
DESIGN OF REPAIR OPERATORS FOR

AUTOMATED PROGRAM REPAIR

SHIN HWEI TAN

NATIONAL UNIVERSITY OF SINGAPORE

2017

DESIGN OF REPAIR OPERATORS FOR

AUTOMATED PROGRAM REPAIR

SHIN HWEI TAN

(M.S., University of Illinois at Urbana-Champaign)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:

Professor Abhik Roychoudhury

Examiners:

Professor David Samuel Rosenblum

Associate Professor Siau Cheng Khoo

Professor Martin Monperrus, KTH Royal Institute of Technology

DECLARATION

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly

acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree

in any university previously.

Shin Hwei Tan

30 October 2017

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my PhD advisor, Prof. Abhik

Roychoudhury for consistently challenging me to excel in research. I would also

like to thank my Master advisor, Prof. Darko Marinov for instilling on me a passion

for research, which motivates me to pursue my PhD study. I am also thankful to

my Master co-advisor, Prof. Lin Tan for her valuable advices and guidance.

I would like to give special thanks to my parents and my siblings for their

unconditional love and support throughout my PhD journey.

I would also like to thank my thesis committee members, Prof. David S.

Rosenblum, Prof. Siau Cheng Khoo and Prof. Martin Monperrus for their

valuable comments and suggestions that help in improving the presentation and

the quality of this thesis.

I would like to express my sincere gratitude to Sergey Mechtaev for being such

kind friend who support me through several fruitful collaborations and useful

suggestions.

I would also like to thank Prof. Jooyong Yi, Dr. Marcel Böhme, and Dr. Zhen

Dong for their inspiring discussions and collaborations that leads to several works

discussed in this thesis. I am also grateful to Dr. Konstantin Rubinov for sharing

with me teaching responsibilities for the software testing module.

I would also like to thank Dr. Mukul R. Prasad and Dr. Hiroaki Yoshida for

providing me the precious opportunity to work in Fujitsu Laboratories of America

during my research internship. I am also grateful for the collaborations with Umair

Z. Ahmed and Prof. Amey Karkare.

I would like to thank other fellow students, including Dr. Dawei Qi, Dr. Van-

Thuan Pham, Gao Xiang, Manh-Dung Nguyen, and Yulis for their support and

assistance throughout my study.

iv

PAPERS APPEARED

� Shin Hwei Tan, Zhen Dong, Xiang Gao, Abhik Roychoudhury. Repairing

Crashes in Android Apps. In the Proceedings of International Conference on

Software Engineering (ICSE), 2018, To Appear.

� Shin Hwei Tan, Jooyong Yi, Yulis, Sergey Mechtaev, Abhik Roychoudhury.

Code�aws: A Programming Competition Benchmark for Evaluating

Automated Program Repair Tools. In the Proceedings of International

Conference on Software Engineering Companion (ICSE-C), p180�182.

� Jooyong Yi, Shin Hwei Tan, Sergey Mechtaev, Marcel Böhme, Abhik

Roychoudhury. A correlation study between automated program repair and

test-suite metrics. In Empirical Software Engineering Journal (EmSE) 2017,

p1�32.

� Shin Hwei Tan, Hiroaki Yoshida, Mukul Prasad and Abhik Roychoudhury.

