zero, 3 API assertion, and 2 null pointer dereference. The exploits, as well
as the instructions to reproduce the bugs, are obtained from blogs of researchers,
bug reports, exploit databases or the attachments along with patch commit. The
selected subjects are across seven applications, and their brief descriptions are given
in table 4.2. Column Loc represents their lines of source code, while column #Vul
shows the number of selected vulnerabilities for each application. The main difference
between ManyBugs and our own constructed benchmark is that the subjects from
ManyBugs include a huge number of test cases, while the subjects in our benchmark
only have an exploit and few developer test cases. Note that ExtractFix is
designed for working with a few cases.

The experiment is directly conducted on these vulnerable applications on a device
with Intel Xeon CPU E5-2660 2.00GHz process (56 cores) 64G memory and 16.04
Ubuntu. We set timeout for the symbolic execution and program synthesis as 30
minutes each. Note that, we do not support parallelism yet. All the results are
generated using sequential algorithms.

60

4.5.2 Experimental Results

4.5.2.1 Effectiveness of ExtractFix in fixing vulnerabilities

To answer RQ1, we evaluate the effectiveness of ExtractFix in the following three
aspects: 1) extracting CFC 2) finding fix locations and 3) generating patches to
fix vulnerabilities. Recall that the vulnerabilities are formalized as violations of
constraints, we first evaluate whether ExtractFix can successfully extract such
constraints for the given vulnerabilities. For the generated constraint, we generate
the ground truth of correctness by manually analyzing the source code and root
cause of the vulnerability. For instance, we manually analyze the condition that a
buffer overflow can be triggered, and check the correctness of CFC. Given CFC, we
then evaluate whether ExtractFix can find the correct fix locations by referring
to the developer patches. As our dependency-based fix localization creates a set
of ranked candidate fix locations, we retrieve how many candidates we need to
inspect until we hit the correct one. A fix location l is correct if we can generate
semantically equivalent patches at l with developer patches. Given CFC and fix
location candidates, we then evaluate the effectiveness of ExtractFix in generating
fixes, and compare with existing automated program repair tools: Prophet [70],
Angelix [79] and Fix2Fit [34]. Prophet is a search-based automated program repair
tool, which ranks patch candidates using a machine learning-based approach. In our
experiment, we are using the pre-trained model released by the authors of Prophet.
Angelix is a state-of-the-art semantic program repair tool, which extracts patch
constraints from test cases and then directly synthesizes a patch. Fix2Fit proposes
to generate additional test cases to filter out the overfitted patches. Since Prophet
and Fix2Fit are all test-driven program repair tools, we run all those tools with
test cases which are composed of 1) exploit that can trigger the vulnerability and 2)
available developer tests. Note that, except for one exploit, ExtractFix does not
need the additional test. As optional post-processing, developer tests could be used
to verify the correctness of patches generated by ExtractFix. All the generated
CFC, fix locations and patches can be found in https://extractfix.github.io

Table 4.3 shows our evaluation results. The first part (first three rows) of
Table 4.3 shows the results on ManyBugs benchmark and the second part gives the

61

https://extractfix.github.io

Table 4.3: Evaluation results of ExtractFix. The first part (the first three rows)
show the results on ManyBugs benchmark, and the second part present the results
on our benchmark.

Application Defects CFC FL (T1/T3) Patches Correct Patches Avg. Time (m)
Libtiff* 5 3 2 / 3 3 2 4.32
Lighttd 3 2 1 / 2 2 1 7.50
Php 18 14 6 / 10 14 9 11.11
Libtiff* 11 9 7 / 8 9 6 5.64
Binutils 2 2 1 / 1 2 1 26.28
Libxml 5 4 3 / 3 4 2 13.80
Libjpeg 4 3 1 / 2 3 2 12.01
FFmpeg 2 2 1 / 1 2 2 8.23
Jasper 2 2 1 / 1 2 1 1.07
Coreutil 4 2 1 / 2 2 2 5.17
Total 56 43 24 / 33 43 28 9.46
* Both Manybugs and our benchmark include the Libtiff program, but the defects in

different benchmarks do not overlap.

results on our own constructed subject. The effectiveness of ExtractFix is shown
in columns 3-5, where CFC shows the number of correctly generated crash-free
constraints in each application. Column FL represents fix localization results in
a form of (T1/T3), where T1 is the number of bugs whose correct fix location is
ranked first, and T3 is the number of bugs whose correct fix location is ranked in
the top three candidates. Patches shows the number of fixed programs that pass
the (single) failure-inducing test, while column Correct Patches are the number
of generated patches that are semantically equivalent to developer patches. The
detailed evaluation result of each defect can be found in Table 4.4 (ManyBugs) and
Table 4.5 (our benchmark).

Crash-free constraint extraction. Out of 56 vulnerabilities, ExtractFix can
successfully extract correct constraints for 43 defects, and all of them are correct ac-
cording to our manual investigation. The results show that our constraint extraction
can effectively extract crash-free-constraints, especially for integer overflow, divide-
by-zero and developer assertions. We cannot extract correct constraint for some
buffer overflow vulnerabilities and null pointer dereferences because the debugging
information is ambiguous when symbolizing the condition enforced by sanitizers
(the limitation of our prototype).

62

Table 4.4: Patches generated by ExtractFix on ManyBugs Benchmark. Column
Sanitizer represents the sanitizer used by each defects, where APISan is a sanitizer
implemented by ourselves to detect violation of API specification, e.g. the destination
and source parameters should not overlap in memcpy. Column Template shows
the template id (defined in Table 4.1) used by each vulnerability, while column
CFC represents whether we can extract correct crash-free constraints. Column
FL is the fault localization results, where L-N represents that we need to try N
fix location candidates until find the correct one. Column Patched shows whether
we can generate patches to pass the given tests. Column Correct? present the
correctness of generated patches, where Syn Equiv. and Sem Equiv. means the
generated patch is syntactically and semantically equivalent to developer patch and
Plausible mean the generated patch pass the failing test but semantically incorrect.
Distance presents the distance between fix location and crash location.

Subject ID Type Sanitizer Template CFC FL Patched Correct? Distance Time(m)

Libtiff

207c78a ND UBSan T5 7 - 7 — — —
0a36d7f BO Lowfat T2 3 L-1 3 Sem Equiv. 4 3.44
ee65c74 IO UBSan T3 3 L-3 3 Plausible 10 5.66
865f7b2 BO Lowfat T2 7 - 7 — — —
565eaa2 ND UBSan T5 3 L-1 3 Sem Equiv. 2 3.86

Lighttd
1914 BU Lowfat T2 7 - 7 — — —
2662 AS Assert T1 3 L-3 3 Sem Equiv. 9 8.09
2786 BO Lowfat T2 3 L-1 3 Plausible 7 6.91

Php

5bb0a44e06 ND UBSan T5 3 L-4 3 Plausible 10 16.23
426f31e790 AA APISan T4 3 L-1 3 Syn Equiv. 2 14.31
2a6968e43a BO Lowfat T2 3 L-1 3 Sem Equiv. 2 12.09
8deb11c0c3 ND UBSan T5 3 L-1 3 Plausible 1 10.08
7f2937223d ND UBSan T5 7 - 7 — — —
2adf58cfcf ND UBSan T5 3 L-2 3 Syn Equiv. 5 9.89
3acdca4703 ND UBSan T5 3 L-1 3 Syn Equiv. 5 9.68
c2fe893985 ND UBSan T5 7 - 7 — — —
93f65cdeac ND UBSan T5 7 - 7 — — —
8d520d6296 ND UBSan T5 3 L-1 3 Sem Equiv. 1 7.89
cacf363957 AA APISan T4 3 F 3 Plausible 2 8.96
c1e510aea8 ND UBSan T5 3 L-2 3 Sem Equiv. 4 10.23
f330c8ab4e ND UBSan T5 3 L-5 3 Sem Equiv. 32 10.24
1d6c98a136 ND UBSan T5 3 F 3 Plausible 2 30.02
acaf9c5227 ND UBSan T5 3 L-1 3 Sem Equiv. 7 5.89
032bbc3164 BO Lowfat T2 3 L-2 3 Sem Equiv. 47 4.30
1923ecfe25 AA APISan T4 7 - 7 — — —
cfa9c90b20 ND UBSan T5 3 L-1 3 Plausible 1 5.66

Total 26 — — – 19 — 19 12 (avg) 8.1 (avg) 9.6
BO: buffer overflow; BU : buffer underflow; IO: integer overflow; DZ : divide-by-zero;
AA: API assert; ND: null pointer dereference; AS : developer assertion;

Fix localization. For the cases that we can extract correct constraints, we further
evaluate the effectiveness of our fix localization. Out of 43 vulnerabilities, the correct
fix locations of 24 defects are exactly the first candidate T1 recommended by our fix
localization algorithm. The correct fix locations of 33 defects are correctly localized
by looking into the top three candidates (T3).

Patch generation. Once constraints are correctly extracted and fix location

63

Table 4.5: Patches generated by ExtractFix. Column Sanitizer represents the
sanitizer used by each defects, where APISan is a sanitizer implemented by ourselves
to detect violation of API specification, e.g. the destination and source parameters
should not overlap in memcpy. Column Template shows the template id (defined
in Table 4.1) used by each vulnerability, while column CFC represents whether
we can extract correct crash-free constraints. Column FL is the fault localization
results, where L-N represents that we need to try N fix location candidates until
find the correct one. Column Patched shows whether we can generate patches to
pass the given tests. Column Correct? present the correctness of generated patches,
where Syn Equiv. and Sem Equiv. means the generated patch is syntactically and
semantically equivalent to developer patch and Plausible mean the generated patch
pass the failing test but semantically incorrect. Distance presents the distance
between fix location and crash location.

Subject Vulnerability ID Type Sanitizer Template CFC FL Patched Correct? Distance Time(m)

Libtiff

CVE-2016-5321 BO Lowfat T2 3 L-1 3 Syn Equiv. 2 1.68
CVE-2014-8128 BO Lowfat T2 3 L-1 3 Sem Equiv. 5 2.40
CVE-2016-5314 BO Lowfat T2 7 - 7 — — —
Bugzilla 2633 BO Lowfat T2 3 L-5 3 Plausible 12 4.03
CVE-2016-10094 BO Lowfat T2 3 L-2 3 Plausible 2 1.87
CVE-2016-3186 AA APISan T4 3 L-1 3 Syn Equiv. 2 32
CVE-2017-7601 IO UBSan T3 3 L-1 3 Plausible 3 2.38
CVE-2016-9273 BO Lowfat T2 7 - 7 — — —
CVE-2016-3623 DZ UBSan T6 3 L-1 3 Sem Equiv. 2 2.05
CVE-2017-7595 DZ UBSan T6 3 L-1 3 Sem Equiv. 2 2.20
Bugzilla 2611 DZ UBSan T6 3 L-1 3 Sem Equiv. 1 2.13

Binutils CVE-2018-10372 BO Lowfat T2 3 F 3 Plausible 2 16.57
CVE-2017-15025 DZ UBSan T6 3 L-1 3 Sem Equiv. 2 36.00

Libxml2

CVE-2016-1834 IO UBSan T3 3 F 3 Plausible 12 5.97
CVE-2016-1839 BU Lowfat T2 7 - 7 — — —
CVE-2016-1838 BO Lowfat T2 3 L-1 3 Plausible 3 4.12
CVE-2012-5134 BU Lowfat T2 3 L-1 3 Syn Equiv. 2 40.83
CVE-2017-5969 ND UBSan T5 3 L-1 3 Syn Equiv. 2 4.30

Libjpeg
CVE-2018-14498 BO Lowfat T2 3 L-10 3 Plausible 3 1.22
CVE-2018-19664 BO Lowfat T2 7 - 7 — — —
CVE-2017-15232 ND UBSan T5 3 L-1 3 Sem Equiv. 2 1.37
CVE-2012-2806 BO Lowfat T2 3 L-3 3 Sem Equiv. 10 33.26

FFmpeg CVE-2017-9992 BO Lowfat T2 3 L-4 3 Sem Equiv. 7 9.27
Bugzilla-1404 IO UBSan T3 3 L-1 3 Sem Equiv. 3 7.20

Jasper CVE-2016-8691 DZ UBSan T6 3 L-1 3 Sem Equiv. 5 1.08
CVE-2016-9387 IO UBSan T3 3 F 3 Plausible 5 1.05

Coreutil
Bugzilla-26545 AA APISan T4 3 L-3 3 Syn Equiv. 4 6.03
Bugzilla-25003 AA APISan T4 3 L-1 3 Syn Equiv. 2 4.30
GNUBug-25023 BO Lowfat T2 7 - 7 — — —
GNUBug-19784 BO Lowfat T2 7 - 7 — — —

Total 30 — — — 24 — 24 16 (avg)4.0 (avg)9.3
BO: buffer overflow; BU : buffer underflow; IO: integer overflow; DZ : divide-by-zero;
AA: API assert; ND: null pointer dereference

candidates are determined, ExtractFix then generates patches via constraint
propagation and program synthesis. Out of 56 vulnerabilities, ExtractFix can
generate 43 patches. Those patches fix the bug by changing conditions, modifying
the right-value of assignment or inserting an if-guard checker. For instance, to fix

64

Table 4.6: The number of patches and correct patches generated by Prophet, Angelix,
Fix2Fit and ExtractFix (EF). The first part (the first three rows) shows the
results on ManyBugs benchmark, and the second part presents the results on our
benchmark. In each subject, the tool that produces the most patches and the most
correct patches is marked in bold.

Program #Vul Total Patches Correct Patches
Prophet Angelix Fix2Fit EF Prophet Angelix Fix2Fit EF

Libtiff 5 2 3 3 3 1 1 1 2
Lighttd 3 2 2 2 2 0 0 0 1
Php 18 10 7 9 14 6 4 6 9
Libtiff 11 7 7 7 9 1 0 1 6
Binutils 2 - - 1 2 - - 0 1
Libxml2 5 3 0 4 4 0 0 1 2
Libjpeg 4 3 - - 3 1 - - 2
FFmpeg 2 - - 2 2 - - 1 2
Jasper 2 2 2 2 2 0 0 0 1
Coreutil 4 2 - 3 2 0 - 1 2
Total 56 31 21 33 43 9 5 11 28

the Libtiff buffer overflow of CVE-2014-8128, developers add an if-checker at line
571 to break the while-loop when nrows is equal to 256:

571 + if (nrows == 256) break;

Instead, ExtractFix fixes the bug by modifying the exit condition of while-loop,
which is semantically equivalent to the developer patch:

567 - while (err >= limit)

567 + while (err >= limit && nrows < 256)

With this patch, it is guaranteed that the vulnerability cannot be triggered again.
In our benchmark, once a correct constraint is generated, ExtractFix can always
generate a patch.

Multi-line fix To fix the Libjpeg buffer overflow vulnerability of CVE-2012-2806,
ExtractFix generates multiple-line fixes by changing two for-loop conditions.

Comparison with state-of-the-art We then compare the repairability of Extract-
Fix with Prophet, Angelix and Fix2Fit. We cannot run Angelix on some applications
because the libraries (e.g. clang 2.9) used by Angelix no longer support the new
versions of those applications. We did not run Fix2Fit on Libjpeg since it does not

65

support the compilation using cmake. Prophet fails to build Binutils and FFmpeg.
The columns 3-6 of Table 4.6 represent the number of patches generated by Prophet,
Angelix, Fix2Fit and ExtractFix, respectively. Compared with Prophet and
Angelix, ExtractFix generates the same or more patches for all the applications.
Compared with Fix2Fit, ExtractFix generates more patches on Php, Libtiff, and
Binutils, but less on Coreutils. This is because Fix2Fit generates plausible patches
by efficiently searching from a large patch space and then uses fuzzing to rule out
overfitted patches. In fact, our comparison with Fix2Fit is conservative in favor
of Fix2Fit, since Fix2Fit’s fuzzing campaigns have an 8-hour timeout, while our
program analysis based technique has a timeout of 1 hour (30 minutes for symbolic
execution and 30 minutes for program synthesis). Even then, ExtractFix gener-
ates more plausible patches than Fix2Fit. More importantly, as we will see later,
the patches generated by ExtractFix are of significantly higher quality than the
patches from Fix2Fit.

Out of 56 vulnerabilities, ExtractFix extracts 43 correct constraints and
generates 43 patches. ExtractFix generates more patches than Prophet,
Angelix and Fix2Fit.

4.5.2.2 Can ExtractFix alleviate the overfitting problem?

The generated patch can handle the bug-triggering exploit, but it may overfit to the
given exploit. To evaluate patch correctness, we take the developer patch as criteria
and examine the patch correctness by manually analyzing the developer patch.
For each generated patch by ExtractFix, we check its syntactic and semantic
equivalence with the developer patch by manually examining if the patch changes
the program behavior in the same way as the developer patch.

In Table 4.3, column Correct Patch gives the number or patches that are syn-
tactically or semantically equivalent to developer patches. Out of the 43 patches,
28 patches are syntactically or semantically equivalent to developer patches, while
15 of them are plausible patches. We mark a patch as Plausible if it partially
fixes the vulnerability or changes program behavior differently compared to the
developer patch. Plausible patches exist because (1) the CFC ′ could be incomplete

66

since backward propagation misses some paths between fix and crash location (e.g.
paths inside for, while loop) due to the practical limitation of symbolic execution (2)
ExtractFix knows how to avoid triggering the vulnerability, but has narrow knowl-
edge about the intended program behavior from developers. For instance, an integer
overflow CVE-2017-7601 occurs when performing shift operation (1L<<bitssample)
with bitssample>=63 (maximal positive signed long integer is 263−1). To fix this
vulnerability, developers insert an if-checker (if (bitssample>16) return 0) before the
crash line. With the guidance of crash free constraint bitssample<63, ExtractFix
fix the bug by inserting if (bitssample>=63) return 0 . The generated patch com-
pletely fixes the integer overflow, but may unintentionally modify the other program
behaviors. While ExtractFix is designed to alleviate overfitting by completely
fixing vulnerabilities, it may still change the program behavior in an unintended
way.

We compare ExtractFix with Prophet, Angelix, and Fix2Fit for patch quality.
The evaluation results are shown in Table 4.6, where columns 7-10 represent the
number of correct patches generated by Prophet, Angelix, Fix2Fit, and ExtractFix,
respectively. The correctness of patches is examined by manually comparing with
the developer patches to check their semantic equivalence. The test suite provided
to repair tools is composed of the exploit and all available developer tests. Prophet,
Angelix, and Fix2Fit are test-driven program repair tools, so the quality of patches
generated by them highly depends on the quality of the test suite. For the defects
from ManyBugs, test-driven program repair tools have a higher chance to generate
correct patches since there are more available tests. On average, there are around
2.9k available tests for each defect from ManyBugs benchmarks (the first part of
Table 4.6).4 All the test-driven program approaches generate a number of correct
patches. Specifically, on the 26 defects, Prophet, Angelix, and Fix2Fit generate 7, 5,
and 7 correct patches, respectively. Even then, ExtractFix generates much more
(12) correct patches than all those approaches.

In our constructed benchmark (the second part of Table 4.6), the available tests
are very limited, and only very few tests can cover the crash line. Therefore, the
generated patches by these tools can easily overfit the given tests. Specifically, by

4Around half of the 2.9k tests are irrelevant and will not drive the program to the fix locations.
Even then, there are still a considerable number of useful tests in each subject.

67

manually checking the top patches against developer patches, only two patches
generated by Prophet are correct and all the patches from Angelix overfit the failing
tests. Fix2Fit can filter out some overfitted patches by test case generation, but
the quality of the patches is not high as found by our experiments. Out of the 20
patches generated by Fix2Fit, only four patches are correct, while others still overfit
the given test suite. In contrast, ExtractFix generates as many as 16 correct
patches.

For bugs that are vulnerabilities supported by ExtractFix, ExtractFix
outperforms Prophet, Angelix and Fix2Fit in generating patches that are both
syntactically and semantically equivalent to developer patches.

4.5.2.3 How efficient is ExtractFix in generating patches?

Scalability is one of the most challenging problems of symbolic execution, hence
semantic-based program repair. In our evaluation, we show that our approach
can scale to real-world large applications, e.g. FFmpeg with 617K lines of codes.
Meanwhile, the execution time to generate patches is given in Table 4.3. On average,
we only need 9.46 minutes to generate a patch, with a maximum of 41 minutes. Our
approach is efficient because (1) our symbolic execution is only performed on a small
partial program. As shown in Table 4.3 and 4.5, the averaged distance between fix
and crash location is around 6, with maximum of 47. (2) our second-order program
synthesis takes into account the distance between patch candidates with original
expression and first evaluates candidates that are close to the original expression.

ExtractFix can scale to large programs, such as FFmpeg. On average, it
takes 9.46 minutes to generate patches.

4.5.3 Threats to Validity

Internal Validity The main threat to internal validity is that ExtractFix
performs backward propagation via symbolic execution which may miss some paths
and result in incomplete constraint propagation. Fortunately, we only perform
symbolic execution on a very small part of the program. What matters is that

68

the incompleteness doesn’t seem to have a big impact on the effectiveness of the
analysis. Another threat to internal validity is that we derive our CFC templates
from frequently reported bugs and vulnerabilities, we note that our set of templates
is not exhaustive. By extending CFC templates, ExtractFix can easily support
fixing other kinds of bugs/vulnerabilities whose property violation is sanitizable
and expressible as a simple formula. The last internal threat is that we perform
a manual inspection of the experimental results which might be error-prone. To
mitigate this, we have double-checked the generated patches.
External Validity The main threat to external validity is that our selection of
subjects may not generalize to other programs. We cannot evaluate ExtractFix
on the dataset used in [128, 44, 63], because FootPatch fixes resource/memory leak
(C/C++) and null pointer dereference (Java), a large part of defects in ManyBugs
are logic bugs, and the exploits and fixes of some datasets (exploits) used by SENX
are not available. Instead, we evaluate ExtractFix on a set of real programs and
real CVEs to show its usability. In the future, it may be worthwhile to evaluate our
approaches on more relevant CVEs and bugs.

69

CHAPTER 5. ALLEVIATE OVERFITTING USING SEMI-SUPERVISED
SYNTHESIS

Chapter 5

Alleviate Overfitting Using Semi-
Supervised Synthesis

Even though ExtractFix can provide guarantees, it is not scalable since it relies
on symbolic execution. We propose another test case abstraction or generalization
idea based on a semi-supervised approach. Inspired by semi-supervised learning
which trains a model based on both labeled data and unlabelled data, we present
a semi-supervised synthesis in this chapter. Different from traditional program
synthesis, semi-supervised synthesis takes into account both user-provided examples
(corresponds to labeled data) and additional inputs (corresponds to unlabelled data).
The main insight is that the additional inputs can guide the program synthesis
process by providing more inputs that should be manipulated by the synthesized
program. We apply semi-supervised synthesis for program transformations.

5.1 Introduction
Integrated Development Environments (IDEs) and static analysis tools help devel-

opers edit their code by automating common classes of edits, such as boilerplate code
edits (e.g., equality comparisons or constructors), code refactorings (e.g., rename
class, extract method), and quick fixes (e.g., fix possible NullReferenceException).
To automate these edits, tool builders implement code transformations that manipu-
late the Abstract Syntax Tree (AST) of the user’s code to produce the desired code
edit.

While traditional tools support a predefined catalog of transformations hand-
crafted by tool builders, in recent years, we have seen an emerging trend of tools
and techniques that synthesize program transformations using examples of code

70

edits [81, 109, 82, 87, 7, 110]. For instance, Getafix [7] learns fixes for static
analysis warnings using previous fixes as examples. It has been deployed at Facebook
where it is used for the maintenance of Facebook apps. BluePencil [87] produces
code edit suggestions to automate repetitive code edits, i.e., edits that follow the
same structural pattern but that may involve different expressions. It synthesizes
transformations on-the-fly based on the recent edits performed by the developer.
BluePencil has been released in Microsoft Visual Studio 2019 [84] and is available
as Visual Studio IntelliCode suggestions [85].

The main challenge of synthesizing an intended transformation program from
examples lies in that the synthesized program should not only satisfies the given
examples but also produces the correct edits on unseen inputs. Overfitted transfor-
mation program can lead to false negatives: the transformation does not produce
an edit suggestion in a location that should be changed. False negatives increase
the burden on developers, since it requires developers to either provide more ex-
amples or perform the edits themselves, reducing the number of automated edits.
Moreover, it may cause developers to miss edits leading to bugs and inconsistencies
in the code. Overfitted transformation program can also lead to false positives:
the transformation produces an incorrect edit. While false negatives are usually
related to transformations that are too specific, false positives are mostly related to
transformations that are too general. Both false negatives and positives can reduce
developers’ confidence in the aforementioned systems, and thus, finding the correct
generalization is crucial for the adoption of these systems.

