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Abstract

Real-time embedded software often runs on a supervisory operating system soft-

ware layer on top of a modern processor. Thus, to give timing guarantees on the

execution time and response time of such applications, one needs to consider

the timing effects of the operating system, such as system calls and interrupts —

over and above modeling the timing effects of micro-architectural features such

as pipeline and cache. Previous works on Worst-case Execution Time (WCET)

analysis have focused on micro-architectural modeling while ignoring the op-

erating system’s timing effects. As a result, WCET analyzers only estimate the

maximum un-interrupted execution time of a program. In this work, we present

a framework for RTOS-aware timing analysis - where the timing effects of sys-

tem calls and interrupts can be accounted for. The key observation behind our

analysis is to capture the timing effects of system calls and/or interrupts, as well

as their effects on the micro-architectural states, compositionally via a damage

function. This damage function is then composed in a controlled fashion to

result in a RTOS-aware, micro-architecture-aware timing analysis of an appli-

cation. We show the use of our analysis to compute the worst-case response

time for a real-life robot controller software, which runs several tasks such as
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balancing and navigation on top of a real-time operating system running on a

modern processor.

Keywords : integrated timing analysis, WCET, OS compositional

analysis, cache damage
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Chapter 1

Introduction

Real-time and embedded software contains several components that need to

function in the presence of timing constraints imposed by the environment. The

violation of such time constraints may have serious consequences, particularly

for hard real-time systems. However, providing the necessary timing guarantees

are increasingly difficult due to the complex implementation of such hard real-

time embedded systems - they involve pieces of application software mediated

by an operating system (which acts as the supervisory software), all running on

top of a modern processor. Thus, providing timing guarantees involves timing

analysis of application software in presence of the operating system (taking into

account system calls and interrupts), and the underlying processor (taking into

account features like pipeline and cache). In this work, we provide a general

solution to this problem, and demonstrate an instantiation of the solution for a

real-life robot controller.

We envision an application scenario that contains a two-wheeled autonomous

robot that functions in a hazardous environment, such as an area with radiation

leak. The robot controller runs several tasks, including balancing to keep the

robot on its two wheels (such that the robot does not fall on ground), and nav-

igation to guide a robot away from obstacles. In the case where time-critical

tasks such as balancing and navigation — do not respond within an appropriate
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Figure 1.1: Bally2 [1], a real life experimental self balancing robot in which its
controller is the base for our robotic controller

time, the robot will clearly malfunction (such as falling on the ground) or worse

still, the robot may get damaged in a collision with a heavy obstacle.

The robot needs to navigate itself from a specified starting point to a speci-

fied ending point, while avoiding all obstacles coming on the way. Such a robot

is supported on the ground with two wheels and the robot must maintain bal-

ance while navigating through rough terrain. The embedded controller in the

robot performs several calculations based on input from different sensors and

moves the wheels to keep the robot upright and to avoid obstacles. To realize

our application scenario, we adapted some real life open source robotic appli-

cations written for EyeBot [4] (a microcontroller hardware designed for robotic

applications) to our chosen hardware architecture and operating system.

Figure 1.1 shows a real life experimental robot in which its controller forms

the base for the robotic controller evaluated in our work. Table 1.1 gives an

outline of the time-critical tasks in our application. Table 1.1 shows that it is

absolutely important to know the timing behavior of different tasks before such a

robot is deployed. For example, the task balance must finish computation (or

respond) within 1
50

seconds, once it receives inputs from sensors. Therefore, our

primary goal is to provide a guarantee on such response time, meaning that our

provided response-time guarantee must be met in any scenario of the operating

2



Task Real-time constraints
balance Must consistently run at 50Hz to

continuously adjust an upright position.
navigation Must consistently run at 20Hz to

safely avoid obstacles.
remote Should finish processing within 100ms

to react quickly to remote command.

Table 1.1: Real-time constraints of robot controller tasks

robot. Such a guarantee on task response time can be provided via worst case

response time (WCRT) analysis.

Computing the WCRT of an embedded robot controller leads to several tech-

nical challenges. First and foremost, accurate computation of WCRT requires

the knowledge of worst case execution time (WCET) of individual controller

tasks. WCET of a task captures an upper bound on the uninterrupted exe-

cution time of the respective task. Since timing is extremely sensitive to the

underlying execution platform, WCET of a task also depends heavily on the

underlying platform. Therefore, WCET computation usually involves a micro-

architectural modeling stage that analyzes the timing behavior of the underlying

micro-architecture. Our application runs on a real hardware board, which is

equipped with an ARM926EJ-S processor core. Therefore, to compute WCETs

of different tasks, we develop analysis methodologies by modeling the micro-

architecture of ARM926EJ-S processor.

Besides, any robot controller task might receive an external interrupt, which

will eventually delay the response time of the controller. The delay induced by

an interrupt is not solely limited to the execution time of the respective interrupt

handler. This is due to the fact that the micro-architectural states (e.g. con-

tent of a cache) get modified after executing an interrupt handler. Such micro-

architectural state changes may introduce additional delay in task response time.

As an example, if the interrupt handler evicts some cache blocks used by a

controller task, the response time of the controller task will be delayed due

to additional cache misses. We develop novel analysis methodologies which
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account for such delay during WCRT computation, by considering the micro-

architecture used in our processor board.

However, we face the most significant challenge due to the presence of a

real-time operating system (RTOS) in our application scenario. The RTOS pro-

vides several system-level supports to the robot controller, such as scheduling

multiple tasks, kernel-mode operation via system calls and interrupt handlers.

Most of the existing works in WCET analysis assume the absence of an op-

erating system [12]. Therefore, the computed WCET completely bypasses the

timing effects created due to interactions with an RTOS. A different stream of

works [8, 11] aim to compute the WCETs of RTOS-level routines (e.g. system

calls, interrupt handlers) in isolation (i.e. without considering the timing effects

of RTOS-level routines on the application).

If an application uses RTOS-level routines, such interaction with the ker-

nel may significantly change the micro-architectural state, such as modifying

the content of caches. If WCET analysis of an RTOS is performed in isolation

(e.g. using techniques proposed in [8, 11]), the application-level WCET analysis

will be unaware of the micro-architectural state when the kernel returns control

to the user mode. For a sound WCET estimation, the application-level anal-

ysis has to consider all possible micro-architectural states after a kernel-mode

operation finishes. This leads to a gross overestimation. In a similar fashion,

while performing the WCET analysis of an RTOS-level routine in isolation (e.g.

analyzing the WCET of a system call using [8]), we have to consider all pos-

sible micro-architectural states at the entry of the RTOS-level routine. Due to

this two-fold overestimation in the underlying WCET analysis, we believe that

an integrated WCET analysis of RTOS and application code is crucial. Such

an integrated analysis should consider the application context while invoking a

kernel-mode operation and it should also accurately model the effect of kernel-

mode operations on application code. Providing an integrated WCET analysis

framework which accounts the timing effects of both RTOS and application
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code is the key contribution of our work.

Accounting the timing interaction between an application and an RTOS is

not straightforward. Any naive strategy, such as the enumeration of all possi-

ble timing interactions will quickly lead to an exponential number of micro-

architectural states, making the entire analysis infeasible in practice. To main-

tain scalability of our analysis, we propose to use a compositional analysis

framework. Such a compositional analysis computes a comprehensive sum-

mary for each RTOS routine called by the robot controller. The primary goal of

such summary is to capture the change in micro-architectural states, that might

happen due to the invocation of the respective RTOS routine. For a particu-

lar execution platform, the timing behavior summary of RTOS routines can be

computed only once and the computed summaries can be reused for analyzing

different applications. While analyzing our robot controller, the computed sum-

maries are used at call sites of RTOS routines. We systematically combine the

micro-architectural state before the call site of RTOS routine and the summary

of the RTOS routine to obtain the micro-architectural state after the call site.