Anti-patterns in Search-based Program Repair. In the Proceedings of

International Symposium on the Foundations of Software Engineering (FSE),

2016, p727�738

� Shin Hwei Tan and Abhik Roychoudhury. reli�x : Automated Repair of

Software Regressions. In the Proceedings of International Conference on

Software Engineering (ICSE), 2015, p471�482

v

Contents

1 The Need for Automated Program Repair 1

2 Prior Works on Automated Program Repair 9

2.1 Fault Localization . 9

2.1.1 Spectrum-based Fault Localization 10

2.1.2 Fault Localization based on Multiple Program Versions . . . 11

2.2 Testing and Automated Program Repair 12

2.2.1 Mutation Testing and Program Repair 13

2.2.2 Regression Testing . 14

2.3 Automatic Program Repair Techniques 14

2.3.1 Search-Based Repair . 15

2.3.2 Semantic-Based Repair . 18

2.3.3 Contract-Based Repair . 19

2.3.4 Repair that Incorporates Domain Speci�c Knowledge 21

3 Selections of Repair Operators in Automated Repair 23

3.1 Common Set of Repair Operators 26

3.2 E�ectiveness of Repair Operators 28

3.3 Evaluation . 31

3.3.1 Code�aws Benchmark . 31

3.3.2 Experimental Setup . 33

vi

3.3.3 RQ1: E�ectiveness of each Repair Operator 34

3.3.4 RQ2: Redundancy of Repair Operators 35

3.3.5 RQ3: Selection Strategies 36

3.4 Discussion . 41

3.5 Threats to Validity . 43

3.6 Chapter Summary . 44

4 A Correlation Study between Automated Program Repair and

Test Suite Metrics 47

4.1 Introduction . 48

4.2 Background . 52

4.2.1 Correlation Coe�cient . 52

4.2.2 On Duality between Mutation Testing and Automated

Program Repair . 53

4.3 Research Questions . 53

4.4 Experimental Methodology . 59

4.4.1 Subjects, Test-Universes and Test-Suites 59

4.4.2 Automated Repair Algorithm 62

4.4.3 Measuring Test-Suites Metrics 63

4.5 Experimental Results . 64

4.5.1 Basic Statistics � Repair Ratio and Regression Ratio 64

4.5.2 Correlation Coe�cients about Regression Ratio 67

4.5.3 Correlation Coe�cients about Repairability 71

4.5.4 Correlation Coe�cients about Repair Time 74

4.5.5 Generalizing the Results . 76

4.6 Threats to Validity . 80

4.7 Conclusion . 82

vii

5 Anti-patterns for Search-Based Program Repair 83

5.1 Introduction . 83

5.2 Prevalence of Anti-patterns . 86

5.3 How Anti-patterns may Help . 91

5.4 Integrating Anti-patterns . 93

5.5 Experiments . 94

5.5.1 Experimental Setup . 96

5.5.2 Evaluation on CoREBench benchmarks 99

5.5.3 Evaluation on GenProg benchmarks 103

5.6 Threats To Validity . 105

5.7 Chapter Summary . 106

6 Reli�x: Automated Repair of Software Regressions 113

6.1 Introduction . 113

6.2 Repairing Regression as Reconciling Problematic Changes 117

6.3 Experience about Real-life Regressions 118

6.3.1 Contextual Operators that Use Information from Di�erent

Program Versions . 120

6.4 Example . 122

6.5 Algorithm . 124

6.5.1 Fault Localization . 126

6.5.2 Mutant Generation and Evaluation 126

6.5.3 Test Case Prioritization and Reduced Test Suite 128

6.6 Experimental Evaluation . 129

6.6.1 Experimental Setup . 131

6.6.2 Repairability (RQ1) . 132

6.6.3 Regression Rate (RQ2) . 133

viii

6.6.4 Repairability of Latent Errors versus New Errors (RQ3) and

the Simplicity of the Generated Repair (RQ4) 134

6.7 Threats To Validity . 136

6.8 Related Work . 136

6.9 Chapter Summary . 139

7 Emerging Applications: Repairing Crashes in Mobile Apps 141

7.1 Introduction . 141

7.2 Background: Lifecycle in Android 145

7.3 A Motivating Example . 146

7.4 Identifying Causes of Crashes in Android Applications 148

7.5 Strategies to Resolve Crashes . 151

7.6 Methodology . 154

7.6.1 Test with UI Sequences . 156

7.6.2 Fault Localization . 157

7.6.3 Code Checker and Test Checker 157

7.6.4 Mutant Generation and Evaluation 158

7.7 Implementation . 159

7.8 Subjects . 160

7.9 Evaluation . 162

7.9.1 Experimental Setup . 162

7.9.2 Evaluation Results . 165

7.10 Threats to Validity . 167

7.11 Related work . 168

7.12 Chapter Summary . 170

8 Conclusion 173

8.0.1 Research Outputs . 174

ix

8.0.2 Future Work . 175

x

Design of Repair Operators for

Automated Program Repair

Abstract

Software bug-�xing is a time-consuming software development activity.

Recently, many automated program repair approaches are proposed to reduce

the time and e�ort spent in �xing defects. These techniques rely on a �xed set of

program transformations (repair operators) for generating patches automatically.

We present a comprehensive study on the e�ectiveness of repair operators in

existing repair tools. We also introduce a new benchmark to enable the objective

comparison between di�erent repair tools. Moreover, we investigate the possibility

of improving the e�ectiveness of automated repair techniques by enhancing the

quality of test suite. Furthermore, we propose anti-patterns, a set of rules that

illustrate problems in automatically generated patches. Our set of anti-patterns

allows elimination of patches at the level of program transformations. In addition,

we introduce a novel repair tool with repair operators drawn from code changes

between di�erent versions. Finally, we adopt the idea of program repair to �xing

mobile applications by designing specialized repair operators for Android apps. As

shown by extensive evaluations, our proposed approaches improve over existing

automated program repair techniques.