Existing approaches have tried to handle the generalization problem in different
ways. Sydit [81] and Lase [82] can only generalize names of variables, methods and
fields when learning a code transformation. The former only accepts one example
and synthesizes the transformation using the most general generalization. The
latter accepts multiple examples and synthesizes the transformation using the most
specific generalization, which is also the approach adopted by Revisar [110] and
Getafix [7]. Using either the most specific or the most general generalization is
usually undesirable, as they are likely to produce false negatives and false positives,
respectively. ReFazer [109] learns a set of transformations consistent with the
examples and stores them as a Version Space Algebra (VSA) [88]. It then uses a
ranking system to rank the transformations and selects the one that is more likely

71

to be correct based on a set of predefined heuristics. However, despite the more
sophisticated approach to generalization, in certain cases, ReFazer still requires
up to six examples of a repetitive edit before producing edit suggestions [109].

All aforementioned techniques rely only on input-output examples of edits and
background knowledge in the form of ranking schemes and heuristics to deal with
the generalization problem. However, apart from these, an additional source of
information could be the large number of additional input trees available in the
remainder of the file and project the user is editing. Semi-supervised learning [148]
is an approach to machine learning that combines a set of labeled input-output
examples and unlabeled data (inputs) during training. It has recently become more
popular and practical due to the variety of problems for which vast quantities of
unlabeled data are available, e.g. text on websites, protein sequences, or images [149].
The fact that many additional inputs are available in source code inspires a natural
question:

Is it possible to combine input-output examples with additional inputs to synthesize
program transformations?

Our first key observation is that an additional input AST can help us disambiguate
how to generalize the transformation by providing more examples of ASTs that
should be manipulated by the transformation. Consider a simple change from if

(score < limit) to if (IsValid(score)). With a single example, it is not clear
whether we do the transformation only when the left-hand side of the comparison
is score. However, if one says that the transformation should also apply to if

(GetScore(run) < limit), then we have one more example for the LHS expression,
GetScore(run), and we can use this example to refine our transformation—in this
case, generalize it further. However, we still need to identify the locations in the
source code (the additional inputs) where the transformation should apply. Our
second key observation is that we can predict whether an arbitrary input should
be an additional input by evaluating the quality of the transformation synthesized
when using the new input. The quality is assessed using a user-driven or automated
feedback system.

We propose a feedback-driven semi-supervised technique to synthesize program
transformations. The proposed approach is based on our two key observations above.

72

Initially, our technique synthesizes a program transformation from input-output
examples using ReFazer [109]. For the input-output example, it tracks which
subtrees of the AST (corresponding to a sub-expression) were used to construct the
output, and can potentially be generalized. We call these nodes selected nodes. As an
example, consider again the change if (score < limit) to if (IsValid(score)).
The expression score was used in the output—it is a selected node. Next, our
technique iterates over candidate additional inputs to find more examples to refine
the generalization. For each candidate input, it performs two main steps:

• First, our technique computes the anti-unification of the examples and the
candidate additional input. Anti-unification is a generalization process which
can identify corresponding subtrees among different input ASTs. For instance,
it can identify that score in the example input corresponds to GetScore(run)

in the candidate additional input if (GetScore(run) < limit). Our anti-
unification based generalization algorithm tries to compute a generalization
where each selected node in the example input has a corresponding node in the
candidate additional input. For example, if the candidate additional input was
if (UnrelatedCondition()), then we can infer the correspondence between
(score < limit) and (UnrelatedCondition()), and the subtree score it-
self has no corresponding subtree, which causes anti-unification to fail to find
a generalization. If anti-unification fails, the candidate additional input is not
compatible and we discard it. Otherwise, we generate a new example from the
candidate additional input, and re-synthesize parts of the transformation while
taking this example into consideration. In our running scenario, the new ex-
ample is if (GetScore(run) < limit) 7→ if (IsValid(GetScore(run))).

• Then, our technique uses a feedback system to further evaluate whether the
current candidate input should be accepted. The feedback is provided by a
reward function that can be composed of different components. It can take into
consideration user-provided feedback, for example, if the transformation should
apply to a particular input. Indicating such inputs is usually an easier task for
the user than providing another input-output example. However, the feedback
can also use automated components based on, for example, the similarity of
the additional input to the example inputs. If the final reward score is above

73

a certain threshold, it accepts the additional input and synthesizes a new
program transformation using the new example.

We implemented our technique for the domain of C# program transformations.
It uses the implementation of ReFazer available in the PROSE SDK1. Further, we
augmented the BluePencil algorithm [87] with our approach to synthesize on-the-
fly transformations. BluePencil provides a modeless interface where developers do
not need to enter a special mode to provide examples, but instead, they are inferred
from the history of changes to a particular file.

With these components, we implemented three applications that use feedback-
driven semi-supervised synthesis:

• ReFazer∗: User-provided feedback about additional inputs. This application allows
developers to specify, as an additional input, a subtree where the transformation
did not produce an edit (false negative). This implementation is motivated by the
fact that when the transformation-learning system produces a false negative, it is
easier for the developer to provide an additional input rather than a complete input-
output example. On a benchmark of 12,642 test cases, we compared ReFazer∗

with the baseline (ReFazer). While the recall of ReFazer ranged from 26.71%
(1 example provided) to 89.10% (3 examples provided), the recall of ReFazer∗

was at least 99.94% and its precision was at least 96.01% with just 1 example
and 1 additional input provided. These results suggest that ReFazer∗ can
synthesize suggestions with high precision at locations indicated by developers as
false negatives.

• BluePencilcur: Semi-automated feedback based on cursor position. This feature
uses the cursor position in the editor to indicate candidate additional inputs to
semi-supervised synthesis. This feature is motivated by the fact that the developers
may either not be aware that they can provide additional inputs (discoverability
problem [87]), or may not want to break their workflow to provide additional
inputs. The cursor position acts as a proxy for the user and indicates, implicitly,
that the user wants to modify the current location. However, the cursor location
is ambiguous. The subtree that the user wants to edit may be any of the subtrees

1https://www.microsoft.com/en-us/research/group/prose/

74

https://www.microsoft.com/en-us/research/group/prose/

that are present at the cursor location, i.e., the lowest leaf node at the cursor
location all the way to the root of the AST. The tool relies on feedback from a
reward function (Section 5.4.2) to accept additional inputs. We compared this
reward function with two alternative reward functions: (i) no validation, where
semi-supervised synthesis accepts any additional inputs; (ii) and clone detection
where semi-supervised synthesis accepts inputs based on their similarities with the
inputs in the input-output examples. Our results show that while "no validation"
and "clone detection" lead to high false positives and negatives, respectively, our
reward function produces only 11 false positives and 14 false negatives on 243,682
tested additional inputs. We also evaluated the effectiveness of BluePencilcur

in generating correct suggestions at the cursor location. Amongst 291 scenarios,
BluePencilcur only generates one false positive and three false negatives.

• BluePencilauto: Fully-automated feedback based on all inputs in the source code.
This feature uses all the nodes available in the source code as input to semi-
supervised synthesis. It is relevant in the settings where user feedback is not
available. For example, (a) when the developer themselves may not be aware of
all locations that must be changed, or (b) when the developer may want to apply
the edits in bulk, instead of inspecting each one for correctness. We evaluated
how often BluePencilauto can save developers from indicating the additional
inputs. To do so, we simulated a developer performing 350 repetitive edits with
BluePencilcur and BluePencilauto enabled or just BluePencil enabled. In
our experiment, BluePencilauto decreased the number of times the developer
would have to indicate the input by 30%. When compared to BluePencil, our
results show that BluePencilcur and BluePencilauto automated 263 edits while
BluePencil automated only 159.

Remark 5.1.1 In this chapter, the term semi-supervised is used in a subtly different
manner than in the traditional machine learning context. In both settings, additional
unlabelled inputs are used to aid learning. However, in machine learning, the
additional unlabelled inputs are used to understand the structure and distribution
of the input space. On the other hand, in our setting, additional inputs are used to
generate new input-output examples along the lines of existing labeled examples, using
the structure of individual additional input trees. In other words, semi-supervised

75

(a) Two repetitive edits. Both edits update invocations to method ResolveDependency

but one of the arguments is different. Given these two edits, IntelliCode synthesizes a
transformation to automate similar edits.
- repository.ResolveDependency(dependency1, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency1, null,

false, false, Lowest);

- repository.ResolveDependency(dependency2, null, false, false, Lowest);
+ DependencyResolverUtility.ResolveDependency(repository, dependency2, null,

false, false, Lowest);

(b) IntelliCode correctly produces suggestions at these locations based on the previous
edits. The first argument is the only difference between these locations, similar to the
examples.

repository.ResolveDependency(dependency3, null, false, false, Lowest);
repository.ResolveDependency(dependency4, null, false, false, Lowest);

(c) IntelliCode fails to produce suggestions to these locations (false negative). Note
that there are more elements that are different in these locations compared to the
locations in the examples.

repository.ResolveDependency(dependency1, null, false, false, Highest);
repository.ResolveDependency(dependency2, null, false, false, Highest);
Marker.ResolveDependency(dependency, null, AllowPrereleaseVersions, false,

Highest);

(d) While this location shares the same structure as the previous ones, the transforma-
tion should not produce an edit here.
- s.GetUpdates(IsAny<IEnumerable<IPackage>>(), false, false,
+ DependencyResolverUtility.GetUpdates(s, IsAny<IEnumerable<IPackage>>(),

false, false, IsAny<IEnumerable<FrameworkName> >(),
IsAny<IEnumerable<IVersionSpec> >())

Figure 5.1: A scenario with two repetitive edits (input-output examples), additional
inputs, and a false positive. All inputs share the same structure (a method invocation
with 5 arguments).

machine learning exploits the structure of the input space, while we use the structure
of individual inputs.

5.2 Motivating Example
We start by illustrating the challenges of synthesizing code transformations from

input-output examples. Consider the scenario shown in Figure 5.1.
A C# developer working on NuGet2 codebase refactored the ResolveDependency
2Nuget is a package manager for .NET

76

Figure 5.2: BluePencilcur implemented as a Visual Studio extension. The developer
clicks on a line to manually edit the code where the PBE system produced a false
negative. BluePencilcur uses feedback-driven program-synthesis to synthesize
a transformation that is general enough to be applied to this location. The edit
generated by the transformation is shown as an auto-completion suggestion.

method to make it static, then moved it to static class DependencyResolveUtility.
As a result, the developer must update all invocations of this method to match its
new signature. Figure 5.1a shows two call sites where the developer has manually
updated the invocation to match this signature. Figures 5.1b and 5.1c show additional
locations that will require a similar modification: note that they share the same
general structure but contain dissimilar subexpressions. Manually performing such
repetitive edits is tedious, error-prone, and time-consuming. Unfortunately, developer
tools such as the Visual Studio IDE [84] and ReSharper [47] do not include built-in
transformations or refactorings to automate these edits.

However, a recently introduced Visual Studio feature based on BluePencil [87],
called IntelliCode suggestions (IntelliCode for brevity), can learn to automate these
edits after watching the developer perform a handful of edits. Specifically, after
watching edits to the two locations shown in Figure 5.1a, IntelliCode learns a
transformation and suggests automated edits to the locations shown in Figure 5.1b.

With only these two examples, however, IntelliCode is not yet able to produce
suggestions for the locations shown in Figure 5.1c. These are false negatives. This is
because the inputs in the examples provided so far differed only in their first method
argument: dependency1 and dependency2, respectively. As a result, IntelliCode
synthesizes a transformation that generalizes across variation in the first argument,
but not the others. While sufficient to suggest edits for the locations in Figure 5.1b,
this transformation is not sufficiently general to apply to the locations shown in

77

Figure 5.1c, which contain additional variation in the call target, third argument, and
fifth argument (Marker, AllowPrereleaseVersions, and Highest, respectively).

To address this situation, the developer performs another manual edit at the
first location in Figure 5.1c. IntelliCode consumes this edit as a new example and
synthesizes a new transformation to generalize across variation in both the first and
fifth arguments: IntelliCode has disambiguated the developer’s intent because the
new example contains a different variable (Highest rather than Lowest) in the final
argument. At this point, IntelliCode is now able to produce correct suggestions for
all locations that differ only in their first or last argument. Unfortunately, despite
having seen three input-output examples, it still fails to produce suggestions for the
last location in Figure 5.1c.

In general, false negatives like those described stem from insufficiently general
transformations–they overfit to the given examples. They not only reduce the
applicability of the tool but also frustrate developers, who naturally expect an edit
suggestion to automate their task after having already supplied several examples.
The line between too specific and too general can be thin, though. In this scenario,
the desired transformation should produce edits on invocations of the instance
method ResolveDependency using 5 arguments. If we generalize the name of the
method to any method, it will lead to false positives. For instance, it would produce
the edit shown in Figure 5.1d.

Our Solution. We now illustrate how a system based on semi-supervised synthesis
can help alleviate this problem. BluePencilcur uses the cursor position in the editor
to indicate candidate additional inputs to our semi-supervised synthesis technique.
Consider the first false negative shown in Figure 5.1c. As soon as the developer
places the cursor in the location related to the false negative, BluePencilcur uses
our semi-supervised feedback synthesis technique to improve the transformation.
The new transformation produces an auto-completion suggestion for the current
location (see Figure 5.2). We provide details of our technique and its applications
in Sections 5.4 and 5.5, resp. In the next section, we formalize the problem of
feedback-driven semi-supervised synthesis.

78

5.3 The Semi-Supervised Synthesis Problem
We first formalize the semi-supervised synthesis problem and then discuss the

feedback-driven semi-supervised synthesis problem.

Abstract Syntax Trees. Let T denote the set of all abstract syntax trees (AST).
We use the notation t to denote a single AST in T, and use the notation SubTrees(t) ⊆
T to denote the set of all subtrees in t. Each node in the AST consists of a string label
representing the node type (e.g., Identifier, MethodDeclaration, InvokeExpression,
etc), set of attributes (e.g., text value of leaf nodes, etc) and a list of children ASTs.

Edit Programs. An edit program3 P : T 6→ T is a partial function4 that maps ASTs
to ASTs. In this chapter, we assume that each edit program P is a pair (Pguard,Ptrans)
of two parts: (a) a guard Pguard : T→ B, and (b) a transformer Ptrans : T 6→ T. We
have that P(t) = Ptrans(t) when Pguard(t) is true, and P(t) = ⊥ otherwise.

Example 5.3.1 Consider the two edits shown in Figure 5.1a. For each edit, the
following edit program maps the subtree before the change to the subtree after the
change.

Pguard = Input matches X1.X2(X3,X4,X5,X6,X7) where

| X1.label = Identifier ∧ X1.Attributes.TextValue = repository

| X2.label = Identifier ∧ X2.Attributes.TextValue = ResolveDependency

| X3.label ∧ . . .

Ptrans = return DependencyResolveUtility.X2(X1,X3,X4,X5,X6,X7)

ReFazer learns this program initially in Section 5.2 (with just 2 examples). This
program is written in terms of templates with each Xi representing a hole. In
Section 2.2.2, we present a domain-specific language to express such programs.

The Semi-supervised Synthesis Problem. As explained in Section 5.2, the
semi-supervised synthesis problem is the core piece among the techniques in this work.
Semi-supervised synthesis allows a user or an environment to finely control the level
of generalization used by the synthesizer. The formal definition of the problem is as
follows. Given (a) a set of input-output examples Examples = {i0 7→ o0, . . . , ik 7→ ok},

3We also refer to edit programs more generally as transformations.
4We consistently use 6→ to denote partial functions.

79

(b) a set of additional positive inputs PI = {pi0, . . . , pin}, and (c) a set of additional
negative inputs NI = {ni0, . . . , nim}, the semi-supervised synthesis problem is to
produce a program P such that (a) ∀0 ≤ j ≤ k.P(ij) = oj , (b) ∀0 ≤ j ≤ n.P(pij) 6= ⊥,
and (c) ∀0 ≤ j ≤ m.P(nij) = ⊥. Intuitively, the problem asks for a program that is
consistent with the provided examples, produces outputs on all additional positive
inputs, and does not produce an output on any additional negative inputs. The
over-generalization and under-generalization problem can be addressed by providing
more additional negative and positive examples, respectively.

Feedback-Driven Semi-supervised Synthesis Problem. The semi-supervised
synthesis problem assumes access to positive and negative additional inputs, but how
do we find (more of) them to help refine the synthesized program? We use feedback
from either the user or the environment to discover these additional inputs. In this
setting, the synthesizer is provided with the following components: (a) A finite pool
of inputs InputPool ⊆ T. We assume that all example inputs and additional (positive
or negative) inputs are drawn from the input pool InputPool. In practice, the input
pool is usually the set of all subtrees of the AST representing a source file. (b) A
reward function Rew : InputPool 6→ [−∞,∞] that acts as a feedback mechanism.
A high and a low reward for an i ∈ InputPool indicates whether the synthesized
program should be applicable to i or not, respectively. For exposition purposes, we
separate the reward function into the user provided RewU and environment provided
RewE reward functions with Rew being a combination of the two. In Section 5.4.2,
we define feedback oracles which take as input the state of the feedback loop (i.e.,
examples, positive and negative inputs, synthesized program) and return a reward
function. While we could merge the notion of feedback oracle and reward function,
with reward function taking additional inputs mentioned, this separation allows for
easier notation.

The rewards are generated from a number of factors including (a) if the user
manually indicates whether an input from the input pool should be positively or
negatively marked, (b) whether applying a produced edit leaves the source code
document in a compilable state, and (c) whether the produced edit for an input is
similar to or different from the given examples.

This workflow proceeds in multiple rounds of interaction. In the nth iteration of

80

the workflow,

• The synthesizer, using the examples and the reward function Rewn−1, produces
a program Pn that is consistent with the examples Examples and the positive
(and negative) additional inputs deduced from Rewn−1.

• Optionally, the user adds new examples to the set of Examples to produce
Examplesn.

• The user and the environment in conjunction produce the rewards Rewn :
SubTrees(tn) 6→ [−∞,∞] to provide feedback on how Pn is to be refined in
the next iteration to produce Pn+1.

This workflow is a continuous interaction between the environment and the user
on one side, and the synthesizer on the other. This continuous interaction using
rewards is reminiscent of a reinforcement learning scenario. However, in our setting,
the user and the environment cannot be modeled as a Markov decision process, and
the state space is non-continuous infinite, making standard reinforcement learning
techniques not applicable.

Due to the user-in-the-loop nature of the feedback-driven semi-supervised syn-
thesis workflow, it is hard to define an explicit correctness condition for the problem.
The real optimality criterion for the synthesized program is how well does the syn-
thesized program match user intent? This criterion is hard to capture formally in
practice, mainly because users may not be willing or not be able to manually analyze
the synthesized program. Further, depending on the scenario, the same program
may either be correct or incorrect. For example, in the case from Section 5.2, in a
slightly different scenario, it is quite possible that the under-generalized transformer
generated initially is the intended transformation. It is impossible to guess without
semantic knowledge about the domain of the source code, which we are consciously
keeping out-of-scope here.

However, we do have a quiescence condition on the environment and the syn-
thesizer combined: when the user-dependent feedback stops changing (i.e., RewU is
fixed), the synthesized program should converge to a fixed one. Note that quiescence
may be impossible under the situation where the user keeps adding more feedback or
positive and negative examples. Due to the lack of strict correctness conditions, to

81

219:10 X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N. Nagappan, A. Tiwari

Input Pool

User

+

Environment

RewardsProgram

∃pi : Rew(pi) > 𝑝

∃ni : Rew(ni) < 𝑛

Semi-Supervised

Synthesis

Positive Inputs

Examples

Negative Inputs

Add pi to Positive Inputs

Add ni to Negative Inputs

Fig. 4. Solution for the feedback-driven semi-supervised problem

Example 3.2. Let us revisit the edits in Example 3.1 . ReFazer synthesizes the following trans-

former: X1.X2(X3,X4,X5,X6,X7) ̸→ DependencyResolveUtility.X2 (X1,X3,X4,X5,X6,X7). The
ReFazer program that represents this transformer is

Tree(CallExpression, [], Cons(
Tree(DotExpression, [], Cons(
Tree(Identifier, [TextValue=DependencyResolveUtility], EmptyChildren),
Cons(select1, EmptyChildren))),

Cons(select2, select3)))

where, select1, select2, and select3 extract the fragments X2, X1, and X3,X4,X5,X6,X7 re-

spectively. Each select is specified by a guard, for example, the select1 guard might be of the form

IsKind(Current, Identifier) ∧ Attribute(Current, TextValue) = ResolveDependency∧
IsKind(Parent, DotExpression) ∧

Over-generalization and Under-generalization. Input-output examples are inherently an under-

specification of the intended program, and any programming-by-example technique needs to

generalize inductively from the examples. Developers view false positives more unfavorably than

false negatives—it causes them to lose trust in the tool [Bessey et al. 2010]. Hence, many synthesis

techniques, including ReFazer, used in the source code transformation domain err on the side of

under-generalization (for examples, see [Bader et al. 2019; Meng et al. 2013; Rolim et al. 2017]).

4 FEEDBACK-DRIVEN SEMI-SUPERVISED SYNTHESIS

We present our technique to address the feedback-driven semi-supervised synthesis problem. This

solution approach is depicted in Figure 4 and works as follows:

• In each round, the feedback-driven problem with real number feedback is converted into an

instance of the semi-supervised synthesis problem. We achieve this reduction by choosing

thresholds 𝑝 and 𝑛, with PI = {i ∈ InputPool | Rew𝑛−1 (i) > 𝑝} and NI = {i ∈ InputPool |
Rew𝑛−1 (i) < 𝑛}.
• The semi-supervised synthesis is solved using a standard (not semi-supervised) program

synthesizer. To ensure that the synthesized program produces outputs on the additional

positive inputs, we generate new examples by associating each additional positive input pi
with an output po. This output is produced using a given example i ↦→ o, and a combination

of provenance analysis and anti-unification. Informally, we first associate each subtree 𝑠 ′

of pi with an equivalent subtree 𝑠 of i. Then, in o we replace each subtree generated from

a subtree 𝑠 of the input i, with a new subtree that is generated in a similar way but with 𝑠

replaced by 𝑠 ′.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 219. Publication date: November 2020.

Figure 5.3: Solution for the feedback-driven semi-supervised problem

ensure the quality of the programs and edits produced, we experimentally validate
the techniques with a comprehensive evaluation (Section 5.6).

5.4 Feedback-driven Semi-Supervised Synthesis
We present our technique to address the feedback-driven semi-supervised synthesis

problem. This solution approach is depicted in Figure 5.3 and works as follows:

• In each round, the feedback-driven problem with real number feedback is
converted into an instance of the semi-supervised synthesis problem. We achieve
this reduction by choosing thresholds p and n, with PI = {i ∈ InputPool |
Rewn−1(i) > p} and NI = {i ∈ InputPool | Rewn−1(i) < n}.

• The semi-supervised synthesis is solved using a standard (not semi-supervised)
program synthesizer. To ensure that the synthesized program produces outputs
on the additional positive inputs, we generate new examples by associating
each additional positive input pi with an output po. This output is produced
using a given example i 7→ o, and a combination of provenance analysis and
anti-unification. Informally, we first associate each subtree s′ of pi with an
equivalent subtree s of i. Then, in o we replace each subtree generated from a
subtree s of the input i, with a new subtree that is generated in a similar way
but with s replaced by s′.

5.4.1 Semi-Supervised Synthesis

Algorithm 5 depicts a procedure for the semi-supervised synthesis problem. In
the procedure, we use ReFazerguard and ReFazertrans as oracles. Oracle ReFazerguard

82

Algorithm 5: Semi-supervised synthesis
Input: Input-output examples Examples = {i0 7→ o0, . . . , ik 7→ ok}
Input: Additional positive inputs PI = {pi0, . . . , pin}
Input: Additional negative inputs NI = {ni0, . . . , nim}
Output: Program P

1 Inputs← {i | (i 7→ o) ∈ Examples}
2 Pguard ← ReFazerguard(Inputs ∪ PI,NI)
3 Ptrans ← TransSynth(Examples,PI)
4 if Pguard = ⊥ ∨ Ptrans = ⊥ then
5 return ⊥
6 end
7 return (Pguard,Ptrans)
8

9 Function TransSynth(Examples,PI) is
10 Ptrans ← ReFazertrans(Examples)
11 π ← Provenance(i0 7→ o0,Ptrans)
12 (τ, 〈σ0, . . . , σk, σ

′
0, . . . , σ

′
n〉)← ./π{i0, . . . , ik, pi0, . . . , pin}

13 if ⊥ ∈ (σ0, . . . , σk, σ
′
0, . . . , σ

′
n) then

14 return ⊥
15 end
16 AdditionalExamples← {pij → Evaluate∗(Ptrans, pi, i) | pij ∈ PI}
17 return ReFazertrans(Examples ∪ AdditionalExamples)
18 end

takes positive inputs and negative inputs, and produces a guard that is true on
the former and false on the latter. Oracle ReFazertrans takes a set of examples and
produces a transformer consistent with them.