Finally, we show that our compositional analysis framework is generic in na-

ture. Specifically, our compositional analysis framework can be applied in the

following three scenarios: (i) accounting for the effect of interrupts on system

call execution; (ii) accounting for the effect of interrupts on application execu-

tion; and (iii) accounting for the combined effect of system calls and interrupts

on application execution. As a result, we propose a generic, yet scalable anal-

ysis framework which comprehensively models the RTOS-level timing effects

on application execution.

Contributions In summary, we propose a generic WCRT analysis framework

to analyze the timing behaviour of a real-life application scenario (an embedded

robot controller) in the presence of a realistic execution platform that exhibits

complex timing interactions involving an application, an RTOS and a real hard-

ware. We note that conventionally application level WCET analysis methods
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have ignored the timing effects of the RTOS - these works estimate the maxi-

mum uninterrupted execution time of software. In this perspective, our work can

be seen as a step towards making WCET analysis methods applicable to real-

life situations since most modern embedded devices (including smart-phones)

employ an operating system as supervisory software.

We have implemented our entire WCRT analysis framework using Chronos

[13], an open source, freely available WCET analysis tool. Our robot controller

uses µC/OS-II [2], a real-time operating system (RTOS), freely available for

non-commercial usage. Our analysis models ARM926EJ-S processor architec-

ture and we take measurements on real hardware board. We have performed

an extensive set of experiments to share our experience in analyzing the time-

critical components of a real-life robot controller. By considering the timing

effects of the operating system on application in a compositional manner, we

are able to obtain a safe and reasonable bound on the WCRT of our robot con-

troller.
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Chapter 2

Background

Worst Case Execution Time Worst Case Execution Time (WCET) of a pro-

gram is the upper bound on the execution time of the program over all feasible

inputs to the program. In the research community, there are significant efforts

to design a timing analyzer for safe and sound estimation of WCET. The tim-

ing analyzer that we used in our work is based on Chronos, which is a static

WCET timing analyzer. The workflow for Chronos is shown in Figure 2.1. The

analysis is composed of three different phases: i) program path analysis, ii)

micro-architectural modeling and iii) WCET computation by solving an integer

linear programming (ILP) problem.

Figure 2.1: Workflow for Chronos WCET analyzer used in our framework
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Program path analysis parses a program’s binary code to generate a con-

trol flow graph (CFG) of the program. Figure 2.2 shows a simple CFG with

one loop and a conditional branch inside the loop. From a CFG, we gener-

ate flow constraints for our ILP formulation to ensure correct control flow of

the program. For example, given the CFG in Figure 2.2, the flow constraint

b1 − d1_2 − d1_3 = 0 specifies that the execution count of basic block B1

(represented by variable b1) must be equal to the sum of its outgoing flows to

basic blocks B2 and B3 (represented by d1_2 and d1_3 respectively). The path

analysis also derives useful information for WCET analysis, such as infeasible

program paths and input-independent loop bounds, which are encoded as sep-

arate functional constraints. A user can also supply additional constraints to

tighten the estimated WCET (e.g. by supplying values for input-dependent loop

bounds).

Figure 2.2: An example control flow graph (CFG)

Micro-architectural modeling analyzes the timing behaviour of underlying

hardware components (e.g. branch predictor, caches, pipeline). The branch

predictor is modeled with the technique proposed in [15]. Additional ILP con-

straints are added to bound the number of branch mispredictions. For example,

the constraint d1_2 − dc1_2 − dm1_2 = 0 encodes the information that the

control flow from basic block B1 to B2 can be correctly predicted (represented

by dc1_2) or mispredicted (represented by dm1_2).

Chronos also performs cache analysis using the abstract interpretation tech-

8



nique in [20] to statically categorize a memory reference as always hit (AH),

always miss (AM) or not classified (NC). Cache analysis is used with virtual in-

line and virtual unrolling (VIVU). In VIVU approach, each loop is unrolled once

to differentiate the cold cache misses for the first iteration of the loop. Mem-

ory blocks categorized as AH are always in the cache when accessed, while

memory blocks categorized as AM are never in the cache when accessed. If a

memory block cannot be classified as either AH or AM, it is considered unclas-

sified (NC). The outcome for the cache analysis is used to compute the WCET

of each basic block. Figure 2.3 shows the transformed CFG for our example

program shown in Figure 2.2, with the first iteration of the single loop unrolled.

The figure also shows the memory blocks used in each basic block, as well as

their categorization after instruction cache analysis is performed.

Figure 2.3: Memory block categorization of the transformed CFG for instruction
cache analysis in Chronos. We assume a Least Recently Used (LRU) policy with
a two-way associative instruction cache with two cache sets. Memory blocks
{m0,m2,m4} and {m1,m3,m5} are mapped to cache set 0 and 1 respectively.

Pipeline analysis is the last step of micro-architectural modeling where the

upper bound of the execution time of each basic block (under different micro-

architectural contexts) is estimated. Finally, an ILP solver (e.g. lp_solve or

CPLEX) is used to solve the objective function of the ILP (which contains the

basic block level WCETs and all the generated ILP constraints) to compute the

WCET of the overall program. Note that the constants associated with each
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variable in the objective function is the computed basic block level WCETs.

The solution of the formulated ILP soundly over-approximates the WCET of

the analyzed program. Figure 2.4 shows the ILP formulation for our example

program.

Cache Related Preemption Delay WCET of an application captures an upper

bound on the uninterrupted execution time of the application. In the presence

of multitasking, however, task interferences affect the overall timing of the ap-

plication. Such task interferences could be generated due to the preemption of

a low priority task (by a high priority task), servicing external interrupts and so

on. Overall, there are two major sources that affect the timing of individual tasks

in a multi-tasking environment. First, if a task T is preempted by a high priority

task or an interrupt handler, the timing of the high priority task or the interrupt

handler will directly delay the finishing time of task T . Secondly, the interrup-

tion (either by preemption or external interrupts) changes micro-architectural

contexts, such as modification of cache contents, flushing pipeline and so on.

Such micro-architectural changes may lead to additional delay (e.g. due to ad-

ditional cache misses).

Over the last few decades, WCET research community have investigated

the problem of bounding the number of additional cache misses due to preemp-

tions. The timing delay introduced by these additional cache misses are widely

known in literature as Cache Related Preemption Delay (CRPD) [9]. Tradi-

tionally, CRPD analysis focuses on caches with Least Recently Used (LRU)

replacement policy, and bounds the additional cache misses due to preemptions

by considering (i) the number of cache blocks introduced by the preempting task

and/or (ii) the number of cache blocks that may be reused by the preempted task

after preemption.

Worst Case Response Time For a real-time system, a schedulability analysis

is performed to analyze the scheduling algorithm used by the kernel to determine

10



whether all tasks can meet their timing constraints. One common approach is to

perform a Worst Case Response Time (WCRT) analysis of the system. WCRT

analysis uses results from WCET analysis, CRPD analysis and any other micro-

architectural delay due to an interruption (e.g. once a task resumes after an

interruption, additional delay need to be considered for flushing the pipeline) to

derive an upper bound on the response time of the overall application. Such an

upper bound is known as Worst Case Response Time (WCRT).

