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Summary

Debugging consumes significant amount of resources in software development

projects. The inadequacy of used debugging techniques costs the global econ-

omy billions of dollars annually. Automated program repair is a promising

technology that can reduce the cost of debugging by automatically eliminat-

ing program defects.

Early test-driven program repair techniques that scaled to large real-world

programs utilized syntactic search without comprehending the meaning of the

program and the defect. Although such techniques demonstrated encourag-

ing results, they suffer from several limitations. First, since a test suite is

an incomplete specification, automatically generated patches may not cor-

respond to user intentions but merely overfit the tests. Secondly, syntactic

techniques scale to relatively small search spaces and therefore can address

only a small number of defects.

This work introduces a series of techniques to address the aforementioned

challenges of automated program repair. These techniques are united by the

idea of revealing the underlying program structure by means of semantic

analysis. First, we propose an approach of encoding the repair problem as

an instance of maximum satisfiability problem by reusing existing program
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synthesis and error diagnosis methods. Secondly, we devise a concise seman-

tic signature that scales constraint-based repair to large real-world programs

and that is capable of representing complex program changes. Third, we

suggest an approach to increase the quality of generated patches by inferring

missing specification from a reference implementation. Finally, we introduce

symbolic execution with existential second-order constraints — an extension

of symbolic execution that helps to alleviate the path explosion problem in

the context of program repair.

Our experiments showed that the proposed techniques advance the state

of the art of program repair. Semantic analysis helps to increase the quality of

automatically generated patches. Apart from that, it enables program repair

to scale to larger search spaces and consequently address more defect. We

view these results as a step towards developing a general-purpose automated

program repair system.
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Chapter 1

Introduction

Program debugging is an important part of software development and mainte-

nance. Debugging consumes significant percentage of resources for most soft-

ware development projects. With the growth of the complexity of software

systems, the number of bugs increases. The inadequacy of the used debug-

ging techniques has lead to serious economic problems [102]. The dominant

reason for the high cost of debugging is that this task is performed largely

manually.

Defect (or bug) is defined as the cause of a software failure, where failure

is a non-fulfillment of a given requirement. Program debugging is the task

of localizing and correcting faults [97]. Program debugging involves a large

number of activities that can vary depending on the used methodologies and

tools, but the main activities that constitute debugging are fault localization

(or isolation), fault understanding and fault correction. Fault localization

tries to identify the parts of the program that are responsible for the failure.

Fault understanding implies comprehending the cause of the failure. Fault

correction is a modification of the program that eliminates the fault [77].
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Due to the importance of the debugging problem, various debugging tech-

niques has been investigated by researchers. While bug localization tech-

niques have been extensively studied, they have not gained wide adoption

in industry [77]. One of the reasons of their poor adoption is that they are

typically focused on just providing a ranked list of faulty statements leaving

the burden of understanding and repairing the faulty code to developers.

Automated program repair is an emerging area of research whose goal is to

reduce the cost of debugging by automatically suggesting fixes. In the other

words, it takes account of the entire debugging process: fault localization,

fault understanding and fault correction. This can have significant impact

on the way developers debug and repair software and potentially lead to

wider adoption compared with automated debugging techniques. Besides,

automated program repair opens new opportunities such as developing self-

healing systems, which automatically detect incorrect behaviour and repair

it by modifying its own code. This might find applications in such fiels as

autonomous vehicles and the Internet of Things. Therefore, it is worthwhile

to investigate automated program repair techniques.

1.1 Problem definition

Automated program repair techniques automatically and semi-automatically

modify a given buggy program in order to eliminate a given defect. The

presence of a defect is identified using given correctness criteria such as a

test suite of a formal specification.

Fixing a defect may require implementing complex algorithms or making
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significant modifications to the source code, which makes the problem in-

tractable in the general case. To make automated program repair practical,

existing program repair approaches solve a simpler task. Specifically, they

search for a patch that satisfies given correctness criteria in a given space of

modifications.

More precisely, for a given program p with expressions e1, ..., en and a test

suite T such that there is at least one test in T on which p fails, we consider

the problem of finding a set of expressions e′1, ..., e
′
n such that a program p′ :=

p[e1 7→ e′1, ..., en 7→ e′n], obtained by substituting the expressions e1, ..., en

with the expressions e′1, ..., e
′
n, passes all the tests in T . There might be

many modifications that pass the tests and, since a test suite is an incomplete

specification, some of them might not correspond to the developer intentions.

Thus, the definition can be augmented with additional criteria for choosing

a patch such as a cost function that assigns lower cost to better patches.

The basic generate-and-validate repair algorithm [85] takes a buggy pro-

gram and a test suite containing at least one failing test as inputs and pro-

duces a plausible patch as the output. In detail, it (1) generates a search

space of candidate patches and (2) evaluates the candidates one-by-one by

executing tests until it finds a patch that passes the whole test suite. Most of

existing test-driven program repair techniques can be thought of as improve-

ments upon this baseline algorithm. Particularly, they seek to (1) populate

search space with effective patches, (2) assigning higher priority to quality

repairs, and (3) increase the exploration speed.
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1.2 Challenges

Exsiting program repair techniques have significant limitations. These limi-

tations are caused by two main conceptual challenges:

Tractability Program repair techniques should scale to large real-world pro-

grams. Apart from that, program repair approaches search for repairs

in huge spaces of candidate patches. Therefore, such system should

provide mechanisms to address search space explosion.

Precision Since most of existing techniques rely on tests as the correctness

criteria and tests is an incomplete specification, automatically gener-

ated patches may not satisfy user intentions, but overfit the tests [95].

Patches that merely pass given tests are referred to as plausible in lit-

erature [85]. Automated program repair system should either provide

formal correctness guarantees or maximize the probability of finding

correct repairs.

Other challenges of program repair include:

Quality Apart from correctness, read world software development project

pose additional requirements such as code clarity and maintainability.

Therefore, these criteria should be taken into consideration by auto-

mated program repair systems.

Speed Automated program repair systems should find patches within a

given time budget.
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Interactivity Since debugging is often an interactive process, automated

program repair should provide interactive repair capabilities.

Expressiveness Since it is impossible to address arbitrary kinds of defects,

automated program repair approaches should identify classes of defects

that are important and tractable.

Applications In order for automated program repair to be economically

viable, it is necessary to identify concrete usage scenarios.

Usability Automated program repair system should provide a convenient

interface for developers.

1.3 Semantic repair

Early test-driven program repair techniques such as GenProg [56] that scaled

to large real-world programs utilized search in a space of patches without

comprehending the meaning of the program and the defect. We refer to such

techniques as syntactic. Although such techniques demonstrated encourag-

ing results, they suffer from limitations in precision and scalability. Since

syntactic techniques do not comprehend the meaning of the defect and the

program, they have only restricted means of ensuring correctness of gener-

ated patches, which leads to test overfitting. Since the space of syntactic

changes is huge for large real-world programs, syntactic techniques are able

to address only a small number of defects.

Contrary to syntactic techniques, semantics-based repair [73] aims to re-

veal the underling meaning of the program and the defect. First, this can

5



Buggy program

Patch

Patched program

specification
Inference Synthesis

Figure 1.1: Semantic program repair workflow.

help to navigate the conceptually large search space. Secondly, semantics-

based program repair provides excellent opportunities for improving patch

correctness of generated patches. Typically, semantics-based techniques tech-

niques split patch generation into specification inference and patch synthesis

as shown in Figure 1.1. The inferred specification represent the meaning

of the defect and therefore might be used to provide additional correctness

guarantees.

Despite their benefits, previous semantic techniques suffered from im-

portant limitations. First, complex logical reasoning employed by such tech-

niques limited their scalability to large real-world software. Secondly, seman-

tic techniques based on path exploration [73] suffered from path explosion

problem that restricted their effectiveness. Finally, since previous techniques

inferred specification from tests, this specification only captured the prop-

erty of “passing the tests”. Thus, semantic techniques also suffer from test

overfitting problem.

The goals of this thesis is to improve existing and develop new seman-

tic analysis techniques for automated program repair to address its major

challenges such as tractability and precision. Specifically, we propose a cohe-

sive semantic program repair framework that consists of the following tightly

6



integrated components:

• An approach of encoding the repair problem as a instance of satisfiabil-

ity problem by reusing existing program synthesis and error diagnosis

methods. We demonstrate that this method is able to generate com-

plex multi-line repairs and provide higher quality repairs compared with

previous techniques.

• An approach to scale semantic program repair to large real-world pro-

grams. To ensure its scalability, we devise a concise semantic signature

whose size is independent on the size of the program and yet it is ca-

pable of representing complex multi-line program changes.

• An approach of inferring missing specification from a reference imple-

mentation in order to increase the quality of generated patches and

provide additional correctness guarantees.

• Symbolic execution with existential second-order constraints — an ex-

tension of symbolic execution that helps to address the path explosion

of symbolic execution in the context of program repair.

Our techniques impact the current state of practice by assisting developers

in fixing defects. Specifically, the developed system enables developers to

automatically and efficiently repair large number of defects in real-world

software. It also provides additional guarantees that increase the probability

that the automatically found patches are correct. This can impact developers

productivity and increase the quality of software.

7



The thesis provides the following implications for future research: (1) se-

mantic techniques based on constraint solving can scale to large real-world

software and generate non-trivial patches and (2) semantic analysis tech-

niques provide additional means of increasing correctness and quality of gen-

erated patches.
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Chapter 2

Background

In this chapter, we recap the essential background knowledge for this the-

sis including satisfiability solving, symbolic execution, debugging, program

synthesis and program repair.

2.1 Satisfiability

Propositional satisfiability (SAT) is the problem of determining whether a

given propositional formula such as (α1∨¬α2)∧α3 is satisfiable. Particularly,

the problem consists in identifying if there exists an assignment of formula

variables that makes the formula True, and also finding such a satisfying

assignment. Although this problem is NP-complete [19], efficient algorithms

such as CDCL [93] have been proposed that can handle large complex for-

mulas in practice. Indeed, recent advances in SAT solving have enabled new

powerful techniques for software development.

In many applications, it is inconvenient and inefficient to encode problems

through propositional formulas. Satisfiability modulo theories (SMT) [9] ad-
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dresses this by deciding the satisfiability of quantifier-free formulas such as

(α1 > 1) ∧ (α2 + α3 > 2) w.r.t. given background theories. Commonly em-

ployed background theories include the theories of integer linear arithmetic,

bitvectors and arrays. Although state-of-the-art solvers such as Z3 [21] and

MathSAT [17] realize sophisticated decision procedures to solve formulas over

various background theories, there are theoretical considerations that limit

their capabilities (e.g. non-linear integer arithmetic is undecidable [65]).

Each propositional formula can be transformed into an equisatisfiable

formula in CNF form (a conjunction of clauses, where each clause is a dis-

junction of variables or their negations) using e.g. Tseytin algorithm [105].

Maximum satisfiability (MAX-SAT) is a generalization of SAT whose ob-

jective is to find the maximum number of clauses in a CNF formula that

can be satisfied. Maximum satisfiability modulo theories (MAX-SMT) is a

generalization of MAX-SAT for SMT. Partial maximum satisfiability (Partial

MAX-SAT/Partial MAX-SMT) is a generalization of MAX-SAT/MAX-SMT

in which some of the formula clauses are marked as hard and some are marked

as soft. Then, the goal is to find the maximum number of soft clauses that

are consistent with the hard clauses. One of the approaches to solve (Par-

tial) MAX-SAT/MAX-SMT is to iteratively invoke a SAT/SMT solver to

determine soft clauses that can be relaxed, as in Fu-Malik algorithm [31].

In this thesis, we consider formulas and terms built from predicate and

function symbols (e.g. “+”, “−”, “>”) from a given signature Γ. We denote

the set of all such formulas and terms as LΓ. We also consider a background

theory T that fixes the interpretations of the symbols in Γ. We use the

letters α, β, γ and δ to denote variables from LΓ, and the letters π, φ and ψ

10



to designate formulas from LΓ.

Assume that {α1 7→ n1, ..., αk 7→ nk} is an assignment of the variables

from LΓ (a mapping from the variables to values). We say that this as-

signment satisfies a formula π iff a substitution of the variables αi with the

corresponding values ni (denoted as JπK{α1 7→n1,...,αk 7→nk}) evaluates to True.

2.2 Programs

We consider programs written in an imperative programming language. Pro-

grams are denoted as p1, ..., pk and the set of all program as P . We define

p[e 7→ e′] as a program obtained from p by substituting an expression e with

e′. Program variables are represented as v1, ..., vk and the set of all program

variables as V . The considered programming language contains a statement

assume defined as follows:

assume(φ) := if (¬φ) { LOOP : goto LOOP; }

that is this statement triggers a non-termination (an infinite loop) when the

given condition does not hold.

Concrete program states (functions from program variables to values) are

indicated as σ and the set of all concrete program states is denoted as Σ;

two concrete program states σ1 and σ2 are equal iff ∀v ∈ V . σ1(v) = σ2(v).

We indicate a program state obtained from σ by updating the value of the

variable v to n as σ[v 7→ n]. The value of an expression e evaluated in the

context σ is denoted as JeKσ. We define a concrete program execution as in

11



the following:

Definition 1 (Concrete execution). A concrete execution procedure Exec :

P × Σ → Σ ∪ {ω} is a function that for a given program p and a concrete

input state σin returns the corresponding output state σout if the program

terminates, and the literal ω otherwise.

Definition 2 (Partial equivalence under σ). Let p1 and p2 be programs, σ be

a program state. We say that p1 and p2 are partially equivalent under σ iff

at least one of the following holds:

• Exec(p1, σ) = ω;

• Exec(p2, σ) = ω;

• Exec(p1, σ) = Exec(p2, σ).

Conditional equivalence [46] is a relaxed notion of partial equivalence that

checks equivalence only for a subset of inputs.

Definition 3 (Conditional partial equivalence). Let p1 and p2 be programs,

φ ∈ LΓ be an input condition. We say that p1 and p2 are conditionally par-

tially equivalent under an input condition φ iff they are partially equivalent

under each input in {σ | JφKσ = True}.

2.3 Symbolic execution

Symbolic execution is a powerful program analysis technique that relies on

SMT solving. Having been originally proposed for software testing [49, 13],
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it has since found a wide range of other applications in software engineering

including software verification [37], program debugging [82] and program

repair [73]. In symbolic execution, program inputs are assigned symbolic

variables instead of concrete values. The result of executing a program with

symbolic inputs is a set of constraints over these symbolic variables called

path conditions. The path condition of a program path captures all inputs

that would drive the execution along this program path. SMT solvers are

used in symbolic execution engines to generate concrete program inputs by

solving path conditions and to determine the feasibility of paths (if there is

at least one input that drives the execution along the considered path).

Symbolic execution operates symbolic program states. We use the letter

θ to indicate symbolic program states, that is functions from program vari-

ables to logical terms from LΓ (for a program variable v, the corresponding

logical term is θ(v)), the set of all symbolic program states is denoted as Θ.

We express the equality of two symbolic program states θ1 and θ2 as the for-

mula θ1 = θ2 :=
∧
v∈V θ1(v) = θ2(v). We indicate a symbolic program state

obtained from θ by updating the value of the variable v to φ as θ[v 7→ φ].

We denote a logical term computed by evaluating a program expression e in

the context θ as JeKθ. We also introduce a concretization of symbolic states

defined as follows:

Definition 4 (Concretization). Let θ be a symbolic program state, {α1 7→

n1, ..., αk 7→ nk} be an assignment of the variables from LΓ. A concrete

state JθK{α1 7→n1,...,αk 7→nk} is the concretization of θ with the assignment {α1 7→
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ALGORITHM 1: Symbolic interpreter

Procedure symInter(instruction pointer IP, symbolic state θ, path condition π)
I := getInstruction(IP);
switch I do

case Assignment v := e do
θ′ := θ[v 7→ JeKθ];
IP ′ := increment(IP);
symInter(IP ′, θ′, π);

end
case Conditional if e then C1 else C2 do

φ := π ∧ JeKθ;
if isSatisfiable(φ) then

IP ′ := getPointer(C1);
symInter(IP ′, θ, φ);

end
... // check the other branch

end
otherwise do

... // handle other instructions
end

end

n1, ..., αk 7→ nk} is defined as follows:

JθK{α1 7→n1,...,αk 7→nk} := λv. Jθ(v)K{α1 7→n1,...,αk 7→nk}

that is a mapping of program variables into values expressed using lambda

notation, computed by substituting all the variables αi in the logical terms in

the codomain of θ with the corresponding values ni.

In this thesis, we consider symbolic execution from two angles: an opera-

tional perspective that characterizes symbolic execution as a program anal-

ysis mechanism and a denotational perspective that characterizes symbolic

execution as a program comprehension mechanism.

From the operational perspective, symbolic execution is a generalized

program interpreter that maintains symbolic memory and path conditions as
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shown in Algorithm 1. The function symInter takes an instruction pointer,

a symbolic program state and a path condition, performs symbolic execution

of the corresponding instruction, and recursively continues execution. For an

assignment v := e, this function updates the state by replacing the value of

v with e evaluated in the context θ (denoted as JeKθ). Then, the execution

continues from the next instruction. For a conditional if e then C1 else C2,

this function checks whether the if-condition is consistent with the current

path condition and whether the negation of the if-condition is consistent

with the path condition (the later case is omitted). If the constraint is

satisfiable, the algorithm continues execution of the corresponding branch

with an augmented path condition.

From the denotational perspective, symbolic execution is an approach to

extract specification or summary of program behaviour. For this, we define

symbolic execution non-constructively as follows:

Definition 5 (Symbolic execution). Symbolic execution SymExec : P×Θ→

2LΓ×Θ is a function that for a given program p and a symbolic input state

θin returns a finite set of pairs {(π, θout)}, where π is the path condition and

θout is the corresponding symbolic output state. For each assignment of the

symbolic variables {α1 7→ n1, ..., αk 7→ nk}, if this assignment satisfies the

formula π, then σout = Exec(p, σin), given that σin := JθinK{α1 7→n1,...,αk 7→nk}

and σout := JθoutK{α1 7→n1,...,αk 7→nk}.

Obviously, SymExec can be implemented using the procedure symInter pre-

sented in Algorithm 1.

Consider the function search in Figure 2.1a. This function takes an array
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size_t search(int data[],

size_t len ,

int (*pred)(int)) {

size_t i;

for (i = 0; i < len; i++)

if (pred(data[i]))

return i;

return len;

}

(a) Search function.

Executing search with symbolic inputs α1, α2, α3:

int pos(int x) { return x > 0; }

search ((int []){α1, α2, α3}, 3, pos);

Symbolic input state:

θin := {data[0] 7→ α1, data[1] 7→ α2, data[2] 7→ α3, len 7→ 3}

Symbolic execution results:

Path condition π Generated input Output state θout
α1>0 {α1 7→ 1, α2 7→ 0, α3 7→ 0} {return 7→ 0, ...}
α1≤0 ∧ α2>0 {α1 7→ 0, α2 7→ 1, α3 7→ 0} {return 7→ 1, ...}
α1≤0 ∧ α2≤0 ∧ α3>0 {α1 7→ 0, α2 7→ 0, α3 7→ 1} {return 7→ 2, ...}
α1≤0 ∧ α2≤0 ∧ α3≤0 {α1 7→ 0, α2 7→ 0, α3 7→ 0} {return 7→ 3, ...}

(b) Symbolic execution.

Figure 2.1: Testing search function via symbolic execution.

data, a value len representing its length, a pointer to a predicate function

pred, and returns the index of the first element of the array that satisfies the

predicate.

In symbolic execution, numeric inputs are replaced with logical variables

as shown for the elements α1, α2, α3 of the array in Figure 2.1b. Assume that

the predicate pred is a function pos that checks if a given value is positive.
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In this context, symbolic execution explores four paths as shown in the table

in Figure 2.1b, in which the path conditions π are constraints over the vari-

ables α1, α2, α3, and the output states contain a special variable return that

captures the return value of the function. The test inputs generated for each

path by solving the corresponding path condition are shown in the column

“Generated input”.

2.4 Program synthesis

Program synthesis is a methodology for automatically constructing programs

that satisfy given requirements. From the logical point of view, program

synthesis can be considered as a second-order constraint solving [20]. For

example, for a given set of tests t1, ..., tn, where each test ti := (σi, ri) is a

pair of input state σi and an output value ri, program synthesis problem can

be expressed as a second-order satisfiability problem over terms e:

∃e ∈ LΓ.
∧
i

JeKσi = ri (2.1)

The most trivial approach to solve the above formula is to enumerate all

possible terms until we find a term that satisfies the formula. However, this

approach might have performance limitations due to the large search space.

In this thesis, we focus on synthesis algorithms that reduce this problem to

SMT solving.
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Figure 2.2: Encoding space of terms via integer location variables.

2.4.1 SMT-based component-based program synthesis

Jha et al. [38] proposed to solve the formula (2.1) by semantically encoding a

space of terms using linear integer arithmetic constraints. In this approach,

terms are represented as circuits built from user-provided components such

as addition, subtraction, etc. Connections between components are captured

using integer location variables. For each component, location variables are

introduced for its output and all its inputs. If the location of an input of one

component coincides with the location of the output of another component,

they are considered to be connected. Thus, given a valuation of location

variables, we can reconstruct a program from the connected components.

The goal of an SMT solver in this case is to find a valuation of location

variables that corresponds to a program that passes all the tests.

Assume that outi is the output of i-th component, loi is the location of

the output of the i-th component, inji is the j-th input if the i-th component,

li ji is the locations of the j-th input if the i-th component, C is the number

of components, Ni is the number of inputs of the i-th component, Fj is the

semantics if the j-th component (e.g. λxy. x + y for addition). The set of
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well-formed terms is encoded using φwpf := φrange ∧ φcons ∧ φacyc, such that

φrange :=
∧

i∈[1,C]

(
0 ≤ loi < C ∧

∧
j∈[1,Ni]

0 ≤ li ji < C
)

φcons :=
∧

i,j∈[1,C],i 6=j

loi 6= loj

φacyc :=
∧

i∈[1,C],j∈[1,Ni]

loi > li ji

where range constraints φrange allocate inputs and outputs within a legal

range, consistency constraints φcons ensure that all outputs have unique lo-

cations, and acyclicity constraints φacyc forbid loops. Besides, connection

constraints φconn bind location variables and connections between compo-

nents, and semantic constraints φsem define the relation between components’

inputs and outputs:

φconn :=
∧

i,j∈[1,C],k∈[1..Ni]

loi = likj ⇒ outi = inkj

φsem :=
∧

i∈[1,C]

outi = Fi(in
1
i , in

2
i , ..., in

Ni
i )

A term is constructed from an assignment of locations variables that sat-

isfies φwpf ∧φconn ∧φsem using a function Lval2Term. This function connects

inputs and outputs of components that have the same location. For example,

λxy. x+y is constructed from the assignment in Figure 2.2b (as in the circuit

in Figure 2.2a).

19



2.5 Debugging

Since debugging consumes substantial amount of resources in practice, ap-

proaches to automated this process have been extensively studied. A group

of debugging techniques is focused on fault localization, that is identifying

the part of the program that is responsible for the failure.

Statistical fault localization [60, 2, 41] is a family of techniques based on

statistical information, First, statistical fault localization methods count the

number of times each statement is executed by passing and failing test cases.

Then, they use this data to compute suspiciousness score for each statement.

For example, Tarantula [42] relies on the following formula to compute the

suspiciousness score:

score(stmt) :=
aef/(aef + enf )

aef/(aef + enf ) + aep/(aep + enp)
(2.2)

where aef is the number of failing tests that executed stmt , anf is the number

of failing tests that did not execute stmt , aep is the number of passing tests

that executed stmt , anp is the number of passing tests that did not execute

stmt . Finally, they rank statements according to their suspiciousness score.

The benefit of these techniques is their simplicity and good scalability, since

they require only computing statement coverage to calculate suspiciousness

score. The drawback of these approaches is their imprecision, since they do

not guarantee that the bug can be fixed at the identified locations.

BugAssist [43] is a fault localization tool that uses maximum satisfiability

to identify suspicious statements. Specifically, it represents the program as

a formula. This formulas is conjoined with the assignment of input variables
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to the test inputs and with the test assertions. After that, the formula is

solved using a Partial MAX-SMT solver. Specifically, the test inputs and

assertions are treated as hard constraints and program statements as soft

constraints. The Partial MAX-SMT solver returns a subset of statements

that are responsible for the bug. The benefit of this approach consists in

the ability to identify multi-location bugs and in that is guarantees that the

bug can be fixed by altering the identified locations. The drawbacks of this

approach include its limited scalability, since it requires translating program

into a logical formula, and the fact that the Partial MAX-SMT problem

might have many solutions in practice, therefore the user might have to

iterate through and manually inspect all these solutions.

2.6 Program repair

Automated program repair is an extremely challenging problem, since re-

pairing a program might require implementing an arbitrary algorithm. Apart

from that, automatic program repair requires providing a correctness criteria

that might include both functional and non-functional requirements. As a

result, existing repair methods are not able to fix arbitrary faults. Instead,

they focus on a simpler task of searching for a patch in a pre-defined space of

modifications that satisfy given correctness criteria such as a test suite and

possible additional quality metrics.
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2.6.1 Genetic programming based repair

Genetic algorithm is a search strategy that resembles the process of biolog-

ical evolution. It maintains a population of individuals, and uses mutation

and crossover operators and a fitness function. At each iteration, all individ-

uals from current population are evaluated using the fitness function. The

resulting value identifies the probability that they will reproduce the next

population. Mutation and crossover operation are applied to each candidate

to generate the next population. Genetic programming is a special case of

genetic algorithm where the population consists of computer programs.

GenProg [56] is a program repair approach based on genetic program-

ming. The fitness function utilized in GenProg counts the number of passing

tests for a given program. New populations of programs are constructed

by applying mutation operators are such as swap, delete and insert to the

current population (the insert operator copies code fragments from the same

program) as shown in Figure 2.3. Apart from that, GenProg uses statistical-

based localization approach for mutating statements with higher suspicious-

ness score.