The guard synthesis component of the algorithm (line 2) falls back to ReFazerguard.
However, transformer synthesis is significantly more involved. First, using only
Examples, we synthesize a transformer program that is consistent with each example
(line 10). Using this program, we extract provenance information (line 11) on
what fragments of the example outputs are dependant on what fragments of the
example inputs, and what sub-programs are used to transform the input fragments
to the output fragments. Then, we use anti-unification (line 12) to determine
which fragments of the example inputs are associated with which fragments of
the additional positive inputs. Using the provenance and anti-unification data, we
can now compute a candidate output for each additional positive input (line 16).
Finally, we synthesize a transformer program from the original examples and the new
examples obtained by associating each additional positive input with its candidate

83

output. We explain these steps in detail below.

Provenance. The first step of transformer synthesis computes provenance infor-
mation for each example. The provenance information is computed for select

operations. Given a transformer program Ptrans, and an example i 7→ o, the prove-
nance information takes the form of SP0 ← si0, . . . , SPn ← sin, where (a) each sij is
a subtree of i, and (b) each SPj is a sub-program of Ptrans that is a select, and SPj
produces the output sij during the execution of Ptrans(si). We call the subtrees sij
the selected nodes of the input i. Note that each SPj may have multiple subtrees
sij and si′j with j 6= j′ such that SPj ← sij and SPj ← si′j. One such case is due
to the MapChildren operator in Figure 2.2. The lambda function (produced by
transformer) may have select programs that operate over all children of a given
node.

Example 5.4.1 Let us revisit the edits in Example 5.3.1. The transformer Ptrans

can be represented using ReFazer’s DSL as follows:

Tree(CallExpression, [], Cons(

Tree(DotExpression, [], Cons(

Tree(Identifier, [TextValue=DependencyResolveUtility], EmptyChildren),

Cons(select1, EmptyChildren))),

Cons(select2, select3)))

where, select1, select2, and select3 extract the fragments X2, X1, and X3,X4,X5,

X6, X7 respectively. Consider this Ptrans with this abbreviated example:
repository.ResolveDependency(dependency1, args . . .) 7→

DependencyResolverUtility.ResolveDependency(repository, dependency1, args . . .)
The provenance information is given by π = { select1 ← ResolveDependency,

select2 ← repository, select3 ← args...}.

Anti-Unification. The next step in the algorithm is to compute an anti-unification
of inputs and additional positive inputs. Given two inputs i1 and i2, the anti-
unification i1 ./ i2 is given by a pair (τ, 〈σ1, σ2〉) where:

• template τ , is an AST with labelled holes {h0, . . . , hn}, and

• two substitutions σ1, σ2 : {h0, . . . , hn} → T such that σ1(τ) = i1 ∧ σ2(τ) = i2.

84

This definition can be generalized to more than two inputs. For arbitrary number of
inputs, we use the notation ./{i1, . . . , in}. As is standard, we write anti-unification
to mean the anti-unification that produces the most specific generalization.

Example 5.4.2 Consider inputs i1 = if(score < limit) and i2 = if(GetScore(run) <
limit). Then the anti-unification ./{i1, i2} = if(h0 < limit), 〈{h0 7→ score}, {h0 7→
GetScore(run)}〉. It is more specific than any other generalization of i1 and i2, e.g., an
anti-unification with template if(h0 < h1).

We do not go into the details of the procedure for computing anti-unification
but explain the procedure briefly. The procedure is a variant of anti-unification
modulo associativity-unity (AU). First, we categorize all possible AST nodes into
two different categories, based on the label:

• Fixed arity nodes: These are nodes that always have a fixed number of
children. For example, Identifier always has 0 children, CallExpression always
has 2 children (function and argument list), and PlusExpression always has 2
children.

• Variable arity nodes: These nodes can have different number of children. For
example, ParameterList, Block, and ClassDeclaration. One key observation is
that in the AST domain, the children of every variable arity node can be
treated as a homogeneous list. That is, no position in the list has a special
meaning: every child in a parameter list is a parameter. In contrast, the two
children of CallExpression are functionally different.

Now, i1 ./ i2 is computed as follows:

• If the roots of i1 and i2 have different labels or attributes: i1 ./ i2 = (h, ({h 7→
i1}, {h 7→ i2})).

• If the root nodes of i1 and i2 have the same label label and attributes attrs, and if
the nodes are fixed-arity: then i1 ./ i2 = Tree(label, attrs, τ1 . . . τn), 〈⋃i σi1,⋃i σi2〉
where (a) Children(i1) = i11, . . . , in1 and Children(i2) = i12, . . . , in2 , and (b) for all
1 ≤ j ≤ n.ij1 ./ ij2 = (τj, (σj1, σj2))

85

• If the root nodes of i1 and i2 have the same label label and are variable arity
nodes: Let the children of i1 and i2 be i11, . . . , in1 and i12, . . . , im2 , respectively.
Then, we compute two lists of node sequences s0, d0

i , s1 . . . dki , sk for i ∈ {1, 2}
such that: (a) The concatenation s0d0

i s1 . . . dki sk is equal to i11, . . . , in1 and
i12, . . . , in2 for i = 1 and i = 2, respectively. Note that si and dbi are nodes that
are shared and are different in the two lists, respectively. (b) the combined
length of sji is maximized.

Note that some dji may be the empty list nil which acts as the identity for the concate-
nation operation. Now, the anti-unification i1./ i2 = (Tree(label, attrs, s1h1 . . . sk), 〈{hi
7→ di1 | 0 ≤ i ≤ k}, {hi 7→ di2 | 0 ≤ i ≤ k}〉).

Remark 5.4.1 The anti-unification of two ASTs i1 and i2 is not uniquely defined.
For example, let both i1 and i2 be argument lists with i1 = (x, x) and i2 = (x) where
x is a variable. Now, i1 ./ i2 is computed as per the third case above. As per the
definition, we have two options for the result: (a) ((x, h), 〈{h 7→ x}, {h 7→ nil}〉, or
(b) ((h, x), 〈{h 7→ x}, {h 7→ nil}〉. That is, it is unclear if the x in i2 matches with
the first or the second x in i1. This issue can be resolved by using more advanced
anti-unification techniques.

Identifier

method

InvokeExpr

(ResolveDe

pendency)

AST of input 1

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency1) (Lowest)

Identifier

method

InvokeExpr

(ResolveDe

pendency)

AST of input 2

Identifier

(repository)

Argument

Identifier …… Identifier

(dependency2) (Highest)

Identifier

method

InvokeExpr

(ResolveDe

pendency)

Generalization

Identifier

(repository)

Argument

……ℎ1 ℎ2
Figure 5.4: The partial AST of two inputs shown in Figure 5.1a and 5.1c, and their
generalization.

For our use case, we do not consider the general notion of anti-unification, but anti-
unification modulo provenance. Consider inputs i1 and i2, and provenance information
π derived from evaluation a transformation Ptrans on i. The anti-unification modulo
provenance i1 ./π i2 is given by (τ, 〈σ1, σ2〉) where:

• (τ, 〈σ1, σ2〉) is an anti-unification of i1 and i2, i.e., σ1(τ) = i1 and σ2(τ) = i2;

86

• For each substitution (h 7→ si) ∈ σ1, either (a) si is a selected node, i.e.,
(SP ← si) ∈ π for some SP; or (b) si has no ancestors or descendants that
are selected nodes. Note that this condition is only relevant for σ1 as the
provenance π is derived from evaluating a transformation on i.

The additional constraint on the substitutions makes anti-unification modulo prove-
nance be undefined in certain cases (see Example 5.4.3).

Example 5.4.3 Consider the input i1 = score < limit from the example score

< limit 7→ IsValid(score) and the additional input i2 = GetScore(run) < limit.
Given i1 and i2, the anti-unification procedure generates substitutions σ1 = {h 7→
score} and σ2 = {h 7→ GetScore(run)} with the template h < limit. Given the
input-output example and its corresponding transformation, the provenance pro-
cedure produces π = {SP ← score} for some sub-program SP that is a select

operation. Note that score in σ1 = {h 7→ score} is a selected node in π, and thus,
the anti-unification modulo π of i1 and i2 exists. Now, consider another input i3 =
score == GetScore(run). Given i1 and i3, the anti-unification procedure generates
substitutions σ′1 = {h 7→ score < limit} and σ′3 = {h 7→ score == GetScore(run)}
with the template h. Here, the root node of i1 is LessThanExpression and of i3 is
EqualsExpression: hence, the expressions cannot be unified further. In this case,
the condition for the anti-unification modulo π does not hold, as the substitution
h 7→ i1 returns the root node of i1 which is not a selected node, but has a descendant
that is a selected node. Thus, the anti-unification modulo π of i1 and i3 does not
exist.

Intuitively, we are trying to match “important parts” (here, selected nodes) of
i1 with equivalent parts in i2 and i3. We can match the nodes score in i1 and
GetScore(run) in i2 as they are represented by the same hole in the anti-unification,
and thus, they are compatible. Conversely, we cannot match score in i1 and score

in i3, because, even though they are equal, there is no hole in the anti-unification of
i1 and i3 that maps to them. Thus, they are incompatible.

Completing the Procedure. Given the above anti-unification modulo prove-
nance computation, we produce the potential outputs for all additional positive
inputs PI. For producing these outputs, we use an evaluation process that uses

87

an input i from an example and an additional input pi. This process is denoted
as Evaluate∗(Ptrans, pi, i). Let σ and σ′ be the substitutions for i and pi in the
anti-unification modulo provenance, respectively. We evaluate Ptrans on pi as follows:

• For every sub-program SP of Ptrans which is a select, let SP← si ∈ π. Then,
the evaluation value is set to σ′(σ−1(si)).

• For every sub-program SP of Ptrans which is not a select, we evaluate the
value by applying the top level operator on the evaluated values of the children,
as usual.

Example 5.4.4 Consider the first input in Figure 5.1a and 5.1c, anti-unification
generates σ1 = {h1 7→ dependency, h2 7→ Lowest} and σ2 = {h1 7→ dependency2, h2

7→ Highest}. In order to produce an output for the additional positive input in
5.1c, we apply σ2(σ−1

1 (si)) to every SP ← si ∈ π. The elements of interest in π

are: select1← dependency and select2← Lowest for some select sub-programs
select1 and select2. Now, we have σ2(σ−1

1 (dependency)) = dependency1 and
σ2(σ−1

1 (Lowest)) = Highest. Using these values as the evaluation results of select1

and select2 and continuing evaluation, we end up with the output:
DependancyResolverUtility.ResolveDependency(dependency1, ..., Highest).

Once we have the outputs for the additional positive inputs, we provide the given
examples along with the new examples generated from additional positive inputs to
the transformer synthesis component of ReFazer.

Theorem 5.4.2 (Soundness) Algorithm 5 is sound: if a program P is returned,
then (a) ∀i 7→ o ∈ Examples.P(i) = o, (b) ∀pi ∈ PI.P(pi) 6= ⊥, and (c) ∀ni ∈
NI.P(ni) = ⊥.

The proof follows from the use of ReFazertrans and ReFazerguard in lines 17 and 2,
respectively. Note that, it is possible that the inferred output po for the additional
positive input pi is incorrect. In this situation, the user can add a new input-output
example (positive or negative) that has the same input that was incorrectly classified.
We will ignore the additional input i if there exists an input from the input-output
examples that is same as i.

88

Remark 5.4.3 (Completeness of Algorithm 5) Algorithm 5 is not complete,
i.e., it may not return a program even when one satisfying all requirements exists.
This is an intentional choice. Consider Examples = {“(temp− 32) ∗ (5/9)” 7→
“FtoC(temp)”}, PI = {“x = x + 1; ”}, and NI = ∅, the input of the example and the
additional positive input are not logically related. However, there exists a program
that is correct, i.e., the program that returns the constant tree “FtoC(temp)”. In any
practical scenario, this constant program is very unlikely to be the intended program.
Hence, we explicitly make the choice of incompleteness.

5.4.2 Feedback-Driven Semi-Supervised Synthesis

Algorithm 6: Feedback-driven semi-supervised synthesis
Input: Feedback oracle

Feedback : P × (T 6→ T)× 2T × 2T × 2T → (T→ [−∞,∞]).
Input: Semi-supervised synthesis engine SynthesisEngine.
Input: Pool of available inputs InputPool.
Input: Initial examples Examples, positive inputs PI, and negative inputs NI.
Input: Thresholds p, n ∈ R.

1 while true do
2 P← SynthesisEngine(Examples,PI,NI);
3 Notify user of current suggestions: {i 7→ o | i ∈ InputPool ∧ o = P(i) ∧ o 6= ⊥};
4 Rew← Feedback(P,Examples, InputPool,PI,NI);
5 PI′ ← {i ∈ InputPool | Rew(i) > p};
6 NI′ ← {i ∈ InputPool | Rew(i) < n};
7 if * then
8 PI← PI ∪ pi′ where pi′ is an arbitrary input from PI′;
9 else

10 NI← NI ∪ ni′ where ni′ is an arbitrary input from NI′;
11 end
12 end

Algorithm 12 presents a procedure for the feedback-driven semi-supervised
synthesis problem that closely follows Figure 5.3. It takes the following as input:
(a) A feedback oracle Feedback that represents the user and the environment. The
feedback oracle takes as input a program P, a set of examples Examples, an input
pool InputPool, positive inputs PI, and negative inputs NI, and produces a reward
function Rew : InputPool → [−∞,∞]. Informally, the feedback oracle checks the
whole state of the process, and produces rewards for inputs from the pool. (b) A

89

semi-supervised synthesis procedure SynthesisEngine depicted in Algorithm 5. (c)
An input pool, an initial non-empty set of examples, a set of positive inputs, and a
set of negative inputs.

In addition, the algorithm uses the thresholds p and n to determine if an input
from the input pool should be added to either the positive or negative inputs. These
thresholds are dependant on the application scenario and the Feedback oracle. In
Section 5.5, we present three different application scenarios and the choice of p and n
for them. For the Feedback oracle, we present two different oracles Feedbackuser and
Feedbackauto. In the application scenarios, these oracles are combined in different
ways to obtain application specific feedback oracles.

User-Driven Feedback Oracle. The user-driven feedback oracle Feedbackuser

represents the user of the application. In different interfaces, the feedback from the
user can take different forms, each of which can be converted to a reward function
RewU : InputPool→ [−∞,+∞]. We have the following two cases (Section 5.5):

• The user explicitly provides new positive inputs PI′ and negative inputs NI′.
We convert this feedback into the reward function RewU by setting ∀pi ∈
PI′.RewU(pi) = +∞, ∀ni ∈ NI′.RewU(ni) = −∞, and RewU(i) = 0 for all other
inputs in InputPool.

• The user provides a set of candidate positive inputs PI∗ with the intent that
the transformation should apply to one of these candidate positive inputs.
For example, a set of candidate positive inputs could be a set of ASTs that
contain the cursor location in a file. We give a constant reward to all the
nodes in PI∗, i.e., we have ∀pi ∈ PI∗.RewU(pi) = C where 0 < C < +∞. In our
implementation, we set C as 2.

With richer user interfaces, we could consider more complex forms of Feedbackuser

oracle.

Fully Automated Feedback Oracle. Fully automated feedback oracle Feedbackauto

represents the environment the synthesizer is operating in. It can include a number
of independent components only restricted by the available tools in the environment
the synthesizer is running in. For example, if a synthesizer is running inside an
IDE, the oracle could use the compiler or the version control history. Algorithm 7

90

presents a basic oracle that reuses the provenance and anti-unification computation
from the semi-supervised synthesis engine, and, uses the scoring function Score on
guards and a bound thresholdg on scores. The scoring function and bound we use
are the same as in BluePencil [87], which in turn takes the scoring function from
[109]. In practice, the feedback loop in Algorithm 12 can be optimized by sharing
the provenance computation and anti-unification across the synthesis engine and
the Feedbackauto oracle.

Algorithm 7: The fully automated feedback oracle Feedbackuser
Input: Compiler Compiler : t→ B or ⊥ if compiler is not available
Input: Distance metric Distance : T× T→ R≥0

Input: Program P = (Pguard,Ptrans)
Input: Examples Examples : T× T
Input: Input pool InputPool
Input: Positive Examples PI, Negative Examples NI
Output: Rewards function RewE : InputPool 6→ [−∞,+∞]

1 i∗ 7→ o∗ ← arbitrary example in Examples;
2 π ← Provenance(i∗ 7→ o∗,Ptrans);
3 RewE ← ∅;
4 for i ∈ InputPool do
5 if P(i) 6= ⊥ ∧ Compiler 6= ⊥ ∧ Compiler(P(i)) = false then
6 RewE ← RewE ∪ {i 7→ −∞};
7 continue;
8 end
9 guard← ReFazerguard({i | i 7→ o ∈ Examples} ∪ PI ∪ {i},NI);

10 if Score(guard) < thresholdg then
11 RewE ← RewE ∪ {i 7→ −∞};
12 continue;
13 end
14 d← 1− Distance(i, i∗);
15 RewE ← RewE ∪ {i 7→ d};
16 end
17 return RewE

Algorithm 7 works as follows. For each candidate (positive or negative) additional
input i in the input pool:

• If the program P on i produces an output and that output cannot be compiled,
reward is −∞ (line 5). Though compilation can be expensive, in practice,
IDEs allow for efficient incremental compilation. Further, this step is not as

91

expensive as P typically does not produce an output, i.e. Pguard(i) = false, for
most i ∈ InputPool.

• Otherwise, we synthesize a guard that matches the examples and positive inputs
along with the candidate input i using ReFazerguard. Similar to BluePen-
cil [87], we bound the score of the guard with a threshold to avoid overly
general guards, which are almost never the intended one (line 9).

• Otherwise, we compute the distance between the candidate input i and an
example input i∗, using a Distance function, i.e. RewE = 1 − Distance(i, i∗),
where Distance(i, i∗) ∈ [0, 1] (line 12). The Distance function is explained in
detail below.

The Distance Function. Consider an input i∗ that comes from an example
i∗ 7→ o∗, and a candidate additional input i. Intuitively, we want to give a high
reward if i is similar to i∗. However, we need a more involved notion of similarity
than standard clone detection techniques.

Example 5.4.5 Consider the example if(score < limit) 7→ if(IsValid(score))
and the candidate additional input if(GetScore(run) < limit). A tree-based clone-
detection technique would not classify the above two inputs as clones given the
high difference between score and GetScore(run). However, as we described in
Example 5.4.3, the anti-unification modulo π of these inputs tells us that (i) score

is a relevant part of the input since it also appears in the output, and (ii) score and
GetScore(run) are compatible since there is a hole in the anti-unification that maps
to these nodes.

Given that we already have this information about the compatibility of these sub-
trees, we “relax” the tree distance comparison between these two inputs. Rather than
comparing the concrete subtrees, we abstract them using a technique called d-caps [91,
24]. For a d ≥ 0, the d-cap of a node replaces all the sub-nodes at depth d with
holes. For instance, when d = 1, instead of comparing score and GetScore(run), we
compare the nodes (with no children) Identifier and CallExpression, which are their
corresponding root nodes. Note that expression score is shorthand for a node with
label Identifier, attributes {TextValue 7→ score}, and no children. Both the subtrees

92

have been truncated to a depth of 1. This “loosens” the comparison between these
nodes, and returns a smaller difference value.

Further, consider candidate additional input if(score > UnrelatedFunction()).
The difference between the two inputs is < limit and > SomeUnrelatedFunction().
These two fragments are not directly used in the output, and thus we cannot rely on
the anti-unification modulo π to assess their compatibility. Hence, it is essential that
we include this particular difference in the computation of distance.

Concretely, our Distance function represents the d-cap replaced input as numerical
vectors and uses the Euclidean distance between these vectors to represent the
distance between the trees, similar to Deckard [50], a clone detection technique. The
distance between the two inputs i1 and i2 can then be formally defined as follows:

Distance(i1, i2) = CloneDetection(σ†1(τ), σ†2(τ)) where

(τ, 〈σ1, σ2〉) = i1 ./π i2

σ†1, σ
†
2 = DCapModuloProvenance(σ1, σ2, π)

Here, DCapModuloProvenance replaces each substitution for a selected subtree with
its d-cap. Formally, σ†i (h) is equal to: (a) the d-cap of σi(h) if σi(h) is a selected
node, and (b) σi(h) otherwise.

5.5 Applications of Semi-Supervised Synthesis
In this section, we present three practical applications of semi-supervised synthesis

in the domain of C# program transformations. They allow different types of
feedback to produce additional positive inputs to the semi-supervised synthesizer.
To implement the semi-supervised synthesis algorithm (Algorithm 5), we leverage the
Transformation.Tree API available in the PROSE SDK as a concrete implementation
of ReFazer. Additionally, in all applications, we use all the AST nodes available
in the source code file as inputs for the input pool. In our implementation, we use
untyped ASTs, i.e., each node in the AST does not have the type of the corresponding
expression as an attribute. While our techniques are able to handle typed ASTs,
performing type inference on every edit can incur performance penalties.

93

5.5.1 ReFazer∗ User-Provided Feedback about Additional
Inputs

ReFazer∗ uses the user-driven feedback oracle to identify positive inputs to
the semi-supervised synthesizer. The target for ReFazer∗ is applications where a
developer is providing examples manually. To illustrate this application, consider our
motivating example shown in Figure 5.1. For the first false negative (Figure 5.1c),
instead of manually performing the edit to give another example, the developer
can provide feedback to the system by indicating that the location (text selection
representing the input AST) should have been modified. ReFazer∗ uses the feedback
to create a positive input and generalize the transformation. After that, ReFazer∗

produces suggestions to two out of the three false negatives. The developer can follow
the same process to fix the other false negative. In terms of the feedback oracles from
the previous section, Feedbackuser returns a reward function RewU that is +∞ on the
additional positive input the developer has provided, and 0 everywhere else. Further,
we pick the thresholds p and n to both have the value 0. Similarly, if ReFazer∗

produces a false positive on some location, developers could provide feedback to
the system by indicating that this location (text selection and press predefined
shortcut) should not be modified. With this feedback, Feedbackuser returns a reward
−∞ on the additional negative input provided by developers. Correspondingly,
ReFazer∗ will refine the synthesized transformation with additional examples to
avoid generating similar false positives.

ReFazer∗ requires the developer to enter a special mode to provide examples and
feedback to the system. While this interaction gives more control to the developer,
it may also prevent developers from using it due to discoverability problems [87].
Next, we describe two other modeless applications of our technique that do not
require explicitly providing examples and feedback.

5.5.2 BluePencilcur Semi-Automated Feedback Based on Cur-
sor Position

For our second application, we instantiated the BluePencil algorithm [87]
using our semi-supervised synthesizer as the PBE synthesizer. BluePencil works
in the background of an editor. While the developer edits the code, the system

94

infers examples of repetitive edits from the history of edits, and it uses a synthesizer
to learn program transformations for these edits. The original algorithm does not
consider sets of input-output examples of size one, as they do not indicate repetitive
changes. We modified this constraint to allow the system to use BluePencilcur to
learn transformations from just one example and one additional positive input.

To enable the completely modeless interaction, BluePencilcur uses both user-
driven and fully automated oracles to produce feedback. The former leverages
the cursor position to collect implicit feedback from the developer. Note that the
developer is not actively providing feedback—it is completely transparent to the
developer, and is inferred automatically. Intuitively, the cursor suggests that the
developer is interested in that part of the code and may want to edit it.

However, the cursor location is very ambiguous: the subtree the developer is
likely to edit can be any subtree that contains the cursor location. Consider the false
negative shown in Figure 5.1c. Suppose the developer places the cursor location
at the beginning of the line. There are many subtrees that include this location,
including the ones corresponding to the following code fragments: repository

and repository.ResolveDependency(...). The latter is the input that should be
classified as a positive input. The Feedbackuser oracle returns a reward function that
gives a positive score (RewU) to all subtrees that include the position defined by the
cursor. We also use feedback from the Feedbackauto oracle described in Section 5.4.2
to further disambiguate the cursor location. Intuitively, Feedbackauto will provide
positive rewards (RewE) to the nodes that are “similar” to the example inputs.
Finally, we regard inputs with RewU(i) ∗ RewE(i) > p as positive inputs and inputs
with RewU(i) ∗ RewE(i) < n as negative inputs.

We implement BluePencilcur as a Visual Studio extension. Figure 5.2 shows
the extension in action. As soon as the developer places the cursor in the location
related to the false negative, BluePencilcur uses the semi-supervised feedback
synthesis to improve the transformation. The new transformation produces an
auto-completion suggestion for the current location (see Figure 5.2). In this setting,
we are using the user-driven feedback and the automated feedback to more precisely
pick the additional positive input. However, there are many settings where it is
infeasible to obtain any feedback from the user. We discuss this case in the next
section.