11



Maximize
34 dStart_1 + 12 dc1_2 + 21 dm1_2 + 37 dc1_3 + 46 dm1_3 + 100 d2_3
+ 45 d3_4 + 9 dc4_5 + 18 dm4_5 + 34 dc4_6 + 43 dm4_6 + 97 d5_6
+ 42 dc6_4 + 51 dm6_4 + 18 dc6_7 + 27 dm6_7

Subject to
/ === Outgoing flows ===
dStart_1 = 1
b1 - d1_2 - d1_3 = 0
b2 - d2_3 = 0
b3 - d3_4 = 0
b4 - d4_5 - d4_6 = 0
b5 - d5_6 = 0
b6 - d6_4 - d6_7 = 0

/ === Incoming flows ===
b1 - dStart_1 = 0
b2 - d1_2 = 0
b3 - d1_3 - d2_3 = 0
b4 - d3_4 - d6_4 = 0
b5 - d4_5 = 0
b6 - d4_6 - d5_6 = 0
b7 - d6_7 = 0

/ === Loop bound (i.e. loop has maximum 10 iterations) ===
b4 <= 10

/ === Branch predictor constraints (partial) ===
d1_2 - dc1_2 - dm1_2 = 0
d1_3 - dc1_3 - dm1_3 = 0
d4_5 - dc4_5 - dm4_5 = 0
d4_6 - dc4_6 - dm4_6 = 0
d6_4 - dc6_4 - dm6_4 = 0
d6_7 - dc6_7 - dm6_7 = 0
...

Figure 2.4: ILP formulation for WCET estimation of our example program.
The other branch predictor constraints are non-trivial to explain and dependent
on the exact branch prediction policy used. Readers can refer to [15] for further
explanation.
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Chapter 3

Why do we need an integrated

analysis?

In Section 1, we introduced the idea of an integrated timing analysis of ap-

plication and RTOS code, instead of performing the analyses in isolation. In

this section, we shall further argue the potential of an integrated analysis frame-

work with a motivating example. Let us consider the schematic shown in Figure

3.1(a). Figure 3.1(a) shows a simple application code fragment that invokes

a system call. Specifically, the application executes for ta1 time units before

invoking the system call. mc1 captures the micro-architectural state just be-

fore the system call was invoked. After the system call returns control to the

user mode, the application finishes its execution without invoking any other

kernel-mode operation. Let us first consider the scenario where WCET anal-

ysis of an RTOS was performed in isolation (i.e. similar to [8, 11]). If the

analysis of RTOS was performed in isolation, we were unaware of the micro-

architectural state before the invocation of a kernel-mode operation (i.e. mc1 in

Figure 3.1(a)).

As a result, the analysis of a kernel-mode operation (e.g. system calls) has

to conservatively assume all possible micro-architectural states using which the

same operation could be invoked. Due to this gross overestimation of possi-

13



mc1

Application 

System call

Application

ta1

ts1

mc2 mc3 mc4
WCET

architectural 
context

micro 

ts1

tb1

tb2

tb3

WCET = ta1+ts1+tb3

tb3

ts1

ta1

tb1

mc2

WCET

WCET = ta1+ts1+tb1

ts1

mc1

Infeasible 

contexts 

w.r.t. intial 

context mc1

mc3 mc4

ta1

ts1

ta1

tb1

(a) (b)

Figure 3.1: (a) An example shows the overestimation when the RTOS-level
analysis is performed in isolation, (b) our integrated analysis framework elimi-
nates such overestimation by performing a context-sensitive analysis

ble micro-architectural states at the entry of a kernel-mode operation, the set

of possible micro-architectural states at the exit of a kernel-mode operation is

usually overestimated. Figure 3.1(a) shows one such example, where we get

three possible micro-architectural states (i.e. mc2 , mc3 and mc4 ). Note that

the execution time highly depends on the micro-architectural context. There-

fore, we assume that the application takes an additional time of tb1 , tb2 or tb3

(tb1 < tb2 < tb3 ), if the kernel returns control with micro-architectural states

mc2 , mc3 or mc4 ; respectively. Since we are computing the WCET of the

application, we can observe that mc3 leads to the worst-case finish time of the

application. Therefore, using the analysis of RTOS in isolation, WCET of the

application can be estimated as ta1 + ts1 + tb3 , where ts1 captures the WCET

of the system call.

It is worthwhile to note that in the preceding computation, we completely

ignore the calling context of the system call at the application level (i.e. mc1

in Figure 3.1(a)). This leads us to overestimate the possible exit states of the

system call (i.e. mc2 , mc3 and mc4 ). Our integrated analysis framework takes

into account this application context. Specifically, the set of possible micro-

architectural states exiting a system call is computed via a micro-architectural

summary of the system call and the application calling context (i.e. mc1 in

14



Figure 3.1(a)). On one hand, our analysis methodology maintains the scalability

of a compositional analysis by analyzing each kernel-mode operation separately

and computing a micro-architectural summary for each kernel-mode operation.

On the other hand, our analysis also takes into account the application context

to accurately compute the effect of a kernel-mode operation on the application

code. Figure 3.1(b) summarizes our analysis flow. It is possible that the micro-

architectural state mc1 may only lead to the micro-architectural state mc2 after

the system call. In such a case, the application will execute, in the worst case,

only for tb1 time units after the system call. This leads to a more accurate

WCET estimate using our framework (i.e. ta1 + ts1 + tb1 ).
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Chapter 4

Execution platform

As a sound timing analyzer requires the modeling of the underlying micro-

architecture, we need to state our hardware model before describing our analysis

framework. In this section, we shall detail on the hardware board and processor

that we used to evaluate our analysis framework, as well as the real time oper-

ating system (RTOS) that we chose to implement our robot controller software.

4.1 Target processor

For our work, we choose APF28-Dev board (see Figure 4.1) which is designed

by Armadeus systems. The board is equipped with a Freescale i.MX286 proces-

sor capable of supporting a full real-time operating system (RTOS). This pro-

cessor has an ARM926EJ-S core running at 454MHz with 32KB data cache and

16KB instruction cache at level 1. Both instruction and data caches are 4-way

set-associative, with a cache line size of 8 words. The processor supports two

replacement policies for caches which are random and first-in-first-out (FIFO).

For our work, we configure the hardware to use FIFO replacement policy. The

processor also has a memory management unit (MMU). The MMU has a nor-

mal 2-way set-associative TLB and a fully-associative lockdown TLB. We lock

all pages used for our application into the lockdown TLB to ensure that no page

fault will occur, as our analysis tool is not modelling the TLB.
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Figure 4.1: Armadeus APF28-Dev board running our robot controller

ARM926EJ-S processor has a five-stage pipeline with in-order issue, execu-

tion and completion. It supports speculative, non-cacheable instruction fetches

to increase performance. However, in our experiments, speculative prefetch is

disabled in order to make measurements more deterministic. The processor also

implements static branch prediction which predicts all branch instructions as not

taken. If a branch is taken, the penalty for wrong prediction is 2 cycles. In our

static analysis we bound memory latency to 70 cycles, as we observed a latency

of between 60–70 cycles during read or write to on-board physical memory.