xi

List of Tables

3.1 Our set of Repair Operators and Example of each Repair Operator 27

3.2 Subject programs in Code�aws . 32

3.3 Subject programs in IntroClass . 32

4.1 Subjects of our experiments . 59

4.2 GenProg experiments: statistics for repairs and regressions 64

4.3 GenProg experiments: correlations between the regression ratio and

various test-suite metrics . 65

4.4 Average rankings of test-suite metrics 69

4.5 GenProg experiments: correlations between repairability (repair

success rate) and various test-suite metrics 72

4.6 Mean and max time of successful repairs with a one-hour timeout . 74

4.7 GenProg experiments: correlations between repair time and various

test-suite metrics . 75

4.8 Correlations between the regression ratio and various test-suite

metrics (Kendall's τb) . 78

4.9 SemFix experiments: correlations between the regression ratio and

various test-suite metrics . 79

4.10 Average rankings of test-suite metrics (SemFix) 80

5.1 Prevalence of Anti-patterns in Plausible Patches 87

xii

5.2 Our set of anti-patterns with examples that illustrate the usage of each anti-

pattern . 88

5.3 Problems in search-based program repairs and the corresponding

anti-patterns aim to solve these problems 89

5.4 Subject Programs and Their Basics Statistics 96

5.5 Overall Results on GenProg (AE) versus mGenProg (mAE) 108

5.6 Overall Results on SPR versus mSPR 109

5.7 Patch Correctness Analysis Result on mGenProg and mSPR 110

5.8 Subject Programs and Repair Space Reduction Results for

mGenProg and mSPR . 110

5.9 Overall Results on mGenProg (mAE) versus dGenProg(dAE) . . . 111

6.1 This table summarizes the number of code transformation operators

that are used for �xing regression bugs. 119

6.2 Subject Programs and Their Basic Statistics 129

6.3 Operators used in �xes generated by reli�x 129

6.4 Overall Repairability (i.e., RP) and Regression Rate (i.e. RR) for

reli�x and GenProg on the new Subject Programs 130

7.1 Root cause of crashes in Android apps 149

7.2 Supported Operators in Droix . 151

7.3 Code-level and Test-level Properties Enforced in Droix 155

7.4 Subject Apps and Their Basic Statistics 163

7.5 Patch Quality Results . 165

xiii

List of Figures

3-1 Human patches across di�erent repair classes and how Angelix can

express these classes using only the ORRN repair operator. 30

3-2 Individual repair operator score for repairability, reliability and

expressiveness for GenProg, Prophet and Angelix on Code�aws . . . 33

3-3 Individual repair operator score for repairability and reliability for

GenProg, Prophet and Angelix on IntroClass 34

3-4 Overall Repair Rate Change vs Overall Repair Precision Change

with various strategies . 37

4-1 The cross marks represent the tests in a test-suite. Overlapping

with a cross mark means that the mutant fails the corresponding

test. 54

4-2 The dots represent the tests in the test-universe, while the cross

marks represent the tests in a test-suite used to guide automated

program repair. Crossing over a dot or a cross mark means that

the repair fails the corresponding test. 55

xiv

4-3 A scatter plot that illustrates the correlation between the

mutation score (the MUT_SCORE axis) and the regression ratio

(the Reg_Ratio axis). Coordinate (0.55, 62/97) of the plot

denotes the following: (1) among test-suites with which repairs are

successfully generated, there are 97 test-suites whose mutation

scores are less than 0.55; (2) out of these 97 cases, a regression is

detected in 62 cases. Similarly, coordinate (0.79, 347/970)

indicates that there are 970 test-suites whose mutation scores are

not greater than 0.79, and regressions are detected in 347 cases. . . 56

5-1 Number of Patches Found by SPR vs. mSPR 101

6-1 reli�x 's Overall Work�ow . 116

7-1 Activity Lifecycle, Fragment Lifecycle and the Activity-Fragment

Coordination . 145

7-2 Continuous snapshots of a crash in Transistor. 146

7-3 Droix's Android Repair Framework 154

xv

Chapter 1

The Need for Automated Program

Repair

A software bug is an error, failure, or a fault in a computer program that causes

it to produce unexpected results. Software errors could lead to delay in software

projects and increase of software maintenance cost. According to the US

National Institute of Standards and Technology (NIST), software development

costs, including the development and the distribution of software patches for

�xing software bugs contribute to $60 billion US economic loss each year [151].

The catastrophic e�ect of software bugs may lead to loss of human lives. One

well-known example of such disastrous failures includes software faults in a

radiation therapy planning system where at least �ve people died due to

radiation overdose [49].

The interval between the time when a software error is �rst reported and

the time when the error is �xed has signi�cant impact on the reliability of the

software. Indeed, a case study of the Mozilla project reveals that a bug report

could take more than 100 days to resolve [111]. When a software error is reported,

software developers need to go through tedious tasks of locating and �xing the

error. In recent years, many automated debugging techniques have been proposed

1

to assist developers in �nding the root cause of a software error [77, 125, 147,

148, 149]. These techniques demonstrated promising results in pinpointing the

program locations that are relevant to the software error. Although developers

could save the time spent in locating the error using these automated techniques,

the process of understanding the cause of the error and the bug-�xing step are

still primarily manual. Moreover, developers may need to spend additional time

in debugging and bug-�xing when some of the issued patches lead to new errors.

To reduce time and e�ort spent in bug comprehension and bug-�xing, several

automated program repair approaches were introduced [63, 67, 90, 94]. These

automated repair techniques have various potential usages. First, automated

repair approaches could be used to reduce the downtime of remote-control

system (e.g., military drones) where the software failures could have disastrous

impact (e.g., drone collision). This potential usage is related to the concept of

self-healing software systems which is de�ned as software systems that have the

ability to detect when the software stops functioning correctly and could restore

it to the working condition without any human intervention [84]. According to

the de�nition of self-healing software systems [84], the ability to automatically

repair a software bug is essential in enabling the self-healing properties of a

software system. Secondly, these automated program repair techniques could

expand the capability of existing automated debugging techniques by providing

debugging hints together with concrete patch suggestions. MintHint, an

approach that automatically provides repair hints to increase developers'

productivity demonstrated initial success for this potential usage [78]. However,

in MintHint's experiments, repair hints have been studied only for small

programs where repair hints took could take up to one hour to generate. Thirdly,

although a program repair tool may be utilized in an interactive debugging

session where repair hints need to be generated almost instantly, a more realistic

2

scenario is to integrate program repair system together with nightly builds. In

this scenario, developers could check in their code into the repository, run the

regression test suite (regression test is test that veri�es whether a software

system performs correctly after making some changes to the software), and

invoke the program repair system to �x regressions (software bugs that make a

software stop functioning correctly after certain events, such as system patching).

An approach proposed in this thesis, reli�x, is designed speci�cally for this usage.