GenProg have several advantages and disadvantages. The main advan-

tage of this approach is its scalability, since it has been applied to repair

large complex programs. Apart from that, it is able to generate non-trivial

multi-line fixes. The main disadvantages of GenProg are the limited number

of bugs that can be repaired and the low quality of fixes. The first drawback

is caused by the limitation of the search space: correct functionality must be

located within the program to repair. The low quality of fixes is caused by
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Figure 2.3: GenProg workflow.

the fact that this algorithm can make a lot of random modifications that can

introduce new bugs and break the structure of the program.

2.6.2 Semantic analysis based repair

SemFix [73] is an approach to program repair based on semantic analysis.

Its workflow consists of three parts: (1) fault localization, (2) specification

inference using symbolic execution and (3) patch synthesis.

Consider an example of the buggy TCAS program in Figure 2.4a from

SIR benchmark [24]. The intended behavior of this procedure corresponds

to the following function:

is_upward_preferred (...) = inhibit *100+ up_sep > down_sep

As can be seen, there is a fault at the line 5. The expression assigned to the

variable bias is down_sep instead of (up_sep + 100). Consider a test suite

presented in Figure 2.4b that contains two failing test cases.

23



1 int is_upward_preferred(int inhibit ,

2 int up_sep ,

3 int down_sep) {

4 int bias;

5 if (inhibit)

6 bias = down sep; //fix: bias=up_sep +100

7 else

8 bias = up_sep;

9 if (bias > down_sep)

10 return 1;

11 else

12 return 0;

13 }

(a) Buggy function from TCAS.

inhibit up sep down sep Expected output Observed output
1 0 100 0 0
1 11 110 1 0
0 100 50 1 1
1 -20 60 1 0
0 0 10 0 0

(b) Passing and failing tests.

Line Score Rank
6 0.75 1
12 0.6 2
5 0.5 3
9 0.5 4
11 0 5
10 0 6

(c) Suspiciousness.

inhibit up sep down sep π Output
1 0 100 α > 100 1
1 0 100 α ≤ 100 0
1 11 110 α > 110 1
1 11 110 α ≤ 110 0
1 -20 60 α > 60 1
1 -20 60 α ≤ 60 0

(d) Extracted specification.

Figure 2.4: Repairing function using SemFix.

To repair this program, SemFix first creates a ranking of suspicious state-

ments using an existing statistical fault localization method. Specifically, it

computes statement coverage for each tests, and applies the formula (2.2) to

create a ranking shown in Figure 2.4c. Finally, it iterates through the ranked
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locations starting from the most suspicious statement.

For each suspicuous location, SemFix replaces the expression (the right-

hand side of a assignment or a condition) with a symbolic variables. For

example, for the statement in line 6, it replaces the expression down_sep

with a fresh symbolic variable α. Then, for each test {σin , σout} (a pair of

input and output states) that covers the suspicuous location, it executes the

program symbolically in such a way that the concrete test inputs σin are

used as the symbolic input state. Thus, it executes the program concretely

before the suspicuous location, and symbolically starting from the suspicuous

location. As a result, it extracts specification for the suspicuous statement

shown in Figure 2.4d. In this table, for each test that covers the suspicuous

location, π represents a path condition, and the column “Output” represents

the return value of the function computed along the corresponding path.

After inferring specification, SemFix uses this specification to synthesize

a replacement for the considered expressions that would enable the program

to pass the test. For tests {σin , σout}i, and for the inferred pairs of a path

condition and an output symbolic state {πi, θiout}j for each test i, it solves

the following second-order formula:

∃e ∈ LΓ.
∧
i

∨
j

πij[α 7→ e] ∧ σiout = θij out

This formula states that for each test i, there should be at least one path πij,

along which the test passes if the symbolic variables α is replaced with the

expression e. For the example in Figure 2.4d, SemFix solves a formula rep-

resenting the three paths in Figure 2.4d that enable the program to produce
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the expected outputs (along which σiout = θij out):

∃e ∈ LΓ. JeK{inhibit7→1, up sep7→0, down sep7→100} ≤ 100

∧ JeK{inhibit7→1, up sep7→11, down sep7→110} > 110

∧ JeK{inhibit7→1, up sep7→−20, down sep7→60} > 60

Solving this formula can be seen as synthesizing a code fragment (unknown

function) with properties of the function being gleaned from test executions.

The formula is solved using component-based synthesis described in Sec-

tion 2.4. For example, it might generate the expression (up_sep + 100) that

satisfies this formula.

The advantage of SemFix is that it might potentially repair more de-

fects, since it does not require that the correct functionality already exists

in the source code, instead it synthesizes new code using program synthesis.

However, SemFix has some limitations. First, SemFix extracts specifica-

tion from tests, therefore it is subjected to the test overfitting problem so

as other test-driven program repair approaches. This limitation is partially

addressed by DirectFix [69] that synthesize minimal code transformations

that are less likely to break unspecified functionality (Chapter 3), and by

SemGraft [67] that extracts the missing specification from a reference imple-

mentation (Chapter 5). Secondly, SemFix inherits the limitations of symbolic

execution such as the path explosion problem that might limit its effective-

ness. This limitation is addressed by symbolic execution with existential

second-order constraints [66] that helps to alleviate path explosion by taking
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the search space into account during path exploration (Chapter 6). Finally,

SemFix extracts specification that effectively captures the semantics of the

whole program, which limits its scalability when applied to large programs.

This limitation is addressed by Angelix [70] that extracts concise synthesis

specification, whose size is independent of the size of the program, and yet

it is capable of capturing complex multi-line changes (Chapter 4).

27



Chapter 3

Program repair via maximum

satisfiability

When repairing a program, it is preferable to construct patches which are

simple and readable. This is because software maintainers would not blindly

accept a suggested patch, but rather they would review and inspect a patch

before accepting it [28, 29], for instance, to ensure that the patch resolves the

problem and does not introduce new bugs. Thus, simple and small patches

would be more easily accepted by maintainers than more complex alterna-

tives. The ease of acceptance, as well as abundance of small/simple patches

are confirmed by the studies of [109, 81]. Hence, it is instructive to have

program repair tools produce small patches. However, previous automatic

repair tools such as GenProg [108] and SemFix [73] described in Section 2.6

do not explicitly take into account of the simplicity of a patch, although more

general issues about patch quality (e.g., patch maintainability [30] and users’

willingness to accept patches [48]) have been raised and studied.

Finding a simple repair is not necessarily simple. In fact, it is challenging
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to find the simplest (or a simple enough) repair among many possible repairs,

without enumerating each patch. Note that even for finding one repair,

existing repair tools often take substantial amount of time. We propose in

this chapter an efficient test-driven repair method (and its implementation

DirectFix) that can find simple repairs. Our key observation is that the

simplicity of a repair is influenced by the choice of the program location that

is modified in a repair. If unsuitable program locations are chosen to be

modified, the corresponding repair is also likely to be suboptimal (meaning

unduly complex repairs). In the next section, we show examples of such

unnecessarily complex repairs.

Existing test-driven repair methods rely on statistical fault localization

(see Section 2.5) to choose program locations to modify. In general, fault

locations are selected in proportion to their suspiciousness scores. High sus-

piciousness scores are assigned to the program locations that execute more

frequently in failing tests. However, the simplicity of repairs is not a part

of suspicious score equations, and thus these scores have no direct relation-

ship with how simple a repair is. To include the simplicity of repairs into

the logic of choosing fault locations, we perform fault localization and repair

generation simultaneously in a combined manner.

The main intuition behind our approach is to fuse the fault localization

and repair steps into a single step via partial MAX-SAT solving. The main

technical contribution of this chapter is to integrate fault localization and

repair generation in an efficient way — without explicitly enumerating each

repair candidate for each fault location. We achieve this by reducing the

problem of program repair into an instance of the Partial MAX-SMT prob-
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lem (see Section 2.1). For a given buggy program and a test suite, we con-

struct a logical formula in a way that a satisfying assignment of this formula

corresponds to the simplest repair — simplest in the sense that the structure

of the original buggy program is maximally preserved. While the nature of

MAX-SMT allows removing existing expressions of a buggy program (our

simple repairs are suggested at the expression level), we can replace those

removed expressions with new ones by using component-based program syn-

thesis [38].

We implement our approach into a tool, DirectFix, that formulates a nec-

essary formula and solves it using our Partial MAX-SMT solver implemented

on top of Z3 SMT solver [21]. We also evaluate our tool on in total 98 buggy

versions of SIR programs and 9 real bugs of GNU Coreutils, which exem-

plify the mistakes programmers can often make. Despite the limited size of

our subject programs and the limitations inherited from the underlying tools

upon which DirectFix is built — most notably, VCC [18], which transforms

a C program into a logical formula, currently cannot handle floating point

arithmetic; in such cases, we designated the (transformable) suspicious func-

tions, assuming that developers have insight about potential buggy functions

—, the overall experimental results are promising. DirectFix suggests repairs

successfully 59% of the time. Moreover, 56% of those repairs are equivalent

to the ground truth repairs, and 89% of them alter the same program line(s)

as the ground truth versions. Such figures are significantly higher than when

SemFix [73] is applied to the same subjects with the same test suites and

the same information about suspicious functions (i.e., more than 3 times of

equivalent repairs and more than 2 times of same-line repairs). Recall that
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SemFix performs fault localization and repair as separate steps, and does not

consider the simplicity of the repairs. We also found in our experiments that

DirectFix repairs cause regression errors less frequently than SemFix repairs

(for which we checked against the test universe and not just the test suite

used as the correctness criteria for the repair tools).

3.1 Motivating examples

We present three simple motivating examples in this section (in Section 3.5,

we also present our repairs for actual programs). Consider the program snip-

pet in Figure 3.1a. This program is supposed to return 0 if x >= y holds

at the end of the program; otherwise, it should return 1. However, the de-

veloper of this program made a small mistake of not considering a case of

x == y. Here, Figure 3.1b and 3.1c show two different valid repairs. Notice

that the former repair is more complicated than the latter one. Most devel-

opers would prefer the second simpler repair. To the best of our knowledge,

existing repair tools do not take account of how simple a repair is. They

stop looking for a repair once one is found, no matter how complex that

repair is. Indeed, a repair in Figure 3.1b resembles a repair generated by

GenProg [108]. GenProg grafts existing code onto a buggy program in an

attempt of repair. As a result, GenProg often generates repairs that look

complex to human developers, as pointed out in [48].

Meanwhile, a more recent repair tool, SemFix [73], seems to generate

simpler repairs than GenProg (user-studies are yet to be conducted to fully

validate this, but intuitively this is so because SemFix [73] performs repair at
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x = E1; // E1 represents an expression.

y = E2; // E2 represents an expression.

S1; // S1 represents a statement. Neither x nor y is redefined by

S1.

if (x > y) // FAULT: the conditional should be x >= y

return 0;

else

return 1;

(a) A buggy program snippet; a bug is in line 4.

x = E1; y = E2;

if (x == y) { S1; return 0; } // This line is one possible repair.

S1;

if (x > y)

return 0;

else

return 1;

(b) A repair that resembles a GenProg repair.

x = E1;

y = E2;

S1;

if (x >= y) // SIMPLE FIX: >= is substituted for >

return 0;

else

return 1;

(c) An alternative simpler repair; an operator is replaced.

Figure 3.1: DirectFix motivating example 1
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the expression level, unlike GenProg that performs repair at the statement

level or binary level [89]). However, SemFix still often generates repairs that

are more complex than necessary. Figure 3.2 shows such an example. Given

a buggy program in Figure 3.2a – the first two lines are mistakenly swapped,

and the equal signs (=) are omitted –, SemFix can generate a repair shown

in Figure 3.2b. Compare this repair with an alternative repair shown in

Figure 3.2c. The latter repair is simpler despite that it modifies two lines

of a program (SemFix cannot modify multiple lines). These two examples

also show that a buggy program can be repaired in multiple ways producing

repairs of varying simplicity.

There is one more important reason for selecting a repair carefully: the

reliability of a repaired program (the likelihood that the repaired program

not only resolves bugs in the given test-suite, but also does not introduce

new bugs shown by tests outside the test-suite) varies depending on a se-

lected repair. Consider a buggy program in Figure 3.3a that checks whether

the character c is included in the string (character array) s. The table in Fig-

ure 3.3b shows the expected and actual input/output relationship. The first

test fails because all the characters of string s are not scanned while looking

for the same character as the one in c. Notice in the table that variable k

does not hold the value of the length of s, it holds a value one less than

the length. As before, more than one repair exist for this buggy program.

Figure 3.3c and 3.3d show two possible repairs – both repairs pass all the

tests in Figure 3.3b. However, the first repair (Figure 3.3c) looks hazardous.

What if a character other than ’?’ or ’!’ is searched for? While such

potential hazard of a repair can be diminished by choosing a right test suite,
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if (x > y) // FAULT 1: the conditional should be x >= z

if (x > z) // FAULT 2: the conditional should be x >= y

out = 10;

else

out = 20;

else out = 30;

return out;

(a) A buggy program snippet; bugs are in line 1 and 2.

if (x > y)

if (x > z)

out = 10;

else

out = 20;

else out = 30;

return ((x>=z)? ((x>=y)? 10 : 20) : 30); // This line is one

possible repair.

(b) A repair that resembles a SemFix repair.

if (x >= z) // SIMPLE FIX: >=z is substituted for >y

if (x >= y) // SIMPLE FIX: >=y is substituted for >z

out = 10;

else

out = 20;

else out = 30;

return out;

(c) An alternative simpler repair; operators and variables are replaced.

Figure 3.2: DirecFix motivating example 2
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// FAULT: k is NOT equal to the length of array s.

for (i=0; i<k; i++)

if (s[i] == c) return TRUE;

return FALSE;

(a) A buggy program that checks if the character c is included in string s.

Input Output

s c k expected actual

"ab?" ’?’ 2 TRUE FALSE

"ab?c" ’?’ 3 TRUE TRUE

"!ab" ’!’ 2 TRUE TRUE

(b) Expected input and output.

for (i=0; i<k; i++)

// The following line is one possible repair.

if (c == ’?’ || c == ’!’) return TRUE;

return FALSE;

(c) A (buggy) repair that passes the above tests.

for (i=0; i<=k; i++) // SIMPLE FIX: <= is substituted for <

if (s[i] == c) return TRUE;

return FALSE;

(d) A more reliable repair.

Figure 3.3: DirectFix motivating example 3

what is a right test suite is another important research question that has not

been thoroughly addressed yet.

Meanwhile, the second simpler repair (Figure 3.3d) preserves the original

correct behavior, as well as correcting the buggy behavior. The contrast

between these two repairs suggests the following hypothesis. The rationale

behind the hypothesis is that simpler repairs are likely to modify the behavior

of a program in a more restricted fashion.

35



Hypothesis 1. Simple repairs are less likely to change the correct behavior

of the original version than more complex repairs. Thus, simple repairs are

likely to be less hazardous.

Existing test-driven program repair tools perform fault localization up-

front, and search for a repair around the program locations marked suspicious

at the fault localization phase. Therefore, a straightforward way to find the

simplest repair is to iteratively generate a repair at each combination of sus-

picious program locations, and select the simplest repair. However, it is

apparent that this straightforward approach would not scale, considering the

fact that even finding a single repair often takes substantial amount of time.

To find simple repairs more efficiently (without explicitly enumerating each

repair candidate), we integrate the two phases of program repair – (i) fault

localization and (ii) repair search – into a single step.

3.2 Overview

DirectFix is a semantics-based program repair approach that exploits recent

advances of SMT solvers. It reduces repair problem to Maximum Satisfia-

bility problem. Particularly, this approach constructs a logical formula, a

solution to which corresponds to a fix. Our encoding is based on component-

based synthesis [38] extended to produce syntactically minimal changes as

well as to improve scalability.

DirectFix utilizes program semantics expressed through a logical formula

called trace formula in the literature [43, 27].

Definition 6 (Trace formula). Let p be a program, x1, ..., xn are variables of
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p. A formula φp over the variables α1, ..., αn, β1, ..., βn is a trace formula of

p if the following property holds:

JφpK{α1 7→i1,...,αn 7→i1,β1 7→o1,...,βn 7→o1} = True ⇒ Exec(p, σin) = σout

where σin := {x1 7→ i1, ..., xn 7→ in} and σout := {x1 7→ o1, ..., xn 7→ on} .

A trace formula can be constructed using the predicate transformer [23]. For

example, Figure 3.4b demonstrates the trace formula for the function foo

shown in Figure 3.4a. This function is buggy, and its test test foo fails (we

use a single test in this example for simplicity). The given test is translated

into the following oracle constraint:

O := (α1 = 0) ∧ (α2 = 0) ∧ (β3 = 3)

The conjunction ϕbuggy ∧ O is unsatisfiable, reflecting that the test fails.1

Our goal is to find which expressions of ϕbuggy need to be modified and

how they should be modified, so that this modified formula ϕrepair makes

ϕrepair ∧O satisfiable. In our example, the ground truth repair is as follows:

ϕrepair :=(if (α1 ≥ α2) then (β2 = α2 + 1) else (β2 = α2 − 1))

∧ (β3 = β2 + 2)

1If there are multiple tests, say two, we formulate Rename(ϕbuggy ∧ O1) ∧
Rename(ϕbuggy ∧ O2), where function Rename returns the input formula after replac-
ing its variables with fresh variables.
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int foo(int x, int y) {

if (x > y) // FAULT: the conditional should be x >= y

y = y + 1;

else

y = y - 1;

return y + 2;

}

void test_foo () {

assert (foo (0 ,0)==3);

}

(a) Buggy function and failing test.

ϕbuggy :=(if (α1 > α2) then (β2 = α2 + 1) else (β2 = α2 − 1))

∧ (β3 = β2 + 2)

(b) The trace formula ϕbuggy for foo; variables α1 and α2 correspond to the input
values of the variables x and y, β1 and β2 correspond to the output values of the
variables x and y, and β3 to the return value of the program.

Figure 3.4: Trace formula of buggy program
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Essentially, our repair method views a program as a circuit. To generate a

fix, it (i) cuts some of the existing connections and (ii) adds new components

and connections. To obtain the simplest (the least destructive) repair, we

want to cut as few connections as possible. We achieve this by reducing the

problem of program repair into an instance of Partial MAX-SMT problem.

To generate a repair based on Partial MAX-SMT, we construct a for-

mula that we call repair condition. Given a trace formula ϕbuggy , the repair

condition ϕrc is the following:

ϕrc :=(if v1 then (β2 = v2) else (β2 = v3)) ∧ (β3 = v4)

∧ v1 = cmpnt(α1 > α2) ∧ v2 = cmpnt(α2 + 1)

∧ v3 = cmpnt(α2 − 1) ∧ v4 = cmpnt(β2 + 2)

The above formula ϕrc is semantically identical with ϕbuggy . The only

difference is that we substitute fresh variables vi for the rvalue expressions of

ϕbuggy , while keeping the equality relationship between each vi and the expres-

sion it represents (e.g., v1 = cmpnt(α1 > α2)) with applied function cmpnt .

This function componentizes its parameter expression into a circuit form,

following the idea of component-based synthesis described in Section 2.4.

To obtain the simplest repair, we use a Partial MAX-SMT solver. In

Partial MAX-SMT, a formula is split into (i) hard clauses (clauses that must

be satisfied) and (ii) soft clauses (clauses that do not have to be satisfied).

In hard clauses, we include the clauses that express the semantics of the

component and the oracle data. Meanwhile, with soft clauses, we constrain
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Figure 3.5: Repairing expression α > β by replacing > with ≥.

the structure of the program expressions. Assume that the component α has

the index 1, β has the index 2, = has the index 3, > has the index 4, and

≥ has the index 5. We construct the structure constraint for the expression

α > β as follows:

li1
4 = lo2 ∧ li2

4 = lo1 ∧ lo = lo4

where the variable lo is a designated variable that specifies the location of

the output of the whole expression. As shown, this constraint specifies the

connections between the components of the expression as well as its output

binding. After splitting ϕrc ∧ O into hard clauses and soft clauses as de-

scribed above, we feed ϕrc ∧ O into a Partial MAX-SMT solver. Then, the

solver removes some structure constraints (if necessary), and returns a model

corresponding to a fix.

Figure 3.5 shows how a solver can modify the expression α > β using

an additional component ≥ in order to repair the program. Specifically, it

removes one connection between the outputs of > and the output of the whole

expression corresponding to the structure constraint lo = lo4, and adds three

new connections: (i) between the output of x and the first input of ≥, (ii)

between the output of y and the second input of ≥, and (iii) between the
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output of ≥ and the output of the whole expression (the variable lo). Such

new connections are obtained by using a model for the repair condition,

namely, the values of the location variables.

We note that by looking for a model that maximizes the number of satis-

fied clauses of ϕrc∧O, we effectively cut and add connections simultaneously.

In other words, we perform fault localization and repair generation at the

same time.

3.3 Methodology

Our approach combines fault localization and correction into a single step,

which is achieved by reducing repair problem to Partial MAX-SAT problem.

Unlike in component-based synthesis (Section 2.4.1), our goal is to modify

the existing expressions of a buggy program in a way that changed expres-

sions make all tests pass. For this reason, we formulate the following repair

problem.

Definition 7 (Repair problem). Let v be a variable, V be a set of variables

such that v /∈ V , F be a set of integer operators, O be a constraint over

{v} ∪ V called oracle. Let e be a possibly faulty expression constructed using

a subset of components C = V ∪F and constants such that O∧ (v = e) is not

satisfiable. Repair problem (v, e, V, F,O) is a problem of finding a repaired

expression e′ such that

• e′ is constructed using a subset of components C = V ∪F and constants.

• O ∧ (v = e′) is satisfiable.
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To solve a repair problem, we construct a logical formula which we call

repair condition that consists of two groups of clauses: hard clauses and soft

clauses. Algorithm 2 describes how we generate a repair condition, given

a test suite TS and a trace formula φp as input. We assume that each test

t ∈ TS is a part of input and output states (σin , σout), that the corresponding

oracle constraint is

Ot := (
∧
i

αi = σin(xi)) ∧ (
∧
i

βi = σout(xi))

where xi are program variables.

Our algorithm substitutes fresh variables vi for the rvalue expressions (the

expressions of φp that are originated from the conditionals or right-hand-side

expressions of a given buggy program2) to construct the formula φp[ei 7→ vi].

The formula φp[ei 7→ vi]∧ (
∧
i vi = ei) is semantically equivalent to the initial

trace formula φp. However, expressions ei that we allow to modify are now

distinguished from the rest of the formula. Algorithm 2 applies cmpnt to all

the components of ei together with additional component, and the formula

(
∧
i vi = cmpnt(ei))∧φp[ei 7→ vi]∧Ot is returned as hard clauses of the repair

condition for each test case t ∈ TS .

Meanwhile, we also extract the structure constraint φstruct of each binding

vi = ei, and classify φstruct as a soft clause. The structure constraint of

vi = ei encodes the structure of expression ei using location variables. In

the previous section, we showed that expression α > β is encoded into the

following structure constraint φstruct (assume that the component α has the

2The expressions of our φp are annotated with source code locations.
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index 0, β has the index 1, = has the index 2, > has the index 3, and ≥ has

the index 4):

li1
3 = lo1 ∧ li2

3 = lo0 ∧ lo = lo3

The structure constraint is obtained via the inverse function of Lval2Prog

(Lval2Prog is a bijective function [38]).

Once a repair condition is obtained through Algorithm 2, we feed this re-

pair condition to a Partial MAX-SMT solver. If the solver finds a model, this

model can be used to construct an expression using Lval2Prog introduced

in Section 2.4.1. Note that a Partial MAX-SMT solver preserves as many

original connections as possible, which guarantees that DirectFix changes the

minimal number of program expressions, as formally described below.

Definition 8 (Simplicity of repair). Let p be a program, TS be a test suite

with at least one failing test case, ei be a subset of the expressions of p, C be

a set of components. We call p′ a simple repair of p if

• p′ passes TS;

• p′ can be obtained from p by substituting some of the subexpressions of

ei with expressions constructed from the components C;

• there is no program that passes TS and can be obtained from p using a

smaller number of such substitutions.

The use of soft constraints reduces synthesis time. Our experiments

demonstrate that a Partial MAX-SMT solver implemented on top of an SMT

solver can find a solution for a formula with soft constraints for some of the
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ALGORITHM 2: Repair condition generation

Input: trace formula φp and test suite TS
Output: repair condition as a pair of hard and soft constraints

1 Hard , Soft := True,True;
2 Expr := {e | e is a rvalue expression of φp};
3 foreach test case t ∈ TS do
4 foreach e ∈ Expr do
5 v := a fresh variable;
6 C ′ := select additional component for e;
7 φp := φp[e 7→ v];
8 φencoding := cmpnt for components of e and components C ′;
9 φstruct := structural constraints for v = e;

10 Hard := Hard ∧ φencoding;
11 Soft := Soft ∧ φstruct;

12 Hard := Rename(Hard ∧ φp, t);
13 Soft := Rename(Soft , t);

14 return Hard , Soft ;

considered benchmarks, while the SMT solver for the same formula without

soft constraints does not terminate within the timeout for all the benchmarks.

This fact suggests that the use of the structure of the previous (buggy) ver-

sions improves synthesis performance.

For repairing some bugs, it is not sufficient to use only components that

are already present in the buggy expressions. For such cases, we select ad-

ditional components for each expression in the program. Selecting many

additional components makes this approach not scalable. To address this

limitation, we devise optimizations and heuristics that reduce the negative

effect of additional components.