The processor has an interrupt controller that can manage up to a total of

128 interrupt sources. All of these interrupt sources can be configured to work

as normal or fast interrupt request. The interrupt controller supports nested in-

terrupts and we can enable (disable) nested interrupts by clearing (setting) a

single bit in interrupt control register. In our analysis and measurements, nested

interrupts are disabled.
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4.2 µC/OS-II kernel

Our robot controller application runs on top of an open source operating sys-

tem called µC/OS-II. µC/OS-II is a relatively small real-time kernel with 9,771

lines of C code and it supports 79 system calls [11]. The kernel implements

a fully preemptive scheduling policy based on fixed priority scheme. µC/OS-

II supports a maximum of 250 application tasks and each task is assigned a

unique priority. To support communication between tasks, the kernel imple-

ments semaphores, event flags, message mailboxes and message queues.

The kernel has been ported to different architectures such as 80x86, ARM,

AVR. In our work, we port the kernel to the Freescale i.MX286 processor in the

APF28-Dev board. We use the official ARM port (version 2.86) provided by

Micrium and we add codes for specific board support package (BSP) such as

interrupt management, co-processor configuration and input/output (I/O) func-

tions.

We choose an RTOS over a general purpose operating system for our anal-

ysis, as RTOS has several features that meet requirements of real-time appli-

cations. RTOS is designed to be consistent and deterministic regarding the

scheduling of tasks. RTOS allows priority-based execution of tasks and it guar-

antees that a higher priority task will always be executed ahead of a lower pri-

ority task except for a few well defined scenarios (e.g. blocking due to shared

resources). Moreover, RTOS typically has low latency for interrupt handling and

task context switches. Therefore, an RTOS can respond to changes in its exe-

cuting environment (interactions between tasks and handling external events)

swiftly. As such, performing our analysis on RTOS like µC/OS-II allows us to

bound the timing behaviour of real-time applications with less overestimation

and also requires less complexity in our analysis methods.
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Chapter 5

Framework overview

In the following, we shall briefly outline our integrated timing analysis frame-

work. The input to our framework is an application binary containing a set of

real-time tasks that may run concurrently. The application interacts with the

hardware via a real-time, multi-tasking kernel. In our evaluation, our robot con-

troller application contains a set of independent tasks. However, our proposed

methodology does not pose restrictions on task dependencies and it can be ex-

tended by any WCRT analysis method that can handle task dependencies (e.g.

in the form of an application task graph). We also use a fixed-priority preemptive

scheduling policy for scheduling tasks.

The critical part of our analysis method is a compositional analysis frame-

work as shown in Figure 5.1. Each task, interrupt handler (also known as in-

terrupt service routine (ISR)) and system call is a component for which we sep-

arately compute its WCET and a summary of the changes to the underlying

micro-architectural states after its execution. The computed WCET and sum-

mary may in turn be used in the analysis of other components. The benefit

of such a compositional analysis framework is two-fold. First, the composi-

tional analysis framework accounts for the timing interaction of an application

with RTOS in a generic fashion, such as accounting for the timing interactions

with system calls, with interrupt handlers and with the combined effect of sys-
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tem calls and interrupt handlers. Secondly, due to the compositional nature of

our analysis framework, we can systematically control the number of feasible

micro-architectural states and thus maintain the scalability of the overall analy-

sis.

Figure 5.1: Compositional WCRT analysis framework. Each task, interrupt
handler or system call represents a component that is analyzed separately

For our processor board, timing effects at micro-architectural level arise

from an in-order pipeline, a static branch predictor and caches with FIFO re-

placement policy. Since a static branch predictor with not taken prediction is

used, we add a fixed penalty (2 cycles) for each taken branch in the WCET

analysis. As a result, we do not compute the summary for an RTOS routine

explicitly for the branch predictor. In our analysis, we also assume an empty

pipeline state at system call and interrupt handler boundaries. In other words,

we assume that the pipeline is empty at (i) the beginning of each system call

and interrupt handler; and (ii) after the return of each system call and inter-

rupt handler. Besides, there might be additional delay due to the dependency

between application code and RTOS routines. Such dependencies include sit-

uations where the application passes data to RTOS routines and vice versa. To

take into account this additional delay into our analysis, we add a fixed delay for
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each invoked RTOS-level routine. The fixed delay ensures that all the inputs to

an RTOS routine are available when it begins execution and all the outputs from

an RTOS routine are available when it finishes execution. It is worthwhile to

note that this delay is bounded by the memory latency (i.e. cache miss latency).

However, we cannot consider the effect of caches similar to pipeline and

branch predictors. Invocation of an RTOS routine may significantly affect the

cache content of the application. Due to the inherent performance gap between

processor and main memory, several cache misses in the application code may

significantly downgrade its performance. Therefore, static analysis of caches

is needed to classify a memory access as a cache hit or a cache miss. In our

experiments, we observed that without employing any cache analysis, none of

our robot controller tasks could be guaranteed to meet their respective deadlines.

Therefore, in our summary computation, we primarily consider caches.

In our work, a cache summary is defined by a cache damage function, which

captures the number of unique cache blocks accessed in an RTOS routine. The

cache damage information in the summary is used to bound the number of

cache conflicts caused by the RTOS routine in a preemption. The computed

cache summaries are subsequently used in our Cache Related Preemption De-

lay (CRPD) analysis to estimate the delay caused by additional cache block

evictions due to task preemptions and interrupts.

Recall that our underlying processor (i.e. ARM926EJ-S) uses caches with

First In First Out (FIFO) replacement policy. In the presence of FIFO replace-

ment policy, CRPD analysis for data caches poses a challenge. As shown in [5],

CRPD in the presence of FIFO replacement policy cannot be safely computed

using a similar fixed-point computation as traditionally used for Least Recently

Used (LRU) replacement policy. Thus, we propose a novel approach for safely

computing CRPD for FIFO caches that leverages the cache persistence analysis.

The general idea is as follows. A memory block is said to be persistent if it can

never be evicted from the cache until its last use. A cache persistence analy-
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sis will compute the set of such persistent memory blocks, which can be used

to refine our timing analysis. However, cache damage due to preemptions (i.e.

introduction of additional cache misses) can disrupt the persistence of memory

blocks. To compute a safe CRPD for FIFO caches, we bound the effect of cache

damage of the preempting components on the persistent memory blocks of the

task being preempted, as shown in Figure 5.2.

Figure 5.2: Our CRPD analysis for FIFO caches bounds the effect of cache
damage of preempting components on the persistent memory blocks of the pre-
empted task

Finally, for each task, we compute its WCRT using the computed WCET

and CRPD values of its preempting components.
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Chapter 6

Detailed methodologies

In this section, we shall describe our analysis methodologies in detail. We shall

first define our WCRT calculation. Subsequently, we shall further describe our

CRPD analysis technique, which utilizes the concept of cache damage function

to estimate additional cache misses due to preemptions.

6.1 WCRT computation

Our primary goal is to compute the worst case response time (WCRT) of indi-

vidual tasks in an application, and specifically in our robot controller. WCRT

of a task is defined as the worst case bound on the time between the release

and completion of a task. This time bound is broadly composed of two factors:

(i) the worst case execution time (WCET) of the task, and (ii) the cost due to

interference. The interference of a task can be caused either by higher priority

tasks or by interrupts. Our robot controller contains a set of periodic and spo-

radic tasks. In our system, all interrupt arrivals are also periodic or sporadic

in nature. For a sporadic task or interrupt, we consider that it always arrives

at its minimum inter-arrival time since we are only interested in the worst case

scenario. An interrupt will be serviced by its assigned interrupt service routine

(ISR) on arrival. For our computation, we treat all ISRs as components with the

highest possible priority (as an ISR cannot be preempted by a task). For the rest
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of this section, we shall use the term component to refer to either task or ISR

when they can be used interchangeably.