95

5.5.3 BluePencilauto Fully Automated Feedback Based on
All Inputs in the Source Code

Our last application (BluePencilauto) uses fully automated feedback to identify
positive inputs without any explicit or implicit feedback from developers. The
motivation for this application is that the developers may not be aware of all
locations that must be changed or they may want to apply the edits in bulk. We
also implemented BluePencilauto on top of BluePencil. We restricted this
application to synthesis tasks that have at least two input-output examples.

Consider again our motivating example (Figure 5.1). As soon as the developer
finishes the first two edits (Figure 5.1a), BluePencilauto automatically identifies the
inputs in Figure 5.1c as positive inputs and synthesizes the correct transformation.
Now, if the developer is unaware of the other locations, the tool still produces
suggestions at these places. These suggestions may then be used to automatically
prompt the developer to make these additional edits. Another scenario is as follows:
after the two edits, the developer creates a pull request. The tool can now be run as
an automated reviewer (see, for example, [7]) to suggest changes to the pull request.

5.6 Evaluation
In this section, we present our evaluation of the proposed approach in terms of

effectiveness and efficiency. In particular, we evaluate our technique with respect to
the following research questions:

RQ1 What is the effectiveness of ReFazer∗ in generating correct code
transformations? We hypothesize that user-provided positive inputs should
help our synthesis engine learn better transformations. We evaluate the quality
of the synthesized transformation with and without additional positive inputs
by measuring the number of false positives (incorrect suggestions) and false
negatives (missing suggestions) produced.

RQ2 What is the effectiveness of the reward calculation function? The
reward calculation function needs to precisely identify valid additional inputs
to avoid generating many false positives or false negatives. We evaluate our

96

reward calculation function by comparing it with two baseline approaches: no
validation and clone detection.

RQ3 Given a cursor location, what is the effectiveness and efficiency of
BluePencilcur?

BluePencilcur should generate edit suggestions at the cursor location effi-
ciently enough to be usable as an auto-completion feature in an IDE, while still
maintaining the quality of suggestions. Given cursor locations, we measure
the number of false positives and negatives produced by BluePencilcur, and
the time taken to produce the suggestions.

RQ4 How do BluePencilcur and BluePencilauto compare to BluePencil?

BluePencilcur and BluePencilauto are both built on top of BluePencil,
and they aim at reducing the number of examples developers need to provide.
By simulating a developer performing repetitive edits using these tools, we
compare how much information (examples and locations) is required by each
one of them.

5.6.1 Benchmark Suite

We collected 86 occurrences of real life code editing sessions containing repetitive
edits. These scenarios were collected from developers at Microsoft spanning multiple
teams during the internal testing phase of the Microsoft Visual Studio IntelliCode
suggestions feature (BluePencil).

Each session consists of a list of program versions representing the history of the
program content as the user makes edits. For each session, we manually generated
the ground truth data containing the number of repetitive edits, the version ids
before and after each repetitive edit, and the locations and content change for each
repetitive edit. Each editing session contains one or multiple sequences of repetitive
edit transformations, with each sequence containing at least two repetitive edits.
Each session also contained noise, i.e., edits that are not a part of any repetitive
sequence. Figure 5.5 shows the number of repetitive edits in different program editing
sessions, where the x-axis presents the number of repetitive edits and y-axis gives the
number of editing sessions. For instance, there are 25 (around 30%) editing sessions

97

9

2

4

10

3

7

2

4

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 13 16

N
u

m
b

e
r

o
f
e

d
it
in

g

s
e

s
s
io

n
s

Number of repetative edits

Figure 5.5: The distribution of number of repetitive edits across the programs

with 2 repetitive edits. This high percentage also motivates the need for a technique
that automates edits with fewer examples, ideally 1 example. Techniques such as
BluePencil that require at least two examples cannot generate any suggestions for
cases with just 2 repetitive edits in the session. The average number of repetitive
edits is 4.07 while the largest number is 16. The benchmark suite contains a variety
of edits, from small edits that change only a single program statement to large edits
that modify code blocks.

All the experiments were conducted on a machine equipped with Inter Core
i7-8700T CPU @ 2.4GHz, 32GB memory running 64-bit Windows 10 Enterprise.

5.6.2 Effectiveness of Semi-Supervised Synthesis

In the scenario where a developer manually indicates an additional positive
input for a repetitive transformation, we evaluate the effectiveness of ReFazer∗

by measuring its precision and recall in generating correct suggestions. In this
evaluation, we use ReFazer [109] as our baseline.

Experimental Setup. In each program editing session, we first manually extract
all the repetitive edits. For a session with M repetitive edits, we provide N edits
as examples for the synthesis engine, and the remaining repetitive edits in this
session are used for testing. We set N < M to ensure there is at least one edit
that can be used for testing, further, we limit N up to three. Considering that
users could perform the repetitive edits in any order, we consider all combinations
when choosing the examples. For instance, for a session with three repetitive edits
(e1, e2, e3), the users could manually complete e1 and ReFazer∗ automates e2

and e3. The user could also complete e3, and ReFazer∗ automates e1 and e2.
Different edits contain slightly different information: the result of the synthesizer

98

Table 5.1: The effectiveness of semi-supervised synthesis.

Examples (N) Session Edit Scenario ReFazer ReFazer∗
Precision Recall Precision Recall

One 86 350 1400 100.00% 26.71% 96.01% 100.00%
Two 61 300 3664 99.65% 77.26% 98.58% 99.94%
Three 40 237 7578 99.88% 89.10% 99.72% 99.99%

depends not only on the number of examples but also on which examples were
used. We try all combinations of N examples to avoid any bias introduced by
picking a particular order. For an editing session with M repetitive edits, there
are C(M,N) combinations when choosing the N examples. For instance, for a
program edit session with four repetitive edits, if two edits are provided to the PBE
engine as examples, there are C(4, 2) = 6 combinations. Given a combination of N
examples to the PBE engine, we then create a set of testing scenarios where the N
edits are provided to PBE engine as examples, and one of the M −N other edits
is used for testing. Therefore, for an editing session with M repetitive edits, we
create C(M,N) ∗ (M −N) scenarios. In each test, ReFazer∗ also takes the input
from testing edit as additional positive input. We then compare the output of the
synthesized transformation on the test input against the test output. We calculate
the precision and recall of ReFazer and ReFazer∗ by measuring the number of
false positives, false negatives, and true positives produced in all the scenarios.

Experimental Parameters. In this experiment, we set RewU(pi) = +∞ for the
user-provided positive input pi ∈ PI and RewU(ni) = −∞ for the user-provided
negative input ni ∈ NI. Further, we set both p and n in Algorithm 12 as 0.

Evaluation Results. Table 5.1 presents our evaluation results of traditional
ReFazer and ReFazer∗. The first column displays the number of examples
provided to PBE engine, while the Session column shows the number of program
editing sessions. Edit and Scenario columns display the number of edits and scenarios,
respectively. The more examples the PBE engine takes, the more scenarios we create
because there are more combinations when choosing examples. By comparing the
different number of examples, ReFazer produces much better results (recall) with
more examples (from 26.71% with one example to 89.10% with three examples). This
is because the synthesis engine can learn how to generalize the transformation with

99

more examples. The precision is always high because ReFazer always learns the
most specific transformation which is unlikely to produce false positives. However,
too specific transformations easily result in false negatives. Especially, the recall with
one example is just 26.71%, which highlights the challenges of synthesizing a high-
quality transformation with fewer examples. In contrast, ReFazer∗ significantly
improves the recall regardless of the number of examples, while maintaining the
high precision (slightly lower). ReFazer∗ can generate better results because
the additional input helps synthesize a more suitably generalized transformation.
Specifically, we achieve 100% recall and >96% precision with only one example, which
can release the burden of users from providing multiple repetitive edit examples.
Compared to ReFazer, we generate a few more false positives. The nature of these
additional false positives is discussed in Section 5.6.6.

ReFazer∗ significantly improves the recall of ReFazer while retaining the
high precision in generating correct suggestions. Even by taking one example
as input, ReFazer∗ achieves more than 96% precision and 100% recall.

5.6.3 Effectiveness of Reward Calculation Function

Our second experiment evaluates the effectiveness of the proposed reward calcu-
lation function. The reward calculation function determines whether a node is an
additional positive or negative input for the feedback system. In this section, we
evaluate its effectiveness in identifying additional positive inputs by comparing with
two baseline approaches: No validation and clone detection.

• No validation: This baseline regards any node as an additional positive input.
Hence, we set Rew(i) = +∞ for all nodes in the input pool.

• Clone detection: Given an edit i∗ 7→ o∗ and one additional node i, we deter-
mine whether i is an positive additional input by calculating the normalized
distance between i∗ and i using clone detection techniques, i.e. Rew(i) =
1− CloneDetection(i, i∗). Here, we use the approach proposed by [50] without
the use of the d-cap modulo provenance from Section 5.4.2.

100

Table 5.2: The effectiveness of the reward calculation function.

Sessions # pNodes # nNodes
No validation Clone detection Reward function

false # false # false # false # false # false
positive negative positive negative positive negative

86 265 243417 9055 7 8 111 11 14

• Reward function based on Distance: Given edit i∗ 7→ o∗ and additional node i,
we use our proposed approach in Algorithm 7 and Section 5.4.2 to calculate
the reward score for i.

Experimental Setup. In each program editing session, we select the first edit as
the example i∗ 7→ o∗ for the PBE engine. We then create a set of additional inputs
to test whether the techniques above can correctly classify each input i in this set as
positive or negative. To create this set, we select the inputs of the remaining edits
as positive inputs pNodes and all the remaining subtrees from the document that
should not be transformed by the synthesized transformation as negative inputs
nNodes. We measure the false positives and negatives produced on both pNodes and
nNodes by the different approaches.

Experimental Parameters. In this experiment, we set p and n in Algorithm 12
as 0.7 and 0.1, respectively. Specifically, we regard input i as a positive input if
Rew(i) > 0.7 and a negative input if Rew(i) < 0.1. Further, we set d = 2 for d-cap
replacement (section 5.4.2).

Evaluation Results. Table 5.2 shows the evaluation results. By regarding any
node as an additional positive input, the synthesis engine can successfully generate
suggestions for many of them. However, it also generates a large number of false pos-
itives (9055), which demonstrates the importance of the additional input validation.
If we validate the additional input using existing clone detection (Column Clone
detection), the false positive rate is significantly reduced. However, it introduces
more false negatives because the clone detection is too strict when comparing two
inputs as shown in Section 5.4.2. Considering the fact that we fail to generate
suggestions on more than 40% (111 out of 265) of pNodes, the clone detection
technique is also not acceptable. The last two columns show the evaluation result of
our reward calculation function. We also significantly reduce the number of false
positives and we do not introduce too many false negatives. Our reward calculation

101

Table 5.3: The effectiveness of BluePencilcur when given the history edit trace
and the cursor location.

Scenarios Suggestion False Positive False Negative Precision Recall Time (ms)
295 291 1 3 99.66% 98.98% 51.83 (avg)

function results in 3 more false positives than clone detection. The underlying reason
will be analyzed in the discussion section.

The proposed additional input validation can help reduce false positives.
Further, it also generates fewer false negatives than existing clone detection
techniques.

5.6.4 The Effectiveness and Efficiency of Semi-Automated
Feedback

To evaluate the effectiveness and efficiency of BluePencilcur, we measure the
false positive and false negatives produced at the cursor location by simulating the
program editing process of developers.

Experimental Setup. Recall that all the program versions are recorded in form of
{v1, v2, v3 ... vi ... vn} on each program editing session. We could easily reproduce
the editing steps by going through all the history versions one by one. From the
second edit in each editing session (users need to manually complete the first edit), we
feed the history versions before edit ei and the edit location of ei to BluePencilcur.
The history versions include at least one repetitive edit (e.g. e1) and some irrelevant
edits (noise). We randomly select a location from the range of edit location to
simulate the cursor location (user might invoke synthesis at any location within the
range of edit). We use the same experimental parameters as Section 5.6.3.

Evaluation Results. Table 5.3 shows our evaluation result. Scenarios presents
the number of scenarios. In each scenario, one set of history versions and one cursor
location are provided to the engine. Our evaluation results show that our engine
only generates one false positive and three false negatives on all the scenarios. In
other words, we achieve 99.66% precision and 98.98% recall.

Meanwhile, BluePencilcur should be fast enough to ensure that the sugges-
tion can be generated at run-time. Therefore, we also evaluate the efficiency of

102

BluePencilcur by measuring the time to generate each suggestion. Time describes
the averaged time to generate edit suggestions. Our engine produces one suggestion
in 51.8ms on average, and up to 441ms. At the cursor location, we believe generating
suggestions in less than 0.44 seconds is acceptable.

Given one set of history versions and one cursor location, BluePencilcur

achieves around 99% precision and recall in generating correct suggestions.
Meanwhile, it takes 51.8 milliseconds on average to generate one suggestion.

5.6.5 A Comparison to BluePencil

In this section, we present an experiment that simulates a developer performing
repetitive edits in two different settings.

• Setting 1 : The developer uses BluePencil to complete the task.

• Setting 2 : BluePencilcur and BluePencilauto, which are built on top of
BluePencil, are enabled and they assist the developer to complete the task.

The goal of this experiment is to compare the amount of information, in the form
of examples and locations, that a developer must provide to complete a task when
supported by these tools.

Experimental Setup. To simulate Setting 1, given an edit session that contains
edits {e1, e2, ..., en}, we iteratively add each edit ei as an example to BluePencil.
At each iteration, we check the suggestions produced by BluePencil. If it produces
a suggestion to automate an edit ej, such that j > i, we remove this edit from the
set of available edits. At the end of the simulation, we have the total number of
examples #examples provided by the developer and the number of edits #suggestions
that were automated by BluePencil. For instance, consider the scenario showed
in Figure 5.1, where the developer performed seven repetitive edits. After providing
e1 and e2 (Figure 5.1a) as examples to BluePencil, it produces the suggestions to
automate e3 and e4 (Figure 5.1b). The three edits left are the ones that were applied
to the locations shown in Figure 5.1c. We provide e5 and it produces a suggestion
to e6. Finally, we provide e7, the last edit. In total, we simulated the developer

103

Table 5.4: Summary of the comparison to BluePencil. Column #inferredLocs is
the number of additional inputs that are automatically identified by the feedback
system. Column %automated shows the percentage of edits automated by the
synthesis engine.

Approach Edit #examples #locs #inferredLocs #suggestions %automated Time
Setting 1 350 191 - - 159 45% 0.25s
Setting 2 350 87 87 37 263 75% 0.32s

providing 4 examples (i.e., #examples = 4) and the BluePencil automating 3
edits (i.e., #suggestions).

Setting 2 is similar to Setting 1 but instead of simulating the developer interaction
just with BluePencil, we add BluePencilcur and BluePencilauto. Now, at
each iteration after the first, before providing ei, we first provide an arbitrary cursor
location within the location of ei. Only if BluePencilcur cannot produce the
suggestion to automate ei, we provide the full example. This process simulates a
developer first navigating to the location of ei and then performing the edit. If
BluePencilcur is able to produce a suggestion for ei as soon as the developer
navigates to the location of ei, it is counted towards the number of locations #locs.
Otherwise, the developer has to manually perform this edit, and ei is counted towards
the number of examples #examples.

Further, we also enable BluePencilauto to automatically find additional inputs.
For instance, back to our running scenario, after providing the first edit in Figure 5.1a
as an example, we provide a cursor location within the second edit. Using this
example and location, BluePencilcur produces suggestions for e2, e3, and e4.
Additionally, BluePencilauto produces suggestions for e5, e6, and e7. Note that
BluePencilauto requires at least two examples (see Section 5.5), and thus will not
produce any suggestions until the user provides at least one edit and one cursor
location. In this simulation, the developer provided one example (i.e., #examples =
1) and one cursor location (i.e., #locs = 1 and the system automated 6 edits
(#suggestions = 6). Further, since 3 edits (e5, e6, and e7) were automated using
BluePencilauto, we say that these locations are automatically inferred and write
#inferredLocs = 3. We use the same experimental parameters as Section 5.6.3.

Evaluation Results. Table 5.4 shows the results of our simulation. In Setting 1,
BluePencil required 191 examples and produced suggestions for 159 out of 350

104

edits i.e., the synthesis engine assisted the developer to automate 45% of the edits.
Meanwhile, in Setting 2, the synthesis engine automated 263 edits, which represents
75% of the total number of edits. It required only 87 examples and 87 cursor
locations. Additionally, BluePencilauto found 37 additional inputs, decreasing the
number of cursor locations the developer has to provide.

While Setting 2 (BluePencilcur and BluePencilauto) is more effective at pro-
ducing suggestions, the tool should also be fast enough to ensure that the suggestions
can be generated at run-time when developers are programming. Therefore, we also
evaluated its efficiency by measuring the time to generate edit suggestions. Column
Time displays the averaged time to generate edit suggestions. Our engine produced
suggestions in 0.32 seconds on average, fast enough to be used as an on-the-fly
synthesizer in an IDE. Compared to BluePencil, it was slightly slower as it
continuously refines the transformation by invoking the synthesis engine multiple
times.

In Setting 2 (BluePencilcur and BluePencilauto), the synthesis engine
automated 75% of the edits, compared to 45% edits automated in Setting
1 (BluePencil). On average, our engine took 0.32 seconds to produce
suggestions.

5.6.6 Discussion

In the above experiments, our technique produced a small number of false
positives and false negatives. Besides false positives and negatives related to the
limitations of Refazer itself, we found false positives related to semi-supervised
synthesis and the automated feedback oracles. We also observed false positives
related to the limitations of our anti-unification algorithm.

The semi-supervised synthesis technique produces a false positive in the following
case. Given edit: Model(..., outputs: null, inputs: null) 7→ Model(...,

outputs: null), i.e., removing inputs: null, and the additional positive in-
put: Model(..., inputs: new List<ModelInput>(), outputs: null), semi-
supervised synthesis generates a transformation that deletes the last argument.
(Note that the order of the last two parameters has been reversed.) Therefore, the
synthesized transformation will produce the suggestion for the additional input by

105

deleting the last argument outputs: null. However, the desired edit is deleting
the inputs : ∗ clause, which is the second last argument in the additional input.
That is, the correct suggestion should be to remove the second-to-last argument.

One way to address this issue would be to extend the anti-unification algorithm to
handle commutativity as the order of “name: value” style arguments is irrelevant.
However, this would complicate our anti-unification problem, with having to handle
standard arguments under the AU (associativity and unity) theory and the named
arguments under the ACU (associativity, commutativity, and unity) theory.

Limitations of the Feedback Oracles. In our experiment, BluePencilcur and
BluePencilauto produced false positives and negatives due to limitations in the
feedback oracles. It might classify negative inputs as positive ones if the locations are
too similar. For instance, developers made the following edit: comparedEdge.Item2
>= Source.Index 7→ comparedEdge.Item2 > Source.Index. The developer’s in-
tention was to change >= to > only if the left side of the comparison expres-
sion was comparedEdge.Item2. The oracle classified comparedEdge.Item1 >=

Source.Index as a positive addition since the input is very similar. As future
work, we plan to allow users to provide feedback about false positives, so that the
system can create negative inputs. On the other hand, the false negatives mainly
happened on small inputs where the change was on the root of the AST. In this case,
any generalization of the input looked like an over generalization for the feedback
oracle, since there was not much context for transformation.

Threats to Validity. Our benchmark suite may not be representative of the
different types of edits developers perform. To reduce this threat, we collected
real-world scenarios from developers who are working on different large code-bases
to have as much variety as possible in the benchmark suite. Another threat is that
developers may perform irrelevant, non-repetitive edits in addition to the repetitive
ones, which may affect the effectiveness of our technique. To alleviate this issue,
we also collected the traces of irrelevant edits and used them in our benchmarks.
Finally, in some scenarios of repetitive edits, it is difficult even for humans to discern
the transformation intended by the developer, which may affect the construction
of our benchmark. To reduce this threat, we manually reviewed these ambiguous
scenarios. Wherever possible, we contacted the developer for confirmation.

106

CHAPTER 6. ALLEVIATE OVERFITTING USING OUTPUT-ORIENTED
SYNTHESIS

Chapter 6

Alleviate Overfitting Using Output-
Oriented Synthesis

Semi-supervised synthesis learns transformation programs (rules) based on input-
output examples and additional inputs. The additional inputs, which are a set of
inputs without available correct outputs, can help disambiguate how to generalize
the transformation rule by providing more examples of input ASTs. Apart from
additional inputs, we observe that there are a large number of available additional
outputs. The additional outputs are the after-transformation codes without before-
transformation codes being available. This leads to our research question: whether
the additional outputs can also be used to synthesize transformation rules?

6.1 Introduction
In this chapter, we propose a novel output-oriented program synthesis to generate

program transformation rules according to (1) a set of input-output edit examples,
and (2) a set of additional outputs. The additional outputs are embedded with the hu-
man intelligence which demonstrates the structures of the after-transformation code.
The additional outputs can be helpful in synthesizing transformation rules in the
following two aspects: (1) help us disambiguate how to generalize the transformation
rule; (2) help synthesize more transformation rules by providing after-transformation
AST patterns. The synthesis goal is to produce a transformation rule that is
consistent with the given input-output edit examples, and the synthesized transfor-
mation rule should be able to produce the additional outputs on some “unknown”
inputs. We achieve this using the following workflow in our technique to synthesize
transformation rules:

107

• Since there could be a large number of additional outputs, our technique first
determines the additional outputs that are useful for the synthesis task. An
additional output will be regarded as useful if it can help improve the trans-
formation rule. Basically, the given input-output edit examples represent some
code structures before- and after-transformation. If one additional output reflects
after-transformation code structures that are not reflected in the input-output
examples, we regard it as a useful additional output since it could be helpful for
synthesizing more substantial transformation rules.

• For each useful additional output, our technique then infers its corresponding
input by analyzing its relationship with the given examples. Linking the inferred
input with the additional output constructs an additional example, which can be
then used as a normal input-output example by any existing synthesizer.

• Since the generated additional examples represent new code structures, they
may not be unified with existing input-output examples to produce a single
transformation rule. Therefore, our technique groups the examples, including
the user-provided and inferred examples, into clusters, and then synthesizes a
transformation rule for each cluster. Determining which synthesized transforma-
tion should be applied to a given input depends on the context of the code that
should be transformed.

We then use the output-oriented program synthesis to automate API usage
adaptations. In the process of software development, developers usually rely on
third-party libraries to implement certain functionalities. To enable developers to
use different components, these libraries usually provide a set of public Application
Programming Interfaces (APIs), which define the contract of using the libraries, such
as the kinds of calls that can be invoked, the ways to invoke them, the right arguments
that should be passed, etc. The client applications that rely on a certain library
must use the API correctly and respect the contract built by the APIs. However,
when library evolves to accommodate new features or fix security vulnerabilities, it
may change the contract defined via APIs and cause its existing client applications
to break. The changes that can fail client applications are called breaking changes,
which makes around 15% of API modifications [139].

108

Fixing API usage errors caused by breaking changes is a time-consuming and
error-prone task. In order to use up-to-date libraries, the developers/maintainers
of clients have to keep track of the library update, analyze the changed code, and
manually fix the API usage errors. Due to the complexity, developers are not willing
to update their dependencies. Indeed, 82% of developers prefer to keep using outdated
libraries [56]. The practice that uses outdated vulnerable libraries will expose the
clients to the risk of malicious attacks. This becomes more serious with financial
applications (e.g., bank clients) which could cause a bigger impact. This indicates
the necessity and importance of automatically updating clients’ dependencies in an
efficient manner.

In recent years, we have seen an emerging trend of tools and techniques that
synthesize abstract transformation rules using examples of human code edits and
apply the synthesized rules to automate program transformations [82, 81, 109, 7,
87]. Existing program transformation techniques have been studied to automatically
update clients’ dependencies [92, 20, 41, 26, 143, 40]. Those techniques first
infer transformation rules from the before- and after-adaptation examples from
human-adapted clients, and then apply the inferred rules to adapt the clients that
are relying on outdated libraries. Existing approaches infer transformation rule
by generalizing the concrete human adaptations in different ways. For instance,
Meditor [143] and AppEvolve [26] simply generate the most general rule by
abstracting all the project-specific details (e.g., variable identifiers), which may
lead to over-generalized transformation rules. Many approaches, e.g., LASE [82]
and ReFazer [109], synthesize the most specific rule over the given examples. To
synthesize a properly generalized rule, these approaches require multiple examples.
However, multiple human adaptation examples are not always available in reality
because client developers are not willing to upgrade their dependencies. Further,
for a library that is updated recently, there could be very few clients that have
been adapted to the new library. Even though CocciEvolve [40] learns from a
single adaptation example, it can only adapt Android deprecated-API usages by
introducing an if-condition.