Selecting additional components for program expressions can significantly

increase the search space for repair, which harms the scalability of the ap-

proach. For instance, if there are 10 program expressions and 10 program
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variables that we consider as additional components, then selecting each

variable for each expression yields 100 variants to choose a single variable

for repairing one of the expressions. However, proceeding on the assumption

that the program is correct with the exception of a small part, we do not

consider each component for each of the program expressions. Instead, ad-

ditional components can be shared by several expressions. For instance, a

variable can be shared by all the expressions from its scope.

The original CBE does not allow to share components between several

expressions; in the original CBE, each expression has a fixed interval for

allocating components and, consequently, a fixed set of available components.

To alleviate this limitation, we extend CBE so that components of all the

expressions are allocated in one big interval consisting of floating subintervals

for each expression.

Allocating component for all the program expressions in one big inter-

val requires introducing additional constraints to prevent invalid connections

between component of different expressions. For this, we introduce a set of

separator variables {si} that define subintervals for each expression. Specif-

ically, all the components of the expression ej and the connections between

them are allowed only within the interval [sj−1, sj). Figure 3.6 shows how

the expressions x > y and a + b and the additional component “−” can be

placed using such encoding. Note that the intervals for each expression are

not fixed and can be extended to add the component “−”. At the same

time, we forbid the connections of the component “−” to cross the separator

between x > y and a + b to prevent our tool from generating expressions of

invalid structure.
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Figure 3.6: Allocating components of the expressions x > y and a+b and the
additional component “−” on the same interval using floating separators.

Assume that we generate encoding for a set of program expressions {ei}

for i ∈ [1..N ]. The following constraints ensure that only valid connections

are permitted:

φrange :=
∧

i∈[1,C]
(l,r)=scope(i)
j∈[1..Ni]

(sl ≤ loi < sr ∧ sl ≤ li ji < sr)

∧
∧

l<m<r

(sm ≤ loi ∧
∧

j∈[1..Ni]

sm ≤ li ji )

∨ (loi < sm ∧
∧

j∈[1..Ni]

li ji < sm)


where function scope maps a component with the index i to an interval

representing the range of program expressions where this component can be

used for repair. The first line of this formula specifies that each component is

allocated within the intervals of the expressions from its scope. The second

and third lines ensure that for each separator, the inputs and the output of

each component are all placed either to the right of this separator or to the

left, implying that connections do not cross the borders between expressions.
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φcons, φacyc and φconn are defined in an analogous manner to CBE, taking

account of components’ scopes.

Apart from components’ constraints, we enforce the interval consistency

constraint φintcons over separator variables to ensure that the interval for each

expression is well-defined:

s0 = 0 ∧ sN = |C| ∧
∧

[(i,j) | i,j∈[0..N ], i<j]

si < sj

where C is the set of all available components.

Type-based space reduction If the program to be corrected is statically

typed, it is possible to use type information to reduce the search space for

repair [57]. We implement heuristics for the repair encoding that reduce the

number of possible connections, the number of components and the number

of candidate repair locations. In order to ensure that only well-typed expres-

sion are considered for repair, we modify the connection constraints so that

inputs can be connected only with outputs of the same type. Selecting a large

number of additional components for repair yields considerable performance

reduction. For this reason, we group component by their types into sev-

eral levels : constants, boolean operators, arithmetical operators, comparison

operators and variables. For each level, we generate and solve a separate re-

pair condition. Grouping additional components by type allows us to utilize

the following two heuristics. Firstly, we can prune program expression that

cannot be repaired using additional components due to their type. For ex-
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Figure 3.7: DirectFix workflow

ample, the statement v = a ∨ b cannot be repaired using integer arithmetics

components. Secondly, we can reduce the number of connections between

components in the original program expressions. Specifically, we do not split

an expression into subexpressions if these subexpressions have incompatible

type with the additional components and consider whole expression as one

compound component. For example, the expression a ∨ x > y can be split

into components a, ∨ and x > y if we consider only boolean operators.

Handling loops For a loop, we unroll it k times; our trace formula guar-

antees that there is no execution paths requiring more than k unrolling. The

consequence of loop unrolling is that the trace formula includes multiple in-

stances of the program expressions that are executed several times inside

loops. In order to make it possible to apply the fix generated by our tool to

the original program, we need to ensure that all these expressions are mod-

ified synchronously. This is achieved by binding components’ locations of

these expression through auxiliary components called phantom components.

Phantom components do not have semantics and are used only for binding

location variables.
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Table 3.1: DirectFix subject programs

Subject LOC #Versions Description

Tcas 135 41 Air traffic control program

Replace 518 30 Text processor

Schedule 304 9 Process scheduler

Schedule2 262 9 Process scheduler

Coreutils 107 – 2909 9 Collection of OS utilities

3.4 Implementation

We implement the repair methodology described earlier into a prototype

tool, DirectFix. The overall workflow of DirectFix is shown in Figure 3.7.

To obtain a trace formula from a buggy program, we use two third-party

tools, VCC [18] and Boogie [6]. VCC translates a C program into a Boogie

program. Subsequently, the Boogie verifier takes as input a Boogie program,

and generates a verification condition — a formula used to prove the absence

of an error. Both VCC and Boogie can handle pointer arithmetics.

The trace formula of a buggy program and its test suite are fed into the

RC (repair condition) generator of DirectFix, which is an implementation

of Algorithm 2. Subsequently, the generated repair condition is fed into our

Partial MAX-SMT solver we implemented on top of Z3 [21]. Our MAX-SMT

implementation is the core-guided algorithm of Fu and Malik [31].

Finally, a model (satisfiable assignment) found by the solver is post-

processed to construct a patch. Currently, DirectFix shows which expressions

are modified and how they are modified.
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3.5 Evaluation

In this section we present the experimental evaluation of DirectFix. We

also compare the repairs generated by DirectFix with those generated by

SemFix [73]. We ran our experiments on Intel Core i7-2600 CPU with

Ubuntu 12.04 64-bit operating system. Table 3.1 shows our subject programs

comprised of eighty nine buggy versions of four subject programs from SIR

(Software-artifact Infrastructure Repository) [24] (the number of versions for

each subject is shown in the #Versions column) and nine buggy versions of

Coreutils reported by Cadar et al [12]. These subjects are the same as the

ones used in the SemFix paper [73]. All our subjects come also with their

correct versions, and we compare each of our repairs with its correct versions,

if a repair is found. The timeout used in our experiments is 106 milliseconds

(16 minutes and 40 seconds).

For the subjects larger than Tcas, we designated the suspicious functions

to reduce the search scope, assuming that developers have insight about

which function might be buggy; for example, if a test fails after creating or

modifying a function foo, then a bug is probably located in foo or its callees.

For a library function whose source code is not available, we provided a model

for it.

Table 3.2 shows the results of our experiments. Overall, 59% of buggy

versions are repaired by DirectFix. More interestingly, 56% of those repairs

are equivalent to the code in the correct versions. We take a repaired version

as equivalent to its correct version when (i) the same program location is

altered by the repair, and (ii) that alternative repair expression is logically
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Table 3.2: DirectFix experimental results

Subject
Repairs

Total Equivalent (E) Same Loc (S) Diff (D)

Tcas 36 (87%) 19 (54%) 33 (91%) 2.28

Replace 11 (37%) 9 (81%) 10 (91%) 2.54

Schedule 4 (44%) 4 (100%) 4 (100%) 2.5

Schedule2 2 (22%) 1 (50%) 2 (100%) 2

Coreutils 5 (56%) 0 (0%) 3 (60%) 2

Overall 59% 56% 89% 2.26

equivalently to the corresponding expression in the correct version. Note

that some expressions (e.g., x > 0 and x >= 1) are logically equivalent to

each other, even though they are not syntactically identical.

Table 3.2 also exhibits that 89% of the repairs suggested by DirectFix al-

ter the same program locations as those that differ from the correct versions

(Equivalent repairs mentioned above are included in this category by defini-

tion). For example, DirectFix can suggest a new magic number instead of a

buggy constant used in a buggy version. Although it is difficult to suggest

the correct magic number in the absence of formal specification, the finding

that simple replacement of a constant have all tests passing can be a good

hint about where a bug is and what a repair should be.

As intended, our repairs are simple in most cases. To measure how simple

our repairs are, we compare the original buggy version and a repaired version,

and see how much they differ. More specifically, we compare the ASTs

(Abstract Syntax Trees) of those two versions, and count (i) the number of
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Table 3.3: Comparison of DirectFix with SemFix

Subject Total
DirectFix SemFix

E S D R E S D R

Tcas 30 16 29 2.26 12 3 11 4.1 17

Replace 5 5 5 2.8 0 3 4 10.2 2

Schedule 4 2 4 2.5 1 1 4 8.5 3

Schedule2 2 1 2 2 1 1 2 5 2

Coreutils 4 0 3 2 - 0 0 4 -

Overall 44 53% 95% 2.31 31% 17% 46% 6.36 54%

AST nodes that are deleted from the buggy version and (ii) the number of

AST nodes that are added into the repaired version. For example, if a buggy

expression x > y is repaired into x >= y, then the counted number is two,

because operator > is deleted from the buggy version, and >= is inserted

into the repaired version.

The Diff column of Table 3.2 shows how much original buggy versions and

their repaired versions differ in terms of AST differences described earlier.

Overall, the differences between two versions are as low as 2.26, which is close

to the optimal number 2 (the optimal number cannot be obtained sometimes

when even the simplest repair requires changes of a few lines of a program

or complicated changes).

The majority (56%) of our repairs are equivalent to ground truth repairs,

and about 90% of our repairs alter the same program locations as ground

truth repairs alter.
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bool Non_Crossing_Biased_Climb () {

...

if (upward_preferred)

result = !( Own_Below_Threat ()) || (( Own_Below_Threat ()) &&

(!( Down_Separation >= ALIM())));

else

result = Own_Above_Threat () &&

(Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

return result;

}

bool Own_Below_Threat () {

return (Own_Tracked_Alt <= Other_Tracked_Alt );

}

bool Own_Above_Threat () {

return (Other_Tracked_Alt <= Own_Tracked_Alt );

}

(a) Snippet of Tcas version 10.

bool Own_Below_Threat () {

/** DirectFix: replaced <= with <. **/

return (Own Tracked Alt < Other Tracked Alt)

}

bool Own_Above_Threat () {

/** DirectFix: replaced <= with <. **/

return (Other Tracked Alt < Own Tracked Alt);

}

(b) DirectFix repair (identical with the ground truth repair).

bool Non_Crossing_Biased_Climb () {

...

if (upward_preferred)

result = !( Own_Below_Threat ()) || (( Own_Below_Threat ()) &&

/** SemFix: replaces !( Down_Separation >= ALIM())) with the following. **/

(!(Other RAC < Own Tracked Alt)));

else

result = Own_Above_Threat () &&

(Cur_Vertical_Sep >= MINSEP) && (Up_Separation >= ALIM());

return result;

}

(c) SemFix repair.

Figure 3.8: Comparison of repairs for Tcas version 10
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Quantitative comparison with SemFix We compare our repairs with

those of SemFix [73]. Similar to DirectFix, SemFix also searches for repairs

by analyzing the logical semantics of a program, and uses component-based

synthesis to generate repairs. The core difference between SemFix and Di-

rectFix is that DirectFix can search for simple conservative repairs whereas

SemFix does not consider the simplicity of repairs. Thus, the comparison

with SemFix is a good indicator about how effective our new approach is in

terms of finding simple conservative repairs. We ran SemFix for the same

subjects with the same tests as used for the DirectFix experiment. We also

provided the same information about suspicious functions, so that only those

suspicious functions and their callees can be modified. Table 3.3 compares

the repairs that could be generated by both DirectFix and SemFix. In this

table, E stands for Equivalent, S stands for Same Loc, D stands for Diff, and

R stands for Regression. Overall, the rates of equivalent repairs and same-

location repairs are significantly higher in DirectFix than in SemFix (53%

vs 17% and 95% vs 46%, respectively). Also, DirectFix repairs are simpler

(less complex) than SemFix repairs as shown with Diff numbers (2.31 vs

6.36). We also compare how frequently regression errors are observed be-

tween DirectFix and SemFix. This is to test our hypothesis that simpler

repairs are more likely to be safer. To observe regression errors, we apply

the entire tests of our SIR subjects to repaired versions. SIR subjects have

a huge number of tests, and we use no more than 50 tests to generate re-

pairs in our experiments. We classify that there is a regression error if a

repaired version produces a different output from the correct version in one

of the entire tests. As shown in column R of Table 3.3, regression errors are
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observed less frequently in DirectFix repairs than in SemFix repairs (31%

vs 54%). This results coincides with the high rate of equivalent repairs of

DirectFix – equivalent repairs by definition do not cause a regression error.

However, DirectFix is slower than SemFix. For Tcas, for which we do not

designate suspicious functions, DirectFix took an average of 3 minutes 20

seconds, while SemFix took an average of 9 seconds. For other benchmarks

subjects where only specific functions are allowed to be modified, we perform

repair on the unit level by reducing programs to only these functions as well

as their dependencies. These reduced programs were given to both tools for

fair comparison, after which both DirectFix and SemFix took less than a

minute.

Qualitative comparison with SemFix Lastly, we provide a couple of

concrete examples of repairs generated by DirectFix and SemFix. Figure 3.8b

shows a DirectFix repair from Tcas (buggy) version 10. Despite that two pro-

gram locations are modified, the overall repair is simple; only two operators

are replaced. This repair is identical with the ground truth repair. Mean-

while, Figure 3.9 shows two different repairs from DirectFix and SemFix for

Replace (buggy) version 26. DirectFix successfully found the simple ground

truth repair; it replaces a function parameter j with j+ 1 of function locate.

Meanwhile, SemFix repaired function locate itself by changing an if-guard

c == pat[i] to i < 6. Although the repair is valid for the given test suite,

this destructive repair causes a regression.
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bool locate(character c, char *pat , int offset) {

int i; bool flag = false;

i = offset + pat[offset ];

while (i > offset)

if (c == pat[i]) { flag = true; i = offset; }

else i = i - 1;

return flag;

}

bool omatch(char *lin , int *i, char *pat , int j) {

...

if ((lin[*i] != NEWLINE) && (! locate(lin[*i], pat , j)))

...

}

(a) Snippet of Replace version 26.

bool omatch(char *lin , int *i, char *pat , int j) {

...

/** DirectFix: replace parameter j with j+1. **/

if ((lin[*i] != NEWLINE) && (! locate(lin[*i], pat , j + 1)))

...

}

(b) DirectFix repair (identical with the ground truth repair).

bool locate(character c, char *pat , int offset) {

int i; bool flag = false;

i = offset + pat[offset ];

while (i > offset)

/** SemFix: replace c == pat[i] with i < 6. **/

if (i < 6) { flag = true; i = offset; }

else i = i - 1;

return flag;

}

(c) SemFix repair.

Figure 3.9: Comparison of repairs for Replace version 26
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As compared with SemFix, DirectFix repairs are simpler, more frequently

identical with the ground truth repairs, and less frequently cause a re-

gression error.
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Chapter 4

Scalable multiline patch

synthesis

In the case of the semantic program repair technique, low scalability has

been the main source of criticism, despite its promising results in terms of

the number of generated patches [73] and the high quality of repairs [69]. We

show in this chapter how the semantics-based repair methodology can also

scale up to the same level as the most advanced search-based repair tools

such as SPR and GenProg. Semantics based repair methods often work by

extracting a repair constraint typically via symbolic execution. This repair

constraint acts as a specification to guide program synthesis - so a patch sat-

isfying the repair constraint can be synthesized. The key enabler for scalable

multi-line bug fix in this chapter, is our novel lightweight repair constraint

that we call an angelic forest. This angelic forest is automatically extracted

via symbolic execution. As compared to the repair constraints used in the

previous work [73, 69], the angelic forest is simpler, and its size is independent

of the size of the program under repair, thereby making our repair method
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scale. Our angelic forest, despite its simplicity, contains enough semantic

information to enable multi-location bug fix. Among existing search-based

repair tools, SPR does not support multi-line fixes. While GenProg [56]

can change multiple locations of the program, a recent study on GenProg

repairs [85] shows that seemingly complex repairs generated from GenProg

are in the overwhelming majority of cases in fact functionally equivalent to

single line modification.

When evaluated with the largest of the GenProg ICSE2012 subjects, our

open-source repair tool Angelix successfully generated repairs including on

wireshark and php subjects. The number of repairs generated by Angelix

(28) is larger than in GenProg (11), and also generally comparable to SPR

(31). While in one subject (libtiff), Angelix generated more repairs than

SPR, and in another subject (php), SPR generated more repairs. In the

remaining 3 subjects, both tools produced the same number of repairs.

More importantly, we note that even though a recent work [85] points to

functionality deleting repairs by GenProg, the SPR tool [62] (which was pro-

duced by the same authors) itself was found to generate many functionality

deleting repairs, because it generates many trivial branch conditions. Such

trivial branch conditions (conditions which are always true or always false)

introduce functionality deletion; e.g., consider the following SPR repair for

a libtiff defect where the shaded part is the fix inserted by SPR.

if (td->td_nstrips > 1

&& td->td_compression == COMPRESSION_NONE

&& td->td_stripbytecount [0] != td ->td_stripbytecount [1]

&& !(1))
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We found that in SPR the overall functionality-deleting repair rate across

the GenProg benchmark subjects is 45%. In fact, in the libtiff subject,

the percentage of functionality deleting repairs in the SPR tool [62] goes up

to an alarming 80% !! In contrast, our semantic analysis based repair tool

produced functionality-deleting repairs significantly less frequently when the

same tests were used (21%). For the aforementioned defect, Angelix syn-

thesizes a patch that is identical with the developer-provided patch (shown

in Figure 4.2b), which does not delete functionality. Furthermore, the re-

pairs generated by Angelix include five multi-location bugs which have not

been fixed by the existing tools. Last but not the least, we report that the

well-known Heartbleed vulnerability1 was automatically fixed by our tool,

generating a repair that is smiliar to the developer-provided patch. To the

best of our knowledge, ours is the first work that reports the automated repair

on Heartbleed. Overall, we present a semantic analysis based program repair

method which balances the requirements of scalability (repairing large pro-

grams), repairability (repairing a large number of defects) and patch quality

(changing the functionality of the program in a way developers would agree

with, instead of simply deleting functionality).

4.1 Motivating example

Figure 4.1 shows code changes made to fix coreutils bug 13627. In the buggy

version, the call of xzalloc (line 4), which allocates a block of memory, causes

a segmentation fault. A fix involves adding an if conditional before the prob-

1Heartbleed bug: http://heartbleed.com
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- if (max_range_endpoint < eol_range_start)

- max_range_endpoint = eol_range_start;

- printable_field = xzalloc(max_range_endpoint/CHAR_BIT +1);

+ if (max_range_endpoint)

+ printable_field = xzalloc(max_range_endpoint/CHAR_BIT +1);

(a) The developer-provided bug patch for coreutils bug 13627 where multiple
locations are repaired

if (max_range_endpoint < eol_range_start)

max_range_endpoint = eol_range_start;

if (1)

printable_field = xzalloc(max_range_endpoint/CHAR_BIT +1);

(b) The buggy version after semantics-preserving transformation (the shaded
part is added)

if (α)
max_range_endpoint = β;

if (γ)
printable_field = xzalloc(max_range_endpoint/CHAR_BIT +1);

(c) Suspicious expressions are replaced with symbolic variables

if (0)

max_range_endpoint = eol_range_start;

if (! (max range endpoint == 0))

printable_field = xzalloc(max_range_endpoint/CHAR_BIT +1);

(d) A repair generated from our repair algorithm; expressions in the shaded
areas are synthesized from our repair tool, Angelix.

Figure 4.1: Angelix motivating example

lematic call to xzalloc (line 5). Only when variable max_range_endpoint has

a non-zero value, xzalloc can be called in the fixed version. In addition to

adding an if conditional, the fix requires removing an existing if statement

(lines 1–2). Without this removal, max_range_endpoint is overwritten with a
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non-zero value of eol_range_start (line 2), and as a result, the new if condi-

tional if (max_range_endpoint) cannot successfully prevent the problematic

call to xzalloc.

This simple example demonstrates the complexity of multi-line repairs

fixing multiple buggy locations. The key difficulty is that a change made in

one location can also change the remaining program execution that should

proceed to be repaired. More conceptually speaking, the fix space of a given

buggy program keeps changing along with the program change made at each

buggy location. The state-of-the-art search-based repair algorithm such as

SPR [62] (also known as the generate-and-validate methodology) is currently

restricted to fixing a single location. It is unclear, as stated in [62], how a

search-based repair algorithm can be extended to fix multiple-location bugs

such as the one shown in Figure 4.1a, while maintaining its efficiency. Mean-

while, among the state of the art of semantics-based repair methodology

such as SemFix [73] and DirectFix [69], DirectFix already supports multiple-

location fix. Essentially, DirectFix maintains all semantic information of the

program (in the form of a logical formula), and this makes it possible to keep

track of how the fix space changes. Thus SemFix is more scalable and applies

one line fixes, while DirectFix is less scalable but can produce multi-line fixes.

In this chapter, we discuss how semantics-based repair can scale, while

preserving its ability to repair multiple locations. Figures 4.1b–4.1d show at a

high level how our repair algorithm generates a repair from our running exam-

ple. The generated repair shown in Figure 4.1d is functionally equivalent to

the developer-provided repair, despite its cosmetic differences. The first piece

of a repair, if (0) in line 1, makes the statement in line 2 skipped over, which
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is functionally equivalent to removing the corresponding statement. The sec-

ond piece of a repair, if (!(max_range_endpoint == 0)), is also functionally

equivalent to the developer-provided repair, if (max_range_endpoint). Here,

the cosmetic difference is merely due to our current implementation of the

component-based synthesis algorithm we use to synthesize a repair.

Our repair algorithm starts from transforming the original buggy pro-

gram into a functionally equivalent one shown in Figure 4.1b where we add

an if conditional, if (1), before each unguarded assignment statement (this

is heuristics we currently use). Afterwards, our repair algorithm replaces

user-configured n most suspicious expressions—chosen based on the result of

statistical fault localization—with symbolic variables, as shown in Figure 4.1c

where conditional expressions and the right-hand side of an assignment are

replaced with symbolic variables. The user of our repair algorithm can con-

figure the number and kinds of suspicious expressions that can be made

symbolic; such expressions include conditional expressions, right-hand sides

of assignments, and function parameters. Our repair algorithm proceeds to

run symbolic execution over the program in Figure 4.1c with provided tests to

collect the semantic information necessary to repair the given buggy program.

Using this extracted semantic information, we synthesize repair expressions.

To synthesize a repair, we use component-based patch synthesis algorithm

based on MAX-SMT as in Chapter 3. This results in a repair close to the

original program, because the structures of the original buggy expressions are

maximally preserved. The resultant small patches can bring in various bene-

fits such as improved maintainability of patches (simple patches are easier to

understand than complex patches), and reduced risk for regression (simple
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patches are less likely to change the correct behavior than complex patches).

4.1.1 Concise semantic signature for repair

In order to synthesize a repair, our repair algorithm collects the following

pieces of semantic information of the program. First, we need to know

whether for each test, there exists a program path through which a given

test passes. Our repair algorithm detects such test-passing paths via con-

trolled symbolic execution — controlled in the sense that we control which

execution paths are explored during symbolic execution by installing sym-

bolic variables (in our example, α, β, and γ). In our running example, given

a program of Figure 4.1c, symbolic execution explores different paths at the

if conditionals in line 1 (if (α)) and line 4 (if (γ)). If a test-passing path is

not detected, we make the next (user-configured) n suspicious expressions as

symbolic, and repeat the procedure to find test-passing paths. On the other

side, the existence of a test-passing path π that goes through the installed

symbols implies the existence of a concrete value for each symbol that makes

the test pass. As the second piece of semantic information, we infer these

values (called angelic values) using a constraint solver. Lastly, we need to

know the program state (called angelic state) at each installed symbol in the

test-passing path. For example, in order to synthesize a repair expression,

!(max_range_endpoint == 0), at line 4 of Figure 4.1d, the value of the vari-

able max_range_endpoint should be known. Our repair algorithm collects

the values of the visible program variables at each symbol-installed program

location. These variables are used as synthesis ingredients when synthesiz-
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ing repair expressions. The following shows the semantic signature of our

running example when two tests (t1 and t2) are provided.

t1 : { π1 : 〈(α, False, σ1), (γ, False, σ2)〉,

π2 : 〈(α, True, σ3), (β, 0, σ4), (γ, False, σ5)〉 }

t2 : { π3 : 〈(α, False, σ6), (γ, True, σ7)〉,

π4 : 〈(α, True, σ8), (β, 3, σ9), (γ, True, σ10)〉 },

where ti referes to a test, πi denotes a test-passing path, and σi :

V ariables→ V alues denotes an angelic state.

The preceding semantic signature—which we call an angelic forest as

defined in Definition 11—concisely captures all three pieces of semantic in-

formation we need to synthesize a repair. First, the fact that there exist two

execution paths (π1 and π2) that make test t1 pass is encoded in t1 : { π1, π2 }.

Similarly, test t2 can also pass in two execution paths, π3 and π4. Note that

the suggested repair shown in Figure 4.1d follows path π1 in test t1, and π3 in

t2. Second, the concrete value of each symbol is denoted at each test-passing

path. For example, in path π1, symbol α and γ should have value False, as

denoted with π1 : 〈(α, False), (γ, False)〉. The concrete value of symbol β

does not appear because statement max range endpoint = β of Figure 4.1c

is not executed in path π1. Meanwhile, in path π2, the values of all three

symbols appear as denoted with π2 : 〈(α, True), (β, 0), (γ, False)〉. Lastly,

angelic state σi informs about the values of variables to use in repair syn-

thesis. The same variable can have different values along a path, and that
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is why each instance of a symbol is associated with its own angelic state.

In our coreutils example, σ2(max range endpoint) is zero, and this is why

the suggested repair expression, !(max_range_endpoint == 0), returns the

concrete value of γ, False, as specified in π1.