As we used a fixed-priority preemptive scheduling policy, the WCRT is com-

puted with such assumption. For a specific task i, its worst case response time

WCRT i is computed as shown in Equation 6.1 below (the equation is derived

from [18]). Note that since the computation of WCRT i requires the value of

WCRT k and component k has higher priority than task i, WCRT computation

has to be performed from task with the highest priority to the lowest.

WCRT i = WCET i + Bi +∑
j∈hp(i)

(⌈
WCRT i

Pj

⌉
(WCET j +MOD j,i + CTX j) +

∑
k∈hp(i)∧lp(j)

⌈
WCRT i

Pk

⌉
∗
⌈
WCRT k

Pj

⌉
MOD j,k

)

(6.1)

In Equation 6.1, WCETi captures the worst case execution time of task i with-

out interference. Bi is the maximum blocking time of task i, or the maximum

time a lower priority task can block the execution of one invocation of task i. We

assign to Bi the maximum WCET value of all critical sections (code sections in

which preemptions are disabled) in tasks with lower priority than task i. hp(i)

contains the set of all higher priority tasks and ISRs that may delay the execu-

tion time of task i. On the other hand, lp(i) contains the set of all tasks with

lower priority than task i.
⌈
WCRT i

Pj

⌉
bounds the number of possible preemp-

tions by component j on task i. Pj is the period (or minimum inter-arrival time)

of component j. The computation of MOD j,i is crucial. MOD j,i accounts for

the additional delay inflicted by component j on task i due to the modification

of micro-architectural states (e.g. states of caches, pipelines) after interference.

This includes the CRPD cost on task i due to component j. CTX j refers specif-

ically to task context switch cost if component j is a task. If component j is an
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ISR, it refers to the cost of accessing the kernel’s ISR entry and exit function, as

well as the delay in saving or restoring CPU’s context before jumping to or from

some ISR code. The term (WCET j+MOD j,i+CTX j) bounds the interference

cost by component j on task i for one preemption. We multiply this term by the

maximum possible number of preemptions for all preempting components.

Apart from considering the MOD j,i cost inflicted by all components that

preempt task i, we also need to take into account the modification of micro-

architectural states inflicted by component j to all tasks nested between compo-

nent j and task i when there are nested preemptions, as this may indirectly add

additional delay to the execution time of task i. As shown in the second half of

Equation 6.1, we sum together the total MOD j,k costs inflicted by component j

on all nested tasks except for task i.
⌈
WCRT i

Pk

⌉
∗
⌈
WCRTk

Pj

⌉
bounds the number

of possible preemptions by component j on task k during the execution of task

i.

Equation 6.1 is essentially a fixed-point computation ofWCRTi, as the term

WCRTi appears on both sides of the equation. The computation in Equation 6.1

will be repeated until the value of WCRTi reaches a fixed-point, or when it

exceeds the deadline for task i, in which case there is no point to continue on as

the task is not schedulable anymore.
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6.2 Cache related preemption delay

In the presence of caches, WCRT computation must take into account the ad-

ditional cache misses due to preemptions. Such additional cache misses are

caused by a preempting task when it evicts cache blocks used by the preempted

task. The delay caused by these additional cache misses is known as cache

related preemption delay (CRPD). CRPD is traditionally computed using a sep-

arate analysis and the outcome of CRPD analysis is integrated into the WCRT

computation.

We propose a novel approach for analyzing CRPD for FIFO caches that

leverages the similarity between the analysis of system calls and preemptions. In

both cases, we need to consider the set of possible evictions of a memory block

that were not accounted during the analysis of the task in isolation. However,

unlike the analysis of a system call, we do not know the exact program location

where preemption will take place (i.e. the arrival point of an interrupt).

In the following, we shall primarily outline our CRPD analysis methodology

for data caches. For instruction caches, we use the CRPD analysis proposed in

[5], which bounds CRPD using the concept of relative competitiveness [17], in

the exact same manner. We do not use the technique for data caches as (i) it

cannot be easily extended to analyze data caches and (ii) the resultant CRPD

obtained using the technique is too pessimistic. For a detailed description of

CRPD analysis we use for instruction caches, we request readers to refer to [5].

CRPD analysis for data caches Our CRPD analysis revolves around the per-

sistence analysis for data caches. We partially use the technique proposed in a

prior work on data cache persistence analysis [14] for this purpose. Our CRPD

analysis takes two inputs as follows.

• A set of preempting tasks {T1, . . . , Tn}.

• Maximum number of preemptions incurred by the preempted task due to

each preempting task. Let us assume PC i captures the maximum number
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of preemptions due to the preempting task Ti.

Our goal is to compute the additional cache miss penalty incurred by the pre-

empted task for all preemptions. In the following, we shall describe the ap-

proach for a single cache set. For set-associative caches, the following approach

is simply repeated for each cache set. We only describe the general idea in the

following. Details of the algorithm is provided in Appendix.

The idea behind our CRPD analysis is as follows. Our analysis first com-

putes an upper bound on the number of additional cache misses for each loop

context. A loop context is categorized by a sequence of loop iteration numbers.

Formally, a loop context C can be captured by a k-tuple 〈I1, I2, . . . , Ik〉, where

I1 represents the outermost loop iteration number and Ik represents the inner-

most loop iteration number. Our CRPD computation is primarily based on the

following insight. For each loop context C, an additional cache miss for a data

block should be taken into account only if the data block might be accessed in

loop context C and the data block access is persistent in the absence of preemp-

tion. Note that we do not need to consider the non-persistent data references

for CRPD analysis. This is because non-persistence already captures the worst

case. Therefore, for each loop context C, the number of additional cache misses

caused by preemptions cannot exceed the number of persistent data references

in C, in the absence of preemptions. For loop context C, let us assume that this

upper bound is captured by mmcC . We also observe that the number of inter-task

cache conflicts by the set of preempting tasks {T1, . . . , Tn} is bounded by the

number
∑n

i=0 PC i · DMGdata
i , where DMGdata

i captures the number of unique

data blocks accessed inside the preempting task Ti. Readers can refer to Sec-

tion 6.3 for further explanation on the idea of bounding additional cache misses

due to preemptions, by considering the effect of the preemptions on initially

persistent cache blocks.

To compute the total number of additional cache misses due to the set pre-

empting tasks {T1, . . . , Tn}, our analysis follows a greedy approach. We choose
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a loop context C that may lead to the maximum number of additional cache

misses (i.e. mmcC), but requires the minimum number of inter-task cache con-

flicts to evict out the set of persistent blocks in C. We continue choosing loop

contexts in such a fashion until we reach the upper bound on the number of

inter-task cache conflicts (i.e.
∑n

i=0 PC i · DMGdata
i ). The resulting number of

cache misses (i.e. the accumulation of mmcC values) is predicted as the CRPD

value. It is worthwhile to mention that the greedy heuristic is conservative and

the precision of the computed CRPD can be improved using a more accurate

technique (such as integer linear programming) and by compromising the anal-

ysis time. However, as our evaluation shows, we can still maintain a reasonable

overestimation ratio with this conservative CRPD analysis.

Interrupts during system call execution As a special case, we also have to

take into account the effect of interrupts happening inside system calls. Note

that, even if the time spent in interrupts is already accounted for in the WCRT

computation of the task (i.e. using Equation 6.1), we need to take into account

the delay caused by cache misses in a system call due to interrupts.