The output-oriented program synthesis is suitable to address the above limitations.
Although the number of available human adaptations is limited, the new clients
usually use the updated library directly, which gives us an opportunity to mine

109

usages for the new version(s) of the libraries. In this setting, output-oriented program
synthesis takes human adaptations as input-output examples and the usages of the
updated library as additional outputs to synthesize transformation rules. Relying
on output-oriented program synthesis to synthesize transformation rules has two
main advantages. First, with the help of additional output, our technique does not
require a large number of available examples to synthesize a proper transformation
rule. Second, mining usage of new libraries is much more efficient than mining
adaptation examples since we just need to search usages in the latest version of the
client instead of going through all the commits.

We realized our approach in a tool, called APIfix, on top of ReFazer and
evaluated APIfix on a benchmark with seven well-known C# libraries and 138,206
clients that depend on those libraries. Totally, we collect 218 human adaptations
(concrete examples) and 2973 new usages (additional outputs) and evaluate our
approach in three experiments. First, we measure the effectiveness of output-oriented
program synthesis via cross-validation. Evaluation results show that output-oriented
program synthesis achieves 91% accuracy (the ground truth manually computed on
the human adaptation in client codes) in correctly transforming programs. Second, we
applied APIfix on 2154 API usages of outdated libraries, achieving 98.7% precision
and 91.5% recall. Last, we compared with output-oriented program synthesis with
existing program synthesis tools ReFazer and semi-supervised program synthesis.
Evaluation results show that our approach improves both precision and recall
over ReFazer. Compared with semi-supervised program synthesis, our technique
significantly improves the precision, while not affecting the recall significantly.

6.2 Motivating Example
In this section, we give a high-level overview of the output-oriented program

synthesis in automating API usage adaptations by presenting an example from DbUp.
DbUp is a .NET library that helps developers to deploy changes to SQL Server
databases. It supports most of the widely-used databases, such as MySQL, SQLite,
SQLServer, Oracle, etc. DbUp has 10.7M total downloads according to the Nuget
Statistics and more than 1800 open-source dependents according to the dependency

110

graph of Github1. At the time of this thesis’s writing, DbUp has officially released
40 versions ranging from v1.0.8 to v4.5.0. Each release, especially the major releases,
may change some public APIs and hence introduced a number of breaking changes
to the old versions. For instance, when DbUp was updated from v3.3.5 to v4.0 2,
the constructor of a widely used class SqlScriptExecutor was changed as follows:
- public SqlScriptExecutor(Func<IConnectionManager>, Func<IUpgradeLog>,

- string, Func<bool>, IEnumerable<IScriptPreprocessor>) ...

+ public SqlScriptExecutor(Func<IConnectionManager>, Func<IUpgradeLog>,

+ string, Func<bool>, IEnumerable<IScriptPreprocessor>, Func<IJournal>)...

When client applications upgrade their dependency DbUp from v3.3.5 or older
versions to v4.0, they may receive compilation error “‘SqlScriptExecutor’ does not
contain a constructor that takes 5 arguments”. Even though the change of this
constructor is simply inserting an additional parameter, it is not easy for client
developers to figure out what new argument should be passed, how the new argument
is relevant to the other arguments, and how the surrounding context affects the
creation of the new argument. In order to use the latest version of the library (i.e.,
DbUp 4.0), the client developers have to read documents of the library, understand
the change, and manually fix the usage errors, which is an error-prone and time-
consuming task.

Fortunately, the DbUp developers have provided several examples on how to per-
form the adaptation within the DbUp codebase itself. For instance, the test cases of
the SqlScriptExecutor ’s constructor are also updated along with this breaking change.
Figure 6.1 shows three example edits that are relevant to the SqlScriptExecutor

constructor. Basically, developers modified the SqlScriptExecutor object creations
by inserting an additional argument (() => Substitute.For <IJournal>()) to
match the new constructor signature in DbUp v4.0. Meanwhile, we observe that
there are still 411 clients relying on DbUp v3.3.5 or even older versions. Out of
which, 84 clients use the SqlScriptExecutor constructor which require the similar
adaptations. Figure 6.2 shows three SqlScriptExecutor object creation examples
relying on the DbUp v3.3.5 that require adaptations.

Several approaches have been proposed to help developers to update their API
1https://github.com/DbUp/DbUp/network/dependents
2https://github.com/DbUp/DbUp/compare/3.3.5...4.0.0-beta0003#diff-bfbdbc9a

111

E1: - new SqlScriptExecutor(() => new TestConnectionManager(dbConnection,
true),() => new ConsoleUpgradeLog(), null, () => true, null)
+ new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true),()

=> new ConsoleUpgradeLog(), null, () => true, null, () =>
Substitute.For<IJournal>())

E2: - new SqlScriptExecutor(() => new TestConnectionManager(dbConnection,
true),() => new ConsoleUpgradeLog(), "foo",() => true, null)
+ new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true),()

=> new ConsoleUpgradeLog(), "foo",() => true, null,() =>
Substitute.For<IJournal>())

E3: - new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true)
{IsScriptOutputLogged = true}, () => new ConsoleUpgradeLog(),
"foo", () => true, null)

+ new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true)
{IsScriptOutputLogged = true}, () => new ConsoleUpgradeLog(),
"foo", () => true, null,() => Substitute.For<IJournal>())

Figure 6.1: History edits on SqlScriptExecutor that adapt clients from DbUp v3.3.5
or older version to v4.0.

I1: new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true),()
=> new ConsoleUpgradeLog(), null,() => false, null)
. new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true),()

=> new ConsoleUpgradeLog(), null,() => false, null, () =>
Substitute.For<IJournal>())

I2: new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true) {
IsScriptOutputLogged = true },() => new ConsoleUpgradeLog(), "foo",() => true,
null)
. new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true)

IsScriptOutputLogged = true ,() => new ConsoleUpgradeLog(), "foo",() =>
true, null, () => Substitute.For<IJournal>())

I3: new SqlScriptExecutor(()=> c.ConnectionManager,() => c.Log, schema,() => c.
VariablesEnabled, c.ScriptPreprocessors)
. new SqlScriptExecutor(()=> c.ConnectionManager,() => c.Log, schema,() =>

c.VariablesEnabled, c.ScriptPreprocessors, () => c.Journal)

Figure 6.2: Code from clients that still use DbUp v3.3.5 or older versions

usages by learning a transformation rule from the human edits (Figure 6.1) [92, 20,
41, 26, 143], and automatically transform the code requiring adaptations (Figure 6.2).
For example, ReFazer [109] learns a transformation rule R by looking at the edit
history, and represents the learned rule using a domain-specific language (DSL). The
DSL will be explained in Section 6.3.2. For simplicity, we show the rule R for this

112

example as follows:

new SqlScriptExecutor(X1, X2, X3, X4, X5) 7→

new SqlScriptExecutor(X1, X2, X3, X4, X5, ()=>Substitute.For<IJournal>())

where X1.Type = “Func”

X2.Type = “Func” ∧X2.Text = “() => newConsoleUpgradeLog()”

X3.Type = “String”

X4.Type = “Func” ∧X4.Text = “() => true”

X5.Type = “Func” ∧X5.Text = “null”

Terms X1, X2, X3, X4, X5 represent the least general generalization of the five
arguments in the three examples, respectively. Each term is guarded by predicates
in terms of Type and Text. Term X1 and X3 do not have a Text predicate because
the text of the first and third arguments in the given examples are different. The
existing inductive program synthesis techniques [109, 82] prefer to synthesize the
least general generalization across the examples to avoid false positives. Unfortu-
nately, R is not applicable to I1 and I3 because the text of X2 is not “() => new

ConsoleUpgradeLog()”, X4 is not “() => true” or X5 is not “null”. Therefore, R
cannot transform I1 and I3, hence produces false negatives. In contrast, if we simply
generalize R by ignoring all predicates on Text (i.e., delete predicate on X2.Text,
X4.Text and X5.Text), the generalized R will be applicable to all the usages in
Figure 6.2. However, it may produce false positives, i.e., transform some code in an
incorrect way. For instance, the most likely correct transformation of I3 should be
inserting () => c.Journal as the last argument (it is not clear what is the correct
output since the ground truth is not available, and the most likely correct transfor-
mation of I3 is shown in . red in Figure 6.2). However, the inferred transformation
rule from existing examples inserts () =>Substitute.For<IJournal>(), which is
very likely to be a false positive. How to balance false negatives and false positives
is one of the main challenges in the transformation rule inference.

Our solution: To address the above challenges, we propose to learn transfor-
mation rules not only from edit examples but also from the usages of new library
versions. The main insight behind our idea is that the clients created after the release

113

O1: new SqlScriptExecutor(() => new TestConnectionManager(dbConnection, true),()
=> logger, null,() => true, null,() => Substitute.For<IJournal>())

O2: new SqlScriptExecutor(() => Substitute.For<IConnectionManager>(),() => null,
null,() => false, null,() => Substitute.For<IJournal>())

O3: new SqlScriptExecutor(() => c.ConnectionManager,() => c.Log, schema,() => c.
VariablesEnabled, c.ScriptPreprocessors, () => c.Journal)

O4: new SqlScriptExecutor(() => connectionManager,() => Substitute.For<
IUpgradeLog>(), null,() => true, null,() => versionTracker)

Figure 6.3: Code from clients that use DbUp v4.0 or newer versions

of DbUp v4.0 are very likely to use the latest version. We find many examples from
those clients that use DbUp v4.0, which are also embedded with human intelligence
on how to use the updated SqlScriptExecutor constructor. From these usages of
DbUp 4.0, we can learn the API usage patterns and infer transformation rules.
These examples can improve our transformation rule to support different types of
code structures as explained above. Our solution would mine usages of the new
version of the library DbUp 4.0, by automatically crawling through Github reposito-
ries based on the dependency graph of the library. In total, we find 30 usages of
SqlScriptExecutor relying on DbUp v4.0 in existing clients, and Figure 6.3 shows
four of them. By referring to the first usage O1, we would learn that the inferred
transformation rule R is also applicable even if X2.Text (() => logger in O1) is
not exactly the same as the given edit examples (() => new ConsoleUpgradeLog()).
Similarly, by looking at O2, we would know that R can be applied even if X4.Text is
() => false. This knowledge helps us to improve the transformation rule R learned
from the edit examples E1, E2, and E3 by generalizing the context where R can be
applied. Furthermore, using O3 and O4, we can learn that the inserted last argument
is not necessarily ()=>Substitute.For<IJournal>(). Inspired by O3, we can infer

114

a new transformation rule R1. The simplified representation of R1 is as follows:

new SqlScriptExecutor(X1, X2, X3, X4, X5) 7→

new SqlScriptExecutor(X1, X2, X3, X4, X5, () => X6 .Journal)

where X1.Type = “Func” ∧X2.Text = “() => c.ConnectionManager”

X2.Type = “Func” ∧X2.Text = “() => c.Log”

X3.Type = “String” ∧X2.Text = “schema”

X4.Type = “Func” ∧X4.Text = “() => c.VariablesEnabled”

X5.Type = “Func” ∧X5.Text = “c.ScriptPreprocessors”

X6.Type = “UpgradeConfiguration” ∧X6.Text = “c”

Similarly, we will also infer another transformation rule R2 from O4. Rules R, R1 and
R2 form a complete disjunctive transformation rule. Which rule R, R1 or R2 should
be applied is determined according to the context, i.e., the values of X1 . . . X5 in
this case. This additional knowledge helps us infer substantial transformation rules.
With the additional outputs, we can be more confident about how to generalize the
rule or create new rules, and hence be more confident on the transformed codes by
the synthesized rules. Combining the knowledge learned from human edits from
Figure 6.1 and usages of new library from Figure 6.3, our technique can automatically
adapt all the client codes shown in Figure 6.2 to DbUp v4.0. After transforming
the usages in Figure 6.2, we manually verified that all the transformed codes can be
successfully compiled.

6.3 Output-Oriented Program Synthesis
In this section, we first introduce the output-oriented program synthesis problem

and present the technical details of our solution to this problem.

6.3.1 Problem Statement

Semi-supervised synthesis assumes the availability of additional inputs, however,
finding additional inputs is an error-prone task. If provided with additional inputs
that should not be manipulated (i.e., invalid additional inputs), semi-supervised
synthesis will generate over-generalized transformation rules.

115

Example 6.3.1 Let us revisit the example shown in Section 6.2. Suppose we take
the human edits in Figure 6.1 as input-output examples E, and the old usages from
Figure 6.2 as additional inputs AI, semi-supervised synthesis will synthesize a trans-
formation rule that is applicable to all the inputs from E and all the additional
inputs I1, I2 and I3 from Figure 6.2. Therefore, it will over-generalize the predi-
cates on X1 . . . X5 (the arguments of SqlScriptExecutor’s constructor), and hence
transform I3 by incorrectly inserting () => Substitute.For<IJournal>().

Instead of using additional inputs for the synthesis, we use additional outputs in
the synthesis process. Compared to additional inputs, considering additional outputs
has two main advantages. First, determining whether an additional input is valid for
the synthesis task requires human feedback. Although we proposed semi-automated
and fully automated feedback in Chapter 5.4 to generate additional inputs, they
are implemented based on heuristic hence may not always work. Synthesizing with
invalid additional inputs can lead to over-generalized or over-specified transforma-
tion rules. In contrast, the additional outputs are the after-transformation codes
written by developers, which are guaranteed to be valid additional outputs for the
to-be-synthesized transformation rule. Compared with additional inputs, using
additional outputs does not require the involvement of human in the synthesis pro-
cess. Second, the additional outputs have been embedded with human intelligence,
e.g., the structure of the after-transformation codes from which we could learn new
transformation rules that are not reflected in the given input-output examples.

Formally, the output-oriented program synthesis takes a set of input-output
examples {i0 7→ o0, . . . , in 7→ on} and a set of additional outputs {ao0, . . . , aom}.
The synthesis goal is to produce a transformation rule R such that R(ik) = ok for
k ∈ 0 . . . n and R(aij) = aoj for j ∈ 0 . . .m, where aij represents some input.

6.3.2 Domain-Specific Language

State-of-the-art program synthesis tools, like ReFazer [109], search for a trans-
formation rule that satisfies the provided examples over a predefined Domain-Specific
Language (DSL) (refer to Chapter 2.2.2). The output-oriented program synthesis
inherits the DSL of ReFazer, and extends it to the language L shown in Figure 6.4
(the differences are highlighted in grey).

116

rules := rule | Disjunction(rules, rule)

rule := (guard, transformer)

guard := pred | Conjunction(pred, guard)

pred := IsNthChild(node, n) | IsKind(node, kind)

| Attribute(node, attr) = value | Not(pred)

| IsType(node, type)

node := Path(input, path)

transformer := construct | select

construct := Tree(kind, attrs, children)

children := EmptyChildren | Cons(node, children)

| InsertChild(Children(select), pos, node)

| DeleteChild(Children(select), pos)

| ReplaceChildren(Children(select), posList, children)

| MapChildren(λ input: transformer, Children(select))

select := Nth(Filter(guard, SubTrees(input)), n)

pos := n | ChildIndexOf(node)

Variables:

AST input; List<int> posList; string kind, attr, value;

int n; XPath path; Dictionary<string, string> attrs;

Figure 6.4: Domain-specific language for program transformation rule

Additional outputs are embedded with human intelligence that can help to syn-
thesize new transformation rules, as discussed in Section 6.3.1. The transformations
reflected by additional outputs and input-output examples may not be able to be
unified to a single transformation rule.

Example 6.3.2 Consider input-output examples E1: handler.Handle(request)

7→ handler .Handle(request, token) and E2: TestSubject.Handle (request)

7→ TestSubject.Handle (request, token), and additional output AO: _handler
.Handle(request, new CancellationToken()). By looking at E1 and E2, the
inferred transformation rule is to insert a second argument token, while by look-
ing at AO, we know the inserted argument can be new CancellationToken(). The
transformation inferred from the additional output cannot be unified with the transfor-
mation rule synthesized from the given examples, because the inserted code elements
are different and cannot be unified together.

Different from traditional synthesis techniques that produce a single transforma-
tion rule in the form of (guard, transformer), the output-oriented program synthesis

117

can generate multiple transformation rules {(guard0, trans0), . . . , (guardn, transn)}.
The above example will produce two transformation rules that insert different codes
as the second argument. The transformation rules are defined by a set of disjunctive
transformation rules, where each of transi applies to a different interval in the
domain defined by guardi. Hence, applying the synthesized transformation rules to
a given AST node node, we have:

if (guard0(node)) { return trans0(node) } if . . .

if (guardn(node)) { return transn(node) } return ⊥

Note that, the guard of transformation rules can overlap, i.e., for a AST node node,
there may exist multiple guards such that guard(node) = true. In this situation,
node can be transformed in multiple ways.

Further, different from semi-supervised synthesise and its predecessor, our ap-
proach uses typed ASTs. A typed AST associates each node with a set of attributes
including the node kind (e.g., Identifier, Expression, etc), the node type (e.g., Integer,
Boolean, etc), the text value (source code fragment corresponding to the node), and
a set of child nodes. For a node that does not have a type, we leave its type empty.
We use SubTree(T) to denote the set of sub-trees of T . We use T to represent the
set of all ASTs.

6.3.3 Output-Oriented Program Synthesis

In this section, we present the technical details of output-oriented program
synthesis. The procedure is depicted in Algorithm 8 and works as follows:

• Given a set of input-output examples E and additional outputs AO, we first
determine which additional outputs are useful for improving the synthesized
transformation rule (lines 1 - 2);

• For each useful additional output, we infer a candidate input, and hence create a
set of additional examples AE (lines 12 - 19).

• We then categorize the given input-output examples E and inferred additional
examples AE into clusters, and synthesize transformation rules via ReFazerguard

and ReFazertransformer (lines 4 - 9). ReFazerguard takes all the inputs from

118

Algorithm 8: Output-oriented program synthesis
Input: Input-output examples: E = {i0 7→ o0, . . . , in 7→ on},

additional output: AO = {ao0, . . . , aom}
Output: re-write rule: R

1 (τ, <σ0, . . . , σn>) := ./ {o0, . . . , on};
2 selectedAO := {ao | ¬IsInstance(ao, τ) ∧ ao ∈ AO};
3 AE := InferExample(selectedAO, E);
4 EditClusters := ClusterEdit(E ∪ AE) ;
5 R = { };
6 for editCluster ∈ EditClusters do
7 Rguard := ReFazerguard({i | (i 7→ o) ∈ editCluster}) ;
8 Rtransformer := ReFazertransformer(editCluster);
9 R := R ∪ (Rguard ,Rtransformer) ;

10 end
11 return R;

12 Function InferExample(AO, E):
13 AE := { };
14 π := Provenance(i0 7→ o0);
15 for ao ∈ AO do
16 (τ, <σ0, σ1>) := o0 ./π ao;
17 AE := AE ∪ { σ1(σ−1

0 (i0)) 7→ ao };
18 end
19 return AE;

input-output examples, and produces a guard that is true on all of them, while
ReFazertransformer takes a set of examples and produces a transformer consistent
with them.

Filtering additional outputs Our objective is to find the patterns reflected in
the additional outputs AO but not reflected in the given input-output examples E.
Program synthesis is a generalization process of the given concrete input-output
examples. Informally, program synthesis infers a generalized transformation rule
τi 7→ τo such that ik is a instance of τi and ok is an instance of τo for k ∈ {0, . . . , n}.
If an additional output ao is not an instance of τo (like a counter-example), it is a
concrete output that cannot be generated by the synthesized transformation rule.
Therefore, ao has the potential to improve the transformation rule in the synthesis
process.

119

To find useful additional outputs, the output-oriented program synthesis first
generates a common pattern for all the outputs in E via anti-unification technique [98]
(line 1). Given a set of ASTs {o0, . . . , on}, anti-unification process (denoted by
./ {o0, . . . , on}) produces a pair (τ , <σ0, . . . , σn>), where τ is a generalized AST
with labelled holes {h0, . . . , hl}, and σ0, . . . , σn : {h0, . . . , hl} 7→ AST are a set of
substitutions, such that σ0(τ) = o0 . . . and σn(τ) = on. The anti-unification process
produces the most specific generalization τ of the given ASTs. For each additional
output ao, output-oriented program synthesis then checks whether ao is an instance
of τ (line 2) by searching for a substitution σ={h0 7→ subtree0 , . . . , hl 7→ subtreel},
where subtreej ∈ SubTrees(ao) for j ∈ 0 . . . l, such that σ(τ) = ao. If a substitution
σ exists, ao is an instance of τ . Otherwise, ao is not an instance of τ , and it will be
regarded as a useful additional output that will be utilized in the following synthesis
steps.

Example 6.3.3 Let us revisit the two input-output examples shown in Exam-
ple 6.3.2. Suppose we have two additional outputs

AO1 : this.inner.Handle(request, token)

AO2 : _handler.Handle(request, new CancellationToken())

Anti-unifying the outputs of the two given examples handler.Handle(request,
token) ./ TestSubject .Handle(request, token) generates (h0.Handle(request,

token), <{h0 7→ handler}, {h0 7→ TestSubject}>). Because we can find a substi-
tution σ={h0 7→ this.inner}, such that σ(h0.Handle(request, token))=AO1,
we will not regard AO1 as an useful additional output. However, AO2 is a useful
additional output since we cannot find such a substitution.

Additional input inference To utilize the additional outputs (AO) in the
synthesis process, our key idea is to infer a set of additional input-output examples
using the provided additional outputs by analyzing its relation with E. Specifically,
for each ao in AO, we infer a corresponding input ai to create an additional example
ai 7→ ao (line 17). To obtain this additional example, ao is first anti-unified with
an output from E, (e.g., o0) using anti-unification modulo provenance as explained
in Chapter 5.4. Provenance analysis calculates which fragments of the outputs are

120

dependant on which fragments of the inputs. Anti-unification modulo provenance
of o0 and ao, denoted as o0 ./π ao, produces an generalization (τ, <σ0, σ1>) by just
anti-unifying the provenance nodes.

Example 6.3.4 Consider the input-output example handler.Handle(request) 7→
handler.Handle(request, token), the provenance analysis would produce four
nodes {handler.Handle, handler, Handle, request}, since these nodes in the
output can be constructed using the nodes from input. Anti-unification modulo prove-
nance of handler.Handle(request, token) and _handler.Handle (request, new

CancellationToken()) just unifies handler with _handler, since handler is a
provenance node. However, token and new CancellationToken() will not be uni-
fied since token is not a provenance node.

Anti-unification modulo provenance produces σ0 and σ1, representing the sub-
stitutions that are applied to o0 and ao, respectively. Typically, σ0(τ) = o0 and
σ1(τ) = ao, for generating additional input, we apply the same substitution to the
origin input σ1(σ−1

0 (i0)) (line 17). These additional examples can be used to expand
the given input-output examples for the synthesis process. This allows our approach
to be integrated with any existing program synthesis technique.

Example 6.3.5 Following Example 6.3.4, the two generated substitutions are σ0 =
{h0 7→ handler} and σ1 = {h0 7→ _handler}. Next, by applying σ1σ

−1
0 to

handler.Handle(request), it would generate _handler.Handle(request), which
is the corresponding inferred input for the additional output.

Synthesis procedure Given the input-output examples E and the inferred addi-
tional examples AE, output-oriented program synthesis then synthesizes a set of
transformation rules. In the synthesis procedure, AE can be helpful in the following
two aspects: 1) guard generalization: determine the proper context where the trans-
formation rule should be applied; and 2) transformation rule enhancement: enhance
the transformation rules by encoding more substantial transformation operations.
The transformation operations from both E and AE may not be able to be unified
in a single transformation rule as discussed in Section 6.3.2. Therefore, examples in
E ∪ AE are first classified into clusters according to their transformation operations

121

(line 4 ClusterEdit). Specifically, for each input-output example i 7→ o, we calculate
a set of edit operations {op0, . . . , opn} that can transform input i to output o using
GumTree [25]. Just as the edit script in GumTree, the edit operations include
Insertion, Deletion and Update. The input-output examples with the same edit
operations are grouped into the same cluster. Basically, each cluster represents a
distinct transformation operation. Second, for each cluster, we utilize ReFazerguard

and ReFazertransformer to generate a transformation rule Rguard and Rtransformer ,
respectively (lines 7 - 9). The output-oriented program synthesis generates a more
properly generalized guard since it takes into account the inputs of both E and AE,
and it synthesizes more substantial transformation rules by considering the different
transformations from different clusters. The transformation rule of each cluster is
combined together to form the complete set of transformation rules.

Example 6.3.6 Consider the input-output example E: handler.Handle(request)
7→ handler.Handle(request, token) and the additional example AE: _handler.
Handle(request) 7→ _handler.Handle(request, new CancellationToken()). The
edit operation of E is { INSERT(“token”) }, while the edit operation of AE is {
INSERT(“new CancellationToken()”) }. Since the edit operations of E and AE
are different, they will be categorized into different clusters.

6.4 APIfix: Automated API Usage Adaptation
In this section, we present how output-oriented program synthesis is used to

automate API usage adaptations. To achieve this, output-oriented program synthesis
first synthesizes transformation rules using human-adapted examples (input-output
examples) and the usages of the updated library (additional outputs), and then
applies the synthesized transformation rules to all codes that require a transformation.
Considering usages of the updated library in the synthesis process enables us to
learn substantial API usage patterns of the new library.