4.1.2 Reasons for scalability

As will be shown in the experimental results (Section 4.3), our repair method

can handle programs as large as Wireshark (2814 KLoC) and generate multi-

location repairs. There are multiple reasons why our repair method scales.

First, we use a lightweight semantic signature for program synthesis. Com-

pare our semantic signature with the one used in DirectFix [69] which can

also synthesize multi-location repairs. The semantic signature used in Direct-

Fix is essentially the semantics of the whole program. There, the relationship

between each and every expression appearing in the program is maintained,

unlike in our new semantic signature. As a result, the semantic signature

of DirectFix becomes more lengthy and complex, as the size of the program

increases. It it important to note that the semantic signature is the spec-

ification for repair synthesis in the sense that a synthesized repair should

respect the provided semantic signature, as explained with our running ex-

ample. Our lightweight semantic signature reduces the burden of the repair

synthesizer, resulting in more efficient repair synthesis.

Second, our repair algorithm performs controlled symbolic execution with

a few selected suspicious expressions, instead of usual symbolic input. Us-

ing this controlled symbolic execution, we explore only a restricted number
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of feasible execution paths involving only the selected few suspicious expres-

sions. Also, we initially perform symbolic execution only with a subset of the

provided test-suite to reduce the running time of symbolic execution. Only

when some of remaining tests fail with the synthesized repair, we perform

additional symbolic execution with these failing tests.

Lastly, our repair algorithm initiates repair synthesis only when there

exists an angelic forest—the semantic signature for repair. The absence of

an angelic forest for a chosen n suspicious locations implies that it is not

possible to repair the bug by changing these n locations. Symbolic execution

finds an angelic forest (or proves the absence of an angelic forest) efficiently

by exploring only feasible execution paths. Our repair algorithm does not

waste the resources to synthesize a repair if there is no angelic forest.

4.2 Methodology

Our repair methodology consists of the following 4 steps: (1) program trans-

formation, (2) fault localization, (3) extracting a repair constraint, and (4)

patch synthesis. In the first step, we perform semantics-preserving program

transformation to expand the defect class our repair algorithm can fix. For

example, we showed in Section 4.1 that if (1) can be added before each un-

guarded statement. More generally, our repair framework is transparent to

the addition of more semantics-preserving program transformation schemas.

In the second step, we perform statistical fault localization. We use the Jac-

card formula [16], considered most effective for automated program repair

according to [84]. Since our repair algorithm modifies buggy expressions, we
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apply the Jaccard formula at the expression level, instead of at the state-

ment level. The last two steps distinguish semantics-based repair methods

from search-based repair methods such as GenProg and SPR. Semantics-

based methods extract a repair constraint from the program under repair

typically via symbolic execution. This repair constraint acts as a specifica-

tion to guide program synthesis—so a patch satisfying the repair constraint

can be synthesized.

The key novelty of our repair method is our new lightweight repair con-

straint that we call an angelic forest. The size of this angelic forest is in-

dependent of the size of the program under repair. This is the main reason

why our new repair method can scale. Our angelic forest, despite its sim-

plicity, contains enough semantic information to enable multi-location bug

fix. In the following, we formally define our angelic forest (Definition 11)

based on the definition of an angelic value (Definition 9) and an angelic path

(Definition 10).

Definition 9 (Angelic value). Let p be a program, t be a failing test, e be

a program expression and ei be its i-th instance in the execution trace of

t. Angelic value c is such that replacing expressions ei with c during the

execution of t makes p pass the test t.

Definition 10 (Angelic path). Let p be a program, E be a set of program

expressions in p, t be a test. An angelic path is a set of triples (ei, c, σ) where

ei is the i-th instance of an expression e ∈ E appearing in the execution trace

of t, c is an angelic value of ei, and σ represents an angelic state at ei, such

that replacing all ei in the execution trace of t with the corresponding angelic
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values c forces (1) the program p to pass the test t and (2) the program p to

be in the state σ when the expression ei is evaluated.

Definition 11 (Angelic forest). Let p be a program, E be a set of program

expressions in p, t be a test. Angelic forest At for the test t is a set of angelic

paths for t.

We extract an angelic forest via controlled custom symbolic execution

— controlled in the sense that instead of initiating symbolic execution with

symbolic input, we install symbols at a few suspicious program locations

— chosen based on a statistical fault localization result — to control the

execution paths to be explored during symbolic execution.

Let p be a program, e be a program expression (this naturally generalizes

to a set of expressions E), (σin , σout) be a test. Angelix first extracts a set

of triples {(π, θc, θout)} such that {(π, θout)} = SymExec(p′, σin), where p′ :=

p[e 7→ choose()], choose() is a function that returns a fresh symbolic variable

αi each time it is executed. For each path π, θc indicates a symbolic state

in the context of which the function choose() is called when the program

is symbolically executed along π. Then, Angelix executes Algorithm 3 to

extract an angelic forest. This algorithm takes in the test (σin , σout) and

the set of pairs extracted through controlled symbolic execution. For each

explored path, given the expected output σout available in the test, we find a

model of π∧θout = σout via a constraint solver. This model is used to extract

an angelic path, and thereafter grow the angelic forest. We implement our

custom symbolic execution on top of KLEE [12].

Given an angelic forest, Angelix can construct an expression from a given
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ALGORITHM 3: Angelic forest extraction

Data: test (σin , σout), set of triples { (π, θc, θout) }
Result: angelic forest At
At := ∅;
foreach (π, θc, θout) do

ψ := π ∧ θout = σout ;
if isSAT(ψ) then
{α 7→ n1, ...} := getSatisfyingAssignment(ψ);
c := n2;
σc := JθcK{α7→n1,...};
At := At ∪ { (e, c, σc) };

end

end
return At;

library of components that satisfies a given angelic forest. A synthesized

repair, when executed, follows one of the angelic paths for each test, thereby

all tests pass. In these angelic paths, each repaired expression returns its

corresponding angelic value specified in the corresponding angelic path. More

formally, for a given angelic forest At and a set of components c1, ..., cn, it

produces an expression e constructed from c1, ..., cn that by solving the

following second-order formula:

∃e ∈ LΓ.
∨

path∈At

∧
(ei,c,σ)∈path

JeKσ = c

Such e takes the angelic value c for each angelic state σ and therefore passes

the test t by construction.

In order to solve the above formula, we apply the repair algorithm de-

scribed in Chapter 3. Specifically, Angelix finds a patch requiring mini-

mal changes by using MAX-SMT solver. The ability to maximally preserve
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the original source code is important for two reasons. First, our hypothesis

is that such a minimal patch would be preferred by developers. Minimal

patches are easier to validate and they are less likely to change the correct

behavior of the original program than more complex patches as demonstrated

in [69]. Second, when synthesizing a repair for multiple suspicious expres-

sion, MAX-SMT-based repair serves as fault localization, that is the repair

algorithm simultaneously identifies which expressions to modify and how to

modify them. Without this property, synthesizer would always modify all the

suspicious expressions making milti-location repair not practical due to the

complexity of patches. As will be shown in Section 4.3, this way of synthesis

provides higher-quality repairs than SPR.

Optimization To control the number of symbolic execution sessions, we

use the following iterative approach. First, we start from a small subset of

the test suite that provides the highest coverage of the suspicious locations.

Then, we infer angelic forest for this reduced test suite and synthesize a patch.

If the generated patch causes a regression in the whole test suite, we add the

counter-example test to the test suite. We repeat these steps until all test

cases become passing. Regarding running time, there is one more advantage

of semantics-based methods. Contrasting to search-based methods where the

software under repair is rebuilt and retested frequently due to a high number

of repair trails, our semantics-based method finds a repair in one or a small

number of trials, and the cost for rebuilding and retesting is significantly

smaller. Because of type coercion and the absence of a separate boolean

type in C programming language, it is difficult to distinguish between types
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of program expressions. On the other side, knowing precise types increases

the probability of synthesizing correct repair as well improves the synthesis

performance. For this reason, we analyze the usage of suspicious expression

and visible variables to collect type constraints. Then, these type constraints

are used to infer more precise types for program expressions and variables. As

an example, we assign a boolean type to the expressions used as if conditions.

Soundness and completeness While the size of an angelic forest inde-

pendent of the size of the program, it also under-approximates the fix space

— that is, it cannot capture whole (possibly infinite) set of values for the

suspicious expressions that make the test pass. Our repair method based on

an angelic forest is sound in the sense that the repair obtained by our repair

method indeed passes all the provided tests. However, our repair method is

incomplete in the sense that it may not produce some repairs, due to the

under-approximation of angelic values used in an angelic forest, that can

otherwise be synthesized.

4.3 Evaluation

We evaluate our repair method to answer the following two research ques-

tions.

RQ1. Can our repair method generate repairs from large-scale real-world

software?

RQ2. Can our repair method fix multi-location bugs?
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Table 4.1: Angelix experimental results

Subject LoC Tests Versions
W/I Our

Defect Class
Fixed Defects Equiv. to Developer Fixes Time

(min)
Angelix SPR GenProg AE Angelix SPR GenProg AE

wireshark 2814K 63 7 4 4 4 1 4 0 0 0 0 23

php 1046K 8471 44 12 10 18 5 7 4 8 1 2 62

gzip 491K 12 5 2 2 2 1 2 1 1 0 0 4

gmp 145K 146 2 2 2 2 1 1 2 1 0 0 14

libtiff 77K 78 24 12 10 5 3 5 3 1 0 0 14

Overall 82 32 28 31 11 19 10 11 1 2 32

4.3.1 Evaluation setup

Subjects The first 4 columns of Table 4.1 show our subject programs, the

size of each program in LoC, and the number of tests and buggy versions

of each subject (in the Tests and Versions columns, respectively). Our sub-

jects are taken from the GenProg ICSE2012 benchmark [56]. These subjects

have been also used in the literature to evaluate other repair tools such as

GenProg and SPR [62]. In particular, wireshark and php are among the

largest subjects in the benchmark. We use these large subjects to evaluate

the scalability of our repair method. We omit three subjects of the bench-

mark (python, lighttpd, and fbc) because we could not run these subjects on

KLEE [12]. KLEE currently cannot support all library functions. Note that

this limitation of KLEE is orthogonal to our repair approach. We use the

same subjects to evaluate our second research question, i.e., multi-location

repairability. Besides, in addition to these subjects in the GenProg bench-

mark, we add 3 multi-location bugs extracted from CoREBench [10] to our

subject list. We add these multi-location bugs because the GenProg bench-

mark does not have many multi-location bugs in the fix space of our tool.
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Tests and correctness of patches The Tests column of Table 4.1 shows

the number of tests of each subject in the GenProg benchmark. We rectified

the original test scripts delivered in the GenProg benchmark to address the

problems pointed out in [85] such as the weak proxy problem. Meanwhile,

each coreutils version available in CoREBench contains a failing test that

can reproduce the defect. We use these failing tests and the existing tests

available in the subject. All the repairs generated from our tool are man-

ually inspected for its correctness. We consider a repair correct only if the

generated patch is functionally equivalent to the developer-provided patch.

Configurations Our repair tool allows to control the following parameters

of our repair algorithm — the maximum number of suspicious locations that

can be repaired at the same time, the kinds of suspicious expressions, and

the kinds of (semantics-preserving) program transformation. First, for the

maximum number of suspicious locations, we used the value between 1 and

10 (inclusive). Second, for the kinds of suspicious expressions, we used the

following three levels. A higher level is more inclusive. At the lowest level,

we allow only conditional expressions to be considered suspicious. At the

next level, we also consider the right-hand side expressions of assignment

statements. At the highest level, we also consider function parameters. At all

levels, only side-effect/function-call free expressions are considered. Lastly,

for the semantics-preserving program transformation, we allow to add if (1)

before each unguarded statement. We also allow to add if (0) break; at the

end of a loop body to be able to produce a repair requiring to break a loop.

We provided our tool with the names of buggy source code files (which are
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known through developer-provided fixes), as in the previous studies [56, 107,

62]. All our experiments were performed on Intel Xeon E5-2660 2.20GHz

CPU with Ubuntu 14.04 64-bit operating system. We used 12 hours as the

timeout of each repair session.

Defect class As pointed out in [72], defining defect classes supported by a

repair algorithm helps evaluate the efficacy of a repair algorithm (how effec-

tively bugs in the target defect class can be repaired), and compare multiple

repair algorithms one another (which repair algorithm generates repairs more

effectively for the target defect class). The defect class of our repair algo-

rithm can easily be defined in terms of the fix that can be synthesized. Our

repair tool can synthesize side-effect/function-call free expressions that can

be composed of boolean/arithmetic/relational operators, variables available,

and constants. Also, by using semantics-preserving program transformation

(i.e., adding if (1) before unguarded statements), fixes requiring statement

deletion is effectively included in our defect class, as shown with the moti-

vating example in Section 4.1. However, our repair tool currently cannot add

a new statement/variable. The W/I Our Defect Class column of Table 4.1

shows the number of defects of each subject that are in our defect class. We

manually inspected each developer-provided fix to check whether the corre-

sponding defect is in our defect class or not. Although there can be other

possible fixes different from a developer-provided fix, it is infeasible to con-

sider all unknown possible fixes. Thus, we additionally only inspected fixes

from other repair tools (SPR, GenProg, and AE [107]) and ours. The number

of defects within our defect class is less than the number of buggy versions
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(shown in the Versions column), because some bug fixes in the benchmark

require adding new statements/variables.

4.3.2 Results from GenProg benchmark

Table 4.1 shows our results from the GenProg benchmark. The first five

columns are already explained earlier, and self-explanatory. We only mention

that subjects of the table are sorted by their sizes. The Fixed Defects column

shows the number of fixed defects by our tool, Angelix, and other tools —

SPR, GenProg, and AE. Similarly, the Equiv. to Developer Fixes column

shows the number of fixes functionally-equivalent to the developer-provided

fixes out of the fixed defects. The results from other tools (SPR, GenProg and

AE) are taken from [62]. Lastly, Time column shows the average running

time of our tool for each subject, when repairs were found. The running

time of the other tools are available in their respective papers [56, 62, 107],

although each tool is experimented on a different type of machine. In all

subjects with different sizes between 77 KLoC and 28214 KLoC, our tool

successfully generated repairs for some defects. Our tool generated repairs

for most defects in our defect class (28 out of 32), and more than third of

these repairs (10 out of 28) are functionally equivalent to developer-provided

repairs. Three defects in our defect class were not fixed due to imprecise

statistical fault localization (e.g., buggy initialization of a global variable

was not ranked high). One remaining defect requires modifying a string

value (a character sequence) in a way that cannot be handled by our current

solver (the length of the string should change in a fix). As shown in the Time
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Table 4.2: Number of defects exclusively repaired by each repair tool across
the subjects

Subject Angelix SPR GenProg AE

wireshark 0 0 0 0

php 0 4 0 0

gzip 1 0 0 0

gmp 0 0 0 0

libtiff 5 0 0 0

Overall 6 4 0 0

column, the average running time of our repair tool is about half an hour,

when a repair is found.

Angelix, an implementation of our new semantics-based repair algo-

rithm, successfully generates repairs from 5 real-world software as large

as 77–28214 KLoC in 32 minutes on average. This result shows that a

semantics-based repair can scale.

Angelix fixed 2 multi-location bugs of the GenProg benchmark. We show

these results along with the results from the multi-location bugs of coreutils

in Section 4.3.3.

Comparison with other repair tools

When compared with the state-of-the-art repair tool, SPR, our tool shows

higher repairability (more defects are repaired in our tool) in libtiff (10 vs

5), and lower repairability in php (10 vs 18). In the remaining 3 subjects,

both tools shows the same repairability. This varying repairability across
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if (td->td_nstrips > 1

&& td->td_compression == COMPRESSION_NONE

&& td->td_stripbytecount [0] != td ->td_stripbytecount [1])

(a) The buggy location of libtiff-d13be72c-ccadf48a

if (td->td_nstrips > 2

&& td->td_compression == COMPRESSION_NONE

&& td->td_stripbytecount [0] != td ->td_stripbytecount [1])

(b) The repair generated by our tool, Angelix

if (td->td_nstrips > 1

&& td->td_compression == COMPRESSION_NONE

&& td->td_stripbytecount [0] != td ->td_stripbytecount [1]

&& !(1))

(c) The repair generated by SPR

Figure 4.2: Comparison of repairs from Angelix and SPR

the subjects is related to the different defect classes of Angelix and SPR.

For example, the defect class of SPR contains inserting a function call such

as memset, and 5 php defects are included in this defect class. Meanwhile,

Angelix can fix multiple buggy locations, and two libtiff multi-location defects

are exclusively fixed by our tool. More generally, Table 4.2 shows the number

of defects exclusively repaired by each repair tool across the subjects. Our

tool produced the most number of unique repairs, as compared to SPR,

GenProg and AE.

We also qualitatively compare the repairs from Angelix and SPR. Fig-

ure 4.2 shows a buggy location of libtiff-d13be72c-ccadf48a in (a), the repair

generated by our tool in (b), and the repair generated by SPR in (c). The

difference between the original code and each repair is shaded. The SPR

repair looks problematic, because it simply deletes functionality by disabling
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Table 4.3: The number of functionality-deleting repairs

Subject
Angelix SPR

Fixes Del Per Fixes Del Per

wireshark 4 1 25% 4 1 25%

php 10 3 30% 18 7 39%

gzip 2 0 0% 2 1 50%

gmp 2 0 0% 2 0 0%

libtiff 10 2 20% 5 4 80%

Overall 28 6 21% 31 13 42%

the block of code in the then branch. Indeed, this patch is not function-

ally equivalent to the developer-provided patch. Still, such an overfitting

repair [95] (an incorrect repair that merely passes the provided tests) can be

helpful in debugging, because the user can at least see that the (incorrectly)

repaired if conditional may be buggy. However, compare this SPR repair

to the repair generated by our tool shown in Figure 4.2b. Our repair spots

the buggy location more precisely down to td->td\_nstrips > 1. This is

because our repair tool generates a repair that is close to the original buggy

expression by using a MAX-SMT solver. As a result, a problematic buggy

location can be pinned down more precisely. In fact, our repair is identical

with the developer-provided repair in this case.

Incorrect repairs that merely delete functionality are common in SPR

repairs. Table 4.3 compares the number of repairs that delete functional-

ity between our tool and SPR. In each tool (the Angelix and SPR column,

respectively), we list the number of fixes generated in each tool (the Fixes
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Table 4.4: Experimental results for multi-location defects.

Defect
Fixed

Expressions

libtiff-4a24508-cc79c2b 2

libtiff-829d8c4-036d7bb 2

coreutils-00743a1f-ec48bead 3

coreutils-1dd8a331-d461bfd2 2

coreutils-c5ccf29b-a04ddb8d 3

column), the number of functionality-deleting fixes (the Del column), and

the percentage of functionality-deleting fixes out of generated fixes (the Per

column). In five subjects used in our experiments, 42% of SPR-generated re-

pairs delete functionality, and in the libtiff subject, the percentage goes up to

80%. Even if the three omitted subjects (python, lighttpd, and fbc) are also

considered, the percentage of functionality deleting repairs stays even at a

high rate of 45%. GenProg and AE also often generate functionality-deleting

repairs, as reported in [85]. In comparison, Angelix generates functionality-

deleting repairs less frequently (21%).

Angelix is not only scalable but also less frequently generates

functionality-deleting repairs than the existing tools such as SPR and

GenProg.

4.3.3 Results from multi-location bugs

Table 4.4 shows the experimental results for multi-location defects of the Gen-

Prog benchmark and coreutils. The “Fixed Expressions” column shows the
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number of expressions fixed by our tool. Angelix produced a repair function-

ally equivalent to the developer-provided one for coreutils-00743a1f-ec48bead.

Meanwhile, in coreutils-1dd8a331-d461bfd2, while two conditional expres-

sions are repaired in a functionally similar way to the developer patches,

the output message is not corrected in our repair, because this message is

not part of the the oracle in the tests used for repair. In coreutils-c5ccf29b-

a04ddb8d, the developer-provided repair uses function calls that are not used

in our repair.

We note that the number of defects covered by our multi-location defect

class is limited at least in the two benchmarks we investigated (the GenProg

benchmark and CoREBench). Many developer-provided fixes for multi-line

defects involve adding new variables, statements, and functions. We believe

that the research in automatic patching should be developed into such more

sophisticated patches, and our multi-location defect class is on the pathway

toward such a direction. To the best of our knowledge, only our repair tool

can currently generate (non-functionality-deleting) fixes for multi-location

bugs in large-scale real-world software.

4.4 Experience with Heartbleed bug

We applied our repair tool to a buggy version of OpenSSL (OpenSSL-1.0.1-

beta1) that has the infamous Heartbleed bug. Heartbleed is considered one of

the most dangerous in the annals of security vulnerabilities, because attackers

can exploit Heartbleed to steal important confidential data, including login

cookies, passwords, and private cryptographic keys, without leaving a trace
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if (hbtype == TLS1_HB_REQUEST) {

...

memcpy (bp , pl , payload );

...

}

(a) The buggy part of the Heartbleed-vulnerable OpenSSL

if (hbtype == TLS1_HB_REQUEST

&& payload + 18 < s->s3->rrec.length) {

/* receiver side: replies with TLS1_HB_RESPONSE */

}

(b) A fix generated by our tool, Angelix

if (1 + 2 + payload + 16 > s->s3->rrec.length)
return 0;

...

if (hbtype == TLS1_HB_REQUEST) {

/* receiver side: replies with TLS1_HB_RESPONSE */

}

else if (hbtype == TLS1_HB_RESPONSE) {

/* sender side */

}

return 0;

(c) The developer-provided repair

Figure 4.3: Heartbleed bug and its fixes

from numerous servers depending on OpenSSL to run their services. We

report that we could automatically fix the Heartbleed bug using our repair

tool. To the best of our knowledge, this is the first work that reports the

automated repair on Heartbleed.

The Heartbleed bug is an instance of a buffer over-read (CWE-126), one of

common weakness of C/C++ programs. Exploiting this weakness, attackers

can read beyond the region of a buffer that is originally intended by the pro-

grammers. Figure 4.3a shows where this weakness exists in the Heartbleed-
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vulnerable OpenSSL. The main culprit is memcpy(bp, pl, payload) (line 3)

where attackers can assign payload (the third parameter of memcpy that sets

the number of bytes to copy from the target memory region) a larger value

than the size of buffer pl, the target memory region. The programmer of

OpenSSL made a (common) mistake of not putting a bounds check before

this problematic memcpy.

We applied Angelix to OpenSSL for repairing the Heartbleed bug. We

obtained publicly available tests2, and added four more tests to cover missing

corner cases. Figure 4.3b shows the fix generated by our tool in the shaded

area. With this fix, memcpy cannot be invoked if payload is larger than is

allowed by the TLS/DTLS network protocol (the buggy code of OpenSSL is

the implementation of these protocols). Our repair synthesizer could com-

pose this repair with payload and s->s3->rrec.length, both of which are in

the scope at the fixed if conditional (they appear in the other parts of the

buggy function). In comparison, the developer-provided repair is shown in

the shaded area of Figure 4.3c. In both repairs, the failure of the bounds

check, which is performed by the added conditional, makes the receiver sim-

ply return zero, instead of replying with a response packet. Based on our

experience with Heartbleed, we make the following assessment.

Automated repair techniques, such as Angelix, are powerful enough to fix

some of well-known and serious software vulnerabilities like Heartbleed.

2Heartbleed tests: https://code.google.com/p/mike-bland/source/browse/

heartbleed/
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Chapter 5

Semantic repair using a

reference implementation

The primary reason for the low quality of automatically generated patches is

the lack of specifications of the intended behavior. Most program repair sys-

tems rely on tests as the correctness criteria, because a formal specification

is often unavailable in practice. However, since tests is an incomplete speci-

fication, generated patches often do not correspond to developer intentions,

but merely overfit the tests. In order to increase the quality of automati-

cally generated patches, researchers have proposed such techniques as patch

prioritization [63], anti-patterns [101], test generation [110, 114], etc. Al-

though these techniques increase the probability of finding correct patches,

they nevertheless do not provide any correctness guarantees beyond the tests

in a given test suite.

To address the overfitting problem, we propose to automatically infer the

missing specification for a buggy program from a correct reference program.

A reference program is an alternative realization of the same functionality,
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which is often available for libraries (e.g. standard library implementations,

audio codecs, compression algorithms, parsers, cryptographic algorithms),

network protocols [59], commodity software (e.g. GNU Coreutils and Busy-

box implement the same set of UNIX utilities), in the area of digital signal

processing [58], web servers and database management systems. Note that a

reference program may have a substantially different implementation (differ-

ent data structures and algorithms), which distinguishes our approach from

repair techniques [100] that employ previous program versions. The use of a

reference program enables us to alleviate test overfitting and provides addi-

tional correctness guarantees.

Ideally, a generated patch should enforce the equivalence of the patched

and the reference programs, which poses two challenges: scalability and ap-

plicability. First, a recent work [52] reported that a straightforward com-

bination of an equivalence checking system [51] with counterexample-guided

inductive synthesis [3] to synthesize equivalence-enforcing patches is not scal-

able. Second, real-world implementations of the same functionality rarely

follow precisely the same specification, e.g. GNU Coreutils implements a

superset of the functionality implemented in Busybox and therefore cannot

be directly used for equivalence checking.

To address the above challenges, we introduce a methodology of patch

generation based on a reference implementation that integrates the notion

of conditional equivalence [46] and the scalable patch generation algorithm

described in Chapter 4. We rely on the user insight to provide an input

condition for patch generation that should (1) include a bug-triggering input

and (2) correspond to functionality shared by the buggy and the reference
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programs. Then, our system automatically generates a patch for the buggy

program that enforces conditional equivalence of the patched and the ref-

erence programs, that is equivalence for all inputs satisfying the provided

condition. Although the user is only required to provide an input condition

(the property being checked is derived automatically from the reference pro-

gram), this still may be non-trivial for applications that involve a complex

execution setup. To tackle this problem, we propose a practical approach of

introducing an input condition based on the idea of parameterized tests [104],

i.e. the condition is defined by injecting symbolic parameters into existing

tests.