Fourthly, even when the automatically generated patches do not completely �x a

given defect, automated program repair systems may be still useful in extending

the survival of software systems by temporarily circumventing the problem to

buy developers more time in crafting the correct patch [127]. Lastly, instead of

�xing traditional desktop applications, the concept of automated program repair

could also be applied to other applications. Particularly, this thesis suggests the

possibility of applying program repair techniques into mobile applications.

While the overall goals of automated program repair techniques are to

improve developers' productivity and to enhance software reliability, it could

enable many potential usages, including empowering self-healing systems,

generating repair hints, integrating with nightly builds, extending the survival of

software systems, and �xing applications of other domains.

Despite many possible usages of automated program repair techniques, there

remain several challenges before automated program repair could be fully deployed

and integrated into software development process.

First, most automated program repair approaches rely on given test cases T

for validating the correctness of the generated patch. In the context of program

repair systems, test cases serve as speci�cations that capture the intended

behavior of the patched program. However, test cases tend to be incomplete as

each test case only represents an input-output relationship of a given program.

3

As a result, the generated patches may be incomplete �xes and the patched

program may also end up introducing new errors, because the patched program

may fail tests outside T , which were previously passing [134]. The scenario where

the patched program passes T but fail tests outside T is referred to as the

problem of over�tting in automated program repair literature. Another work

that studies the quality of automatically generated patches shows that the vast

majority of patches produced by search-based program repair tools are

semantically equivalent to functionality deletion [127, 134]. Apart from using

test cases as a correctness criterion, several works go one step further by

checking manually whether the automatically generated patch [94, 96, 108] is

semantically equivalent to the corresponding human patch. Although the manual

validation of automatically generated patches is more precise for determining the

patch correctness, this may not be practical as developers may need to spend

considerable amount of time �ltering out a large number of invalid patches.

Second, the reliance of automated program repair techniques on test cases

suggests that they may inherit problems that are common in the �eld of

automated testing. In particular, automated testing techniques aim to produce a

test suite that ful�lls certain coverage criteria. To study the relationship between

testing and program repair, in Chapter 4, this thesis investigates whether

traditional coverage criteria used to assess the quality of a given test suite for

automated testing could be adapted for automated program repair. Apart from

assessing the quality of test suite, the ability to handle �aky tests (tests that

exhibit both a passing and a failing result with the same program version) is

another concern in automated testing. Similarly, �aky tests also pose unique

challenges for automated program repair techniques. Speci�cally, since test cases

for applications with graphical user interfaces (GUI) are often �aky, automated

program repair techniques may misinterpret the test results by producing

4

incorrect patches. To address this problem, this thesis introduces an automated

program repair framework for Android applications (which contain GUI tests

that fail due to crashes) in Chapter 7.

Third, automated program repair approaches are often not responsive enough

to provide instant feedback to software developers as most of these approaches

were designed to be invoked during nightly builds where software developers get

no control over the bug-�xing process. In the worst case scenario where the desired

patch falls out of the patch space of a repair system, program repair systems could

take up to 12 hours [88] to traverse the entire patch spaces and yet produce neither

working patch nor debugging clue to software developers.

Furthermore, most of the past evaluations of automated program repair

tools [90, 95, 96, 108] are restricted to using one benchmark suite for C programs

(GenProg ManyBugs benchmark [90]). This means that the current design of

search space of these program repair tools may be derived based on the same

benchmark. Meanwhile, the best result reported so far on the ManyBugs

benchmark is �nding correct �xes for only 17% of all the defects [96]. The low

percentage of correct patches implies that the current design of the search space

is not e�ective. The e�ectiveness of repair operators is important for program

repair tools because this set of operators de�ne the search space of these tools.

Goal of this thesis The overall goal of this thesis is to improve the current

techniques in �xing software defects by addressing many of the aforementioned

challenges. To achieve this goal, we investigate the current design of repair

operators used in generating patches and propose several techniques for guiding

the future design of repair operators in program repair tools.

This thesis makes the following contributions:

� We conduct the �rst study that investigates the current design of program

repair tools and propose several selection strategies that can reduce the

5

number of repair operators to increase the likelihood of obtaining a correct

repair for automated program repair techniques. We also propose a new set

of subject programs that allows extensive comparison among existing

program repair tools.

� We perform the largest study that explores the relationship between

traditional test suite metrics and the quality of automatically generated

patches. In particular, our study is the �rst that investigates the correlation

between mutation score and repair quality. We also propose a new metric,

capable-tests ratio (the ratio of tests that kill one of mutants in a given test

suite), that is found to be more strongly correlated with the quality of

automated generated patches than mutation score.

� We introduce anti-pattern, a set of generic rules that forbid certain program

transformations for each repair operator. We show that anti-patterns can be

enforced on top of any search-based program repair tools. Enforcing anti-

patterns allows search-based program repair tools to generate patches faster

and patches with more pleasant properties (i.e., better fault localization and

removes fewer functionalities).

� We propose reli�x, a program repair tool that employs a specially designed

set of repair operators. Compared to existing approaches that rely solely on

the speci�cation of the buggy program, our novel set of repair operators

extracts change information from two program versions to reduce the

likelihood of introducing over�tting patches. We show that reli�x generates

more patches and the generated patches are of better quality compared to an

existing repair system.