Figure 6.5 depicts the architecture of output-oriented program synthesis for
automating API usage adaptations. Given a library and its clients, APIfix first
determines the breaking changes caused by library update. For each broken API,
the Miner of APIfix mines relevant human adaptations, new usages and old usages

122

Synthesizer Adaptation Rules

New UsagesMiner

Old Usages

Library

Client #1

Client #N

Apply adaptation rule on old usagesSuggest edits for client developers

Human
Adaptations

Figure 6.5: APIfix: output-oriented program synthesis for automating API usage
adaptations

from both library itself and client codes. Specifically, the human adaptations are
extracted from the library itself and the clients that have already been adapted to
the new library version by client developers. Note that mining human adaptations
from clients is time-consuming, it is an optional step in APIfix. The new usages
and old usages are mined from clients, which represent the usages of the old and new
library version, respectively. The output-oriented program synthesis takes as inputs
the human adaptations and new usages, and synthesizes a set of transformation
rules. APIfix then applies the synthesized transformation rules to transform the
old usages and applies the transformed code back to clients for verifying syntactic
correctness. The syntactically correct code edits are then sent to developers as edit
suggestions. We will present the technical details of each step in the following.

6.4.1 Mining Human API Usage Adaptations and Library
Usages

Given a library, the first step to automate API usage adaptations is to determine
which public APIs have been modified in a library update that leads to breaking
changes, mine the human adaptations of such API usages, and mine the usages of
the new library version.

Change summary Given a library X with two versions vo and vn, representing
the old and new library version, we first construct a change summary by comparing vo

123

and vn. Basically, change summary models the set of modified APIs introduced by the
X’s update from vo to vn, including the modified identifier names, modified modifiers,
modified function/constructor arguments, inserted/deleted public classes/methods,
and so on. The workflow to generate change summary is as follows:

• For each file fn in X’s version vn, we use the Git version control system to
determine the corresponding file fo in X’s version vo;

• If fn is different from fo, then, for each API apin in fn, we use clone detection to
determine its matched apio in fo that is most similar to apin;

• If the signatures of matched <apin, apio> are different, we will save the signatures
of <apin, apio> into the change summary.

Human adaptations Given the change summary of library X’s update vo → vn,
we then mine the human adaptations that adapt codes relying on vo to the new
library version vn. The human adaptations can be mined from two sources: the
library X itself and the clients that depend on library X. When the developer of X
introduces a breaking change on an API, he or she also needs to adapt the usages of
the relevant API within X (e.g. tests of API). The human adaptations within X
itself are great sources to learn transformation rules because (1) those adaptations
are available immediately after the new library version is released; and (2) the
developers of library X know best about the breaking changes. Besides X itself,
human adaptations can also be mined from clients of X that have already upgraded
their dependency on X from vo to vn. For each client, we need to traverse through
all commit history and determine the commit(s) that upgraded the dependency on
X from vo to vn. For a modified API <apin, apio> modeled in the change summary,
we mine its corresponding human adaptations by searching for the usages of apio
in the client code before upgrading X, and the corresponding usages of apin in the
client code after upgrading X. The usages of apin and apio form human adaptations.

API usages Similar to finding human adaptations for the APIs, the usages of the
API are also mined from its open-source clients. Instead of traversing through all
the commits, mining API usages just requires checking the latest version of clients.

124

Algorithm 9: APIfix: Automated API Usage Adaptation
Input: Human adaptation: E; Old Usages: OU ; New Usages: NU ;

Similarity Thresholds: T1, T2
Output: Transformed Old Usages: TOU

1 EditClusters := ClusterEdit(E) ;
2 TOU := { };
3 for editCluster ∈ EditClusters do
4 i0 7→ o0 := GetFirst(editCluster) ;
5 π := Provenance(i0 7→ o0);
6 relevantNU := {nu | nu ∈ NU ∧ Distance(o0, nu, π) < T1};
7 relevantOU := {ou | ou ∈ OU ∧ Distance(i0, ou, π) < T2} ;
8 rules := synthesiser(editClsuter , relevantNU);
9 for ou ∈ relevantOU do

10 TOU := TOU ∪ {ou 7→ t | t ∈ rules(ou)};
11 end
12 end
13 return TOU ;

14 Function Distance(t1, t2, π):
15 (τ, <σ1, σ2>) := t1 ./π t2;
16 return TreeDistance(σ−1

1 (t1), σ−1
2 (t2));

For a clients that relying on vn, we mine the usages of apin to form new usages,
while for a clients that relying on vo, we create old usages by mining the usages of
apio.

6.4.2 Clustering Algorithm

Given a set of human adaptations E, a set of new usages NU and old usages
OU of a certain API, Algorithm 9 depicts the workflow of automated API usage
adaptations. First, since there could be multiple adaptation strategies for a certain
broken API, APIfix categorizes the human adaptations into different clusters based
on the adaptation operations (line 1). The motivation behind this categorization is
that the edits in the same cluster should have the same adaptation strategies which
can be represented by a single transformation rule. We use the same clustering
algorithm (i.e. ClusterEdit) used in Section 6.3.3. For each cluster, APIfix then
determines the new usages that are relevant to the edits in this cluster according to
their similarity (line 6). Typically, if a new usage is similar to the output of the edits
in this cluster, it will be regarded as a relevant new usage. The similarity is defined

125

as the tree distance of two ASTs (lines 15-16). However, instead of calculating
the tree distance of the two concrete ASTs, APIfix first abstracts them using the
anti-unification modulo provenance, because directly comparing the concrete ASTs
will result in false negatives.

Example 6.4.1 Consider the following example for a breaking change which requires
a new argument to the function call, handler.Handle(request) 7→handler.Handle

(request, token) and a relevant new usage handler.Handle(new Request{Value

= pValue}, token), the tree distance between the new usage with output of the given
example is large because request and new Request{Value = pValue} are quite
different. However, the anti-unification module provenance tells us that request
is a relevant part of input since it also appears in the output. Therefore, request
and new Request{Value = pValue} can be abstracted because we just care about
the high-level API usage patterns. By comparing the abstracted nodes, APIfix will
determine this new usage is relevant to this cluster.

Similarly, we also determine the relevant old usages according to their similarity
with the inputs of the edits in this cluster. These old usages are the codes that
should be transformed by the transformation rules learned from this cluster.

6.4.3 Synthesizing and Applying Transformation Rule

Given the edits in a cluster and the corresponding relevant new usages, we
invoke the output-oriented program synthesis to produce transformations (line 8),
i.e., transformation rules in the context of API usage adaptation. The synthesized
transformation rules are then applied to transform the relevant old usages. Recall
that, APIfix synthesizes a set of transformations (rules) {(guard0, trans0), . . . ,
(guardn, transn)}. When applying the rules to an old usage ou, if there exist multiple
guards such that guard(ou) = true, we could generate multiple trans(ou). In this
situation, we will try to apply each trans(ou) to the client code and check whether it
causes compilation errors. We save all transformations that do not cause compilation
errors.

126

6.5 Evaluation
In this section, we evaluate the output-oriented program synthesis and answer

the following research questions:

RQ1 What is the effectiveness of output-oriented program synthesis in
generating correct code transformations?

We split the mined human adaptations into training and testing sets. We
evaluate the effectiveness of output-oriented program synthesis via cross-
validation by measuring the syntactic and semantic equivalence between auto-
transformed codes with the human adaptations.

RQ2 How does APIfix perform in automating API usage adaptations?

APIfix should generate effective suggestions for API usage adaptation that
can be used by developers. We measure the number of false positives and false
negatives generated by APIfix.

RQ3 How does APIfix compare with the state-of-the-art techniques?

Our main contribution is to enable the program synthesis system to utilize
the additional output. We measure the output-oriented program synthesis by
comparing it with the general program synthesis ReFazer and semi-supervised
program synthesis.

Implementation APIfix is implemented in Python and C#, and it is composed
of three main components: Miner, Build Engine and Synthesis Engine. The
Miner, which is implemented using GitHub APIs, is used to mine GitHub repositories
to find breaking changes, existing human adaptations, and library usages. The Build
Engine is used initially to build typed ASTs and finally to validate the transformed
codes. We implemented the Build Engine on top of Microsoft MSBuild [86], and used
Roslyn framework [111] to parse source files and generated ASTs. The Synthesis
Engine is implemented on top of an extended ReFazer [106] (it is extended to
support our DSL).

127

Dataset To evaluate our output-oriented program synthesis, we build our dataset
by mining from GitHub repositories. Our miner searches for the “Most starred” C#
libraries, and select libraries to construct our dataset using the following criteria:

• The library has at least 300 dependents reported in the statistics of the GitHub
Dependency graph [37];

• The library has multiple released versions, and there is at least one breaking
change;

• There are available human adaptations that adapt library/clients to the new
library version;

• There are new usages and old usages of the broken APIs.

Finally, we select seven libraries with 138,206 clients. From those libraries/clients,
we mined 218 human adaptations, 2973 new usages and 2154 old usages following
the procedure described in Section 6.4.1. The detailed statistics of the selected
dataset are shown in Table 6.1. Column “#Clients” presents the number of clients
for each library. For each library, column “API Name” gives the modified APIs that
are broken by the library update from “Old version” to “New version”. As we
mentioned in Section 6.4.1, the human adaptations can be mined from the library
itself and its clients. Column “#Editl” and “#Editc” show the number of human
adaptations mined from library itself and clients, respectively. The last two columns
present the number of new usages and old usages, respectively. For simplicity, the
number of new/old usages is bounded to 1,000.

In our experiment, we set the threshold T1 and T2 in Algorithm 9 as 0.25 and
0.15, respectively. All experiments are conducted on a Dell Precision Tower 7810
with Intel(R) Xeon(R) CPU E5-2630 processor and 32GB RAM running 64-bit
Windows 10.

6.5.1 Exp-1: Effectiveness of the Output-Oriented Program
Synthesis

We first evaluate the effectiveness of our output-oriented program synthesis
using a cross-validation experiment on our dataset. We use the human adaptations

128

Table 6.1: Statistics on our dataset used for evaluation

Library #Clients Old New API name #Editl#Editc
#New #Old

version version usages usages

Polly 8531
5.5.0 6.1.2 Execute 61 11 3 13
6.1.2 7.0.0 WrapAsync 3 3 19 18
6.1.2 7.0.0 WaitAndRetryAsync 3 5 30 195

MediatR 14099 5.0.1 6.0.0 Handle 1 6 721 56
6.0.0 7.0.0 Process 1 0 18 33

DbUp 1819
3.3.5 4.0.0 StoreExecutedScript 2 0 28 147
3.3.5 4.0.0 SqlScriptExecutor 6 0 36 84
3.3.5 4.0.0 AdHocSqlRunner 2 0 4 28

SteamKit 332 2.0 2.1 Disconnect 2 0 1 38

AutoMapper 89151 7.0.0 8.0.0 Ignore 2 30 38 220
7.0.0 8.0.0 ResolveUsing 16 42 1000 271

FluentValidation 20568 8.0.0 9.0.0 Validate 9 6 1000 1000
MimeKit 3716 1.22.0 2.0.0 DecodeTo 1 6 75 51
Total 138,206 - - - 109 109 2973 2154

for each breaking change collected in our data-set to measure the accuracy of the
automatically transformed codes by comparing them to the developer transformed
codes.

Experimental Setup For each subject, we take human adaptations from the
library itself (column “Editl”) as the training set to synthesize the transformation
rules, and human adaptations from clients (column “Editc”) as testing set to validate
the correctness of the synthesized transformation rules. Specifically, output-oriented
program synthesis generates transformation rules by taking the human adaptations
from the library as input-output examples and the new usages (column “#New
usages”) as additional outputs. The synthesized transformation rules are then
evaluated on the human adaptations from clients. We measure the correctness of
automatically transformed codes by manually checking their syntactic and semantic
equivalence with human-adapted codes, i.e., the ground truth.

Experimental Results The results of our experiment are summarized in Ta-
ble 6.2. Columns “Library” and ‘API name’ indicate the names of the library and
API name that introduces a breaking change, respectively. Column “#Instances”
indicate the number of transformations for each API for which the ground truth

129

Table 6.2: Exp-1: Cross-validation results of output-oriented program synthesis

Library API name #Instances Syntactic Semantic Accuracy

Polly
Execute 11 0 9 81%
WrapAsync 3 1 3 100%
WaitAndRetryAsync 5 2 3 60%

MediatR Handle 6 0 6 100%

AutoMapper Ignore 30 30 30 100%
ResolveUsing 42 42 42 100%

FluentValidation Validate 6 6 6 100%
MimeKit DecodeTo 6 0 0 0%
Total - 109 81 99 91%

is available. Columns “Syntactic” and “Semantic” represents the number of trans-
formations for which the result is syntactically and semantically equivalent to the
ground truth, respectively. Column “Accuracy” shows the percentage of correct
(syntactically or semantically) transformations with respect to the total number of
instances for each breaking change.

In total, out of 109 instances, 81 transformed codes by output-oriented program
synthesis are syntactically equivalent to human-adapted codes, while 99 of them are
semantically equivalent. Output-oriented program synthesis achieves 91% overall
accuracy in correctly transforming old usages of the APIs in client codes. In
our evaluation, we noticed there can be multiple possible ways to transform an
old usage in client code. For instance, the human adaptation transformed the
API invocation requestHandler.Handle(request) to two statements var token

= new CancellationToken(); requestHandler.Handle(request, token) 3. In
contrast, our technique transforms it to requestHandler.Handle(request, new

CancellationToken()), which is syntactically different, but semantically equivalent
to the human adapted code. On the other hand, our technique generates 10 false
negatives. The main reason is that the synthesized transformation rule is over-
specialized to the given examples and additional outputs.

Example 6.5.1 Consider the following example, a synthesized transformation rule
3https://github.com/transformania/tt-game/commit/a58e410

130

from given human adaptation and new usages is simplified as follows:

Policy X1 = X2.WaitAndRetryAsync(. . .) 7→

AsyncPolicy X1 = X2.WaitAndRetryAsync(. . .)

This transformation rule fails to transform

RetryPolicy retry = polly.WaitAndRetryAsync(. . .)

which should be transformed to

AsyncRetryPolicy retry = polly.WaitAndRetryAsync(. . .)

. The reason is that that synthesized rule is not general enough to be applied to this
case and hence produces a false negative.

RQ1: In a cross-validation experiment, the output-oriented program synthesis
achieves an overall 91% accuracy, indicating its effectiveness in synthesizing
correct transformation rules.

6.5.2 Exp-2: Effectiveness in Automating API Usage Adap-
tations

We apply our output-oriented program synthesis to automatically adapt trans-
formations and generate patches to assist client developers to upgrade their library
usages from the old version to the new version. We evaluate the effectiveness of
APIfix in automating these usage adaptations, and generating valid transformations
which can be directly applied by the client developers.

Experimental Setup In this experiment, we take the human adaptations from
the library itself (“Editl”) as input-output examples, and new usages as additional
outputs. We only use “Editl” as our input-output examples because mining human
adaptations from clients can be a time-consuming task in practice. Mining human
adaptations from the library are much faster than from clients, which enables APIfix
to quickly synthesize transformation rules and generate code edit suggestions. The
synthesized transformation rules are then used to transform the old usages. We
evaluate the correctness of the transformed codes as follows:

131

Table 6.3: Evaluation results of APIfix with different synthesis techniques. API-
fix represents our tool with Output-Oriented Program Synthesis. APIfixR and
APIfixS represent APIfix with ReFazer and Semi-Supervised Program Synthesis
as the synthesis engine, respectively. APIfixO+S uses a combined Semi-Supervised
and Output-Oriented Program Synthesis as the synthesis engine.

API APIfix APIfixR APIfixS APIfixO+S

TP FN FP TP FN FP TP FN FP TP FN FP
Execute 8 0 0 7 1 0 8 0 5 8 0 0
WrapAsync 2 2 0 4 0 0 4 0 2 2 2 0
WaitAndRetryAsync 2 2 0 2 2 0 4 0 0 4 0 0
StoreExecutedScript 120 24 3 24 123 0 123 0 24 120 24 3
SqlScriptExecutor 84 0 0 40 28 16 56 8 20 84 0 0
AdHocSqlRunner 28 0 0 14 14 0 28 0 0 28 0 0
Disconnect 38 0 0 12 0 26 12 0 26 38 0 0
Ignore 220 0 0 220 0 0 220 0 0 220 0 0
ResolveUsing 271 0 0 271 0 0 271 0 0 271 0 0
Handle 54 0 2 0 0 56 35 0 21 54 0 2
Process 14 0 0 3 11 0 3 11 19 14 0 0
Validate 7 0 6 0 13 0 13 0 8 7 0 6
DecodeTo 0 51 0 0 51 0 0 0 51 0 0 51
Total 848 79 11 597 243 98 777 19 176 850 26 62

• Upgrade the dependency version for each client which should cause compilation
error(s);

• Apply the transformed code to the client;

• Check whether the transformed code fixes the compilation error(s) caused by the
target broken APIs.

We only evaluate the syntactic correctness of the transformed codes because the
correct code transformation (i.e., ground truth) is not available for the clients that
still rely on the old version of the library. Checking the semantic correctness of the
transformed codes can be left for the developers. Recall that APIfix is designed
to assist developers (e.g. providing code edit suggestions) instead of replacing
developers.

Experimental Results In Table 6.3, columns 3-5 summarize the evaluation
results. Columns TP, FN and FP represent the number of true positives, false negatives

132

and false positives, respectively. Although we apply the synthesized transformation
rule to all the old usages, not all of them need to be transformed. For instance, the
breaking change of WaitAndRetryAsync is changing its return type from Policy to
AsyncPolicy. The old usage var policy = polly.WaitAndRetryAsync(. . .) does
not need to be transformed, since the implicit “type” var allows compiler determines
its real type at compilation time. That is, var allows the type polly to be Policy
at old version, and to be AsyncPolicy at the new version, hence this statement does
not need to be transformed. Among the old usages requiring transformation, APIfix
produces 848 true positives, 79 false negatives, and only 11 false positives, achieving
98.7% precision and 91.5% recall. Similar to the result shown in Exp-1, APIfix
produces false negatives since the synthesized transformation rule is over-specialized
to the given data. It produces false positives mainly because it transforms some
codes that should not be transformed.

RQ2: By learning from human adaptation and new usages, APIfix automat-
ically adapts 848 old usages with 98.7% precision and 91.5% recall.

6.5.3 Exp-3: Comparison with State-of-The-Art Technique

We provide an empirical evaluation for APIfix by comparing it with the recently
proposed program transformation techniques. Specifically, we consider three different
comparable synthesis techniques: original ReFazer (APIfixR), semi-supervised
program synthesis (APIfixS) and a combination of semi-supervised and output-
oriented program synthesis (APIfixO+S). We provide the same mining procedure
to all the considered approaches to make a fair comparison, and we only replace the
synthesis technique.

Experimental Setup Given input-output examples E, additional input AI and
additional output AO, APIfixR synthesizes transformation rule using E, APIfixS

utilizes both E and AI, APIfix uses E and AO, and APIfixO+S uses all E, AI, and
AO. Specifically, APIfixO+S combines both semi-supervised and output-oriented
program synthesis by constructing additional examples via (1) AE1: inferring
corresponding inputs for additional outputs (APIfix), and (2) AE2: inferring
corresponding outputs for additional inputs (semi-supervised synthesis). If any

133

Table 6.4: The precision and recall of APIfix, APIfixR, APIfixS and APIfixO+S

in transforming old usages

Approach APIfix APIfixR APIfixS APIfixO+S

Precision 98.7% 85.9% 81.5% 93.2%
Recall 91.5% 71.0% 97.6% 97.0%

inferred additional example in AE1 and AE2 conflict with each other, we simply drop
the conflicted examples in AE1. Consider the following example from Section 6.2, for
a certain input, the inferred examples from AE1 and AE2 transform it in different
ways.

new SqlScriptExecutor(()=>c.ConnectionManager, _, _, _, _,)7→

AE1: newSqlScriptExecutor(()=>c.ConnectionManager, _, _, _, _, ()=>Substitute.For<IJournal>())

AE2: newSqlScriptExecutor(()=>c.ConnectionManager, _, _, _, _, ()=>c.IJournal)

In this scenario, we drop the example from AE1 that causes the conflict because
the outputs of AE2 are produced by developers which should be given higher
confidence. For this experiment, we use the same setting as Exp-2 described in
Section 6.5.2. We only evaluate the syntactic correctness of the transformed codes
because the correct code transformation (i.e., ground truth) is not available for the
clients that still rely on the old version of the library.

Experimental Results The summarized results of our comparison with the state-
of-the-art techniques are also shown in Table 6.3. Columns TP, FN and FP represent
the number of true positives, false negatives and false positives, respectively for
each tool. Table 6.4 presents the precision and recall of each tool. Compared
with APIfixR, APIfix significantly reduces both numbers in false negatives and
false positives. This is because considering additional output enables APIfix to
synthesize more accurately generalized transformation rules. However, compared
with APIfixS, APIfix performs better with fewer false positives but incur more
false negatives. Considering additional inputs enables APIfixS to generalize the
synthesized rule to the additional inputs. Therefore, APIfixS produces fewer false
negatives.

Example 6.5.2 Let us revisit the false negative in Example 6.5.1 produced by our ap-

134

proach again. If the input RetryPolicy retry = polly.WaitAndRetryAsync(. . .)

is regarded as additional input that should be transformed, the transformation rule
will be further generalized as

X3 X1 = X2.WaitAndRetryAsync(. . .) 7→

AsyncPolicy X1=X2.WaitAndRetryAsync(. . .)

where X3 represents an identifier which can be matched with RetryPolicy.
With the generalized rule, the target input is transformed to AsyncPolicy retry

= polly.WaitAndRetryAsync(. . .). Even though the transformed code is syntac-
tically different from human adaptation, since AsyncPolicy is the parent class of
AsyncRetryPolicy, they are semantically equivalent.

However, if APIfixS over-generalizes the synthesized rule to the inputs that should
not be transformed, it will lead to false positives. Example 6.3.1 presents such a
false positive. Balancing false positives and false negatives is challenging.

Furthermore, we propose to combine both semi-supervised and output-oriented
program synthesis, i.e., APIfixO+S, to utilize both additional inputs and additional
outputs. Experimental results show that combining additional input and additional
output can further improve the number of true positives. However, the improvement
is not significant. Our results are based on a straightforward and simple combination
of semi-supervised and output-oriented program synthesis. We believe other possible
combinations may further improve the results. How to better combine them to infer
better transformation rules can be an interesting question as future work.

RQ3: APIfix improves both precision and recall over APIfixR. Compared
with semi-supervised program synthesis APIfixS, our technique significantly
improves the precision, while does not significantly affect the recall.

6.5.4 Threats to Validity

Three threats may affect the validity of our empirical evaluation. First, in
our experiments Exp-2 (Section 6.5.2) and Exp-3 (Section 6.5.3), we evaluated
the correctness of transformed code using the compiler. The compiler can ensure
syntactic correctness, but it cannot check semantic errors. To solve this problem, we

135

performed a cross-validation in Exp-1(Section 6.2). The evaluation results in Exp-1
and Exp-2 are consistent. Second, although APIfix shows its effectiveness on the
evaluated benchmark, it may not perform well on other subjects. To mitigate this
problem, we selected a fairly large dataset with more than 2500 cases that cover
different scenarios. Last, we manually compare automatically transformed code with
human adaptations to verify their correctness. In case of the potential bias caused
by manual analysis, I invited my labmate to independently checked the correctness
of the transformed code.

Limitation One of the limitations of APIfix is that it only considers the API
usages without dependency analysis. When the usage of an API is updated, its
dependent statements may also need to be modified accordingly. For instance,
suppose the return type of an API invocation is changed, the statements that use
the returned value should also be modified. To support such systematic changes, it
is necessary to perform program dependency analysis, which is out of the scope of
this thesis. Existing API usage adaptation techniques, such as LibSync [92], have
investigated this problem. APIfix can be potentially integrated with the program
dependency analysis employed by those techniques in the future.

136

CHAPTER 7. RELATED WORK

Chapter 7

Related Work
The contributions of this thesis are related to several areas of research: program

repair, program synthesis, test case generation, program transformation, API usage
adaptation, and so on.

7.1 Automated Program Repair
Automated program repair techniques take in a buggy program, and a set

of specifications, and aim to generate a patched program satisfying the given
specifications. In this section, we briefly discuss the program repair techniques. For
a general summarization of program repair techniques, the readers could refer to
the overview articles [65, 112] or the surveys [89, 36].

Test-based automated program repair treats the provided test suite as the
specification of intended behavior and generates patches that make program pass
all the given tests. Typically, patch generation methods include: (1)search-based
approaches, (2)constraint solving based approaches, (3)Static-based approaches. While
these approaches are able to generate high-quality patches according to the provided
tests, the weakness of test suites remains a challenging problem in test-based program
repair. Due to the incompleteness of test suites, the generated patches may overfit
the available tests and can break untested functionality [121].