5.1 Overview

Our approach takes four inputs: a test suite, a buggy and a reference pro-

gram, and a user-defined input condition (Figure 5.1).

As the first step, the node Fault localization of Figure 5.1 represents

the identification of suspicious expressions that might need to get repaired.

This is done by applying statistical fault localization [42] based on the given

test suite and the buggy program. The suspicious expressions in the buggy

program get replaced with symbolic variables, denoted as the instrumented

buggy program.

As the second step, the module Symbolic analysis of Figure 5.1 contains

the symbolic execution of the reference program and the instrumented buggy

program using the user-defined input condition as a precondition. The result

of each symbolic execution is a set of pairs of resulting path conditions and
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Buggy program Test suite

User-defined
input condition

Reference
implementation

Fault localization

Symbolic execution of in-
strumented buggy program

Symbolic execution
of reference program

Conditional
equivalence checker

Angelic forest
extractor

Patch
synthesizer

Patch

input

symbolic analysis

counterexample-guided inductive repair

Figure 5.1: SemGraft workflow.

symbolic output states (see Definition 13) that is used as a specification.

As the last step, the inferred specifications for the reference and the buggy

programs are passed into the patch generator that performs a counterexample-

guided inductive repair loop. Specifically, it performs the following iterations

starting from the original buggy expression as the initial (empty) patch:

1. Construct a verification condition (VC) for the patch.

2. Generate a counterexample input that violates the conditional equiva-

lence property by solving VC.

3. Extract an angelic forest [70] for the generated input.

4. Synthesize a patch that satisfies the angelic forest.
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5. Go to step (1).

This loop repeats until a conditional equivalence-enforcing patch is synthe-

sized or the next patch/angelic forest cannot be found.

To illustrate our approach, we consider the reference program in Fig-

ure 5.2a and the buggy program in Figure 5.2c. The reference program

implements an algorithm of searching for an element of an array via linear

search, while the buggy programs uses binary search. The buggy program

contains a bug in line 16.

A crucial element of our approach is the input condition φ that has to

be defined by the user. The most trivial choice of the input condition would

be simply True, i.e., checking equivalence for all program input. However,

this approach may have a poor scalability as it has been reported in previous

works [52]. Instead, we suggest defining the input condition by parameteriz-

ing existing tests. Specifically, not all inputs of a test case must be considered

concretely, some of them can be handled symbolically. Therefore, the user

can transform the test cases in logical constraints and possibly add additional

constraints. This represents a practical solution to balance the completeness

and scalability of automated program repair. The wider the input condition

is formulated, the more complete, in terms of covered input space, will be

the generated patch.

To define the input condition φ, assume that the user formulates it in-

formally in the following way: we only consider sorted arrays of the length

3 and without duplicates. First, we introduce a mapping between program

88



variables and symbolic variables:

{x 7→ γ, a 7→ [α0, α1, α2], length 7→ δ}

Then, the input constraint is defined as follows:

φ := α0 < α1 < α2 ∧ δ = 3

The given test suite contains one negative test case with the input {x 7→

2, a 7→ [2, 4, 6], length 7→ 3} and the expected output 0, because the first ele-

ment is equal to the searched value 2. The test case passes for the reference

program, but fails for the buggy program. The statistical fault localization

identifies the expression in line 16 as a suspicious expression, hence, we intro-

duce the symbolic variable β and generate an instrumented buggy program

by replacing (x < a[m]) with β. Note that the test case is not encoded in the

input condition φ, i.e., the repair steps themselves are independent from any

given concrete test input. This test case is only needed for the identification

of suspicious expressions.

Assuming φ, we execute the reference and instrumented buggy program

with a preconditioned symbolic execution. Preconditioned symbolic execution

(see Definition 12) explores only a subset of program paths that are consistent

with the condition φ. We will get the results presented in Figure 5.2b and

Figure 5.2d. The tables contain so called specifications (see Definition 14),

which describe the path condition (πr for the reference program and πb for

the buggy program), the current context for the suspicious expression θc,
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and the output symbolic state (θrout for the reference program and θbout for

the buggy program). The superscript index of β indicates the occurrence

id (or instance id) of this expression, since it can be visited more than once

during the execution.

With the results of the preconditioned symbolic execution we can build

the formula of the verification condition for the considered expression (x < a[m]).

A verification condition (VC) encodes the following idea: if both executions

in the reference and buggy program follow the same path, then their out-

puts should be the same. The VC will also encode the values of the visible

variables in the expression (x < a[m]) computed in the symbolic context θc

that we denote as β = (x < a[m])JθcK. The simplified version of this first

iteration VC is presented in Figure 5.3. We skipped contradicting pairs of

path conditions from the buggy and the reference program and discarded

pairs that contradict the input condition φ. Additionally, we simplified the

formula by removing lines where the symbolic output states match already,

i.e., θrout = θbout. In such cases the implication is always True and, hence,

it does not provide any additional value. The remaining formula includes

the following combinations of paths (represented by the according ids in Fig-

ure 5.2b and Figure 5.2d): (r1, b3), (r1, b4), (r3, b6), (r3, b7), as also indicated

at the beginning of each line in the shown VC.

In order to check the validity of the verification condition, we check the

unsatisfiability of its negation as in previous works [51, 79]. The negated VC

will be solved using an off-the-shelf SMT solver to generate satisfying values

representing counterexamples, which do not satisfy the VC with the current

replacement for the suspicious expression. After negating the VC, the SMT
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solver generates a counterexample input {x 7→ −1, a 7→ [−1, 0, 1]}.

In order to find the correct truth value for β, also called angelic value (see

Definition 9), we look at the path condition of the buggy program that leads

to the correct output symbolic state, which is here θrout = 0 according to the

reference program. Comparing with the table in Figure 5.2d, this output can

only be reached in the buggy program by following the path b5. In order

to take this specific path with the given input values, β0 needs to be False.

This leads to the following angelic forest, which is the input structure for

our synthesizer and represents all needed values for the specific suspicious

expression (see Definition 11):

{(β0, c, σ)}, given that c := False, σ := {x 7→ −1, a[m] 7→ 0}

where c represents an angelic value of the considered expression (a value that

enables the program to pass the counterexample test) and σ represents an

angelic state (the concrete values of program variables in the context in which

the expression is executed).

The generated values are used to build the input for a component-based

synthesizer, which generates a new patch matching the current synthesizer in-

put. Given this input, the synthesizer returns a plausible patch (x == a[m]).

After inserting this expression in the VC and negating it, the SMT solver

generates a second counterexample input {x 7→ 1, a 7→ [−1, 0, 1]}. The cor-

rect output symbolic state for this input is θrout = 2 and this matches only the

path b2. In order to take this specific path with the second counterexample,
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β0 needs to be True. This leads to an extension of our angelic forest to:

{ (β0,False, {x 7→ −1, a[m] 7→ 0)},

(β0,True, {x 7→ 1, a[m] 7→ 0}) }.

Given this input, the synthesizer returns the patch (x >= a[m]). After insert-

ing this expression in the VC and negating it, the SMT returns unsatisfiable,

i.e., the synthesized patch fulfills all requirements. Note that (x >= a[m]) is

not syntactically equivalent with the correct patch (x > a[m]), but in this con-

text (i.e. with the preceding if-condition) both expressions are semantically

equivalent. Our approach results in a patch for the buggy program, so that

given the input condition φ, the patched program is conditionally equivalent

with the reference program.

For comparing with test-driven repair techniques, we applied Angelix [70],

which uses a similar path generation algorithm, and hence, it represents the

closest existing approach and means a more fair comparison than using any

other test-driven repair technique. For our motivating example we observed

that Angelix only can produce the plausible patch (a[m] < a[m]). It fixes only

the given negative test case, so in order to generate a correct patch it would

be necessary to include more test cases. Since our repair approach is capable

of using another program as correctness reference, it generates the input for

the synthesizer itself with the presented counterexample-guided approach.

In this motivating example we showed that with our approach it is pos-

sible to use a relatively simple reference program (e.g., the linear search) to

repair an optimized program (e.g., the binary search). The two programs do
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not need to be structurally similar, as long as they solve the same problem.

5.2 Methodology

In this section, we formally define three main components of our algorithm:

specification inference, verification condition construction and patch synthe-

sis.

5.2.1 Specification inference

The main intuition of our approach is that it is possible to infer a correct

specification from a reference implementation and synthesize a patch that

enforces this specification in a given buggy program. Hereinafter, we refer to

the given reference implementation as the program pr and the given buggy

program as the program pb.

In order to infer a specification, we use preconditioned symbolic execution

defined as follows:

Definition 12 (Preconditioned symbolic execution). A preconditioned sym-

bolic execution procedure PSymExec : P×Θ×L → 2L×Θ is a symbolic execu-

tion, in which each path condition is conjoined with a given formula. It can

be defined as PSymExec(p, θ, φ) := SymExec(p′, θ), where p′ := assume φ; p.

The implementation of preconditioned symbolic execution is discussed in

Section 5.3. As a result of adding the condition φ, preconditioned symbolic

execution is significantly more efficient than conventional symbolic execution,
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since it explores only a subset of program paths that is consistent with the

condition φ.

For a given reference program and an input condition, we infer a sym-

bolic summary of the program computed through preconditioned symbolic

execution:

Definition 13 (Symbolic summary). Let p be a program, φ be an input

condition, θ is a symbolic state. A symbolic summary is a set of pairs

Sum(p, θ, φ) := {(π, θout)} such that {(π, θout)} = PSymExec(p, θ, φ).

For a given buggy program, a suspicious expression and an input condi-

tion, we infer the following specification:

Definition 14 (Specification). Let p be a program, e be a program expres-

sion, φ be an input condition, θ is a symbolic state over variables α1, ..., αk.

A specification is a set of triples Spec(p, e, θ, φ) := {(π, θc, θout)} such that

{(π, θout)} = PSymExec(p′, θ, φ), where p′ := p[e 7→ choose()], choose() is

a function that returns a fresh symbolic variable βi each time it is executed.

For each path π, θc indicates a symbolic state in the context of which the

function choose() is called when the program is symbolically executed along

π.

We say that a summary Sum(p, θ, φ) is complete if for each input σ sat-

isfying the condition φ one of the following holds:

• Exec(p, σ) = ω;

• ∃(π, θout) ∈ Sum(p, θ, φ). JπKσ = True.
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The completeness of a specification Spec(p, e, θ, φ) can be defined in a similar

manner.

In order to simplify further definitions, we assume (without loss of gener-

ality) that all formulas contain only a single variable α representing program

inputs and a single variable β representing the values of the replaced program

expression.

5.2.2 Verification condition

To check program equivalence, we construct a verification condition for a

given patch using the inferred specification. Ideally, this condition should

express the property “for each input satisfying a given input condition, if

there is a path in the reference program followed by this input, then there

should be a path in the patched program followed by this input and the

outputs produced along these paths are equal”. We refer to this condition

as strict.

Definition 15 (Strict verification condition). Let pr be a reference program,

pb be a buggy program, e be a suspicious expression in pb, e
′ be a candidate

patch, φ be an input condition, θin is a symbolic state over the variable α. A

strict verification condition VC strict for the program pb[e 7→ e′] is defined as

follows:

∀α∃β
∧

(πr,θrout )

(πr ⇒
∨

(πb,θbc,θ
b
out )

πb ∧ β = Je′Kθbc ∧ θ
r
out = θbout)

where the symbolic summary {(πr, θrout)} := Sum(pr, θin , φ) and the specifica-

tion {(πb, θbc, θbout)} := Spec(pb, e, θin , φ).
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However, the above condition cannot be used in many practical situa-

tions, where the existing symbolic execution engines reach their limits. For

instance, we have to restrict the number of explored paths by performing

loop unrolling in up to k iterations. As a result, the inferred specification is

incomplete, and the introduced strict verification condition may classify two

equivalent programs as non-equivalent. For example, if an input is captured

by some path condition πr, but not captured by any πb, then the programs

will be considered non-equivalent. To address this, we use a more practical

version of the verification condition that we refer to as liberal.

Definition 16 (Liberal verification condition). Let pr be a reference program,

pb be a buggy program, e be a suspicious expression in pb, e
′ be a candidate

patch, φ be an input condition, θin is a symbolic state over the variable α. A

liberal verification condition VC liberal for the program pb[e 7→ e′] is defined as

follows:

∀α∃β
∧

(πr,θrout )

∧
(πb,θbc,θ

b
out )

πr ∧ πb ∧ β = Je′Kθbc ⇒ θrout = θbout

where the symbolic summary {(πr, θrout)} := Sum(pr, φ, θin) and the specifica-

tion {(πb, θbc, θbout)} := Spec(pb, e, φ, θin).

Compared with the strict verification condition, the liberal one only re-

quires that for all intersections between a path condition πr in the reference

program and πb in the buggy program (i.e. inputs satisfying πr ∧ πb), the

symbolic outputs are the same in both programs. In the other words, this

verification condition only checks equivalence of the functionality for which
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a specification has been inferred from both programs.

5.2.3 Patch generation

To implement a scalable patch generation that enforces conditional equiva-

lence of the reference and the buggy programs, we propose a methodology

of counterexample-guided inductive repair (CEGIR) that effectively combines

counterexample-guided inductive synthesis (CEGIS) [3] and a patch synthesis

algorithm of Angelix described in Chapter 4.

The overall workflow of the patch generator is shown in Figure 5.4 and il-

lustrated by an example in Section 5.1. It performs a counterexample-guided

refinement loop starting from the original expression as the initial candidate

patch. The loop combines three modules: a conditional equivalence checker,

an angelic forest extractor and a patch synthesizer that are described in

details below.

Conditional equivalence checker In order to verify that a given candi-

date patch makes the buggy program conditionally equivalent to the reference

program, we solve the liberal verification condition given in Definition 16. In

order to solve the universally-quantified formula, we check the unsatisfiabil-

ity of its negation, so as in previous works [51, 79]. Note that the introduced

verification condition is an ∀∃ formula, therefore its negation also produces a

universally-quantified formula. However, the quantifiers ∀∃ can be replaced

with ∀∀, since for each α the values of β is uniquely identified by the con-

straint πb∧β = Je′Kθbc . Thus, the negation of the liberal verification condition
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in Definition 16 is

∃α∃β
∨

(πr,θrout )

∨
(πb,θbc,θ

b
out )

πr ∧ πb ∧ β = Je′Kθbc ∧ θ
r
out 6= θbout

The above formula is an ∃∃ formula, therefore it can be solved using an

off-the-shelf SMT solver. If the formula is unsatisfiable, then the patch is

correct (conditionally equivalent to the reference program). Otherwise, a

counterexample test is generated.

Angelic forest extractor Given a counterexample test and a specifica-

tion inferred from the buggy program, our algorithm computes a compact

specification for the expression based on angelic values (angelic forest). The

algorithm of angelic forest extraction is similar to that used in Angelix [70].

It is presented in Algorithm 3. If angelic values cannot be extracted, then

the bug cannot be fixed at the considered location (or the specification is

incomplete). Otherwise, the values are extracted and passed to the synthe-

sizer.

Patch synthesizer Since the input to the synthesizer is an angelic forest,

we used the Angelix implementation of a patch synthesizer that extends

SMT-based component-based program synthesis [70]. If a patch cannot be

synthesized, then the search space (the set of considered transformations) is

insufficient to find a repair. If a patch is found, it is passed to the conditional

equivalence checker.

Proposition 1 (Correctness guarantee). Let pb be a buggy program, pr be
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a reference program, φ be an input condition, e be a suspicious expression

in pb. Assume that e′ is a patch that is produced by the CEGIR algorithm

(Figure 5.4) given complete specifications Sum(pr,θ,φ) and Spec(pb,e,θ,φ) as

inputs. Then, pb[e 7→ e′] and pr are conditionally partially equivalent w.r.t.

the condition φ.

5.3 Implementation

We have implemented the tool SemGraft for evaluating our technique. Sem-

Graft consists of three main components: preconditioned symbolic executor,

verification condition generator and patch generator. SemGraft receives a

buggy and a reference program, an input condition and a test suite as input,

and produces a patch for the buggy program as the output. Figure 5.5 shows

the architecture of our tool. Below, we explain how these components are

implemented.

Preconditioned symbolic executor (PSE) PSE is built on top of KLEE

[12] — a widely used symbolic execution engine. To support preconditioned

symbolic execution, the modified version of KLEE takes the user-defined in-

put condition φ in SMTLIB2 format as input. Specifically, we modify the

function fork of the KLEE interpreter which is called when KLEE encoun-

ters a symbolic branch. The path conditions of both branches are conjoined

with the input condition to determine whether a path is terminated imme-

diately or further explored. We integrate Z3 solver [21] with KLEE and pass

symbolic constraints between them for checking the satisfiability of symbolic
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Table 5.1: Busybox subject programs
Buggy
Prog.

Buggy
Commit

Ref. Prog.
Ref. Prog.
Version

Failure Description Angelix’ SemGraft

sed c35545a sed of GNU sed version 3.01 Failed to handle zero-length match Correct Correct
seq f7d1c59 seq of Coreutils version 6.10 Wrong output when 2 input arguments are equal Correct Correct
sed 7666fa1 sed of GNU sed version 3.01 Wrong output when handling s///NUM Incorrect Correct
sort d1ed3e6 sort of Coreutils version 8.27 Wrong output when handling -kSTART,N.ENDCHAR Incorrect Correct
seq d86d20b seq of Coreutils version 8.27 seq no longer accepts 0 value as increment argument Incorrect Correct
sed 3a9365e sed of GNU sed version 3.01 Failed to handle s/// which has empty matches Incorrect Correct

expressions. PSE outputs symbolic formula in SMTLIB2 format and invokes

Z3 solver via a wrapper function.

Verification condition generator (VCG) VCG takes the symbolic sum-

mary of the reference program and the specification of the buggy program,

both of which are obtained by executing PSE with the input condition. Our

tool SemGraft supports both kinds of verification condition as per Subsec-

tion 5.2.2, but the default option of VCG is the liberal verification condition

which is more practical for real-world programs. We use an open-source

library jSMTLIB1 for processing SMT files generated by PSE.

Patch generator (PG) PG takes the liberal verification condition in

SMTLIB2 format and executes a counterexample-guided inductive repair

loop until it finds a patch that satisfies the desired property. The workflow

of PG is shown in Figure 5.4.

5.4 Evaluation

To evaluate the effectiveness of our approach, we aim to investigate the fol-

lowing research questions:

1jSMTLIB website: https://github.com/smtlib/jSMTLIB
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Table 5.2: Coreutils subject programs

Buggy
Prog.

Buggy
Commit

Ref. Prog.
Ref. Prog.
Version

Failure Description Angelix’ SemGraft

mkdir f7d1c59 mkdir of Busybox version 1.27.2 Segmentation fault Incorrect Correct
mkfifo cdb1682 mkfifo of Busybox version 1.27.2 Segmentation fault Incorrect Correct
mknod cdb1682 mknod of Busybox version 1.27.2 Segmentation fault Incorrect Correct
copy f3653f0 copy of Busybox version 1.27.2 Failed to copy a file Correct Correct

md5sum 739cf4e md5sum of Busybox version 1.27.2 Segmentation fault Correct Correct
cut 6f374d7 cut of Busybox version 1.27.2 Failed to handle -b 2-,3- like -b 2- Incorrect Correct

(RQ1) Can SemGraft generate repairs for real-world software?

(RQ2) Can SemGraft alleviate the overfitting problem of existing test suite

based program repair techniques using the reference implementation?

RQ1 is designed to investigate the applicability of our approach for re-

pairing real-world applications. A previous study [52] has reported that a

straightforward combination of a state-of-the-art equivalence checking sys-

tem with counterexample-guided inductive synthesis scales only to small

programs. To be applicable to real-world programs such as Busybox and

GNU Coreutils, our approach sacrifices discovers a partial specification for

checking conditional equivalence w.r.t. a user-provided condition. Therefore,

we also discuss how such a condition can be derived from existing tests.

RQ2 assesses the correctness of generated patches compared with test-

driven program repair approaches. As in previous works [63, 70], we identify

a generated patch as correct only if it is syntactically equivalent to the de-

veloper patch (modulo trivial refactorings).

5.4.1 Experimental setup

In order to address the described research questions, we choose the subjects

in our experiments according to the following four criteria.
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1. The subjects are real-world software that is widely used.

2. Reference programs are available that process the same inputs as the

buggy programs but exhibit the correct behavior.

3. The buggy and the reference program are substantially different in their

structure.

4. The developer patches are within the search spaces of our implementa-

tion. By the search space we mean the set of considered transformations

defined through the components used for component-based synthesis.

The last criteria allows us to reason about correctness of generated patches

(e.g. if the developer patch was not in the search space, then any generated

patch would a priori be identified as incorrect).

Our subjects are 12 real software errors of two open-source C projects

Busybox2 and GNU Coreutils3 extracted from (1) commit logs, (2) bug re-

ports and (3) previous research [12]. Both Busybox and GNU Coreutils

provide many common UNIX utilities, but Busybox has been implemented

with size-optimization, limited resources, and is mainly used for small or

embedded systems. We employ our tool SemGraft to repair the embedded

Linux Busybox with GNU tools like Coreutils as reference, and vice versa.

To address the second question (RQ2), we compared our technique with

a state-of-the-art test-driven program repair approach, Angelix [70]. Angelix

is closely related to our technique since it also applies symbolic execution to

infer specification and synthesizes patches. We selected this approach for our

2Busybox: https://busybox.net/about.html
3GNU Coreutils: https://www.gnu.org/software/coreutils/
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evaluation because this enables us to more objectively investigate the impact

of specification inferred from a reference program. Specifically, since our im-

plementation reuses the synthesizer of Angelix, both Angelix and SemGraft

explore the same space of candidate patches. In order to ensure that the sys-

tems have access to the same semantic information about the program, we

integrated the algorithm of Angelix into SemGraft in such a way that both

tools use the same specification inferred from the buggy program (we refer

to this version of Angelix as Angelix’). The main difference of the two tools

is that SemGraft performs a counterexample-guided inductive repair loop

to ensure conditional equivalence with the reference implementation, while

Angelix’ relies solely on the test suite provided by GNU Coreutils/Busybox

developers and stops immediately when finding an expression satisfying the

tests.

All our experiments were performed on Intel Xeon CPU E5-2630 v4 @

2.20GHz CPU with Ubuntu 14.04 64-bit operating system.

5.4.2 Summary of experiments

Table 5.1 summarizes our experiments with Busybox and Table 5.2 summa-

rizes our experiments with GNU Coreutils. For each pair of a buggy and

a reference program, the tables show the name of the buggy program and

its version in the commit history, the reference program and its version, a

description of the bug, and the results of executing Angelix’ and SemGraft

for repairing the defect.

SemGraft demonstrated that the proposed approach can be applied to

103



real-world programs. Specifically, it managed to repair all defects that are

repaired by Angelix. Since the workflow of SemGraft also includes inferring

specification for a reference program and checking verification conditions, it

required a longer time to generated patches. Specifically, Angelix’ required 15

minutes on average to generate patches, while SemGraft required 45 minutes.

In the experiments, SemGraft inferred specifications consisting of up to

81 paths from a reference program and up to 250 paths in a buggy program.

The number of paths, in general, depends on the structure of the buggy and

the reference programs, bounds used for symbolic execution and the chosen

condition φ. Typically, the specification inferred from the buggy program

includes more paths due to additional symbolic variables injected into the

buggy program for suspicious expressions.

As can be seen from the tables, SemGraft generated repairs equivalent to

developer patches for all considered examples, while Angelix’ that relies only

on tests repaired less than half of the defects correctly. This shows that the

reference implementation indeed can help to alleviate test overfitting.

5.4.3 Deriving input condition

An input condition used for enforcing conditional equivalence of the patched

and the reference program is an important part of our approach and it has to

be defined by the user. We use an example of a bug in cut (ver. 6f374d7) to

demonstrate how such a condition can be defined in practice. cut extracts

sections from each line of its input. The buggy version of cut of GNU

Coreutils wrongly interprets the command -b 2-,3- as -b 3- (extract input
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bytes staring from the third byte) instead of -b 2- (extract input bytes staring

from the second byte). The developer provides the following two tests that

cover the buggy functionality:

echo -ne ’1234’ | cut -b 2-,3-

echo -ne ’1234’ | cut -b 3-,2-

For both of these tests, the expected output is 234. The above two tests cover

program behavior for two concrete pairs of indexes (2, 3) and (3, 2). However,

this is insufficient for a test-driven program repair to produce a patch that

generalizes beyond the tests.

In this approach, we propose to define an input condition for generat-

ing conditional equivalence-enforcing patches by parametrizing existing tests.

Note that the purpose of parametrizing the test is to make generated patches

generalize, yet ensuring tractability of specification inference. Therefore, the

user should parametrize the essential part in the test related to the failure.

In this case, we inject parameters instead of the indexes {2, 3} that affect the

way the data is processed. As a result, we obtain the following input:

echo -ne ’1234’ | cut -b α0-,α1-

where α0 and α1 indicate the injected parameters. Given such a parametriza-

tion, the condition φ will be accordingly defined as:

φ :=arg0 [0] = “− ” ∧ arg0 [1] = “b”∧

arg1 [1] = “− ” ∧ arg1 [2] = “, ” ∧ arg1 [4] = “− ” ∧ in = “1234”

where arg0 and arg1 denote command-line arguments, in is the standard

input stream.
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This example demonstrates that defining an input condition for our ap-

proach may require a small effort from the user. However, we believe that

such a condition can be potentially derived automatically. One possible way

to do that would be to execute the failing test concolically to collect input

constraints (e.g. using ZESTI [64]), and construct an input condition for our

approach by generalizing the obtained constraint. We leave this for future

work.