� We introduce Droix, a program repair framework that automatically �xes

crashes in Android applications. We design a novel set of repair operators

based on the Android activity/fragment lifecycle. To compensate for the

6

inadequate test information for Android applications, Droix also enforces

several properties extracted from Android activity/fragment lifecycle

management rules. Our experiments show that Droix could generate �xes

that are syntactically equivalent to human patches. As Droix aims to

minimize the number of violations of several properties, Droix could even

generate a patch that is better than the human patch for one defect.

Implications for future research. This thesis demonstrates through extensive

studies and concrete techniques that (1) the design of repair operators plays an

important role in ensuring the quality of the automatically generated patches

and the number of generated patches; (2) the benchmark used to evaluate

automated program repair techniques should contain a wide variety of defects

�xed using di�erent repair operators to allow comprehensive comparison between

various repair approaches; (3) each repair operator has some program

transformations that should be forbidden due to the problem of inadequate test

coverage; (4) although existing program repair techniques are limited in �xing

certain defect types, automatically generated patches could help in providing

debugging clues to developers by pinpointing potential �x locations.

The remainder of this thesis is organized as follows. In Chapter 2, we provide

an overview of the existing techniques in fault localization, in automated testing,

and in automated program repair. Next, we present our study on the set of

repair operators in automated program repair tools in Chapter 3. Chapter 4

introduces our correlation study that investigates the relationship between

traditional test-suite metrics and the quality of automatically generated repairs.

Chapter 5 describes our proposed set of rules that forbid certain program

transformation for each repair operator. Chapter 6 presents our new program

repair approach that employs a set of repair operators based on program changes

information. Chapter 7 introduces a novel set of repair operators for an emerging

7

application of program repair � repairing crashes in Android applications. We

conclude this thesis in Chapter 8 by summarizing all the presented techniques

and improvement.

8

Chapter 2

Prior Works on Automated

Program Repair

Fault localization is a crucial initial step in automated bug �xing approaches as

these approaches rely on existing fault localization techniques for �nding the

locations in which the patch will be applied. Another essential step for

automated bug-�xing approaches involves running test cases for validating each

generated candidate patch. Due to the importance of fault localization and

testing in automated program repair, this chapter begins by presenting a

literature review on fault localization, followed by introducing testing techniques

that are relevant to automated program repair. Finally, this chapter ends by

presenting existing automated program repair techniques.

2.1 Fault Localization

This section is organized as follows. Subsection 2.1.1 gives a brief overview of

spectrum-based fault localization techniques. Subsection 2.1.2 discusses fault

localization that uses information from multiple program versions.

9

2.1.1 Spectrum-based Fault Localization

Spectrum-based fault localization is a technique that analyzes the di�erences in

program spectra (a program spectrum is an execution pro�le that provides the

signature of a program's behavior [73]). Spectrum-based fault localization

techniques aim to identify the program elements that are relevant to the

detection of errors (these program elements are also referred to as �suspicious�).

Several metrics have been proposed for measuring the suspiciousness of program

statements, including the Tarantula formula and the Ochiai formula.

Tarantula computes a ranked list of statements based on the intuition that

statements executed exclusively by failing test cases are more likely to be faulty

than statements executed by passing test cases [77]. Tarantula assigns a

suspiciousness score for each statement in the program by computing the

following equation:

suspiciousness(s) =
failed(s)

total failed
passed(s)

total passed
+ failed(s)

total failed

where passed(s) represents the number of passing test cases that visited

statement s while failed(s) represents the number of failing test cases that

visited statement s. The suspiciousness score for each statement denotes the

likelihood of a statement being the faulty statement that causes the test failures.

To provide better visualization, the Tarantula approach also assigns a color to

each statement based on its suspiciousness score.

The Ochiai formula is another equation used in computing the suspicious score

for fault localization [23]. The following equation shows the Ochiai formula:

suspiciousness(s) =
failed(s)√

total failed× (failed(s) + passed(s))

Experiments in previous studies show that the Ochiai formula used in the

10

molecular biology domain is more e�ective than the Tarantula formula in ranking

program spectra.

2.1.2 Fault Localization based on Multiple Program

Versions

To better analyze defects that occur due to program changes, several fault

localization approaches incorporate information about multiple program

versions, including Darwin [125] that uses a reference program, an approach

proposed by Banner er al. [42] that uses golden implementation, and delta

debugging [148] that uses code changes between program versions.

Darwin is a fault localization approach for debugging evolving programs [125].

It takes as inputs a reference program P , a modi�ed program P ′ together with an

input t that fails on the modi�ed program and produces as output a bug report

that pinpoints an observable error. It �rst concretely executes the test input t

in both programs to generate program traces, then it feeds the produced traces

into the symbolic execution engine to produce path condition f for P and path

condition f ′ for P ′, then uses a STA solver to check for the satis�ability of f∧¬f '

and f '∧¬f. The solutions for the two conjunctive formulas are included in the bug

report as the potential root cause for the test failure. Darwin has been successfully

applied to several real world applications, such as the libPNG library.

Banerjee et al. [42]pointed out the di�culties in using Darwin for debugging

two programs that may yield logical equivalent path conditions and proposed

using golden implementation as the reference model for solving this problem.

Their approach employs dynamic slicing with respect to the error of interest and

performs weakest precondition computation along the dynamic slices. They have

conducted experiments using di�erent versions of libPNG and demonstrated

promising results in deriving constraints that capture the root cause of a bu�er

11

overrun error.