7.1.1 Search-Based Program Repair

Search-based approaches first generate a patch space and then search correct
patch via heuristic [64, 68, 126], random search [103], test-equivalence analysis [75]
or learning approaches [70]. The correctness of patches is validated using the given
test suites. Search-based program repair is able to generate high-quality patches and

137

can easily scale to large programs. However, because of the fact that search-based
program repair depends on incomplete test suites, it suffers from overfitting issues.
Fix2Fit proposed in Chapter 3 falls in the category of search-based program repair.
To alleviate the overfitting problem, Fix2Fit automatically generates more tests to
augment the given test suite.

7.1.2 Semantics-Based Program Repair

Semantics-based techniques like SemFix [93], Nopol [144], DirectFix [78], An-
gelix [79] and JFIX [61] generate patches in two steps. First, they formulate the
requirement to pass all given tests as constraints for the identified program state-
ments. Second, they synthesize a patch for these statements based on the inferred
constraints. This type of approach is related to ExtractFix because these ap-
proaches also involve constraint extraction and patch synthesis. The main difference
is that the constraints extracted by semantics-based techniques just represent the
specifications to pass the given tests. Therefore, an incomplete test suite will result
in incomplete constraints and hence incomplete specifications. In contrast, the con-
straints extracted by ExtractFix represent the underlying cause of the crash and
the conditions that should be satisfied to fix vulnerabilities. Therefore, ExtractFix
can alleviate the overfitting problem in automated program repair by generating
patches that generalize beyond the given tests. Essentially, ExtractFix only needs
a single exploit trace to generalize the vulnerability, where existing semantic repair
techniques usually need a test-suite.

Furthermore, Prophet [70], SPR [68] and F1X [75] are somewhere between search
based and semantic based approach. Specifically, Prophet first generates a patch
search space and ranks the candidate patches according to semantic models learned
from successful patches. SPR first searches for the possible values that can pass the
given test and synthesizes a patch that can generate such values. F1X enumerates
the patch space by evaluating the patches that produce the same values together.
All these approaches combine the search-based approach and semantics analysis
(e.g., the values produced by patches) with the objective of improving the patch
validation efficiency and producing more correct patches. Fix2Fit is orthogonal to
those approaches. They can be combined in the following way: Prophet, SPR, and

138

F1X are used to efficiently generate initial candidate patches (Fix2Fit is actually
built on top of F1X), and the test generation proposed in Fix2Fit is used to rule
out the overfitted candidates.

7.1.3 Learning-Based Program Repair

Another line of repair is to learn repair strategies from human patches, such as
Genesis [67], GetaFix [7] and Phoenix [9]. Those techniques first mine human patches
that fix defects in existing software repositories, learn a general code transformation
rule, and apply the transformation rule to the buggy programs to produce patches.
The repairability of those techniques does not rely on predefined transformation
operators. Instead, they can automatically learn repair strategies from available
human patches. However, because of the fact that they learn repair strategies across
different projects, they can only fix common bugs, e.g., null-pointer dereference.
Different from them, the techniques proposed in the thesis focus on the specification
issues, which can be a complementary technique to the learning-based repair systems.
Our approaches can be potentially combined with those techniques to improve the
patch quality generated by them.

7.1.4 Static Program Repair

Instead of relying on test cases, several approaches propose program repair driven
by static analysis and verification techniques. These approaches generate patches
for static analysis violation by reasoning in separation logic [128] or learning repair
strategies from the wild [9]. Specifically, the work of [128] generates patches that
are guaranteed to satisfy certain heap properties (this covers few common bug types
such as memory leaks, resource leaks, or null pointer dereference). Their approach is
still search-based, where semantic search [54] is used to identify code snippets that
satisfy the desired properties. Furthermore, the entire framework is based on the
reasoning in separation logic and is used to fix heap properties only. Differently, our
approach is not limited to any specific kind of bugs and it can program synthesis to
generate a patch.

Vulnerability Repair The recent work SENX [44] aims to repair vulnerabilities
using a combination of predicate generation, patch placement, and patch synthesis.

139

The main difference with SENX is that SENX does not have any analytical under-
standing of which fix locations are suitable and what fixes to insert, and usually
inserts trivial if-conditions to disable the crash at/near the crash location ([44] Table
III). Besides, SENX does not perform any constraint propagation. In the absence of
constraint propagation, SENX relies on heuristics to guide patch generation, which
limits it to specific classes of bugs. In contrast, our approach is not limited to certain
vulnerabilities. Most of the patches generated by our tool are more general and
modify expressions/statements different from the crash location.

7.2 Alleviate Overfitting in Program Repair
In this section, we discuss the approaches that alleviate the overfitting problem

in program repair.

Test Generation. Automatically generating more tests for automated program
repair is a useful strategy to alleviate the overfitting problem. Existing approaches
generate additional test cases using symbolic execution [117], grey box fuzzing [146]
(like AFL), or evolutionary algorithm [147] (like EvoSuite [30]). All those approaches
are relevant to Fix2Fit since they are also designed to generate tests for APR
system. Their goal is to cover the patched methods or statements, but they do not
take the patch semantics into consideration. DiffTGen [140], the work most relevant
to Fix2Fit, generates test inputs that exercise syntactic differences, monitors
execution results, and then selects tests that uncover differences between the original
faulty program and the patched program. Compared with DiffTGen where the patch
is validated one by one, Fix2Fit is more efficient since it examines the patches in
the same patch partition together. Besides, different from all existing approaches,
Fix2Fit utilizes the semantic difference between patches as a search heuristic and
guides the test case generation process, so that we can efficiently find more behavioral
differences across patches. Another main difference lies in inferring the expected
behaviors (oracles) for newly generated test inputs. Existing approaches infer oracles
of tests based on test similarity [141], developers’ feedback [140, 116] or some obvious
oracles (like memory safety [146]). In contrast, Fix2Fit utilizes security oracles
from sanitizers to avoid introducing crashes or vulnerabilities. Similar to sanitizers,
Valgrind’s memcheck is utilized by CodePhage [117] to filter out patches that cause

140

overflows. However, CodePhage can only support memory related errors (e.g.,
(invalid reads and writes; uninitialized reads and writes), while Fix2Fit can support
more classes of errors by using different sanitizers.

Patch Ranking. One way of addressing overfitting in program repair is to rank
patches according to statistical information learned from code repositories [80].
Typical approaches learn from existing patches [70, 62, 113], existing source code [142],
or both [49, 138] to rank the patches in the order of likelihood to be correct. On the
other hand, Xiong, et al. [141] propose to filter out the patches based on syntactic
and semantic distance between patched and original program. ClearView [95] ranks
and even discards patches by executing the patched program for a while (e.g., ten
seconds) in real deployment environment. Since these approaches are based on
statistical information or heuristics, there is no guarantee that the discarded patches
are incorrect patches and the generated patches can be generalized beyond tests.
In contrast, Fix2Fit discards patches by generating more tests, which ensures the
discarded patches are overfitted patches. Further, ExtractFix extracts crash-free
constraints and ensures the constraint is satisfied on all tests.

Reference Implementation. In many development scenarios, there exists a
reference implementation, and the developers try to be compatible with the reference
implementation while optimizing other aspects such as performance. For example,
when implementing a Java compiler, OpenJDK is the reference implementation, and
other implementations such as Jikes JVM tries to optimize the performance. Based
on this observation, [77] proposes program repair with a reference implementation,
where the reference implementation serves as an oracle to avoid overfitting. Compared
with this approach, our approaches do not need a reference implementation.

Customized Program Repair. Another line of research to alleviate overfitting
problem is to use the search space that is likely to be correct. This strategy is
present in essentially all patch generation systems because they only consider a
restricted set of patches. Furthermore, many APR systems target specific classes of
bugs/errors, such as fixing memory leaks [32, 66], concurrency bugs [14, 51], integer
overflows [71], etc. This type of work designs specific candidate patch space for
certain types of bugs. By just considering the specifically designed set of patches
for each type of bug, these APR systems have a higher chance to generate correct

141

patches. In contrast, our work does not focus on a specific type of bug but tries to
derive a general approach. Besides, one of the most related works with ExtractFix
is TAP [118], which eliminates buffer overflows and integer overflow according to
predefined templates. There are two main differences between ExtractFix and
TAP. First, TAP uses predefined templates to directly generate patches at the crash
location, while ExtractFix just relies on predefined templates to generate CFCs
and designs a general framework to generate patches according to the inferred CFCs.
Therefore, ExtractFix can be easily extended to support other kinds of bugs.
Second, TAP just eliminates the observed bugs (exit on buggy program state), in
contrast, ExtractFix is designed to patches just like developers.

7.3 Goal-Directed Test Generation
Goal-directed test generation can be used to generate test inputs to maximize code

coverage [132, 137], cover the changes in patch [11] or find behavioral asymmetries
between programs (differential testing) [97]. Symbolic execution employs constraint
collection and solving to systematically and effectively explore the state space of
feasible execution paths [13], and can be used for directed testing [73, 114, 101,
96]. In contrast to symbolic execution, grey box fuzzing does not involve heavy
machinery of symbolic execution and constraint solving. Greybox fuzzing directs
the search to achieve a certain goal by adjusting the mutation strategy according to
the information collected at run-time with the help of compile-time instrumentation.
Greybox fuzzing has been demonstrated to be useful for increasing code coverage
[132, 105], reaching target location [11], and finding behavioral asymmetries between
programs [97]. To customize goal-directed test generation for patch evaluation,
Fix2Fit takes the semantic of patches into consideration and it is designed with
the goal of finding semantic discrepancies between patches.

7.4 Program Synthesis
Program synthesis, while being an old field of study [12, 99, 72], has recently

been successfully used in many domains including data manipulation and wran-
gling [38, 119, 145], data structure manipulation and design [27, 29, 120], concurrent

142

programming [123, 131, 15, 16], and distributed controller design [129, 3]. The
counter-example guided inductive synthesis procedure, that turns any synthesis task
into repeated solving of programming-by-example tasks is the basis of the state-
of-the-art synthesis technique Sketch [124, 125, 122]. The syntax-guided synthesis
(SyGuS) framework [1] attempts to unify synthesis tasks from different domains
by providing a mechanism to specify both the syntax and semantics of the desired
solution. Efficient general-purpose SyGuS solvers have been built and have found
success in various domains [129, 108, 4, 42, 2]. However, general-purpose synthesizers
are often less efficient than domain-specific ones as they are not able to leverage
domain-specific algorithms and techniques. Further, in most program synthesis
techniques, the specification needs to be well-defined and provided explicitly. To
avoid the above limitation, our technique, presented in Chapter 5, automatically
determines the example specification for the synthesis task. This ability to auto-
matically determine which examples to use allows for the modeless operation of our
technique.

7.4.1 Semi-Supervised Program Synthesis

Semi-supervised machine learning techniques [148] combine labeled data (i.e.,
input-output examples) with unlabeled data (i.e., additional inputs) during training
to exploit a large amount of unlabeled data available in many domains, such as web-
sites, source code, and images [149]. Semi-supervised approach can advance machine
learning, especially when training data are not sufficient. Beyond classical machine
learning settings, semi-supervised learning techniques have also been adapted for
use in program synthesis. For example, the BlinkFill system [119] for synthesizing
spreadsheet string transformations exploit input data by extracting a graphical con-
straint system to efficiently encode the logical structure across all available inputs.
This input structure allows BlinkFill to achieve a dramatic reduction in the number
of candidate programs, leading to improvement in performance and reduction in
the number of input-output examples over previous systems [38]. Unfortunately,
direct application of this approach to the domain of program transformations is
impractical due to different types of inputs (positive inputs and negative inputs),
the large number of inputs (all AST nodes in the source code), and the size of the

143

ASTs themselves (potentially many thousands of tokens per file). To mitigate these
issues, we have proposed a novel technique based on reward functions to isolate only
those additional inputs that are likely to provide fruitful disambiguation, while still
preserving the runtime efficiency required for interactive use in an IDE setting.

7.4.2 Interactive Program Synthesis

Interactive program synthesis systems allow users to incrementally refine the
specification in response to synthesizer outputs [59, 5]. Within this paradigm, a
notable approach for proposing refinements is based on the concept of distinguishing
inputs [48], in which inputs are discovered for which the outputs of multiple consistent
programs disagree, suggesting the need for additional refinement to rule out undesired
candidate programs. FlashProg [74] employs this notion of distinguishing inputs to
pose parsimonious sequences of questions to the user to resolve ambiguities with
respect to the user’s specification. A disadvantage of this approach, however, is
the overhead required for users to answer potentially many rounds of clarifying
questions to refine intent. In Chapter 5, we propose a complementary technique: we
can synthesize new programs using semi-supervised synthesis. Our approach has
the advantage that it allows users to refine intent with little or even no modification
to their workflow. Additionally, the technique not only leverages user feedback but
also allows fully automated feedback during specification refinement.

7.4.3 Program Synthesis for Software Refactoring

Software refactorings are structured changes to existing software that improve
code quality while preserving program semantics [94, 83]. Popular IDEs such
as Visual Studio [84], Eclipse [23], and IntelliJ [46] provide built-in support for
various forms of well-understood software refactorings. Several program synthesis-
based approaches have been studied toward user-friendly refactoring and code
transformation support, such as the Sydit, Lase, and ReFazer systems [81,
82, 109] for synthesis of code transformations from examples. Getafix [7] and
Revisar [110] apply code mining techniques to discover such changes offline from
large codebases, thus expanding breadth while also mitigating the burden for users
to specify examples explicitly. BluePencil [87] takes an alternative approach to

144

increase discoverability and user-friendliness: the system uses a modeless, on-the-fly
interaction model in which the programmer is presented with suggested edits without
ever exiting the boundaries of the IDE’s text editor–the system watches the user’s
behavior and analyzes code change patterns to discover ad-hoc repetitive edits.

The semi-supervised program synthesis approach is complementary and com-
patible with the techniques employed by BluePencil: the modeless interaction of
BluePencil provides easy discoverability, and additional inputs provide a natural
and effective mechanism for refinement when a false negative or positive is discovered.

7.5 Program Transformation
Automated program transformation techniques infer abstracted transformation

rules from human-generated transformations and apply the inferred rules to transform
the codes in other codebases. Program transformation techniques have been applied
in many domains, such as fixing software bug [9, 67, 7], automating repetitive
edits [109, 82, 81], and intelligent code refactoring [87, 33]. Similar to our approach,
these techniques also learn transformation rules from concrete human transformations.
The main difference between our approach with these techniques lies in that our
output-oriented program synthesis also considers the human intelligence embedded
in the additional outputs and our semi-supervised synthesis also considers the
additional inputs. These features reduce the dependency on the human-generated
transformations and enable us to learn more substantial transformation rules.

API Usage Adaptation. Existing program transformation techniques have been
studied to be applied to automatically update the dependencies of clients [92, 20,
26, 143, 40]. These techniques first infer adaptation rules from the before- and after-
adaptation examples from human-adapted clients, and then apply the inferred rules
to adapt clients that are relying on outdated libraries. The main difference between
these techniques and APIfix is that APIfix synthesized adaptation rules from
both input-output examples and additional outputs. Therefore, APIfix can achieve
good performance with fewer human adaptations, while these techniques require a
large number of human adaptations to synthesize a proper adaptation rule. Even
though CocciEvolve [40] learns from a single adaptation example, it can only adapt
Android deprecated-API usages by introducing an if-condition. Furthermore, one

145

of the main focuses of these techniques is to perform program dependency analysis
to extract code skeletons before and after API usages, e.g., find the dependent
statements of the API usage via data dependency analysis. Differently, the focus of
APIfix is the output-oriented program synthesis by just considering the API usages
without dependent statements. APIfix is complementary and compatible with the
dependency analysis techniques employed by these existing approaches. APIfix can
be potentially combined with them to synthesize more complete adaptation rules.

Apart from the inductive adaptation rule inferences, researchers have also studied
approaches that are integrated into the development environment with the aim
of automatically adapting API usages. For instance, CatchUp [41] records the
refactoring actions when developers evolve an API and replays the recorded refac-
toring actions in the client codes. SemDiff [19] analyzes how a library was adapted
to its own changes and then provides adaptation suggestions to client programs.
These approaches require that the library and clients are developed in the same
development environment. In contrast, the adaptation rule synthesized by APIfix
can be applied to any development environment and automatically adapt any client
requiring adaptations.

146

CHAPTER 8. CONCLUSION

Chapter 8

Conclusion
Programming-by-example techniques inductively construct programs accord-

ing to specification demonstrated via input-output examples. Since examples are
usually incomplete specifications, they prone to overfit the given examples, and
hence synthesize incorrect patches/programs. To address the overfitting problem,
early techniques utilize existing test generation tools to generate more tests, rely
on predefined heuristics to ranks patches/programs, or select patches/programs
using learning-based approaches. Although those techniques have shown good per-
formances in many scenarios, they suffer from effectiveness and quality limitations.
In this thesis, we propose a series of techniques to alleviate the overfitting issue in
automated program repair and program synthesis. All the proposed techniques are
unified by the idea of augmenting the specification demonstrated via input-output
examples. At its core, we infer developers’ intent via program analysis techniques
including test generation, semantic reasoning, semi-supervised and output-oriented
approaches. The contributions of this thesis are summarised as follows:

8.1 Summary of Contributions
• We propose to integrates fuzzing and automated repair tightly by modifying

a fuzzer to prioritize tests that can rule out large segments of the patch
space. Results from the continuous fuzzing service OSS-Fuzz from Google
show significant promise. (Chapter 3)

• We propose to fix observed vulnerabilities by extracting constraint specifica-
tions from an exploit. Even though the vulnerability is observed on a specific
test input (the so-called exploit), our extracted constraint captures the "gen-

147

eral reason" behind the vulnerability via symbolization. By propagating the
extracted constraint from the crash location to other potential fix locations,
we generate fixes via fix localization and patch synthesis. Our work thus goes
beyond test-driven repair and provides a workflow and tool for exploring the
fix space of common software security vulnerabilities as well. (Chapter 4)

• We introduce a novel semi-supervised synthesis engine and apply it for pre-
dicting repeated edits that exploit the latent information in the user’s code.
By combining knowledge about what edits the user has performed in the past
with the observable patterns in the rest of the code, our technique is able to
significantly improve precision and recall metrics for predicting future repeated
edits. (Chapter 5)

• We present output-oriented program synthesis and apply it for automated
API usage adaptations. Modern software systems heavily depend on third-
party libraries. The breaking changes of API caused by library updates
can break the client applications. The output-oriented program synthesis
technique automatically adapts the client applications to let them use the new
version of libraries. Compared with existing program synthesis techniques,
output-oriented program synthesis infers transformation rules based on human
adaptations (i.e. input-output examples) as well as the usages of the new
version of libraries (i.e. additional outputs). The additional outputs can be
helpful in finding the correct level of generalization of transformation rules
and synthesizing new transformation rules. Evaluation results show output-
oriented program synthesis achieves 91% accuracy in correctly adapting API
usages. (Chapter 6)

8.2 Perspectives
Current program repair and synthesis techniques are still in the early stage both

in research and practice. I believe that this area of research needs more effort from
both academia and industry. On one hand, I think dealing with their higher-level
design issues needs to be explored, so that they can generate programs efficiently
and effectively. On the other hand, I think it is worthwhile to explore practical

148

scenarios where those techniques can be applied. Specifically, I have the following
three potential directions:

• Other strategies to alleviate overfitting Although I have investigated a
set of approaches to alleviate the overfitting problem via program analysis,
I believe there could be many other strategies that can further alleviate
the overfitting issues. For instance, the large number of available software
repositories can be great sources to help synthesize high-quality programs.
The advances of neural network systems can be potentially applied to improve
the search efficiency and decide which programs/patches are more likely to be
correct. Furthermore, in my thesis work, I have explored synthesizing programs
with additional inputs or additional output. However, how to efficiently and
effectively combine the additional inputs and additional outputs in program
synthesis has not been well studied. I think that this can be an interesting
research question to explore in the future. Such a research question can help us
gain further insights on reducing overfitting (to given input-output examples)
in program synthesis.

• Interactive program repair/synthesis Even though my thesis work so far
focused on solving the overfitting issue and improving the auto-programming
techniques, it may still require human to validate the correctness of auto-
generated programs (patches). Program repair/synthesis might be integrated
into the programming environment to automatically provide suggestions dur-
ing development/maintenance [35]. This would help to reduce the cost of
development/maintenance and also improve software quality.

• Application of program repair/synthesis My current research has inves-
tigated the possibility of applying auto-programming to software maintenance
tasks, e.g., fixing software bugs, code refactoring and API usage adaptations.
From a broader perspective, I believe that the idea of program repair/synthe-
sis could be adopted in many domains, such as DNNs, beyond source code
engineering. In particular, these techniques could be applied to help normal
users (the user without programming experiences) automate some repetitive
and boring tasks.

149

In conclusion, this thesis not only attempts to alleviate the overfitting program
in program repair and synthesis via program analysis (i.e., intelligent test generation,
semantic reasoning, semi-supervised synthesis, and output-oriented program synthe-
sis), but also opens many opportunities for future research works, including better
strategies to alleviate overfitting (e.g., mining software repositories), interactive
repair/synthesis, and synthesis to automate repetitive tasks for helping normal
users.

150

BIBLIOGRAPHY

Bibliography
[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A.

Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided
synthesis”, in 2013 Formal Methods in Computer-Aided Design, 2013, pp. 1–8.

[2] R. Alur, P. Cerny, and A. Radhakrishna, “Synthesis through unification”,
in International Conference on Computer Aided Verification, Springer, 2015,
pp. 163–179.

[3] R. Alur, M. M. K. Martin, M. Raghothaman, C. Stergiou, S. Tripakis, and A.
Udupa, “Synthesizing finite-state protocols from scenarios and requirements”,
in 10th International Haifa Verification Conference, Springer, 2014, pp. 75–
91.

[4] R. Alur, A. Radhakrishna, and A. Udupa, “Scaling enumerative program
synthesis via divide and conquer”, in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Springer, 2017,
pp. 319–336.

[5] S. An, R. Singh, S. Misailovic, and R. Samanta, “Augmented example-based
synthesis using relational perturbation properties”, Proceedings of the ACM
on Programming Languages, vol. 4, no. POPL, pp. 1–24, 2019.

[6] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering”, Software Testing, Verification
and Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[7] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning to fix
bugs automatically”, Proceeding of ACM Programming Language, vol. 3,
no. OOPSLA, Oct. 2019.

[8] R. Balzer, “A 15 year perspective on automatic programming”, IEEE Trans-
actions on Software Engineering, no. 11, pp. 1257–1268, 1985.

151

[9] R. Bavishi, H. Yoshida, and M. R. Prasad, “Phoenix: Automated data-driven
synthesis of repairs for static analysis violations”, in Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2019, pp. 613–624.

[10] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros,
A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code later”,,
2010.

[11] M. Bohme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Directed
greybox fuzzing”, in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, ACM, 2017, pp. 2329–2344.

[12] J. R. Buchi and L. H. Landweber, “Solving sequential conditions by finite-
state strategies”, Transactions of the American Mathematical Society, vol. 138,
pp. 295–311, 1969.

[13] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs”, in USENIX
Symposium on Operating Systems Design and Implementation (OSDI), vol. 8,
2008, pp. 209–224.

[14] Y. Cai and L. Cao, “Fixing deadlocks via lock pre-acquisitions”, in Interna-
tional Conference on Software Engineering (ICSE), ACM, 2016, pp. 1109–
1120.

[15] P. Cerny, K. Chatterjee, T. A. Henzinger, A. Radhakrishna, and R. Singh,
“Quantitative synthesis for concurrent programs”, in 23rd International Con-
ference on Computer Aided Verification (CAV), Springer, 2011, pp. 243–
259.

[16] P. Cerny, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach,
“Efficient synthesis for concurrency by semantics-preserving transformations”,
in 25th International Conference on Computer Aided Verification (CAV),
Springer, 2013, pp. 951–967.

[17] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: A powerful approach
to weakest preconditions”, in Proceedings of the 30th ACM SIGPLAN Confer-

152

ence on Programming Language Design and Implementation (PLDI), ACM,
2009, pp. 363–374.

[18] R. Cytron, J. Ferrante, B. K. Rosen, M. F. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control depen-
dence graph”, ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 13, pp. 451–490, 1991.

[19] B. Dagenais and M. P. Robillard, “Semdiff: Analysis and recommendation
support for api evolution”, in 2009 IEEE 31st International Conference on
Software Engineering, IEEE, 2009, pp. 599–602.

[20] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for frame-
work evolution”, ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 20, no. 4, pp. 1–35, 2011.

[21] G. J. Duck and R. H. C. Yap, “Heap Bounds Protection with Low Fat
Pointers”, in Proceedings of the 25th International Conference on Compiler
Construction, ACM, 2016, pp. 132–142.