5.4.4 Impact of reference program

In this section, we show how the use of a reference implementation can enable

SemGraft to find a correct path, while Angelix’ finds a plausible (passing the

given tests), but incorrect repair.

For the discussed bug in cut program, Angelix’ uses the tests given above

to construct a patch in Figure 5.6a. This patch adds a condition into the pro-

gram that changes the way how indexes in the given command are handled.

The expression includes the disjunct eol_range_start == 3 that ensures that

the index 3 is not used by the command -b 2-,3-. However, this condition

does not generalize to other values of the indexes that can appear in such

command but merely overfit the given test.

As opposite to Angelix’, SemGraft extracts a specification from the buggy

and the reference programs via preconditioned symbolic execution with φ. In

this example, it extracts 30 paths from the buggy program and 18 paths from

the donor program (Busybox cut). Then, it performs a counterexample-

guided inductive repair loop until it finds a patch that enforces conditional
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equivalence of Coreutils cut and Busybox cut w.r.t. φ. Specifically, after

obtaining a candidate patch as in Figure 5.6a, it generates a counterexample

test -b 3-,4- for which the output of Coreutils cut diverges from Busybox

cut. Based on this test, it extracts the angelic path

{ (β0,True, {initial 7→ 3, eol range start 7→ 0, }),

(β1,False, {initial 7→ 4, eol range start 7→ 3, }) }.

Given the extracted path, SemGraft generates the patch in Figure 5.6b, which

is identical to the developer repair. SemGraft also proves that it is correct

(equivalent to Busybox cut) for all possible combinations of indexes in the

described command.
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1 int search(int x, int a[], int length ){

2 int i;

3 for (i=0; i<length; i++) {

4 if (x == a[i])

5 return i;

6 }

7 return -1;

8 }

(a) Reference program

ID πr θrout
r1 γ = α0 0

r2 γ 6= α0 ∧ γ = α1 1

r3 γ 6= α0 ∧ γ 6= α1 ∧ γ = α2 2

r4 γ 6= α0 ∧ γ 6= α1 ∧ γ 6= α2 -1

(b) Summary of reference program

9 int search(int x, int a[], int length ){

10 int L = 0;

11 int R = length -1;

12 do {

13 int m = (L+R)/2;

14 if (x == a[m]) {

15 return m;

16 } else if (x < a[m]) { // x > a[m]

17 L = m+1;

18 } else {

19 R = m-1;

20 }

21 } while (L <= R);

22 return -1;

23 }

(c) Buggy program

ID πb θc θbout
b1 γ = α1 - 1

b2 γ 6= α1 ∧ β0 ∧ γ = α2 β0 : {x 7→ γ, a[m] 7→ α1} 2

b3 γ 6= α1 ∧ β0 ∧ γ 6= α2 ∧ β1 β0 : {x 7→ γ, a[m] 7→ α1} -1
β1 : {x 7→ γ, a[m] 7→ α2}

b4 γ 6= α1 ∧ β0 ∧ γ 6= α2 ∧ ¬β1 β0 : {x 7→ γ, a[m] 7→ α1} -1
β1 : {x 7→ γ, a[m] 7→ α2}

b5 γ 6= α1 ∧ ¬β0 ∧ γ = α0 β0 : {x 7→ γ, a[m] 7→ α1} 0

b6 γ 6= α1 ∧ ¬β0 ∧ γ 6= α0 ∧ β1 β0 : {x 7→ γ, a[m] 7→ α1} -1
β1 : {x 7→ γ, a[m] 7→ α0}

b7 γ 6= α1 ∧ ¬β0 ∧ γ 6= α0 ∧ ¬β1 β0 : {x 7→ γ, a[m] 7→ α1} -1
β1 : {x 7→ γ, a[m] 7→ α0}

(d) Specification of buggy program

Negative input {x 7→ 2, a 7→ [2, 4, 6], length 7→ 3}
Expected output 0

Symbolic inputs {x 7→ γ, a 7→ [α0, α1, α2], length 7→ δ}
Input condition φ := α0 < α1 < α2 ∧ δ = 3

(e) Test and input condition

Figure 5.2: SemGraft motivating example.
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V C = ∀α0∀α1∀α2∀γ
∧

(πr,θrout )

∧
(πb,θbout )

πr ∧ πb ∧ (β = eJθcK)⇒ θrout = θbout

≡ ∀α0∀α1∀α2∀γ(

(r1,b3) ¬(γ = α0 ∧ γ 6= α1 ∧ β0 ∧ β0 = γ < α1 ∧ γ 6= α2 ∧ β1 ∧ β1 = γ < α2)

(r1,b4) ∧ ¬(γ = α0 ∧ γ 6= α1 ∧ β0 ∧ β0 = γ < α1 ∧ γ 6= α2 ∧ ¬β1 ∧ β1 = γ < α2)

(r3,b6) ∧ ¬(γ = α2 ∧ γ 6= α1 ∧ ¬β0 ∧ β0 = γ < α1 ∧ γ 6= α0 ∧ β1 ∧ β1 = γ < α0)

(r3,b7) ∧ ¬(γ = α2 ∧ γ 6= α1 ∧ ¬β0 ∧ β0 = γ < α1 ∧ γ 6= α0 ∧ ¬β1 ∧ β1 = γ < α0))

Figure 5.3: Verification condition

Start with
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Ref. prog.
summary

Sum(pr,θ,φ)

Buggy prog.
specification
Spec(pb,e,θ,φ)

VC liberal Is SAT? Patch found
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patch
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Figure 5.4: Counterexample-guided inductive repair.
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Figure 5.5: Architecture of SemGraft.

if (! rhs_specified)

{

if (eol range start == 0 || eol range start == 3)

eol_range_start = initial;

field_found = true;

}

(a) Patch generated by Angelix’ based on tests.

if (! rhs_specified)

{

if (eol range start == 0 || initial < eol range start)

eol_range_start = initial;

field_found = true;

}

(b) Patch generated by SemGraft based on reference program.

Figure 5.6: Generated patches for cut (ver. 6f374d7).
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Chapter 6

Symbolic execution with

existential second-order

constraints

Program repair algorithms presented in previous chapters rely on symbolic

execution. One of the key limitations of symbolic execution is the path

explosion problem, since in programs with loops symbolic execution might

have to explore an infinite number of paths. To address this problem in the

context of program repair, we describe an extension of symbolic execution

that can take the space of patches into account to prune irrelevant paths.

In symbolic execution, program inputs are assigned symbolic variables

instead of concrete values. The result of executing a program with symbolic

inputs is a set of constraints over these symbolic variables called path condi-

tions. Path condition of a program path captures all inputs that would drive

the execution along this program path. Symbolic variables used in existing

symbolic execution systems typically range over numbers, arrays and strings.

We introduce symbolic execution with existential second-order constraints
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(SE-ESOC), that extends traditional symbolic execution by allowing sym-

bolic variables to range over functions. A function in a program can be

marked as “symbolic” via a second-order symbolic variable. Then, the goal

of SE-ESOC is to synthesize an interpretation of this function that satis-

fies certain reachability properties of the analyzed program (the properties

depend on the application). SE-ESOC collects constraints on second-order

variables and solves them through program synthesis.

Example 1. Assume that search(data, pred) returns the index of an

element of the array data that satisfies the predicate pred. Consider the

question “What predicate would make search return 2 given the array [0,

1, 2]?”. SE-ESOC can answer this question by executing search([0, 1,

2], ρ) symbolically with a second-order variable ρ, and synthesizing e.g.

ρ := λx. x > 1.

Contrary to works [33] utilizing the theory of uninterpreted functions,

SE-ESOC aims to discover implementations of symbolic functions. Thus,

SE-ESOC takes in a language of interpretations for second-order variables.

Similar to the syntax-guided program synthesis approach [3], a language of

interpretations is defined in our approach via a context-free grammar, and a

size bound.

In the context of program repair, suspicious statements in the buggy pro-

gram can be replaced with second-order symbolic variables. Thus, a fragment

of code in a program can be abstracted as a second-order symbolic variable.

Instantiations of the second-order variable then amount to alternate code

fragments to replace the current one, thereby bringing out the connection
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size_t search(int data[],

size_t len ,

int (*pred)(int)) {

size_t i;

for (i = 0; i < len; i++)

if (pred(data[i]))

return i;

return len;

}

(a) Search function.
Executing search with symbolic second-order input ρ:

search ((int []){0, 1, 2}, 3, ρ);

Symbolic input state:

θin := {data[0] 7→ 0, data[1] 7→ 1, data[2] 7→ 2, len 7→ 3, pred 7→ ρ}

Symbolic execution results:
Path condition π Generated input Output state θout
ρ(0) {ρ 7→ λx. true} {return 7→ 0, ...}
¬ρ(0) ∧ ρ(1) {ρ 7→ λx. x > 0} {return 7→ 1, ...}
¬ρ(0) ∧ ¬ρ(1) ∧ ρ(2) {ρ 7→ λx. x > 1} {return 7→ 2, ...}
¬ρ(0) ∧ ¬ρ(1) ∧ ¬ρ(2) {ρ 7→ λx. false} {return 7→ 3, ...}

(b) SE-ESOC.

Figure 6.1: Testing search function via traditional SE and SE-ESOC.

between SE-ESOC and program repair. SE-ESOC can directly synthesize a

patch by finding interpretations of the symbolic functions.

The proposed technique alleviates the path explosion problem in program

repair algorithms relying on first-order symbolic execution. Program repair

techniques such as SemFix [73] and Angelix [70] split patch generation into

two steps. First, they replace suspicious statements with first-order symbolic

variables and infer specification via symbolic execution. As a second step,
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they synthesize patches that satisfy the inferred specification. An important

limitation of these approaches is that they have to potentially explore an

infinite number of paths e.g. if the suspicious statements are inside a loop.

However, by raising the order of path constraints, we can efficiently prune

irrelevant paths. The pruning is achieved by avoiding paths that are infeasible

in the context of considered language of interpretations (the space of patches).

To implement SE-ESOC, it is sufficient, in principle, to apply a syntax-

guided synthesizer [3] for solving queries with second-order variables. How-

ever, existing synthesis algorithms are not suitable for this application. SMT

solvers used in symbolic execution engines [12, 103] cannot solve the con-

sidered kind of second-order constraints, however our goal was to support

second-order variables without switching to a specialized solver. The reason

for not switching to specialized solvers is that we might have second-order

variables as well as first-order variables in various theories in a single path

condition. Then, a suitable approach to support second-order variables is

to encode second-order formulas through first-order formulas as proposed by

Jha et al. [38]. However, our experiments demonstrated that the mentioned

encoding provides highly inefficient unsatisfiability proofs. Meanwhile, the

performance of symbolic execution critically depends on the performance of

unsatisfiable queries for on-the-fly pruning of infeasible paths. To address

the above challenges, we introduce a new method of second-order constraint

solving that relies on propositional encoding, which substantially improves

the efficiency of unsatisfiability proofs compared with previous techniques.
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6.1 Overview

This section describes (1) second-order formulas considered in this thesis (2)

the difference between traditional SE and SE-ESOC and (3) an application

of SE-ESOC to program repair.

6.1.1 Second-order formulas

We view second-order constraint solving as an instance of program synthe-

sis [20]. Formally, we consider second-order formulas with existentially quan-

tified second-order variables, and a Henkin (non-standard) semantics [71] of

satisfiability (Definition 17). Specifically, each second-order variable is asso-

ciated with a domain of interpretations defined via a user-provided language.

Example 2. Assume that ρ is a second-order variable whose domain is re-

stricted by the language LIA defined as follows:

〈Term〉 ::= 〈Var〉 | 〈Constant〉

| 〈Term〉 ‘+’ 〈Term〉 | 〈Term〉 ‘-’ 〈Term〉 | 〈Constant〉 ‘*’ 〈Term〉

Then, ρ(0) > 0 ∧ ρ(1) ≤ 0 is satisfiable by ρ := λx. 1 − x, while ρ(0) > 0 ∧

ρ(1) ≤ 0∧ρ(2) > 0 is unsatisfiable since all functions in LIA are monotonic.

Since we rely on a non-standard semantics of satisfiability, we cannot use

the theory of uninterpreted functions supported by most SMT solvers as in

previous works [33]. Thus, we have to add support for this semantics in an

existing SMT solver. To make the problem more tractable, we bound the

size of interpretations by a user-defined constant D. However, even with this

restriction, an integration of second-order solving with symbolic execution
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remains challenging, since existing synthesis algorithms are not optimized

for unsatisfiable queries [20]. This motivated us to design a new SMT-based

synthesis method described in Section 6.2.1.

6.1.2 Comparing SE-ESOC with traditional SE

Consider the function search in Figure 6.1a. This function takes an array

data, a value len representing its length, a pointer to a predicate function

pred, and returns the index of the first element of the array that satisfies the

predicate.

In traditional symbolic execution, numeric inputs are replaced with logical

variable as shown for the elements α1, α2, α3 of the array in Figure 2.1b.

Assume that the predicate pred is a function pos that checks if a given value

is positive. In this context, symbolic execution explores four paths as shown

in the table in Figure 2.1b, in which the path conditions are constraints over

the variables α1, α2, α3. The corresponding test inputs are concrete values of

the elements of the array: {1, 0, 0}, {0, 1, 0}, {0, 0, 1} and {0, 0, 0}.

In contrast to traditional symbolic execution, SE-ESOC enables us to

explore possible program executions depending on the definition of the pred-

icate pred. Assume that pred is represented by a variable ρ, for which the

language of interpretations is as follows:

〈BoolTerm〉 ::= 〈Term〉 ‘>’ 〈Term〉 | 〈Term〉 ‘>=’ 〈Term〉

| 〈Term〉 ‘=’ 〈Term〉 | ‘true’ | ‘false’

where Term is defined in Example 2. Then, the path conditions are con-

straints over ρ as shown in the table in Figure 6.1b. The corresponding test
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scanf("%d",&x);

for (i=0;i<10;i++) {

int t = x - i;

if (t>0)

printf("1");

else

printf("0");

}

(a) Buggy program.

scanf("%d" ,&x);

for (i=0;i<10;i++) {

int t = α;
if (t>0)

printf("1");

else

printf("0");

}

(b) Symbolic state.

scanf("%d" ,&x);

for (i=0;i<10;i++) {

int t = ρ(i, x);
if (t>0)

printf("1");

else

printf("0");

}

(c) Symb. function.

π1 := α1 > 0 ∧ α2 > 0 ∧ ...
π2 := α1 ≤ 0 ∧ α2 > 0 ∧ ...
π3 := α1 > 0 ∧ α2 ≤ 0 ∧ ...

(d) First-order PCs.

π1 := ρ(0, 5) > 0 ∧ ρ(1, 5) > 0 ∧ ...
π2 := ρ(0, 5) ≤ 0 ∧ ρ(1, 5) > 0 ∧ ...
π3 := ρ(0, 5) ≤ 0 ∧ ρ(1, 5) ≤ 0 ∧ ...

(e) Second-order PCs.

Figure 6.2: Repairing program using different approaches.

inputs are interpretations of ρ: λx. true, λx. x > 0, λx. x > 1 and λx. false.

Note that it is possible to combine first-order and second-order symbolic

variables in the same symbolic execution session by executing

search((int[]){α1, α2, α3}, 3, ρ)

Then, the synthesized predicates ρ will be parameterized by the variables

α1, α2, α3.

6.1.3 Application to program repair

The goal of program repair is to modify a buggy program to eliminate the

observable failures. Its important subtask is to fill a hole in the program

(e.g. replace a buggy statement) to enable the program to satisfy the re-

quirements (e.g. to pass the tests). We review existing approaches to solve

this subtask relying on traditional SE, and show how SE-ESOC addresses
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their limitations.

Consider a program P in Figure 6.2a that reads a number, performs 10

loops iterations and, at each iteration, prints “0” or “1” depending on the

sign of the variable t. For instance, for the input “5”, it prints “1111100000”.

Assume that the correct output should be “1111111000”, and our goal is to

repair the program by replacing x - i with an expression from LIA (defined

in Example 2) that would enable the program to pass the test (e.g. x - i +

2).

Semantics-based repair approaches [73, 70] infer a specification using sym-

bolic execution, and synthesize a patch based on this specification. First, they

replace the identified buggy expression with a symbolic variable α as shown

in Figure 6.2b. Then, they symbolically execute the program with the input

“5” and infer path conditions π1, π2, ..., π1024 shown in Figure 6.2d. Finally,

a patch is synthesized by solving the following second-order formula:

∃e ∈ Term. (
∨
i

πi[α 7→ e]) ∧ stdout = “1111111000”

where stdout is a variable that captures the standard output of the applica-

tion, πi[α 7→ e] is a formula obtained from πi by substituting α with the term

e. Such techniques suffer from the path explosion problem. For instance,

there are 10 loop iterations and therefore the algorithm has to explore 1024

paths, as shown in Figure 6.2d.

We now demonstrate how SE-ESOC can be used to address the aforemen-

tioned limitation of previous techniques. Instead of using first-order variables

α to infer synthesis specification, we replace the buggy statement with a
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symbolic function ρ as shown in Figure 6.2c. Then, SE-ESOC is applied to

directly synthesize a patch by finding an interpretation of ρ that satisfies a

test-passing path. The key benefit of this approach is that it substantially

reduces the number of explored paths. For the described example, it will

explore at most 20 execution paths as shown in Figure 6.2e, and the rest of

the paths are infeasible, which can be non-constructively proven as follows.

Proof. Among 1024 possible paths, there are 1004 paths with path conditions

containing the clauses ρ(l, 5) > 0, ρ(n, 5) ≤ 0, ρ(m, 5) > 0 or the clauses

ρ(l, 5) ≤ 0, ρ(n, 5) > 0, ρ(m, 5) ≤ 0 for some l < n < m. All these path

conditions are unsatisfiable since for any ρ ∈ Term, λx.ρ(x, 5) is monotonic.

Note that monotonic functions in this example are given for clarity. Our

approach does not rely on monotonicity, and is effective in more general cases

as shown experimentally in Section 6.3.2.

SE-ESOC enables a reduction of the number of explored paths since it

takes the language of symbolic function interpretations into account, i.e. it

is syntax-guided. The reduction of the number of explored paths has im-

portant implications, since it might increase the efficiency of program repair

or increase the probability of finding a patch when repairing programs with

loops.
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x y − +

Node 1
s11 s21 s31 s41

x y − +

s12 s22 s32 s42
x y − +

s13 s23 s33 s43

Node 2 Node 3

(a) Tree with “abstract” nodes.

s1
1 7→ x

s3
1 ∧ s1

2 ∧ s2
3 7→ x− y

s4
1 ∧ s1

2 7→ {x+ T}T∈Term

(b) Selectors to
terms.

Figure 6.3: Encoding via propositional selector variables.

6.2 Methodology

In this section, we first formally describe second-order constraints used in our

approach and a method of solving these constraints. Secondly, we demon-

strate how second-order solving is integrated with symbolic execution, and

describe implemented constraint optimizations. Finally, we show how the

resulting technique can be applied for program repair.

6.2.1 Second-order solving

As is usual in SMT literature [9], we consider formulas and terms built from

predicate and function symbols (e.g. “+”, “−”, “ > ”) from a given signature

Σ. We denote the set of all such formulas and terms as LΣ. We also consider

a background theory T that fixes the interpretations of the symbols in Σ. In

this work, we are interested in an extended set of formulas and terms LΣ∪P

constructed from the symbols in Σ and an additional set of predicate and

function symbols P := {ρ1, ..., ρn} without interpretations in T , that we

refer to as second-order variables (or symbolic functions).

For a formula φ over a second-order variable ρ and a term t ∈ LΣ with a
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designated set of variables x1, ..., xn, we say that a first-order formula φ[ρ 7→ t]

is a substitution of ρ with t, if it is obtained by replacing each sub-term

ρ(t1, ..., tn) of φ (for some terms t1, ..., tn) with a term computed as the

result of beta-reduction of the lambda expression (λx1...xn. t) t1 ... tn. For

instance, let φ be ρ(a, 1) > 0 and t be x1 + x2, then φ[ρ 7→ t] is defined as

a+ 1 > 0.

Definition 17 (Second-order satisfiability). Let φ ∈ LΣ∪P be a second-order

formula, L : P → 2LΣ — a mapping from second-order variables to sub-

languages of LΣ — be domains of interpretations. Then, φ is satisfiable iff,

for some terms t1 ∈ L(ρ1), ..., tn ∈ L(ρn), the first-order formula φ[ρ1 7→

t1, ..., ρn 7→tn] is satisfiable w.r.t. T .

The key part of this definition is the domains of interpretations L that

are sub-languages of LΣ for each second-order variable. In our approach, the

sub-languages are either provided by the user or by a tool/algorithm that

relies on SE-ESOC. Particularly, a sub-language is defined as a pair (G,D)

of a context-free grammar G with the symbols from Σ as terminals (as in

SyGuS format [3]) and an integer value D that describes the maximum depth

of considered terms (i.e. the maximum number of nodes in a path from the

root of a term to its leaf).

Similar to the prior approach described in Section 2.4.1, we rely on a

library of components to encode a space of terms from a given language of

interpretations. Note that for a synthesis problem with a language defined

via a pair (G,D), it is straightforward to encode it as a component-based

synthesis problem by considering each grammar rule N → F (N1, ..., Nn) (for
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non-terminals N,N1, ..., Nn) of G as a component F with inputs N1, ..., Nn.

Thus, without the loss of generality, we assume later that, instead of a gram-

mar G, our language is defined through a set of components F1, ..., FC .

One way to implement a solver for the considered kind of second-order

formulas is to encode them through first-order formulas using e.g. the ap-

proach described in Section 2.4.1. However, this approach relies on linear

integer arithmetic to encode a space of terms, which results in inefficient

proofs of unsatisfiability. On the other side, SE-ESOC critically depends on

the performance of unsatisfiable queries to avoid infeasible paths, as shown

in Section 6.1.3.

In order to optimize unsatisfiable queries, we introduce an new encod-

ing of second-order formulas through propositional selector variables instead

of integer location variables. Intuitively, this increases the effectiveness of

conflict clause learning in CDCL-based [93] SMT solvers [21, 17] and there-

fore significantly improves the performance on unsatisfiable queries, which is

shown experimentally in Section 6.3.

The key idea of the introduced propositional synthesis encoding is to rep-

resent the space of terms constructed from a given library of components

via a tree with “abstract” nodes as shown in Figure 6.3a. Specifically, each

intermediate node of the tree has as many subnodes as the maximal number

of inputs of a component in a given component library. Each leaf of the

tree corresponds to components that have no inputs. The semantics of each

node is defined through the semantics of a component activated via selector

variables.

Assume that sji is the j-th selector of the i-th node, outi is the output
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of i-th node, C is the number of components, Fj is the semantics if the j-th

component (e.g. λxy. x + y for addition). For each node i with subnodes

i1, i2, ..., ik, a set of terms is encoded as ψi := ψnode ∧ ψchoice , such that

ψnode :=
∧

j∈[1,C]

sji ⇒ outi = Fj(outi1 , outi2 , ..., outik)

ψchoice := exactlyOne(s1
i , s

2
i , ..., s

C
i )

In this encoding, ψnode describes how the output value of a node depends

on the values of its subnodes, ψchoice ensures that exactly one of the compo-

nents is selected inside each node (the cardinality constraint exactlyOne is

implemented using sorting networks [1]). A term is constructed from an as-

signment of selector variables using a function Sval2Term that at each node

picks a component that is activated by the corresponding selector variable as

shown in Figure 6.3b. For instance, the term x−y is constructed by enabling

the component − of the node 1 (via the selector s3
1), the component x of the

node 2 (via the selector s1
2), and the component y of the node 2 (via the

selector s2
3).

Using the above encoding, a second-order constraint solver can be imple-

mented on top of a first-order solver. Specifically, for a given formula φ over

a second-order variable ρ, we define the procedure Encode as follows:

• each occurrence of a subterm ρ(t1, ..., tn) in φ (for some terms t1, ...tn)

is assigned a unique index i;

• for each occurrence of a subterm ρ(t1, ..., tn) in φ with index i (for some

terms t1, ...tn), the formula φ is conjoined with ψi1 ∧ ... ∧ ψim, where

123



m is the number of tree nodes and the terms t1, ..., tn are treated as

components without inputs;

• each occurrence of a subterm ρ(t1, ..., tn) in φ with index i (for some

terms t1, ...tn) is replaced with the variable outi1 representing the root

of the i-th tree in the encoding.

Using this procedure, a second-order formula is transformed into a first-order

formula over selector variables, which can be solved using an off-the-shelf

SMT solver. From any satisfying assignment of the selector variables, an

interpretation of ρ that satisfies φ can be reconstructed using Sval2Term, as

stated formally below:

Proposition 2. For any assignment of selector variables S := {s1 7→ b1, ..., sn 7→

bn} that satisfies φ′ := Encode(φ), the assignment {ρ 7→ Sval2Term(S)} sat-

isfies φ.

6.2.2 Extension of symbolic execution

Compared with traditional SE described in Algorithm 1, SE-ESOC modifies

the function isSatisfiable. Specifically, it adds support for second-order

constraints by implementing the approach described in Section 6.2.1. The

function isSatisfiable encodes each query φ using Encode before passing

it to the underlying SMT solver. Later, a model of φ can be reconstructed

from the model computed by the underlying SMT solver using Sval2Term.

Definition 18 (Second-order infeasible paths). Let P be a program taking a

function as an input, ρ be a second-order variable, and L be a sub-language

124



of LΣ. Then, a path along which SE-ESOC computes a path condition π

by executing P with the symbolic input ρ is infeasible iff the second-order

formula π is unsatisfiable w.r.t. the domain of interpretations {ρ 7→ L}.

This definition of infeasible path depends on the syntax of the language of

interpretations L. This property is crucial for mitigating the path explosion

as will be shown in Section 6.3.2.