To do this, we need (1) to bound the number of interrupts occurring in a sys-

tem call, and (2) to bound the number of additional misses during the execution

of the system call. To bound the number of interrupts, we perform a fixed-point

computation in a similar fashion to Equation 6.1 and obtain Wi, which is the

execution time of the system call considering the effect of interrupts. Assume

that the period of an interrupt is Pi, then the number of interrupts occurring dur-

ing the execution of the system call can be bounded by
⌈
Wi

Pi

⌉
. Once we know

the number of interrupts, additional misses occurring in the system call (due to

interrupts) can be computed exactly in the same fashion as in a task (cf. Sec-

tion 6.2). Finally, the total cache delay induced by interrupts on a system call

can be added to the system call WCET.
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6.3 Disruption to cache persistence

In this section, we further elaborate on the idea of computing CRPD delay by

determining the disruption to persistent cache blocks due to preemptions.

The timing effect of a system call, task preemption or ISR (referred to as a

component C) due to cache evictions is summarized by a cache damage func-

tion, represented by DMGC . For each cache set s, DMGC(s) captures the num-

ber of unique blocks inside C mapped to s. This definition is used for both

instruction and data cache persistence. The type of the damage for data (in-

struction) cache will be represented by DMGdata
C (s) (DMG inst

C (s)).

The data cache damage is used to handle preemptions and system calls, but

the instruction cache damage is used only for system calls, as for instruction

cache we use an existing CRPD analysis [5]. We use persistence analysis for

both instruction and data caches. In the following, we shall describe our instruc-

tion and data cache persistence analyses using cache damage.

To describe the instruction and data cache analyses with cache damage, we

shall first define the concepts of temporal scope and younger set introduced in

[14].

Definition 6.3.1 (Younger set) Let B be a memory block mapped to cache set

s. The younger set of B, denoted as YSB, is the set of memory blocks that may

have smaller relative ages than B in cache set s, before the access to B.

Definition 6.3.2 (Temporal scope) The temporal scope TSB of a memory block

B indicates in which loop contexts B is accessed. It associates an integer inter-

val [l, u] to each loop L containing B. This integer interval captures the lower

and upper bounds on the iterations of L during which the accesses to B can take

place.
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Figure 6.1: Data cache damage example

Cache damage for instruction persistence analysis The instruction cache

persistence analysis determines the persistence of each instruction block B by

computing its respective younger set (YSB). LetA be cache associativity. Block

B is persistent if |YSB| < A. To compute the damage for the instruction per-

sistence analysis, we must compute for each set s, the maximum size of the

younger set for any block. With FIFO replacement policy, the damage of a

component can be computed simply by counting the number of blocks in the

component mapped to s. The damage of a component C for the set s is repre-

sented as DMG inst
C (s). The cache damage will need to be taken into account

when performing the persistence analysis of the main task. For each block B,

if any path from B to B goes through the component C, then the block B is

considered persistent if and only if DMG inst
C (sB) + |YSB| < A (where sB rep-

resents the cache set to which B is mapped).

Cache damage for data persistence analysis For data cache damage, we

need to count the number of unique memory block accesses inside component

C. Since componentC may be analyzed in a context-sensitive way, loop bounds

inside C may depend on the calling context of C (e.g. arguments) Therefore,

depending on the calling context, some references to memory blocks inside C

could never be accessed. The loop bounds inside C can be used together with

the temporal scopes of blocks, to determine if a specific block can be accessed

during a specific calling context. When performing the persistence analysis of
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the main task, damage is accounted similarly to the instruction cache as follows:

for each block B, if any path from B to B goes through C, block B is consid-

ered persistent if and only if DMGdata
C (sB) + |YSB| < A (where A is cache

associativity).

An example In the example shown in Figure 6.1, blocks m1 , m2 , and m3 are

mapped to the same cache set in a 2-way associative cache. In the considered

calling context, the loop iterates at most 5 times. Only block m2 is accessed,

because the temporal scope of m3 indicates that m3 is accessed only during

iterations 6 to 10. Therefore, the damage is 1.

When analyzing the main task, we try to determine the persistence sta-

tus of m1 . The younger set is |YSm1| = 0, and since the path from m1

to another access of m1 passes through C, we need to check the condition

|YSm1| + damage < 2. The condition is true, therefore m1 is persistent. Let

us now assume a different calling context, causing the loop to iterate 10 times.

Then in the component both m2 and m3 will be accessed, the damage will be

2, and m1 will not be persistent.
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Chapter 7

Evaluation

In this chapter, we give the structural overview of our robot control application

along with experimental results obtained from our evaluation. Based on the

result, we proceed to verify if our application meet its real-time constraints.

7.1 Robot controller overview

As mentioned in Section 1, for our robot controller application, we adapted open

source application code written for EyeBot controller. Specifically, the source

code of Bally2 [1], an experimental real life self balancing robot, is adapted as

runnable tasks on top of µC/OS-II kernel. To realize our application scenario,

we augmented Bally2 with an obstacle detection program written for Eyebot.

We also wrote some additional codes, such as low level drivers, to port the

programs to our APF28-Dev hardware board.

Our robot controller consists of 3 main tasks and 4 interrupt service rou-

tines (ISRs). The function of each task or ISR is briefly described in Ta-

ble 7.1. The size and code complexity of each task is given in Table 7.2. Both

balance and navigation are periodic tasks running at 50Hz and 20Hz re-

spectively. remote task is sporadic and blocked on a semaphore released by

infrared_isr.

tick_isr is an ISR servicing periodic interrupt due to OS tick. gyro_isr,
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inclino_isr and infrared_isr are ISRs servicing interrupts generated

from gyroscope, inclinometer and infrared sensor respectively. These are spo-

radic interrupts generated when there are new sensor readings. As we are

only interested in finding the WCRT of tasks, we assume a worst case sce-

nario where sporadic interrupts always arrive at its minimum interarrival time.

In the case of our application, we assume that gyro_isr, inclino_isr and

infrared_isr all arrive at a rate of 1Khz.

Task/ISR Priority Description
balance 4 Calculation to keep balance using input

(highest) from gyroscope and inclinometer.
navigation 6 Auto navigate to destination while

(lowest) avoiding obstacles.
remote 5 Receive remote command via infrared.
tick_isr - Periodic OS tick.
gyro_isr - Process interrupt from gyroscope.
inclino_isr - Process interrupt from inclinometer.
infrared_isr - Process interrupt from infrared sensor.

Table 7.1: Tasks and ISRs in our system. Lower priority value means higher
priority. (µC/OS-II reserves 4 lowest priorities)

Task Number of Number of Number of Number of
instructions basic blocks loops system calls

balance 6914 1403 6 3
navigation 3899 496 11 7

remote 239 43 2 3

Table 7.2: Code complexity of robot controller tasks

7.2 Issues and assumptions

One of the implementation issues for our robot controller application is that

µC/OS-II does not have out of the box support for strictly periodic tasks. For

a task to always run at some interval, µC/OS-II only provides OSTimeDly

system call which delays execution of a task by a specified number of ticks.

The system call does not take into account the execution time of the task and
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may result in a task running at irregular periods. Instead of delaying a task by its

period, we have to delay it by the difference between its period and the execution

time of the current invocation of the task.

Currently, our analysis tool does not handle tasks with dynamic priorities.

Thus, we do not allow µC/OS-II to change task priority in runtime and we ensure

that there is no scenario in which priority inversion may happen.