Delta debugging is a debugging method that isolates failure-inducing

circumstances that are responsible for test failures using a divide-and-conquer

algorithm. There are two variants of the delta debugging approach. One variant

of the approach uses the set of code changes as the failure-inducing di�erences

while another variant uses di�erences between passing and failing test cases as

the �delta�. The �rst variant of the delta debugging approach takes as input a

set of changes between two program versions and it produces a minimal subset of

changes that correspond to the failure by performing binary search [148]. The

second variant simpli�es the failing test input through successive testing and

generates a minimal subset of a failure-inducing input by recursively partitioning

test cases into two subsets of similar sizes [149]. Yu et al. conducted an extensive

evaluation of the e�ectiveness of delta debugging by applying the approach on

real regression bugs [147]. Their results revealed that delta debugging may

isolate super�uous changes that are irrelevant to the failure. In particular, three

out of 15 regression bugs investigated contain super�uous changes after isolation

mainly due to refactoring that occurs between the two program versions. They

also discovered that delta debugging could produce wrong isolation with changes

that are irrelevant to the failure. They further explained that the wrong isolation

may be due to the choice of test function used and the inclination of delta

debugging in isolating single changes �rst.

2.2 Testing and Automated Program Repair

Automated program repair approaches that leverage test cases for checking

whether a candidate patch �xes a given error are referred to as test-driven

program repair approaches. Test-driven program repair approaches take as input

a buggy program and a test-suite in which at least one test fails in the given

12

buggy program. Tests that fail in the buggy program are called negative tests,

whereas those that pass are called positive tests. The goal of test-driven repair

tools is to �nd an edit of the buggy program that passes all the tests in the

provided test-suite. This section describes several testing techniques including

mutation testing and regression testing that are associated with test-driven

program repair approaches.

Typically, a test-suite used for a test-driven program repair tool consists of

a small number of negative tests and a relatively large number of positive tests.

While negative tests set a goal of repairing the given buggy program, positive

tests serve as anti-goals; they �lter out hazardous repair candidates, that is, those

that pass negative tests but fail one of positive tests. Still, due to the incomplete

nature of tests (not all desirable behaviors of software are tested), a test-driven

repair tool runs the risk of generating repairs causing regressions.

2.2.1 Mutation Testing and Program Repair

Mutation testing is a systematic method to measure the fault detection ability

of a test-suite [118]. In mutation testing, a given program is modi�ed (mutated)

by applying mutation operators at several program locations. These modi�ed

programs (mutants) represents typical programming errors that should be detected

by the given test suite. A mutant m is considered killed when the test result of m

for at least one test in the provided test-suite is di�erent from the test result of

the original program for the same test. The fault detection ability of a test-suite

TS is measured as the mutation score of TS, which is de�ned by:

Mutation Score(s) =
number of killed mutants

total number of mutants

Namely, mutation score measures the ratio of the number of killed mutants over

the total number of non-equivalent (i.e., semantically di�erent) mutants.

13

Automated program repair has similarities to mutation testing. It can be

viewed that automated program repair �mutates� the original program, this time

in an attempt to �nd a repair. As in mutation testing, mutants that fail to

pass all tests in the provided test-suite are considered buggy (hence, incorrect

repairs). This conceptual similarity between mutation testing and automated

program repair suggests the plausibility of using the mutation score to measure

the quality of a test-suite not only for mutation testing but also for automated

program repair. Just as a higher mutation score is associated with a better fault-

detection ability in mutation testing, it appears plausible to associate a higher

mutation score with a better ability to guide a reliable repair.

2.2.2 Regression Testing

Regression is a software bug that makes a feature stop functioning correctly after

a certain event (e.g., bug-�xing). Regression testing is a technique that aims

to detect regression when software evolves [148]. As the size of regression test

suite may grow as software evolves, it may be too time and resource consuming

to execute the entire test suite. To reduce the cost of regression testing, prior

regression testing techniques focus on test suite selection (technique that selects

a subset of a given test suite) [72, 130], test suite minimization (technique that

reduces the test suite size) [101, 119, 137] and test suite prioritization (technique

that �nd an ordering of the given test suite for re-execution) [92, 131].

2.3 Automatic Program Repair Techniques

Several automatic program repair techniques have been proposed to generate

patches for buggy programs. Subsection 2.3.1 gives a brief overview of

search-based automated repair techniques. Subsection 2.3.2 describes automated

repair technique that uses semantic techniques (i.e., program synthesis).

Subsection 2.3.3 discusses automated repair techniques that leverages Ei�el

14

contracts. Subsection 2.3.4 discusses various automated repair that incorporates

domain-speci�c information.

2.3.1 Search-Based Repair

Input: P: Program
Input: T: Test Suite
Input: RepOp: Repair operator
Input: Fit: Fitness Function P → R
Input: PopSize: Population size
Output: Patch: a program variant P' that passes ∀t ∈ T
Pop← initialPopulation(PopSize);1

repeat2

Pop← apply(Pop,RepOp);3

Pop← select(Pop, PopSize, F it);4

until ∃Patch ∈ Pop that passes ∀t ∈ T ;5

return Patch6

Algorithm 1: Search-based Program Repair Algorithm

Algorithm 1 depicts the patch generation algorithm for search-based program

repair approaches [82, 90, 126]. A search-based program repair approach Rep takes

as input a �tness function, a set of repair operators RepOp, and population size.