6.2.3 Program repair

SE-ESOC can be used, among others, to synthesize patches for program de-

fects or models for unavailable libraries. Similarly to prior works [73, 70], the

workflow of both these applications consists of three steps: injecting second-

order symbolic variables, performing specification inference, and synthesizing

patches.

Symbolic variable injection. In the context of program repair, suspicious

program statements are substituted with applications of symbolic functions

to local program variables. Suspicious program statements can be identified

using, for instance, statistical fault localization [42]. For each of the identi-

fied suspicious statements, we iteratively apply the following transformation

schemas parameterized with second-order variable ρ:

• changing the right-hand side of an assignment:

x := E; 7→ x := ρ(v1, ..., vn);

125



• changing a condition:

if (E) {...} 7→ if (ρ(v1, ..., vn)) {...}

• adding an if-guard:

S; 7→ if (ρ(v1, ..., vn)) S;

where S is a statement, E is an expression, and v1, ...vn are visible program

variables. Specifically, we adopted a recently proposed heuristics [112] to

select up to 10 local program variables whose definitions are the closest to

the considered suspicious location.

Specification inference. The purpose of specification inference is to col-

lect constraints over the injected second-order variables such that any inter-

pretation that satisfies these constraint would meet our requirements. Specif-

ically, our goal is to find interpretations of the symbolic functions that would

enable the program to pass given tests. Assume that P is the original pro-

gram, and P ′ is a program obtained by injecting a second-order variable ρ

into P . Assume also that {in i, φi}i∈[0,n] is a set of tests, where in i is the input

of the i-th test and φi is the test assertion. For each test i, we execute the

program P ′ using SE-ESOC with the concrete input in i and obtain a set of

path conditions πi1, ..., π
i
k, which are constraints over the variable ρ. Then,

the specification is defined as follows:
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n∧
i=0

(
k∨
j=0

πij) ∧ φi (6.1)

The above second-order formula captures the property that for each test with

index i there should be at least one path πij along which the test assertion φi

holds.

Patch/model synthesis. To synthesize interpretations of symbolic func-

tions that satisfies the formula (6.1), we apply the second-order constraint

solving method described in Section 6.2.1. For program repair, these inter-

pretations constitute patches.

Tests are typically insufficient to guarantee the correctness of patches,

which causes the test-overfitting problem [95]. The proposed approach is

orthogonal to the problem of test-overfitting, however it is straightforward

to integrate it with existing techniques for alleviating overfitting such as

synthesizing minimal change via maximum satisfiability [69] or applying anti-

pattens [101] or applying correctness assertions — by conjoining the encoding

with additional constraints over selector variables.

6.2.4 Implementation

We implemented SE-ESOC inside KLEE [12], a widely used symbolic execu-

tion engine for C programs. Firstly, we extended KLEE to support second-

order variables and implemented the generation of second-order path con-

ditions in the symbolic execution runtime. Secondly, we implemented the

encodings described in Section 2.4.1 and Section 6.2.1 on top of the under-
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lying SMT solver.

KLEE provides an intrinsic function klee make symbolic for inject-

ing symbolic variables. For example, the following call marks the memory

corresponding to the variable foo as symbolic.

klee_make_symbolic (&foo , sizeof(foo), "foo");

To let users introduce second-order variables, we added an intrinsic func-

tion klee apply symbolic. This function applies a symbolic function to

program expressions. For instance, the following code can be used to inject

a call of ρ in Example 6.2c:

int t = klee_apply_symbolic("rho", 2, (int[]){i, x});

where "rho" is the name of the second-order variable, 2 is the number of

arguments, and (int[]){i, x} is the array of arguments.

6.3 Evaluation

This evaluation addresses the following research questions:

(RQ1) Does SE-ESOC reduce the number of explored paths compared with

program repair techniques relying in first-order symbolic execution?

Does it improve the effectiveness of program repair?

(RQ2) Does the introduced second-order solving method based on proposi-

tional encoding improve SE-ESOC performance compared to previous

encodings?
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Table 6.1: Subjects of DBGBench dataset

Program Description Defects

find Search for files in directory hierarchy 14
grep Search for lines containing match to specified pattern 13

6.3.1 Experimental setup

To address the research questions, we conducted experiments with programs

from GNU Coreutils1, mature and widely-used implementations of UNIX

utilities included in the majority of Linux distributions, that have been also

employed in previous symbolic execution studies [12, 76].

We used a recently introduced DBGBench dataset [11]. DBGBench is a

collection of 27 bugs from GNU Findutils and GNU Grep shown in Table 6.1.

We chose this benchmark because it contains real error in widely used soft-

ware, and because this dataset was designed for evaluating, among others,

program repair techniques.

To examine the effect of second-order constraints on the path explosion,

we compared our approach with Angelix [70], a state-of-the-art program re-

pair system that relies on first-order symbolic execution. Specifically, we

used the following three configurations:

FO Angelix that relies on first-order symbolic execution.

SO/CBS SE-ESOC that uses the encoding by Jha et al. [38] for second-

order constraint solving.

SO/PSE SE-ESOC that uses the introduced propositional encoding for

second-order constraint solving.

1GNU Coreutils: https://www.gnu.org/software/coreutils/
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〈Bool〉 ::= 〈Int〉 ‘<’ 〈Int〉 | 〈Int〉 ‘<=’ 〈Int〉 | 〈Int〉 ‘==’ 〈Int〉
| 〈Bool〉 ‘||’ 〈Bool〉 | 〈Bool〉 ‘&&’ 〈Bool〉 | ‘!’ 〈Bool〉

〈Int〉 ::= 〈Var〉 | 〈Constant〉
| 〈Int〉 ‘+’ 〈Int〉 | 〈Int〉 ‘-’ 〈Int〉 | ‘-’ 〈Int〉

(a) Boolean functions.

〈Term〉 ::= 〈Var〉 | 〈Constant〉
| 〈Term〉 ‘+’ 〈Term〉 | 〈Term〉 ‘-’ 〈Term〉 | ‘-’ 〈Term〉
| 〈Bool〉 ‘?’ 〈Term〉 ‘:’ 〈Term〉

(b) Integer functions.

Figure 6.4: Language of interpretations (search space).

Table 6.2: SE-ESOC results.

Subject
Patch Paths Time SAT/UNSAT

FO SO/CBS SO/PSE FO SO/CBS SO/PSE FO SO/CBS SO/PSE SO/CBS SO/PSE

find.091557f6 - - Correct 400 0 16 2m 35s TO 2m 29s 3.5s/TO 2.2s/3.8s
find.24bf33c0 Plausible Plausible Plausible 2 2 2 2s 3s 3s 1.3/- 0.5s/-
find.24e2271e Correct Correct Correct 24 24 24 39s 1m 1s 1m 43s 2.1s/- 2.2s/-
find.07b941b1 Plausible Plausible Plausible 11 11 11 29s 41s 31s 0.7s/- 0.5s/-
find.e6680237 Correct Correct Correct 46 46 46 56s 2m 41s 2m 23s 1.2s/- 1.1s/-
find.dbcb10e9 - - Correct 400 0 14 3m 31s TO 3m 1s 3.0s/TO 1.7s/5.8s
find.e1d0a991 Plausible Plausible Plausible 4 4 4 5s 5s 5s 2.2s/- 1.9s/-
grep.55cf7b6a Correct Correct Correct 2 2 2 3s 3s 3s 0.8s/- 0.4s/-
grep.3220317a Plausible Plausible Plausible 27 27 27 41s 1m 5s 1m 11s 1.2s/- 1.1s/-
grep.db9d6340 Plausible Plausible Plausible 2 2 2 2s 3s 2s 1.8s/- 0.6s/-
grep.c96b0f2c Plausible Plausible Plausible 41 41 41 1m 19s 1m 59s 2m 11s 2.2s/- 2.3s/-
grep.5fa8c7c9 Correct Correct Correct 34 34 34 55s 2m 43s 1m 35s 4.9s/- 3.8s/-
grep.54d55bba - - Plausible 400 0 26 2m 42s TO 2m 59s 4.1s/TO 2.4s/5.2s

Overall 10 10 13 107.2 14.8 19.2 1m 5s 1m 21s 1m 24s 2.2s/- 1.6s/4.9s

We conducted all experiments on an Intel® Core™ i7-2600 CPU 3.40GHz

machine running Ubuntu 14.04 with 8GB of memory.

6.3.2 Program repair

To investigate the effect of second-order constraints on path explosion, we

compared SE-ESOC configurations with Angelix (FO). Particularly, we exe-

cuted repair algorithms described in Section 6.2.3 on the subjects of DBG-

Bench, using developer-provided tests as the correctness criteria for patches.
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For each suspicious program location, we bounded2 the number of explored

paths to 400, and used a 10 minutes time limit. SE-ESOC configurations

used the languages of interpretations given in Figure 6.4a and Figure 6.4b.

The same languages were used by Angelix (FO) synthesizer. Besides, we

specified the depth bound D := 3 for the synthesized functions.

Table 6.2 summarizes the results of our experiments. The column “Sub-

ject” lists subject program and their versions (commit hashes). The columns

“Patch” show if a patch was generated by each configuration; we present

only versions for which at least one configuration generated a repair. In

these columns, “Correct” indicates that the generated patch is syntactically

equivalent to the developer patch, otherwise the patch is classified as “Plau-

sible”.

In order to investigate the cause of failures of some configurations to find

a patch, we collected additional statistics of symbolic execution sessions. For

each configuration, we collected data for the session in which the program is

executed symbolically with the failing test and a symbolic variable is installed

in the fix location. Specifically, the columns “Paths” in Table 6.2 denote how

many paths were explored by each configuration during this symbolic execu-

tion session. The columns “Time” show the time taken by each configuration

to explore these paths.

Overall, the configurations based on second-order constraints generated

all the patches generated by the approach based on first-order constraints,

and SO/PSE also found three additional patches for find.091557f6, find.dbcb10e9

2It is common for synthesis-based program repair techniques to rely on path bounds.
For instance, an enumerative approach SPR [62] uses the bound of 11 paths.
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and grep.54d55bba. For each of these three cases, FO reached the limit of

400 paths during exploration, while SO/PSE reduced the number of explored

paths to 14-26, which led to the successful generation of patches. However,

SO/PSE required slightly more time on average for path exploration com-

pared with FO (1m 24s for SO/PSE, and 1m 5s for FO).

In all three cases for which SO/PSE exclusively generated patches, the

modified statements are executed multiple times by the failing tests. To

explain how the reduction of explored paths is achieved in this case, we

consider the experiments with the bug find.091557f6 in greater details. This

bug in find utility is caused by a wrong handling of symbolic link loops

when searching for files in a directory. One of the possible correct fixes is

to add the disjunct ent->fts errno == ELOOP to the condition shown in

Figure 6.5a.

To synthesize a patch, Angelix (FO) replaces the buggy condition with

a first-order variable, and performs symbolic execution to infer synthesis

specification. The condition is evaluated multiple time during an execution

of the failing test, and Angelix (FO) fails to infer sufficient specification

to synthesize a patch due to the path explosion (since it terminates after

reaching the limit of 400 paths).

Contrary to Angelix, SE-ESOC injects a second-order variable ρ applied

to local program variables as shown in Figure 6.5a. It also associates the

language in Figure 6.4a and the bound D := 3 with ρ, that effectively define

the search space of patches. This enables SE-ESOC to take advantage of

the stronger notion of infeasibility (Definition 17) to prune irrelevant paths.

Specifically, it determines that only 16 execution paths are feasible w.r.t. the
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considered language of interpretations, and synthesizes the interpretations

ρ1, ..., ρ16 in Figure 6.5b corresponding to the 16 feasible paths.

In order to prune infeasible paths, SE-ESOC has to solve more complex

constraints than FO, which results in additional performance overhead. How-

ever, the execution time of SE-ESOC is less dependent on the bounds of sym-

bolic execution. To demonstrate this, we executed FO and SE/PSE with the

example in Figure 6.5a, ranging the number of explored paths (--max-forks

KLEE options) from 100 to 2000. The results of our experiment are pre-

sented in Figure 6.5c. As can be seen, the time taken by FO increases with

the increase of the path bound, while the time taken by SE/PSE does not

depend on the path bound, since it only has to explore 16 paths.

Overall, SE-ESOC helps alleviate path explosion when repaired expres-

sions are executed multiple times during program execution.

6.3.3 Second-order solving

Since our approach relies on the notion of infeasibility (Definition 17) to

prune explored paths, it is critical that it can efficiently handle unsatisfiable

second-order queries. To investigate how existing component-based synthe-

sis (CBS) encoding (Section 2.4.1) and the introduced propositional (PSE)

encoding (Section 6.2.1) perform on unsatisfiable formulas that occur in the

context of symbolic execution, we collected solver statistics in Table 6.2. The

columns “SAT/UNSAT” demonstrate the average time taken by satisfiable

and unsatisfiable queries during path exploration (“-” indicates that no such

queries are performed). As can be seen, both CBS and PSE demonstrated
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comparable performance on satisfiable formulas (on average, CBS requires

2.2s, and PSE requires 1.6s). However, CBS did not solve any unsatisfiable

queries within the time limit (10 minutes), while the average time taken

by PSE on unsatisfiable queries is 4.9s, which is similar to the time taken

by satisfiable queries. Thus, PSE is crucial in enabling SE-ESOC to avoid

infeasible paths.

134



...

else if (ent ->fts_info == FTS_DC)

{

issue_loop_warning(ent);

error_severity (1);

return;

}

// ρ(ent->fts info, ent->fts errno, prev depth)

else if (ent->fts info == FTS SLNONE)

{

if (symlink_loop(ent ->fts_accpath))

{

error(0, ELOOP , ent ->fts_path);

error_severity (1);

return;

...

(a) Buggy condition in find.091557f6.

ρ1 :=(4 <= ent ->fts_info)

ρ2 :=!(ent ->fts_errno == prev_depth)

ρ3 :=((4 < ent ->fts_info) && (prev_depth <= ent ->fts_errno))

ρ4 :=!(0 == ent ->fts_errno)

ρ5 :=((ent ->fts_info == ent ->fts_errno) || (9 <= prev_depth))

ρ6 :=(ent ->fts_info == (7 + prev_depth))

ρ7 :=(( prev_depth + ent ->fts_errno) == (ent ->fts_info - 6))

ρ8 :=((ent ->fts_errno < prev_depth) || (6 == ent ->fts_info))

ρ9 :=(ent ->fts_info < (4 + ent ->fts_errno))

ρ10 :=(ent ->fts_info <= (ent ->fts_errno + 6))

ρ11 :=!(ent ->fts_info == 6)

ρ12 :=(0 <= prev_depth)

ρ13 :=!(4 < ent ->fts_info)

ρ14 :=!(1 <= prev_depth)

ρ15 :=((ent ->fts_errno < prev_depth) || (ent ->fts_info <= 1))

ρ16 :=((ent ->fts_errno < 32) || (prev_depth == ent ->fts_info))

(b) Interpretations of ρ found along feasible paths.

(c) Time and explored paths.

Figure 6.5: Repairing wrong handling of symbolic link loops in find.
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Chapter 7

Related work

The contributions of this thesis are related to several areas of research: pro-

gram repair, program synthesis, debugging, symbolic execution, software

transplantation and equivalence checking.

7.1 Program repair

Since tractability and precision are the main challenges of program repair,

most of existing works are focused either on designing a better search algo-

rithm to scale program repair to large programs and large search spaces, or on

developing methods to alleviate the test overfitting problem. Although the

techniques proposed in this thesis form a cohesive framework, they can also

be divided based on the problem they address. Specifically, Angelix [70] that

proposes an approach of inferring concise specification presented in Chapter 4

and symbolic execution with existential second-order constraints presented in

Chapter 6 primarily tackle the tractability problem, while DirectFix [69] that

proposes an approach of synthesizing minimal changes presented in Chapter 3
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and SemGraft [67] that proposes an approach of using a reference implemen-

tation presented in Chapter 5 are designed to alleviate test overfitting and

increase the quality of generated patches.

7.1.1 Addressing tractability

Existing approaches to address the tractability can be classified into two

categories: syntactic and semantic.

Syntactic program repair techniques search for patches by generating and

validating individual source code changes. GenProg [108] and JAFF [5] op-

timizes this process using genetic programming. Specifically, they apply mu-

tation and crossover operators to create generations of program versions and

evaluate them using a fitness function that counts the number of passing test.

Subsequently, RSRepair [83] and AE [107] replace the genetic programming

algorithm of GenProg with random search and adaptive repair search strate-

gies, respectively. The benefit of these approaches is that they scale to large

programs such as PHP and Wireshark [56]. However, a recent study [85]

revealed that the quality of the repairs generated from these tools might be

unsatisfactory — a large number of these repairs simply delete functionality.

Contrary to syntactic techniques, semantic approaches aim to identify the

meaning of defects by means of semantic analysis. Particularly, they analyze

the behaviour of the program to infer a specification (expressed using e.g.

logical formulas or concrete values) that is used to synthesize a patch.

SemFix infers a patch specification using first-order symbolic execution

and synthesizes a patch using SMT-based program synthesis as described in
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Section 2.6.2. The techniques introduced in this thesis follow the general

workflow of SemFix [73], but they substantially extend it. Specifically, the

introduced techniques (1) help to scale semantic repair to large programs

by inferring a concise value-based specification (Chapter 4), (2) alleviate

the path explosion problem by using symbolic execution with existential

second-order constraints (Chapter 6), (3) the proposed techniques help to

increase the quality of generated patches by synthesizing minimal modifica-

tions (Chapter 3) and by inferring the missing specification from a reference

implementation (Chapter 5).

Besides SemFix, other semantic approaches include Nopol [113], SPR [62]

and an approach by Nguyen at el. [74]. Nopol [113] and SPR [62] differ

from SemFix in that they infer a more simple synthesis specification based

on angelic values. However, since these approach infer this specification by

enumerating and testing sequences of values, they are limited to repairing

boolean expressions (e.g. buggy if- and loop-conditions). Meanwhile, the

technique of inferring a value-based specification (angelic forest) described

in Chapter 4 utilizes symbolic execution and therefore can also be used to

repair integer expressions and synthesize multi-line changes. Similarly to

SemFix, Nopol and SPR also suffer from the path explosion. For instance,

SPR bounds the number of explored paths to 11, which may lead to infer-

ring insufficient specification and failing to synthesize a patch. Potentially,

the technique for alleviating path explosion described in Chapter 6 can be

adapted for Nopol and SPR.

Nguyen at el. [74] demonstrated that program repair can be naturally

encoded as a reachability problem. However, this approach has limitations:
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(1) it requires encoding several tests inside a single meta-program, which is

non-trivial for real-world applications because of complex execution setup

and the presence of global state, and (2) it is restricted to relatively simple

patch templates. Our methodology addresses the above limitations.

7.1.2 Addressing precision

Since a test-suite is an incomplete specification, test-based repair approaches

may generate patches that do not correspond to user intentions but merely

overfit the tests [95]. To address this problem, several general approaches

has been investigated: designing a better search space, prioritizing patches,

test generation and inferring additional specification.

To design a better search space, PAR [48] uses manually selected human

patch templates, which leads to the increase of repair quality. Genesis [61]

extends the approach of PAR by inferring patch templates automatically

from history. These approaches are orthogonal to the techniques described

in this thesis.

To prioritize high quality patches, various heuristics have been proposed.

In Chapter 3, we introduce an approach that synthesizes syntactically mini-

mal changes using a MAX-SAT solver. The intuition of this approach is that

smaller changes are easier to understand for users and they break less unspec-

ified functionality. Qlose [25] extends this approach by prioritizing changes

based not only on syntactic, but also on semantic distance. Prophet [63]

applies machine learning in order to learn universal properties of human

patches, and uses the learned model to prioritize patches in its search space.
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To repair to given defect, it searches for a patch that passes the tests and

also is the most similar to human patches according to the learned model.

Other prioritization strategies include learning from history [55], using com-

ments and mining common predication [112], combining several syntactic

and semantic metrics [54], etc.

Another approach of addressing test overfitting is to augment existing

test suites by improving e.g. test suite metrics [116]. Test suites can be

augmented using existing testing techniques such as search-based test gener-

ation [110] or fuzzing [114].

In Chapter 5, we proposed an approach of improving the quality of au-

tomatically generated patches by inferring missing specification from a ref-

erence implementation. Although this approach can be applied on when a

reference implementation is available, its advantage over previous techniques

to address test overfitting consists in stronger correctness guarantees.

7.1.3 Domain specific repair

Apart from general-purpose repair algorithms like ones introduced in this

thesis, there are also other repair approaches targeted for specific types of

defects (e.g., buffer overflow) or specific application domains (e.g., web appli-

cations) [78, 39, 14, 22, 94, 90, 75, 88, 32]. Also, many previous works assume

the existence of formal specification or contracts [35, 40, 34, 50, 87, 26, 106]

unlike test-driven approaches such as ours. Relifix [100] utilizes previous pro-

gram versions in order to perform automated repair of regression bugs, how-

ever it relies on syntactic similarity of the previous and the buggy programs,
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which distinguishes it from our approach. Lastly, MintHint [45] suggests a

repair hint instead of a patch by allowing some tests to remain failing and

thereby performing statistical analysis for a class of semi-repairs satisfying

this relaxed requirement.

7.2 Program synthesis

Existing program synthesis techniques can be used to generate patches by

directly searching in patch spaces, however this approach has limitations be-

cause of the complexity of repaired programs. For instance, Sketch [96] fills

“holes” in sketches (partial programs), and can be potentially applied to

generate repairs for identified suspicious statements. However, it translates

programs into boolean formulas and therefore can repair only relatively small

programs [36]. Since program synthesis algorithms may not be directly appli-

cable to program repair, they are used as parts of program repair algorithms

for filling “holes” in programs based on inferred specification.

To synthesize patches based on inferred specification, early semantic tech-

niques such as SemFix and Nopol relied on component-based synthesis pro-

posed by Jha et al. [38]. In principle, any syntax-guided synthesis algo-

rithm [3] can be used for performing this task. However, symbolic execution

with existential second-order constraints introduced in Chapter 6 for address-

ing path explosion problem poses additional requirement on the underlying

program synthesis algorithms. Enumerative techniques [3, 4] that explic-

itly generate and test individual terms cannot be applied in the context of

symbolic execution because they would require checking satisfiability of path
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constraint for each possible expression in the search space. The algorithm of

Reynolds et al. [86] implemented inside an SMT solver tends to synthesize

complex solutions consisting of thousands of nodes1 that cannot be under-

stood by humans, which makes it unsuitable for program repair. The encod-

ing of second-order formulas proposed by Jha et al. [38] relies on linear integer

arithmetic constraints, which results in inefficient proofs of unsatisfiability.

On the other hand, symbolic execution requires checking unsatisfiability of

path constraints to avoid infeasible paths, therefore its performance criti-

cally depends of the efficiency of unsatisfiability proofs. The propositional

second-order formula encoding introduced in Chapter 6 addresses the above

limitations of existing techniques.

7.3 Debugging

The purpose of debugging is to identify program statement or locations re-

sponsible for the bug. Thus, debugging can be considered as one of the steps

of program repair.

Statistical bug isolation [41] identifies suspicious program statements us-

ing statistical information that consists in the number of times each statement

is executed by passing and failing test cases. The described program repair

system relies on statistical bug isolation, since such approaches demonstrate

good scalability in practice.

Angelic debugging [15] aims to discover an angelic value for a program

expression, that is a value that would enable the given buggy program to pass

1SyGuS-Comp 2017 results: http://sygus.seas.upenn.edu/SyGuS-COMP2017.html
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the failing test. In order to discover such values, angelic debugging replaces

the considered expression with a symbolic variable, and applied symbolic

execution to find a path along which the program would pass the test. Then,

a angelic value can be obtained by solving the corresponding path condition.

SemFix differs from angelic debugging in that it synthesizes new expressions

rather than finds angelic values. Angelix (Chapter 4) extends the idea of

angelic value to angelic forest — a concise specification that can capture the

effect of complex multi-line changes.

BugAssist [43] exploits MAX-SAT for fault localization. Specifically, it

encodes the fault localization problem as a Partial MAX-SAT problem, where

the semantics of the program statements is encoded as soft constraints, and

the tests are encoded as hard constraints. Then, a Partial MAX-SAT solver

finds the minimal number of clauses that need to be relaxed to make the

formula satisfiable, corresponding to the minimal number of statements that

need to be modified to enable the program to pass the tests. However, unlike

the approach in Chapter 3, MAX-SAT is not used for repair synthesis —

BugAssist does not suggest changes for the localized statements.

Darwin [82] is a semantic fault localization approach that uses a correct

previous version (or a reference version) of the analyzed software to precisely

identify faulty statement. Specifically, for a given failing test, it symbolically

analyzes the buggy and the correct versions and generates a new test that

follows a different path in the buggy program compared with the original

test, and the same path in the correct version as the original test. Then,

this new test is used to analyze the differences in the behaviours of the two

programs and to localize the statements responsible for these differences.
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SemGraft [67] introduced in Chapter 5 also uses a correct program version,

however it extracts additional specification in order to improve the quality

of automatically generated patches.

7.4 Symbolic execution

Symbolic execution has been originally proposed for software testing [49, 13],

but has since found a wide range of other applications in software engineer-

ing including software verification [37], program debugging [82] and program

repair [73]. This thesis studies an application of symbolic execution to pro-

gram repair (Chapter 4) and conditional equivalence checking (Chapter 5),

and addresses a fundamental limitation of symbolic execution — the path

explosion problem (Chapter 6). Contrary to the applications in software test-

ing, symbolic execution is used by the introduced techniques as a problem

comprehension mechanism (to extract specification from tests (Chapter 4)

or a reference implementation (Chapter 5), rather then an analysis/bugfind-

ing mechanism. Overall, this thesis demonstrates that symbolic execution is

effective in areas beyond software testing.