[22] G. J. Duck, R. H. C. Yap, and L. Cavallaro, “Stack bounds protection with
low fat pointers.” In Network and Distributed System Security Symposium
(NDSS), 2017.

[23] Eclipse Foundation, “Eclipse”, At https://www.eclipse.org/, 2020.

[24] W. S. Evans, C. W. Fraser, and F. Ma, “Clone detection via structural
abstraction”, Software Quality Journal, vol. 17, no. 4, pp. 309–330, 2009.

[25] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-
grained and accurate source code differencing”, in Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering,
2014, pp. 313–324.

[26] M. Fazzini, Q. Xin, and A. Orso, “Automated api-usage update for android
apps”, in Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2019, pp. 204–215.

153

https://www.eclipse.org/

[27] J. K. Feser, S. Chaudhuri, and I. Dillig, “Synthesizing data structure trans-
formations from input-output examples”, in Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation
PLDI, ACM, 2015, pp. 229–239.

[28] J.-C. Filliâtre, L. Gondelman, and A. Paskevich, “The spirit of ghost code”,
Formal Methods in System Design, vol. 48, no. 3, pp. 152–174, 2016.

[29] J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic, “Example-directed
synthesis: A type-theoretic interpretation”, in Proceedings of the 43rd An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL, ACM, 2016, pp. 802–815.

[30] G. Fraser and A. Arcuri, “Evosuite: Automatic test suite generation for object-
oriented software”, in Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering
(FSE, ACM, 2011, pp. 416–419.

[31] Z. Fu and S. Malik, “On solving the partial MAX-SAT problem”, in Interna-
tional Conference on Theory and Applications of Satisfiability Testing, 2006,
pp. 252–265.

[32] Q. Gao, Y. Xiong, Y. Mi, L. Zhang, W. Yang, Z. Zhou, B. Xie, and H. Mei,
“Safe memory-leak fixing for C programs”, in International Conference on
Software Engineering (ICSE), IEEE Computer Society, 2015, pp. 459–470.

[33] X. Gao, S. Barke, A. Radhakrishna, G. Soares, S. Gulwani, A. Leung, N.
Nagappan, and A. Tiwari, “Feedback-driven semi-supervised synthesis of
program transformations”, Proc. ACM Program. Lang., vol. 4, no. OOPSLA,
Nov. 2020.

[34] X. Gao, S. Mechtaev, and A. Roychoudhury, “Crash-avoiding program repair”,
in ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA), ACM, 2019, pp. 8–18.

[35] X. Gao and A. Roychoudhury, “Interactive patch generation and suggestion”,
in Automated Program Repair Workshop, 2020.

[36] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey”, IEEE Trans. Software Eng., vol. 45, no. 1, pp. 34–67, 2019.

154

[37] “Github dependency graph”, https : / / docs . github . com / en / code -

security/supply-chain-security/about-the-dependency-graph, Ac-
cessed: 2021-04-09, 2021.

[38] S. Gulwani, “Automating string processing in spreadsheets using input-output
examples”, in Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’11), ACM New
York, NY, USA, 2011.

[39] D. C. Halbert, “Programming by example”, Ph.D. dissertation, University of
California, Berkeley, 1984.

[40] S. A. Haryono, F. Thung, H. J. Kang, L. Serrano, G. Muller, J. Lawall, D. Lo,
and L. Jiang, “Automatic android deprecated-api usage update by learn-
ing from single updated example”, in Proceedings of the 28th International
Conference on Program Comprehension, 2020, pp. 401–405.

[41] J. Henkel and A. Diwan, “Catchup! capturing and replaying refactorings to
support api evolution”, in Proceedings of the 27th International Conference
on Software Engineering (ICSE), 2005, pp. 274–283.

[42] K. Huang, X. Qiu, P. Shen, and Y. Wang, “Reconciling enumerative and
deductive program synthesis”, in Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, 2020,
pp. 1159–1174.

[43] Z. Huang, M. DAngelo, D. Miyani, and D. Lie, “Talos: Neutralizing vul-
nerabilities with security workarounds for rapid response”, in 2016 IEEE
Symposium on Security and Privacy (SP), IEEE, 2016, pp. 618–635.

[44] Z. Huang, D. Lie, G. Tan, and T. Jaeger, “Using safety properties to gener-
ate vulnerability patches”, in Proceedings of the 40th IEEE Symposium on
Security and Privacy (S&P), 2019, pp. 539–554.

[45] I. Jager and D. Brumley, “Efficient directionless weakest preconditions”, in
Technical Report CMU-CyLab-10-002, Carnegie Mellon University, CyLab,
2010.

[46] JetBrains, “IntelliJ”, At https://www.jetbrains.com/idea/, 2020.

155

https://docs.github.com/en/code-security/supply-chain-security/about-the-dependency-graph
https://docs.github.com/en/code-security/supply-chain-security/about-the-dependency-graph
https://www.jetbrains.com/idea/

[47] JetBrains, “ReSharper”, At https://www.jetbrains.com/resharper/,
2020.

[48] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis”, in Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1, ACM, 2010, pp. 215–
224.

[49] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code”, in ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA), ACM,
2018, pp. 298–309.

[50] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate
tree-based detection of code clones”, in 29th International Conference on
Software Engineering (ICSE’07), IEEE, 2007, pp. 96–105.

[51] G. Jin, W. Zhang, and D. Deng, “Automated concurrency-bug fixing”,
in USENIX Symposium on Operating Systems Design and Implementation
(OSDI), USENIX Association, 2012, pp. 221–236.

[52] R. Just, M. D. Ernst, and G. Fraser, “Efficient mutation analysis by prop-
agating and partitioning infected execution states”, in Proceedings of the
2014 International Symposium on Software Testing and Analysis, ACM, 2014,
pp. 315–326.

[53] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults
to enable controlled testing studies for java programs”, in Proceedings of the
2014 International Symposium on Software Testing and Analysis (ISSTA),
ACM, 2014, pp. 437–440.

[54] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing programs with
semantic code search (T)”, in IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), IEEE Computer Society, 2015, pp. 295–
306.

[55] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing”, science, vol. 220, no. 4598, pp. 671–680, 1983.

156

https://www.jetbrains.com/resharper/

[56] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do developers
update their library dependencies?” Empirical Software Engineering, vol. 23,
no. 1, pp. 384–417, 2018.

[57] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation”, in Proceedings of the international symposium
on Code generation and optimization (CGO), IEEE Computer Society, 2004,
p. 75.

[58] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence modulo
inputs”, in ACM SIGPLAN Conference on Programming Language Design
and Implementation, 2014, pp. 216–226.

[59] V. Le, D. Perelman, O. Polozov, M. Raza, A. Udupa, and S. Gulwani,
“Interactive program synthesis”, arXiv preprint arXiv:1703.03539, 2017.

[60] X. B. D. Le, F. Thung, D. Lo, and C. Le Goues, “Overfitting in semantics-
based automated program repair”, Empirical Software Engineering (ESE),
vol. 23, no. 5, pp. 3007–3033, 2018.

[61] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “Jfix: Semantics-
based repair of java programs via symbolic pathfinder”, in Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA), ACM, 2017, pp. 376–379.

[62] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program repair”, in
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE Computer Society, 2016, pp. 213–224.

[63] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest,
and W. Weimer, “The manybugs and introclass benchmarks for automated
repair of c programs”, IEEE Transactions on Software Engineering, vol. 41,
no. 12, pp. 1236–1256, 2015.

[64] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair”, IEEE Transactions on Software
Engineering, p. 54, 2012.

[65] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program repair”,
Communications of the ACM, vol. 62, no. 12, 2019.

157

[66] J. Lee, S. Hong, and H. Oh, “Memfix: Static analysis-based repair of memory
deallocation errors for c”, in Proceedings of the 2018 26th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), ACM, 2018, pp. 95–106.

[67] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code transforms
for patch generation”, in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, 2017, pp. 727–739.

[68] F. Long and M. Rinard, “Staged program repair with condition synthesis”, in
Proceedings of the 10th Joint Meeting on Foundations of Software Engineering,
ACM, 2015, pp. 166–178.

[69] F. Long and M. Rinard, “An analysis of the search spaces for generate and
validate patch generation systems”, in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), IEEE, 2016, pp. 702–713.

[70] F. Long and M. Rinard, “Automatic patch generation by learning correct
code”, in ACM Symposium on Principles of Programming Languages (POPL),
2016.

[71] F. Long, S. Sidiroglou-Douskos, D. Kim, and M. Rinard, “Sound input
filter generation for integer overflow errors”, in Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
2014, pp. 439–452.

[72] Z. Manna and R. J. Waldinger, “A deductive approach to program synthesis”,
ACM Transactions on Programming Languages and Systems, vol. 2, no. 1,
pp. 90–121, 1980.

[73] P. D. Marinescu and C. Cadar, “Katch: High-coverage testing of software
patches”, in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ACM, 2013, pp. 235–245.

[74] M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, O. Polozov, R. Singh,
B. Zorn, and S. Gulwani, “User interaction models for disambiguation in pro-
gramming by example”, in Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, 2015, pp. 291–301.

158

[75] S. Mechtaev, X. Gao, S. H. Tan, and A. Roychoudhury, “Test-equivalence
analysis for automatic patch generation”, ACM Transactions on Software
Engineering and Methodology, vol. 27, no. 4, p. 15, 2018.

[76] S. Mechtaev, A. Griggio, A. Cimatti, and A. Roychoudhury, “Symbolic
execution with existential second-order constraints”, in Proceedings of The
26th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), ACM, 2018.

[77] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and A. Roychoudhury,
“Semantic program repair using a reference implementation”, in International
Conference on Software Engineering (ICSE), 2018, pp. 129–139.

[78] S. Mechtaev, J. Yi, and A. Roychoudhury, “Directfix: Looking for simple
program repairs”, in Proceedings of the 37th International Conference on
Software Engineering (ICSE), IEEE, 2015, pp. 448–458.

[79] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline
program patch synthesis via symbolic analysis”, in Proceedings of the 38th
International Conference on Software Engineering, ACM, 2016, pp. 691–701.

[80] H. Mei and L. Zhang, “Can big data bring a breakthrough for software
automation?” Science China Information Sciences, vol. 61, no. 5, p. 056 101,
2018.

[81] N. Meng, M. Kim, and K. S. McKinley, “Systematic editing: Generating
program transformations from an example”, in Proceedings of the 32Nd ACM
SIGPLAN Conference on Programming Language Design and Implementation,
ser. PLDI, ACM, 2011, pp. 329–342.

[82] N. Meng, M. Kim, and K. S. McKinley, “Lase: Locating and applying system-
atic edits by learning from examples”, in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE, IEEE Press, 2013, pp. 502–
511.

[83] T. Mens and T. Tourwe, “A survey of software refactoring”, IEEE Transac-
tions on Software Engineering, vol. 30, no. 2, pp. 126–139, Feb. 2004, issn:
0098-5589.

[84] Microsoft, “Visual Studio”, At https://www.visualstudio.com, 2019.

159

https://www.visualstudio.com

[85] Microsoft, “Intellicode suggestions”, At https://docs.microsoft.com/en-
us/visualstudio/intellicode/intellicode-suggestions, 2020, (visited
on 09/13/2020).

[86] “Micrsoft msbuild”, https://docs.microsoft.com/en-us/visualstudio/
msbuild/msbuild-api, Accessed: 2021-04-15, 2021.

[87] A. Miltner, S. Gulwani, V. Le, A. Leung, A. Radhakrishna, G. Soares, A.
Tiwari, and A. Udupa, “On the fly synthesis of edit suggestions”, Proceedings
of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[88] T. M. Mitchell, “Generalization as search”, Artificial intelligence, vol. 18,
no. 2, pp. 203–226, 1982.

[89] M. Monperrus, “Automatic software repair: A bibliography”, ACM Comput.
Surv., vol. 51, no. 1, 17:1–17:24, 2018.

[90] L. M. de Moura and N. Bjorner, “Z3: an efficient SMT solver”, in International
conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008, pp. 337–340.

[91] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan, “A
study of repetitiveness of code changes in software evolution”, in 2013 28th
IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, 2013, pp. 180–190.

[92] H. A. Nguyen, T. T. Nguyen, G. Wilson Jr, A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A graph-based approach to api usage adaptation”, ACM
Sigplan Notices, vol. 45, no. 10, pp. 302–321, 2010.

[93] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra, “Semfix: Pro-
gram repair via semantic analysis”, in Proceedings of the 35th International
Conference onSoftware Engineering, IEEE, 2013, pp. 772–781.

[94] W. F. Opdyke, “Refactoring object-oriented frameworks”, UMI Order No.
GAX93-05645, Ph.D. dissertation, Champaign, IL, USA, 1992.

[95] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach, M. Carbin,
C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, et al., “Automatically
patching errors in deployed software”, in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, 2009, pp. 87–102.

160

https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-suggestions
https://docs.microsoft.com/en-us/visualstudio/intellicode/intellicode-suggestions
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-api
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild-api

[96] S. Person, G. Yang, N. Rungta, and S. Khurshid, “Directed incremental sym-
bolic execution”, in ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2011.

[97] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Effi-
cient domain-independent differential testing”, in 2017 IEEE Symposium on
Security and Privacy, IEEE, 2017, pp. 615–632.

[98] G. D. Plotkin, “A note on inductive generalization”, Machine intelligence,
vol. 5, no. 1, pp. 153–163, 1970.

[99] A. Pnueli and R. Rosner, “On the synthesis of a reactive module”, in Pro-
ceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1989, pp. 179–190.

[100] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive program
synthesis”, in Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
2015, pp. 107–126.

[101] D. Qi, A. Roychoudhury, and Z. Liang, “Test generation to expose changes in
evolving programs”, in Proceedings of the IEEE/ACM international conference
on Automated software engineering, ACM, 2010, pp. 397–406.

[102] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair through
fault-recorded testing prioritization”, in 2013 IEEE International Conference
on Software Maintenance, IEEE, 2013, pp. 180–189.

[103] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random search
on automated program repair”, in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 254–265.

[104] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch plausibil-
ity and correctness for generate-and-validate patch generation systems”, in
International Symposium on Software Testing and Analysis (ISSTA), 2015.

[105] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer:
Application-aware evolutionary fuzzing”, in Proceedings of the Network and
Distributed System Security Symposium, 2017.

161

[106] “Refazer: Program synthesis tool”, https://www.nuget.org/packages/
Microsoft.ProgramSynthesis, Accessed: 2020-09-21, 2020.

[107] T. Reps, T. Ball, M. Das, and J. Larus, “The use of program profiling
for software maintenance with applications to the year 2000 problem”, in
Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE), Springer, 1997, pp. 432–
449.

[108] A. Reynolds, M. Deters, V. Kuncak, C. Tinelli, and C. Barrett, “Counterexample-
guided quantifier instantiation for synthesis in smt”, in International Confer-
ence on Computer Aided Verification, Springer, 2015, pp. 198–216.

[109] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R.
Suzuki, and B. Hartmann, “Learning syntactic program transformations from
examples”, in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE, Buenos Aires, Argentina: IEEE Press, 2017, pp. 404–
415.

[110] R. Rolim, G. Soares, R. Gheyi, T. Barik, and L. D’Antoni, “Learning quick
fixes from code repositories”, 2018. arXiv: 1803.03806 [cs.SE].

[111] “Roslyn framework”, https://docs.microsoft.com/en-us/visualstudio/
code-quality/roslyn-analyzers-overview, Accessed: 2021-04-15, 2021.

[112] A. Roychoudhury and Y. Xiong, “Automated program repair: A step towards
software automation”, Science China Information Sciences, vol. 62, no. 10,
p. 200 103, 2019.

[113] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR: effective
object oriented program repair”, in IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE Computer Society, 2017,
pp. 648–659.

[114] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.
Harrold, “Test-suite augmentation for evolving software”, in 23rd IEEE/ACM
International Conference on Automated Software Engineering, IEEE, 2008,
pp. 218–227.

162

https://www.nuget.org/packages/Microsoft.ProgramSynthesis
https://www.nuget.org/packages/Microsoft.ProgramSynthesis
https://arxiv.org/abs/1803.03806
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview
https://docs.microsoft.com/en-us/visualstudio/code-quality/roslyn-analyzers-overview

[115] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer:
A fast address sanity checker”, in {USENIX} Annual Technical Conference
(ATC), 2012, pp. 309–318.

[116] D. Shriver, S. Elbaum, and K. T. Stolee, “At the end of synthesis: Narrow-
ing program candidates”, in IEEE/ACM 39th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results Track,
IEEE, 2017, pp. 19–22.

[117] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard, “Automatic
error elimination by horizontal code transfer across multiple applications”,
in Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2015, pp. 43–54.

[118] S. Sidiroglou-Douskos, E. Lahtinen, and M. Rinard, “Automatic discovery
and patching of buffer and integer overflow errors”,, 2015.

[119] R. Singh, “Blinkfill: Semi-supervised programming by example for syntactic
string transformations”, Proc. VLDB Endowment, vol. 9, no. 10, pp. 816–827,
Jun. 2016.

[120] R. Singh and A. Solar-Lezama, “Synthesizing data structure manipulations
from storyboards”, in Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering,
2011, pp. 289–299.

[121] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair”, in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (FSE),
ACM, 2015, pp. 532–543.

[122] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodik, V. A. Saraswat, and
S. A. Seshia, “Sketching stencils”, in Proceedings of the ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation PLDI,
ACM, 2007, pp. 167–178.

[123] A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent data
structures”, in Proceedings of the ACM SIGPLAN 2008 Conference on Pro-

163

gramming Language Design and Implementation PLDI, ACM, 2008, pp. 136–
148.

[124] A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebcioglu, “Programming by
sketching for bit-streaming programs”, in Proceedings of the ACM SIGPLAN
2005 Conference on Programming Language Design and Implementation
PLDI, ACM, 2005, pp. 281–294.

[125] A. Solar-Lezama, L. Tancau, R. Bodik, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs”, in Proceedings of the 12th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS, ACM, 2006, pp. 404–415.

[126] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing crashes
in android apps”, in 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), IEEE, 2018, pp. 187–198.

[127] F. Tip, “A survey of program slicing techniques”, Journal of Programming
Languages, vol. 3, 3 1995.

[128] R. van Tonder and C. Le Goues, “Static automated program repair for heap
properties”, in International Conference on Software Engineering (ICSE),
ACM, 2018, pp. 151–162.

[129] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin,
and R. Alur, “Transit: Specifying protocols with concolic snippets”, ACM
SIGPLAN Notices, vol. 48, no. 6, pp. 287–296, 2013.

[130] A. Vargha and H. D. Delaney, “A critique and improvement of the cl common
language effect size statistics of mcgraw and wong”, Journal of Educational
and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

[131] M. T. Vechev, E. Yahav, and G. Yorsh, “Abstraction-guided synthesis of
synchronization”, in Proceedings of the 37th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL, ACM, 2010, pp. 327–
338.

[132] Website, “American fuzzy lop (afl)”, Accessed: 2019-04-08, 2019. [Online].
Available: http://lcamtuf.coredump.cx/afl.

164

http://lcamtuf.coredump.cx/afl

[133] Website, “Bugzilla”, http://bugzilla.maptools.org/, Accessed: 2019-07-
20, 2019.

[134] Website, “Cve”, https://cve.mitre.org/, Accessed: 2019-05-20, 2019.

[135] Website, “Oss-fuzz”, https://bugs.chromium.org/p/oss-fuzz, Accessed:
2019-05-22, 2019.

[136] Website, “Undefinedbehaviorsanitizer”, https://clang.llvm.org/docs/
UndefinedBehaviorSanitizer.html, Accessed: 2019-07-20, 2019.

[137] Website, “Libfuzzer - a library for coverage-guided fuzz testing”, https:
//llvm.org/docs/LibFuzzer.html, Accessed: 2018-12-21.

[138] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-aware patch
generation for better automated program repair”, in International Conference
on Software Engineering (ICSE), ACM, 2018, pp. 1–11.

[139] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study”, in 2017 IEEE 24th
International Conference on Software Analysis, Evolution and Reengineering
(SANER), IEEE, 2017, pp. 138–147.

[140] Q. Xin and S. P. Reiss, “Identifying test-suite-overfitted patches through test
case generation”, in Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ACM, 2017, pp. 226–236.

[141] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch
correctness in test-based program repair”, in Proceedings of the 40th Interna-
tional Conference on Software Engineering, ACM, 2018, pp. 789–799.

[142] Y. Xiong, J. Wang, R. Yan, J. Zhang, S. Han, G. Huang, and L. Zhang,
“Precise condition synthesis for program repair”, in International Conference
on Software Engineering (ICSE), IEEE, 2017, pp. 416–426.

[143] S. Xu, Z. Dong, and N. Meng, “Meditor: Inference and application of api
migration edits”, in 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC), IEEE, 2019, pp. 335–346.

165

http://bugzilla.maptools.org/
https://cve.mitre.org/
https://bugs.chromium.org/p/oss-fuzz
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html

[144] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. L. Marcote, T. Durieux, D.
Le Berre, and M. Monperrus, “Nopol: Automatic repair of conditional state-
ment bugs in java programs”, IEEE Transactions on Software Engineering,
vol. 43, no. 1, pp. 34–55, 2016.

[145] N. Yaghmazadeh, X. Wang, and I. Dillig, “Automated migration of hierarchi-
cal data to relational tables using programming-by-example”, Proc. VLDB
Endow., vol. 11, no. 5, pp. 580–593, 2018.

[146] J. Yang, A. Zhikhartsev, Y. Liu, and L. Tan, “Better test cases for better
automated program repair”, in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ACM, 2017, pp. 831–841.

[147] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus, “Alleviating
patch overfitting with automatic test generation: A study of feasibility and
effectiveness for the nopol repair system”, Empirical Software Engineering,
pp. 1–35, 2018.

[148] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning”,
Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 3,
no. 1, pp. 1–130, 2009.

[149] X. J. Zhu, “Semi-supervised learning literature survey”, University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2005.

166

	ACKNOWLEDGEMENTS
	Contents
	Abstract
	List of Figures
	List of Tables
	Publications Appeared
	Introduction
	Background
	Program Repair
	Search-Based Repair
	Semantic-Based Repair
	Learning-Based Repair

	Program Synthesis
	Program Synthesis as Second-Order Constraint Solving
	Program Synthesis for Code Transformation

	Greybox Fuzzing

	Alleviate Overfitting via Intelligent Test Generation
	Introduction
	Motivating Example
	Methodology
	Integration of Test Generation and Repair
	Separability of Test Cases
	Power Schedule
	Is Interesting
	Sanitizer as Oracles

	Implementation
	Evaluation
	Benchmark Selection
	Experimental Setup
	Results
	Threats to Validity

	Alleviate Overfitting via Symbolic Reasoning
	Introduction
	Overview
	Methodology
	Crash-Free Constraint Extraction
	Dependency-Based Fix Localization
	Crash-Free Constraint Propagation
	Patch Synthesis
	Multiple-Line Fix

	Implementation
	Evaluation
	Experimental Setup
	Experimental Results
	Threats to Validity

	Alleviate Overfitting Using Semi-Supervised Synthesis
	Introduction
	Motivating Example
	The Semi-Supervised Synthesis Problem
	Feedback-driven Semi-Supervised Synthesis
	Semi-Supervised Synthesis
	Feedback-Driven Semi-Supervised Synthesis

	Applications of Semi-Supervised Synthesis
	: User-Provided Feedback about Additional Inputs
	: Semi-Automated Feedback
	: Fully Automated Feedback

	Evaluation
	Benchmark Suite
	Effectiveness of Semi-Supervised Synthesis
	Effectiveness of Reward Calculation Function
	The Effectiveness and Efficiency of Semi-Automated Feedback
	A Comparison to BluePencil
	Discussion

	Alleviate Overfitting Using Output-Oriented Synthesis
	Introduction
	Motivating Example
	Output-Oriented Program Synthesis
	Problem Statement
	Domain-Specific Language
	Output-Oriented Program Synthesis

	APIfix: Automated API Usage Adaptation
	Mining Human API Usage Adaptations and Library Usages
	Clustering Algorithm
	Synthesizing and Applying Transformation Rule

	Evaluation
	Exp-1: Effectiveness of the Output-Oriented Program Synthesis
	Exp-2: Effectiveness in Automating API Usage Adaptations
	Exp-3: Comparison with State-of-The-Art Technique
	Threats to Validity

	Related Work
	Automated Program Repair
	Search-Based Program Repair
	Semantics-Based Program Repair
	Learning-Based Program Repair
	Static Program Repair

	Alleviate Overfitting in Program Repair
	Goal-Directed Test Generation
	Program Synthesis
	Semi-Supervised Program Synthesis
	Interactive Program Synthesis
	Program Synthesis for Software Refactoring

	Program Transformation

	Conclusion
	Summary of Contributions
	Perspectives

	Bibliography