After creating an initial population of size PopSize (Line 1), Rep repeatly performs

two steps: generating new program variants by using its prede�ned set of operators

(Line 3) and selecting top program variants based on the given �tness function

(Line 4). This iteration process terminates when any program variant passes all

given test cases are found (Line 5) or when all patches have been evaluated.

Genetic Program repair (GenProg [90]) is a search-based repair approach

that uses genetic programming to search for a program variant that passes a set

of test cases. Genetic programming is an algorithm motivated by biological

evolution to discover programs that perform a speci�c task. GenProg takes as

input a buggy program and a set of test cases, including a test case that encodes

the buggy behavior of the program. It �rst performs fault localization at the

statement-level, then it utilizes its mutation and crossover operators (Line 3 in

15

Algorithm 1: RepOp is based on mutation and crossover) to generate program

variant. Each generated program variant are evaluated using a �tness function

that computes how close the given program variant is to the �nal repair that

passes all test cases (Line 4 in Algorithm 1: selection based on �tness function).

Before generating the �nal repair, it uses structural di�erencing and delta

debugging to exclude irrelevant codes that are introduced along with the repair.

While the initial version of GenProg [142] uses genetic programming algorithm

to modify the buggy program, the latest version of GenProg [141] (AE) employs

a deterministic algorithm together with program equivalence relations to

generate patches. Another search-based repair approach, RSRepair [126] di�ers

from GenProg [90] in the algorithm used for selecting program variants (Line 4:

GenProg uses genetic algorithm whereas RSRepair uses random search).

Arturo and Ya [34] proposed another framework that uses genetic

programming for simultaneously evolving the buggy program for passing the

current set of test cases and the tests used for �nding bugs in the evolved

program. The approach takes as input a buggy program and formal speci�cation

that are used for generating new test cases. The authors hypothesize that the

co-evolution of the program and the test case could lead to the evolution of a

program that satis�es the formal speci�cation. They illustrate their idea of

co-evolution through a case study on the bubble-sort implementation. Arturo

later [33] presented a Java prototype called JEFF that automatically repair

faulty Java programs with three search algorithms, including random search that

randomly mutates the buggy program, a variant of Hill Climbing (HC) that

iteratively searches for the best solution among neighbors (in the context of

repair, the neighbors are di�erent mutation operators), an evolutionary

algorithm (i.e., genetic programming) [33] for evolving the buggy program and

chooses program variant based on a �tness function. Their experiments show

16

that genetic programming performs signi�cantly better than random search and

Hill Climbing.

In mutation testing, program mutation makes syntactical changes to a

program and measures the quality of a given test suite by checking its

e�ectiveness in detecting program modi�cations. Debroy and Wong suggested

combining mutation and fault localization to automatically produce �xes for

faulty programs [62]. Their approach uses Tarantula [77] for fault localization

and then uses �mutant operators� (repair operators) to generate �xes for buggy

programs. They include two classes of repair operators (RepOp in Algorithm 1):

(1) replacement of arithmetic, relational, logical, increment/decrement,

assignment operator by another operator and (2) decision negation in an if/while

statement. Their evaluations on programs in Siemens suite and Apache Ant

demonstrate that 18.5% of the faulty versions can be automatically �xed.

Automatic program repair using genetic programming [90] may su�er from the

problem of generating nonsensical patches due to the random changes introduced

by mutation operations. To overcome this problem, Kim et al. proposed Pattern-

based Automated program Repair (PAR) that utilizes common �x patterns learned

from manual inspection of human patches [82] (RepOp in Algorithm 1 is the

set of �x patterns) . Examples of these �x patterns include adding null check

and inserting object initialization. Similar to GenProg, PAR uses evolutionary

algorithm to generate patches by applying extracted �x templates to produce

program variants, evaluating the variants through a �tness function and selecting

the best variant based on a �tness function. Their user study demonstrated that

patches generated by PAR are more �acceptable� than those produced by GenProg.

Another search-based approach � SPR searches for patches that do not

involve conditional statements using similar search-based algorithm as

GenProg [94]. While it repetitively generates repair candidates until a repair is

17

found as in GenProg, it also applies the following approach for conditional

statement: given a potentially buggy conditional statement that is executed

more than once during test execution, SPR searches for a sequence of boolean

values that the conditional statement should have to pass the test. Once such

sequence is successfully found, an expression that can produce the inferred

sequence during the execution is synthesized. Prophet extends SPR with a

ranking function and machine-learning algorithm to prioritize a repair similar to

human patches, when there are multiple repairs found [96]. Prophet and SPR

share the same set of repair operators.

2.3.2 Semantic-Based Repair

Semantic-based program repair approaches �rst construct repair constraints that

should be satis�ed by the patched program, then they use program synthesis

engine for generating �xes that satisfy the repair constraints.

SemFix is the �rst semantic-based repair technique that employs program

synthesis to search for the correct repair for a given buggy program [117]. It

takes as input a faulty program and a test suite with at least one failing test and

it follows a three-steps approach listed below:

Fault localization Performs statistical fault localization to generate a ranked

list of suspicious statements

Speci�cation inference Replaces the expression in the most suspicious

statement by a symbolic expression x, then executes the program

symbolically starting from the suspicious statement. This execution yields a

set of formulas that can be used as a speci�cation of the program semantics

for all the paths that starts from the statement of interest.

Program Synthesis Uses component-based synthesis to �nd an expression that

satis�es the inferred speci�cation obtained from previous step.