Godefroid [33] proposed to use higher order constraints to model impre-

cision of symbolic execution. Specifically, this approach replaces unknown/-

complex instructions with uninterpreted functions and generates inputs by

solving universal constraints over uninterpreted functions. The main differ-

ence of our approach introduced in Chapter 6 is that it solves existential con-

straints over functions whose interpretations are restricted by a user-defined

language, which implies different methodology and applications. Specifically,
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the approach with uninterpreted functions cannot reduce the number of ex-

plored paths as shown in Section 6.1.3 in the context of program repair, since

this reduction is achieved by restricting of the space of interpretations. Pa-

likareva et al. [76] proposed to test divergences between program versions by

encoding two versions in a single symbolic execution session. Our approach

differs in that it encodes a potentially infinite number of program versions

inside a single symbolic execution session.

7.5 Software transplantation

Automated software transplantation [7, 80] tools like µScalpel [8] and Code-

CarbonCopy [91] aim at transplanting new functionality from a donor appli-

cation into a recipient application. CodePhage [92] can fix program errors

like out of bounds access, integer overflow, and divide by zero errors. They fo-

cus on finding an error checking code in the donor application that can serve

as a compensation for a missing check in the host application. Since their

approach tries to copy code, it is necessary to translate the check from the

data structures and name space of the donor into an application-independent

representation suitable for insertion into the recipient application. The ad-

vantage of SearchRepair [47] compared to other repair approaches is the use

of semantic code search [98, 99] to identify suitable code fragments for re-

pair. Our approach differs from software transplantation literature, since

we do not copy or transplant any functionality from a donor program. In-

stead, we synthesize functionality to meet a correctness criteria — either to

pass given tests or to enforce the equivalence with the reference implementa-

145



tion. Although, SemGraft presented in Chapter 5 also uses a reference/donor

program, it uses it for a different purpose, namely for inferring missing spec-

ification. We also differ from recent works on grafting of code clones [117],

since this line of work seeks to achieve greater test-reuse across code clones

for the sake of differential testing.

7.6 Equivalence checking

Lahiri et al. [51] proposed to find the rootcause for equivalence failures by

leveraging semantic similarity between two program binaries. Since they

aim to extract a complete specification, their approach scales only to small

programs. SemGraft [67] introduced in Chapter 5 sacrifices completeness

for the sake of applicability by checking conditional equivalence of a buggy

program and a reference program w.r.t. a user-defined input condition.
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Chapter 8

Discussion

Debugging is notoriously difficult and time consuming. Automated program

repair is a promising technology that can reduce the burden of debugging by

automatically fixing defects. Early program repair techniques utilized syn-

tactic search in a space of patches. Although such techniques demonstrated

encouraging results, they suffer from effectiveness and quality limitations.

In the meanwhile, semantic-based repair that comprehends the meaning of

the program and the defect scaled to only relatively small programs. We

develop a series of semantic analysis techniques that improve the quality of

automatically generated patches and scale to large real-world software.

8.1 Summary of contributions

The contributions of the thesis are the following:

• We propose an approach of encoding the repair problem as a instance of

maximum satisfiability problem by reusing existing program synthesis

and error diagnosis methods (Chapter 3).
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• We devise a concise semantic signature that scales constraint-based

repair to large real-world programs and that is capable of representing

complex program changes (Chapter 4).

• We suggest an approach to improve the quality of automatically gen-

erated patches by inferring missing specification from a reference im-

plementation (Chapter 5).

• We introduce symbolic execution with existential second-order con-

straints that helps to alleviate the path explosion problem of traditional

symbolic execution in the context of program repair (Chapter 6).

8.2 Perspectives

In this section, we draw conclusions from the results of this thesis, and also

discuss future research directions.

8.2.1 Efficient patch generation

Ideally, a program repair system should be efficient, effective and precise.

However, it might be infeasible to achieve all these qualities simultaneously.

For example, by using more heavy-weight methods that check for conditional

equivalence of the buggy and the reference programs (Chapter 5), it is possi-

ble to increase the quality of generated patches, however this would also im-

pose additional overhead and require manually specifying input conditions for

equivalence checking. Similarly, symbolic execution with existential second-

order constraints (Chapter 6) helps to repair more defects in loops, however
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is less efficient for the cases without loops compared with traditional first-

order symbolic execution because of the overhead of second-order constraint

solving. Thus, when designing a program repair system, it is important to

balance the trade-offs between its efficiency, effectiveness and precision.

In this section, we demonstrate how to simplify and extend the proposed

algorithms to design a program repair system that, although does not pro-

vide high correctness guarantees like SemGraft (Chapter 5), yields an order

of magnitude efficiency improvement over existing repair techniques. In or-

der to achieve this, we propose a methodology based on a test-equivalence

relation [44, 53]. If two programs are test-equivalent for a test, then the

programs produce indistinguishable results on that test:

Definition 19 (Test-equivalence). Let P be a set of programs, t be a test.

An equivalence relation (reflexive, symmetric and transitive)
t∼ ⊂ P × P is

a test-equivalence relation for t if it is consistent with the results of t, that

is ∀p1, p2 ∈ P, if p1
t∼ p2 then p1 and p2 either both pass t or both fail t.

The proposed algorithm partitions the space of candidate patches into

test-equivalence classes by performing on-the-fly analysis during test execu-

tion, which distinguishes it from a previous work [107] that relies on program

equivalence. Compared with syntax-based techniques, it reduces the number

of test executions since a single execution is sufficient to evaluate multiple

patch candidates (specifically, all patches in the same test-equivalence class).

Compared with techniques based on path exploration (e.g. SemFix [73] and

SPR [62]/Prophet [63]), it reduces the number of test executions for two

reasons. First, similarly to symbolic execution with existential second-order
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constraints (Chapter 6), it avoids exploration of “infeasible” paths (sequences

of values), i.e. paths or sequences of values that cannot be induced by any

of the considered candidate patches in the context of given tests. Secondly,

it reuses information inferred across multiple tests to skip redundant execu-

tions, while previous semantics-based techniques perform path exploration

independently for each test.

Consider a defect in the revision 0661f81 of Libtiff1 from the GenProg

ICSE’12 benchmark. The code in Figure 8.1a is responsible for flushing data

written by the compression algorithm, and the defect is caused by the wrong

highlighted condition. Libtiff test-suite contains 78 tests, and this defect is

manifested by a failing test called “tiffcp-split”. Figure 8.1b demonstrates

the developer patch that modifies the wrong condition by removing the clause

tif->tif_rawcc != orig_rawcc.

We demonstrate how existing automated program repair algorithms gen-

erate a patch for this condition. First, repair algorithms perform fault local-

ization to identify suspicious program statements. The number of localized

statements in existing tools may vary from tens to thousands depending on

algorithms and configurations (it can potentially include all executed state-

ments). In this example, we consider only the location of the buggy expres-

sion highlighted in Figure 8.1a.

Second, program repair algorithms define a search space of candidate

patches. In this work, we primarily focus on two state-of-the-art approaches

that have been shown to scale to large real-world programs: Angelix [70] and

1Libtiff is a software library that provides support for TIFF image format: http:

//simplesystems.org/libtiff/
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...

(*tif ->tif_close)(tif);

if (tif->tif rawcc > 0

&& tif->tif rawcc != orig rawcc

&& (tif->tif flags & TIFF BEENWRITING)!= 0

&& !TIFFFlushData1(tif)) {

TIFFErrorExt(tif ->tif_clientdata ,

module ,

"Error flushing data before directory write");

return (0);

}

...

(a) Incorrect condition in Libtiff (rev. 0661f81).

...

(*tif ->tif_close)(tif);

if (tif->tif rawcc > 0

&& (tif->tif flags & TIFF BEENWRITING)!= 0

&& !TIFFFlushData1(tif)) {

TIFFErrorExt(tif ->tif_clientdata ,

module ,

"Error flushing data before directory write");

return (0);

}

...

(b) Developer patch for incorrect condition.

Figure 8.1: Defect in Libtiff library from GenProg ICSE’12 benchmark.

Prophet [63]. Specifically, our goal was to support a combination of trans-

formations implemented in these systems. Thus, the search space for the

highlighted condition includes all possible replacements of its subexpressions

by expressions constructed from visible program variables and C operators,

refinements (e.g. appending && EXPR and || EXPR), replacements of opera-

tors and swapping arguments. In total, the search space in our synthesizer

contains 56 243 modifications of the buggy condition.

Finally, program repair algorithms explore the search space in order to

try to find a modification that passes all given tests. We say that an element
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of a search space is explored if the algorithm identifies if it passes all the tests

or fails at least one. Existing search space exploration methods can be clas-

sified into two categories: syntax-based and semantics-based. Syntax-based

algorithms explicitly generate and test syntactic changes. In this example, a

syntax-based algorithm have to execute the failing test 56 243 times to eval-

uate all candidates2. Since there are 78 tests in the test-suite, 907 457 test

executions are required to explore the search space3. Given the high cost of

test execution, this approach has poor scalability.

Semantics-based techniques (e.g. Semfix [73], SPR [62], Angelix and

Prophet) split exploration into two phases. First, they infer a synthesis

specification for the identified expression through path exploration. For this

example, they enumerate and execute sequences of condition values (e.g.

true, true, true, false, ...) to find those sequences that enable the program

to pass the test. Second, they synthesize a modification of the condition

to match the inferred specification. In this example, there are 256 possible

execution paths (the condition is evaluated multiple times during the test ex-

ecution), therefore a semantics-based algorithm performs 256 test executions

for the failing tests, and 1320 for the whole test-suite4. Although semantics-

based techniques were shown to be more scalable [62], they are subject to the

path explosion problem: the number of execution paths can be infinite. To

address this, current systems introduce a bound for the number of explored

paths, however it may affect their effectiveness: if a path followed by the

2Since the search space contains the correct patch in this example, the algorithm can
stop search earlier after the patch is found. Then, the number of test executions depends
on the exploration order.

3This data is obtained by executing our implementation of syntactic enumeration.
4This data is obtained by executing Angelix.
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1. ((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

|| (tif ->tif_flags & TIFF_BEENWRITING)

2. ((tif ->tif_rawcc > 0) || (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING)

3. ((tif ->tif_rawcc == 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING)

4. (((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING )) || (imagedone >= orig rawcc)

5. (((tif ->tif_rawcc > 0) && (tif ->tif_rawcc != orig_rawcc ))

&& (tif ->tif_flags & TIFF_BEENWRITING )) || (tif->tif flags >= 74)

Figure 8.2: 5 expressions representing different test-equivalence classes.

correct patch is omitted, then this correct patch cannot be generated.

The algorithm proposed in this work performs on-the-fly partitioning of

program modifications into test-equivalence classes. We demonstrate the ef-

fect of the relation
t∼value . Two modifications of a program expression are

test-equivalent w.r.t.
t∼value if they are evaluated into the same sequences of

values during the test execution. Surprisingly, the space of 56 243 modifica-

tions can be partitioning into only 5 test-equivalence classes for the failing

test “tiffcp-split” w.r.t.
t∼value ; five elements of the search space that rep-

resent different test-equivalence classes are given in Figure 8.2. Since all

patches in the same test-equivalence class exhibit the same behaviour for the

corresponding test, the failing test can be executed only 5 times to evaluate

all candidates.

Our algorithm computes test-equivalence classes for each test in the test-

suite. However, since test-equivalence classes for different tests may intersect,

our algorithm takes advantage of this to skip redundant execution across dif-

ferent tests. Specifically, for each next test it only evaluates subspaces of

modifications that are not included into failing test-equivalence classes of

previously executed tests. Meanwhile, semantics-based techniques perform

specification inference for each test independently without reusing informa-

153



tion across tests. As a result, our algorithm requires only 103 test executions

to evaluate all 56 243 modifications with the whole test-suite.

The key insight that enables our method to reduce the number of re-

quired test executions is that, compared with techniques that explore execu-

tion paths, it takes the expressiveness of the patch space into account (e.g. it

identifies that only 5 out of 256 possible execution paths are induced by the

considered set of 56 243 transformations). Compared with syntactic enumer-

ation, it substantially reduces executions since a single execution evaluates a

whole test-equivalence class.

The described algorithm can be considered as a special case of symbolic

execution with existential second-order constraints (Chapter 6), that relies

on values rather that path conditions to partition the space of paths, and

therefore cannot take program dependencies into account. However, it also

imposes lower performance overhead since it does not require solving second-

order queries.

Since a test-suite is an incomplete specification, test-driven program re-

pair suffers from the test overfitting problem [95]. To address this issue,

state-of-the-art techniques define a priority (a cost function) in the space of

patches and search for a program modification that optimizes this function.

Ideally, this function should assign higher cost to overfitting patches. For

instance, Prophet [63] demonstrates how such a cost function learned from

human patches enables the generation of more correct repairs.

Consider a program p in Figure 8.3a that counts odd numbers in the

interval (0, i]. The * indicates a wrong condition that has to be modified

by the repair algorithm (the correct condition is i mod 2 = 1). We denote a
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program obtained by substituting * with an expression e as p[∗/e]. The repair

algorithm searches for a plausible patch (a substitution of * with a condition)

from the space P in Figure 8.3b such that the resulting program passes the

test t defined as follows:

t := ({ i 7→ 4, c 7→ 0 }, λσ. σ(c) = 2)

where t is pair of (1) an initial program state (mapping from variables to

values) and (2) a test assertion (a boolean function over program states)

denoted using lambda notation. We assume that * is such that p fails t.

Besides that, we consider a cost function κ defined for the considered space

of substitutions in Figure 8.3c. The goal is to find a plausible patch with the

lowest cost.

In order to find a patch for the example program, techniques like Angelix

and Prophet enumerate possible sequences of values that a condition can take

during test execution. Since there can be potentially infinite number of such

sequences, existing approaches introduce a bound for the number of explored

sequences and use an exploration heuristics to choose which sequences to

explore. For instance, Prophet enumerates sequences where the condition

first always takes the true branch until a certain point after which it always

takes the false branch. Thus, for the considered example it would enumerate
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the following sequences:

{ true, true, true, true },

{ true, true, true, false },

{ true, true, false, false },

{ true, false, false, false }

For each of these sequences, Prophet executes the program with the test

t in such a way that the condition * takes the values as in this sequence

during the execution. Only the third sequence { true, true, false, false } en-

ables the program to pass t, therefore it will be selected as a specification

for expression synthesis. The synthesizer will find the expression i > 2 ob-

taining a suboptimal patch p[∗/i > 2] with the cost 0.5, since this is the only

expression from the search space satisfying the specification. However, the

correct expression i mod 2 = 1 with a lower cost 0.3 cannot be generated,

since the corresponding sequence { false, true, false, true } is not explored by

the algorithm.

In contrast to techniques like Angelix and Prophet, our algorithm iterates

through the search space in such a way that at each steps it selects and

evaluates an unevaluated candidate with the lowest cost. Specifically, it

starts by choosing the candidate p[∗/i ≥ 0] with the cost 0.1. It executes this

candidate on-the-fly computing its test-equivalence class w.r.t.
t∼value . This

class contains the program p[∗/c ≥ 0], since the conditions i ≥ 0 and c ≥ 0

produce the same sequence of values { true, true, true, true } for t. Since

p[∗/i ≥ 0] does not pass the test, the whole corresponding test-equivalence
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while i > 0 do

if * then

c := c + 1

fi;

i := i - 1

od

(a) Buggy program p.

P := { p[∗/i ≥ 0],

p[∗/c ≥ 0],

p[∗/i mod 2 = 1],

p[∗/i mod 2 = 0],

p[∗/i > 2] }

(b) Search space.

κ(p[∗/i ≥ 0]) := 0.1

κ(p[∗/c ≥ 0]) := 0.2

κ(p[∗/i mod 2 = 1]) := 0.3

κ(p[∗/i mod 2 = 0]) := 0.4

κ(p[∗/i > 2]) := 0.5

(c) Cost function.

Figure 8.3: Example of optimal program repair problem.

class is marked as failing. Next, it selects p[∗/i mod 2 = 1] with the cost 0.3 since

p[∗/c ≥ 0] was indirectly evaluated through test-equivalence at the previous

step. Since this candidate passes the test, the algorithm outputs it as a

found repair.

Our algorithm guides exploration based on a given cost function and fo-

cuses on high priority areas of the space of patches. By construction, if it finds

a patch, then this patch is guaranteed to be the global optimum in the search

space w.r.t. the cost function. Angelix and Prophet, on the other hand, may

spend executions for value sequences that correspond to suboptimal candi-

dates or correspond to no candidates at all (e.g. { false, true, true, true }),

and therefore may miss the best patch in their search space.

Although current program repair approaches have been shown to be rela-

tively effective in modifying existing program expressions, they provide lim-

ited support for more complex transformations. We consider one such trans-

formation that inserts a new assignment statement to the buggy program.

Techniques like Prophet and GenProg can generate patches by copying/mov-

ing existing program assignments, however this approach has limitations: (1)
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...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

ifd = part nb;

if (decompress) {

method=get_method(ifd);

...

(a) Before if-statement.

...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

ifd = 0;

if (decompress) {

method=get_method(ifd);

...

(b) Before if-statement.

...

clear_bufs ();

to_stdout = 1;

part_nb = 0;

if (decompress) {

ifd = part nb;

method=get_method(ifd);

...

(c) Inside if-statement.

Figure 8.4: Candidate patches for defect of Gzip from GenProg ICSE’12
benchmark.

assignments for local variables cannot be copied from different parts of the

program because of their scope and (2) each insertion of an assignment is

validated separately, which yield a large number of required test executions.

Existing techniques do not apply specification inference for assignment syn-

thesis because such specification has to encode all possible side effects that

can be caused by assignment insertion (for each variable that can appear in

the left-hand side of the assignment), which makes inferring such specification

infeasible for large programs.

We show how test-equivalence can scale assignment synthesis for a de-

fect in Gzip5 from the GenProg ICSE’12 benchmark. Consider three candi-

date patches in Figure 8.4 that insert the highlighted statements at several

program locations. First, our algorithm identifies that the program in Fig-

ure 8.4a is test-equivalent to the program in Figure 8.4b (w.r.t. the relation

t∼value) since they differ only in the right-hand side of the highlighted as-

signments and the corresponding expressions take the same values during

test execution. Second, using a simple dynamic dependency analysis our al-

5Gzip is a file compression/decompression application: https://www.gnu.org/

software/gzip/
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gorithm identifies that the program in Figure 8.4a is test-equivalent to the

program in Figure 8.4c since (1) they insert the same assignment at different

program locations, (2) both these locations are executed by the test since

the true branch of the if-statement is taken during the test execution and

(3) the variables ifd and part nb are not used/modified between these lo-

cations during test execution. We refer to such a test-equivalence relation

as
t∼deps . Finally, our algorithm merges the results of the two analyses (as

the transitive closure of their union) and determines that the program in

Figure 8.4b is test-equivalent to the program in Figure 8.4c. Therefore, a

single test execution is sufficient to evaluate all these patches.

Since test-equivalence is a weaker property than the property of “pass-

ing the test” expressed by the inferred specification in semantics-based tech-

niques, it permits using more lightweight analysis techniques. Specifically, we

demonstrate that a composition of two lightweight test-equivalence analyses

enables us to scale assignment synthesis.

We implemented the described approach in a tool called f1x. f1x combines

the transformation schemas of SPR/Prophet and Angelix (we studied imple-

mentation of these systems in order to closely reproduce their search spaces).

More details about the implementation and the algorithms are available in

our technical report [68].

We evaluated the discussed methodology on the GenProg ICSE’12 bench-

mark [56] (with test suites independently augmented to prevent repair tools

from generating implausible patches [85]). We selected the following systems

and their configurations for evaluation:

F1X f1x that implements the test-equivalence partitioning technique.

159



F1XE f1xE is a variant of f1x that enumerates changes without test-equivalence

partitioning. This variant is considered to evaluate implementation-

independent effect of partitioning.

ANG Angelix 1.1 [70] that implements a symbolic path exploration and

prioritizes syntactically small changes.

PR Prophet 0.1 [63] that implements value search (a variant of path explo-

ration) for conditional expressions and patch prioritization based on

machine learning.

PR* Prophet* that is a variant of Prophet that disables transformations

for (1) inserting overfitting return insertions and (2) copying complex

statements except for assignments. This variant is considered to match

the transformation implemented in F1X/F1XE, since the search space

of F1X/F1XE is effectively the combination of the search spaces of PR*

and ANG.

GP GenProg-AE 3.0 [107] that implements a group of analysis techniques

to avoid evaluating functionally-equivalent patches (as opposite to test-

equivalent as in our approach).

We reuse the configurations from previous studies for running Angelix,

Prophet and GenProg-AE [85, 107]. As Prophet takes a correctness model as

input to prioritizes patches akin to the provided model, we used the default

model that is publicly available6.

6Prophet website: http://rhino.csail.mit.edu/prophet-rep/
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Table 8.1: Effectiveness of program repair approaches.

Subject
Plausible Equivalent to human

F1X F1XE ANG PR PR* GP F1X F1XE ANG PR PR* GP

libtiff 13 10 10 5 3 5 5 3 3 2 1 0

lighttpd 5 3 - 4 4 4 0 0 - 0 0 0

php 15 7 10 18 15 7 6 3 4 10 6 2

gmp 2 1 2 2 2 1 2 1 2 1 1 0

gzip 3 2 2 2 2 2 2 0 1 1 1 0

python 5 1 - 6 5 3 0 0 - 0 0 1

wireshark 4 4 4 4 4 4 0 0 0 0 0 0

fbc 1 1 - 1 1 1 1 1 - 1 1 0

Overall 49 29 28 42 36 27 16 8 10 15 10 3

We conduct all experiments on Intel® Xeon™ CPU E5-2660 machines

running Ubuntu 14.04, and use a 10 hours timeout for running each config-

uration.

Table 8.1 summarizes the effectiveness results for F1X, F1XE, ANG,

PR, PR* and GP. The second through seventh columns denote the num-

ber of plausible patches generated by each repair approach, while the eighth

through thirteenth columns represent the number of patches syntactically

equivalent to the human patches. As Angelix does not support lighttpd,

python and fbc, the corresponding cells for these subjects are marked with

“-”. The overall results illustrate that F1X generates the highest number of

plausible patches compared to all other evaluated repair approaches. The

“Equivalent to human” column in table 8.1 shows that F1X generates 8

more human-like patches than F1XE, 6 more human-like patches than ANG,

1 more human-like patch than PR, 2 more human-like patches than PR* and

13 more human-like patches than GP. All F1X patches are included in the

anonymous supplementary material submitted with this paper.

We attribute the high number of patches generated by F1X to the larger
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Figure 8.5: Average patch generation time.

patch space supported by F1X compared to other approaches. Since F1X

combines the search spaces of ANG and PR*, it fixes all defects that are

fixed by either of these tools. Note that F1X finds more patches than F1XE

within the time limit due to the performance gain from our partitioning.

Figure 8.5 illustrates the average patch generation time for the configura-

tions. The x-axis of Figure 8.5 represents the eight subjects in the benchmark,

while the y-axis shows the average time taken to generate a patch for all de-

fects for a given subject where each bar depicts a patch generation approach.

Overall, the average patch generation time for F1X is significantly shorter

than all other repair approaches. For instance, F1X requires only 121 sec-

onds on average to generate a patch for libtiff, while ANG takes 1262 seconds

(F1X is 1262
121

=10.5X faster than ANG). Meanwhile, PR* takes 1701 seconds

on average to produce a patch for libtiff (F1X is 1701
121

=14X faster than PR*).

Notably, F1X is 16X faster than GP for libtiff (GP takes 1940 seconds on
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average to generate a patch for libtiff). The average patch generation time

for PR is slightly higher compared to PR* as it searches through a slightly

larger patch space.

The results shown in Figure 8.5 validate our claim that F1X is able to

achieve significant improvement on the patch generation time due to its ef-

ficient search algorithm. F1X and F1XE demonstrate a comparable average

time of patch generation because F1XE finds a subset of patches found by

F1X that appears early in the sequence of explored candidates.

In future research, the trade-off represented by different techniques should

be investigated to design a practical repair systems that would be able to

address a large number of defects and also provide satisfactory precision.

8.2.2 Addressing test overfitting

Low precision is a fundamental limitation of existing program repair system,

and it is primarily caused by the lack of specification in real-world software.

Indeed, as has been shown in previous work [95], the use of tests as correctness

criteria for program repair often leads to the generation of incorrect patches

that merely overfit the tests.

In this thesis, we proposed two methods of addressing test overfitting.

First, this problem can be alleviated by searching for a patch that maxi-

mally preserves the original source code (Chapter 3). Secondly, the missing

specification can be automatically inferred from a reference implementation

if it is available (Chapter 5), which can be used to improve the quality of

generated patches and provide partial correctness guarantees.
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In future research, we plan to investigate practical ways of discovering the

missing specification and enforcing in a scalable manner. For instance, se-

mantic code search [99] might be used to find suitable reference programs

automatically, and used them to guide patch generation as in SemGraft

(Chapter 5). Another promising research direction consists in exploiting the

behavior similarity of test case executions as proposed by Xiong et al. [111].

8.2.3 Future application of program repair

Automated program repair targets the arising problem of low software qual-

ity, and can have a significant economic impact on software development.

Specifically, we envision the following important future applications of auto-

mated program repair:

Programming environment Program repair might be integrated into pro-

gramming environment to automatically suggest fixes for program de-

fects during development/maintenance. This would help to reduce the

cost of development/maintenance and also improve software quality.

Security Program repair might help to promptly address security vulner-

abilities by automatically fixing security bugs. For example, we show

that Angelix (Chapter 4) can automatically fix the infamous Heartbleed

bug in OpenSSL7.

Education Program repair might help to automate computer science edu-

cation [115]. Specifically, it might be used for automatically providing

feedback or automatically grading students assignments.

7Heartbleed bug: http://heartbleed.com/
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