7.3 WCET analysis result

We perform measurement on the execution time of each task and ISR running

on our APF28-Dev board. To measure the execution time of a portion of code,

the time before the execution of the code portion is written to an unused mem-

ory address on the board’s RAM. Likewise, we also store the time at the end

of the code portion. The stored values are read through the board’s JTAG in-

terface to minimize the effect of measurement on actual execution. To ensure

that we measure the uninterrupted execution time of a task or ISR, we disable

all interrupts and prevent other tasks from running.

For each task and ISR, we compare the observed WCET from our board with

the estimated WCET from Chronos. The result is presented in Table 7.3. We

also compare the WCET overestimation, which is defined as Estimated WCET
Observed WCET

,

between tasks and ISRs in Figure 7.1.

Task Observed WCET Estimated WCET Over-
(cycle) (cycle) estimation

balance 105120 380179 3.62
navigation 3871655 10803600 2.79

remote 17422 61124 3.51
tick_isr 3159 8056 2.55
gyro_isr 1438 3087 2.15

inclino_isr 1324 3291 2.49
infrared_isr 4256 20330 4.78

Table 7.3: WCET (in CPU cycles) of all tasks and ISRs
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Figure 7.1: WCET overestimation of all tasks and ISRs

We observe overestimation values ranging from 2.15 to 4.78 for all tasks and

ISRs. The average overestimation ratio is 3.12. navigation task detects col-

lision by processing captured image to detect the edges of a colliding object and

attempts to navigate away from it. Thus, navigation task has many loops

referencing data exhibiting spatial locality pattern. The data persistence analy-

sis is effective in bounding the execution time of loops exhibiting such pattern

and this resulted in navigation task having a relatively lower overestimation

than the other tasks despite being more complex.

balance task contains floating point operations although our ARM926EJ-

S processor does not have a built-in hardware floating point unit. Thus, we

have to compile our application with a software floating point library. Some of

the library functions being used contain loops with loop bounds that are hard

to derive. We have to put conservatively high loop bounds to some of these

loops, which may have contributed to the high overestimation ratio of 3.62 for

balance task.

infrared_isr has a high WCET overestimation despite being a small

interrupt handler code. infrared_isr decodes infrared pulses that come in

bursts, and sends signal to the robot controller once it receives sufficient pulses

to decode the information. However, our WCET analysis always assumes the
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worst case timing scenario (i.e. sending signal to the robot controller) whenever

infrared_isr is executed.

7.4 WCRT analysis result and deadline verifica-

tion

In Section 3, we argue that using an integrated timing analysis approach can

more accurately estimate the timing bound of a real-time application running on

top of an RTOS. We aim to compare the result between (i) analyzing the RTOS

in isolation and (ii) using our integrated analysis. We compute the WCRT of

each task (with the fixed-point computation formula in Equation 6.1) through

both approaches and compare them with the WCRT that we observe on the

APF28-Dev board. For approach (i), we flush both the instruction and data

caches after each context switch from OS to application. Note that flushing the

caches may not necessarily lead to worst-case micro-architectural state changes,

due to the possible presence of timing anomaly. However, we will at least obtain

an optimistic WCRT overestimation using approach (i). The experimental result

is presented in Table 7.4. WCRT overestimation of both approaches is compared

in Figure 7.2.

Task Deadline
(ms)

Observed
WCRT

(ms)

Isolated approach Integrated approach
Estimated

WCRT
(ms)

Over-
est.

Estimated
WCRT

(ms)

Over-
est.

balance 20 0.240 2.172 9.04 1.331 5.54
navigation 50 9.013 50.442 5.60 36.936 4.10
remote 100 0.245 2.480 10.13 1.478 6.04

Table 7.4: WCRT (in milliseconds) of all tasks

7.4.1 Comparison of both approaches

From Table 7.4, we observe that for all the robotic application tasks, our inte-

grated analysis (i.e. approach (ii)) has between 1.50 to 4.09 less overestimation
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Figure 7.2: WCRT overestimation of all tasks

compared to approach (i). The higher overestimation of approach (i) is mainly

due to the overestimation of cache misses from context switching between OS

and application code. It is more apparent in smaller tasks (e.g. balance,

remote) due to a higher OS overhead ratio compared to actual application ex-

ecution time.

7.4.2 Integrated analysis result

For our integrated analysis, the average WCRT overestimation ratio is 5.23. We

attribute the high overestimation ratio (compared to WCET analysis) to the dif-

ficulty in observing the WCRT of tasks on the hardware. As we cannot control

the exact program points in which task preemptions or interrupts occur, it is hard

to guide a task towards its worst case execution scenario while taking measure-

ment for observed WCRT. We rely on repeated measurements and choose the

maximum response time over a large set of response time values. It is possible

that the actual WCRT is higher than our observed WCRT.

7.4.3 Deadline verification

With our result, we can verify whether our system meet the real-time constraints

presented in Table 1.1. For balance and navigation tasks, since they are

required to always run at a specific frequency, each task invocation is required
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to finish execution within its period. In this case, its deadline is equivalent to

its period. balance task has a period of 20ms since the task is required to

run at 50Hz. The computed WCRT for the task (refer to Table 7.4) is 1.331ms,

which is less than the task’s period. Thus balance task meets its real-time

constraint. Likewise, navigation and remote tasks also meet their respec-

tive deadlines.

Note that all tasks in our application meet their deadlines under any environ-

mental conditions. Thus, we can conclude that our robot controller can never

fail to balance itself while navigating rough terrain, and still be able to receive

and process remote commands without missing any signal.

7.5 Discussion

7.5.1 Effect of application on WCET of system calls

We observed that WCET of many system calls are significantly affected by the

application due to these factors:

• Calling parameters Parameters passed to system call from applica-

tion may affect the control flow within the system call. For example,

OSTaskSuspend takes a priority value as input argument, and sus-

pends the task with the associated priority value. If the task calling

OSTaskSuspend is the suspended task itself, then a context switch will

happen to switch execution to a pending task. Otherwise if the calling

task is not the suspended task, no context switch happens and the com-

puted WCET for OSTaskSuspend will be much smaller.

• Application dependent configuration A static system configuration pa-

rameter (e.g. task stack size), for which its value is application-dependent,

may affect the execution time of some system calls. For example,

OSTimeTick has a loop bounded by the number of tasks in the applica-

tion. Thus, WCET of OSTimeTick can be refined if we have informa-
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tion about the number of tasks.

We have listed some system calls in µC/OS-II which have application de-

pendent WCET in Table 7.5. By considering the user application when perform-

ing timing analysis on system calls, we reduce the pessimism in the estimated

WCET of these system calls, which in turn reduce the overestimation for WCET

of each task. For example, when analyzing OSTimeTick, given that there are

3 tasks in our robot controller, we estimate the WCET to be 8027. If we ignore

information from application level and just assume the maximum possible num-

ber of tasks, the estimated WCET would instead be 78056 (refer to Table 7.5),

which is a gross overestimation.

System call Range of estimated WCET (cycle)
OSTaskSuspend 2660 – 5210
OSTaskResume 4189 – 4942
OSTimeTick 3946 – 78056

Table 7.5: System calls with WCET which can be refined to a lower value with
information on the application

7.5.2 Impact of pipeline flushes compared to cache evictions

A real-time application running on top of an RTOS introduces overhead due

to supervisory code from the OS. This overhead includes both the execution

time of OS code and the impact on hardware due to context switching between

OS code and application code. In this work, we mainly focus on the effect on

caches. This is because of the significant overhead due to cache misses. In Table

7.6, we show the impact on hardware pipeline and caches due to interruptions

from system calls and ISRs, as a fraction of the estimated WCRT of each appli-

cation task. The impact on hardware due to OS overhead is around 2–6% of the

total estimated WCRT in our robotic application.
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Task Estimated WCRT Pipeline cost Cache eviction cost
(cycle) (cycle) (cycle)

balance 604329 4200 25900
navigation 16769164 65660 410760
remote 671051 4480 33040

Table 7.6: Impact on pipeline and caches (in CPU cycles) due to OS overhead

7.6 Distribution of our tool

We have made our analysis tool available publicly under the name of Chronos-

RTOS [6]. Apart from the robot controller application, our analysis can be ap-

plied to other embedded applications. To use our tool, the user needs to provide

the follow inputs:

Executable binary of the application Chronos-RTOS accepts a single exe-

cutable ARM binary as the input program. For RTOS such as µC/OS-

II, the application tasks and operating system code are compiled into one

single binary.

Processor configuration A configuration file, processor.opt, is included

in the distribution. The user can modify the file to model the effect of

different cache size, cache associativity, branch predictor, etc.

Task/ISR configuration The user needs to specify the name of each task and

ISR running on the RTOS. For each task or ISR, the user also has to pro-

vide its fixed priority, period/minimum interarrival time (in milliseconds)

and indicate whether it is a task or ISR.

Currently, Chronos-RTOS supports the ARM9 architecture, but it can be

extended to support other similar architectures.

43



44



Chapter 8

Related work

Research on worst case execution time (WCET) analysis of embedded software

has been started two decades ago. A comprehensive survey describing different

techniques and tools for WCET analysis has appeared in [12]. Existing WCET

analysis techniques assume a direct interaction between an application and the

underlying hardware. However, most real-life embedded software are developed

in the presence of a supervisory software (e.g. an RTOS). Our work analyzes

the WCET of an embedded software in the presence of an RTOS, which in turn

interacts with the underlying hardware. Therefore, our work extends state-of-

the-art WCET analysis via analyzing a realistic execution platform that consists

of an RTOS as well as a real hardware.

Several research activities [8, 11] have leveraged the progress in WCET

analysis to analyze the WCET of an RTOS. A more comprehensive survey of

such RTOS analysis techniques can be found in [10]. However, works in [8, 11]

analyze RTOS as a standalone application, meaning that timing interactions be-

tween an application and the RTOS are not taken into account while computing

the WCET. Existing work [19] has discussed the potential unsound WCET com-

putation of an application without considering RTOS effect. However, works in

[8, 11] do not consider the micro-architectural state changes in an application

due to kernel mode operations. Therefore, such works cannot be directly used
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to compute a sound WCET of an application in the presence of an RTOS. In

contrast to the approaches proposed in [8, 11], we have devised novel compo-

sitional methodologies that systematically combine timing interactions between

an application and an RTOS to obtain a sound WCET of the application. There-

fore, our proposed framework has established a direction where the technical

problems discussed in [19] can be solved for a real-life application on a realistic

execution platform.

Research on compositional cache analysis has been performed, among oth-

ers, in [16, 7, 3]. However, such compositional cache analyses have only tar-

geted the reuse of timing summary for commercial off-the-shelf components

(COTS), such as library codes. On the contrary, we propose a generic com-

positional framework for cache analysis, where the compositional strategy can

be applied to handle any system-level timing effect. Such system level timing

effects can be arbitrarily complex, such as individual timing effects due to sys-

tem calls and external interrupts, as well as their complex combinations. More-

over, our compositional analysis framework has been designed, implemented

and evaluated on a real hardware running an RTOS.

In summary, our work takes a first step forward to bridge the gap between

WCET research activities at application level and RTOS level. To accomplish

our goal, we leverage the concept of compositional analysis and we have built a

generic timing analysis framework in the presence of supervisory software.
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Chapter 9

Conclusion

We have proposed a general solution for analyzing real-time, embedded appli-

cation in the presence of a supervisory software (e.g. operating system). Our

proposed analysis method models the micro-architecture of a real-life processor.

Such an analysis methodology enables us to verify that individual tasks consti-

tuting the robot controller finish within the required deadline and such a verified

controller is thus perfectly safe to use on the respective execution platform.

Apart from the technical novelties in our analysis - we propose a generic

compositional WCRT analysis framework and we consider the effect of RTOS

routines on the underlying application via a reusable summary of micro-

architectural state changes, our work also involved very substantial system

building effort. These include porting an RTOS to run on ARM926EJ-S ar-

chitecture, construction of a real-time robot controller application from open

source code and writing of low level drivers for our APF28-Dev board to sup-

port the robotic controller. To the best of our knowledge, ours is the first work

in WCET analysis that considers an application in the presence of an operating

system.
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CRPD Analysis for data caches

Algorithm 1 CRPD analysis for data caches with FIFO replacement policy
1: Input:
2: T : the preempted task
3: {T1, . . . , Tn}: Set of preempting tasks
4: Say PC i captures the number of preemptions by task Ti
5: Say DMGdata

i is the ageing due to task Ti
6: L: The set of innermost loops in T
7: ctx (L): the list of contexts for loop L
8: set : the currently analyzed cache set
9: Output:

10: crpd(set): the CRPD of task T for set
11:
12: /*MDDP = Maximum Damage Due to Preemption */
13: MDDP ←

∑n
i=1 PC i · DMGdata

i (set)
14: /*Compute possible misses for each loop context */
15: let λ be an empty list of integer pairs
16: ctxlist ← {(c, L) | L ∈ L ∧ c ∈ ctx (L)}
17: for (c, L) ∈ ctxlist do
18: let B be the set of memory references within L or any
19: loop enclosing L
20: mmc ← |{b | b ∈ B ∧ |YS b| < A ∧ c ∈ TS b}|
21: mna ← min({x | b ∈ B ∧ x = A− |YS b| ∧ c ∈ TS b})
22: insert pair (mmc,mna) into λ
23: end for
24: /*Compute maximum total misses */
25: misscount ← 0
26: while (λ 6= ∅) ∧ (MDDP > 0) do
27: select (mmc,mna) from λ such that mmc

mna
is highest

28: remove (mmc,mna) from the list λ
29: u← min(MDDP ,mna)
30: misscount ← misscount + u× mmc

mna

31: MDDP ← MDDP − u
32: end while
33: crpd(set)← dmisscounte ×misspenalty

Algorithm 1 describes the CRPD computation. It can be briefly summarized

as follows. Recall that the younger set (cf. Definition 6.3.1) of a memory block

b is captured by YS b and the temporal scope (cf. Definition 6.3.2) of block b is

captured by TS b.

• We first compute MDDP , the upper bound on the number of inter-task

cache conflicts due to preemptions (line 13).
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• For each loop iteration context c, mna captures the minimum needed age-

ing for any additional misses to occur. More precisely, if the amount of

inter-task cache conflicts is below mna, no additional cache miss can oc-

cur in loop iteration context c. The variable mmc captures an upper bound

on the additional misses in loop iteration context c. Specifically, mmc is

the number of data blocks that are accessed in context c and persistent

in the absence of preemption. It is worthwhile to note that the additional

misses in context c will always be bounded by mmc, irrespective of the

number of preemptions. This is computed in lines 15-23.

• Our goal is to maximize the number of additional misses. The general

idea is to assign preemption-related ageing in a greedy fashion. More

precisely, we always pick a loop context having the highest mmc
mna

ratio (i.e.

causing the most additional misses, while needing the less preemption-

related ageing). This computation has been performed in lines 25-32.
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