As SemFix only modi�es conditional statements and the RHS of assignments,

18

its repair operators include ite, constant replacement, arithmetic, logical and

relational operator replacement. Their results demonstrate that SemFix perform

signi�cantly better than GenProg in terms of number of generated repairs

(repair rate). They also concluded that SemFix has higher repair rate in almost

all types of bugs, especially arithmetic bugs where the repair expressions do not

exist within the buggy programs. This observation illustrates the inherent

limitation of GenProg since it assumes that the repair expression is present in

other part of the buggy programs.

DirectFix [107] generates minimal repairs to obtain human-readable and

comprehensible repairs. The idea is to encode the problem as a partial maximum

satis�ability problem over Satis�ability Modulo Theory (SMT) formulas (partial

maxSAT) and solve it using a suitably modi�ed SMT solver. Angelix [108] solves

the scalability problems of DirectFix by using a lightweight repair constraint.

Both DirectFix and Angelix reuse the same set of repair operators as SemFix.

NOPOL is a semantic-based repair approach that �xes bugs in conditional

statements [143]. Given a buggy Java program, NOPOL �rst uses angelic fault

localization to identify the value that makes test cases pass (this value is called

the angelic value). Then, it collects runtime information on existing program

variables through code instrumentation. Finally, it synthesizes a new conditional

expression that matches the angelic values using a SMT solver. Apart from

modifying expressions in conditional statement as in SemFix, NOPOL introduces

additional repair operators, including inserting preconditions, adding null checks

and inserting method calls.

2.3.3 Contract-Based Repair

Instead of relying on test cases as speci�cation for guiding the repair process,

contract-based repair approaches leverage program contract. Auto�x-E is a

contract-based program repair technique that uses contracts for ensuring the

19

correctness of the proposed �xes [140]. Auto�x-E �rst automatically generates

test cases using a random testing tool named AutoTest [56], then it uses the

following information to synthesize potential �xes:

Object behavioral model It derives the object behavioral model by analyzing

how di�erent routines in the objects a�ect di�erent queries in all passing tests.

The object behavioral model gives the relevant routines to call in order to

change the object state to avoid the failure.

Fault Pro�le It generates the fault pro�le by analyzing the di�erences between

the executions of the passing test cases and the executions of the failing test

cases. The fault pro�le provides a hint of the possible causes of the failure.

Using both the fault pro�le and the object behavioral model, Auto�x-E then

generates �xes with a set of ��x schemas� (repair operators). Most of these repair

operators involve insertion of conditional statements. If several valid �xes are

generated, it uses dynamic and static information to further rank the �xes. Their

evaluation on two Ei�el libraries illustrates that Auto�x-E could repair 16 out of

42 faults discovered by AutoTest.

Since Auto�x-E relies on boolean queries to derives object states, it can only �x

faults that involve boolean expression. To extend the applicability of Auto�x-E to

more general expressions, the authors proposed another approach called Auto�x-

E2 [123]. Auto�x-E2 follows a similar work�ow as its predecessor, but it extracts

a set of expressions from the program text instead of a set of object states. It

uses both static and dynamic information to assign a suspiciousness score to each

component ⟨l, p, v⟩ where predicate p evaluates to value v at program location l.

Auto�x-E2 uses the same set of repair operators as Auto�x-E but it instantiates

the repair operators with p and an action derived from p. Their experiment shows

that Auto�x-E2 is able to produce signi�cantly more �xes compared to Auto�x-E.

20

2.3.4 Repair that Incorporates Domain Speci�c Knowledge

There are several program repair techniques that utilizes domain speci�c

information. In particular, PACHIKA relies on di�erences between passing and

failing runs to automatically infer object behavioral model from Java program

and produce �xes by either inserting or deleting method calls [61]. BugFix is a

tool that incorporates information gathered from several debugging session in

order to increase precision for producing bug-�x suggestions [74]. R2Fix closes

the loop between bug report submission and patch generation by automatically

classifying the type of bug discussed in bug report and extracting pattern

parameters to generate �xes based on a several prede�ned �x patterns [93].

PHPRepair �xes malformed HTML generation errors by encoding the string

output for each test case execution as a constraint over variables corresponding

to constant prints in the program and uses constraint solver to generate string

modi�cation [132]. Martinez and Monperrus mine semantic code modi�cations

(repair operators) from human patches and attach a probability distribution to

the mined repair actions [104]

21

22

Chapter 3

Selections of Repair Operators in

Automated Repair

Several automated repair tools (e.g., GenProg [141], PAR [82], SemFix [117],

DirectFix [107], Angelix [108], SPR [94], and Prophet [96]) have been introduced

to save the time and e�ort spent in bug-�xing. Although these repair techniques

demonstrate promising results [107, 126, 138, 141], prior evaluations of these

techniques have several limitations.

First, prior evaluations of program repair tools ignore the impact of defect

classes to the e�ectiveness of program repair tools [90, 95, 96, 108]. The

e�ectiveness of program repair techniques relies heavily on the type of faults that

they are designed to �x. As automated program repair techniques use a set of

repair operators (edit operators that are used to generate patches) for �xing

faults, the quality of the repair operators is critical to the e�ectiveness of repair

techniques. Although the importance of studying the set of repairable defect

classes are emphasized in several program repair works [89, 112], most studies

only measure e�ectiveness in terms of the probability of generating �xes among

evaluated defects (we call this the repair rate) and the probability of obtaining

correct patches (we call this the repair precision) where the correctness is

23

validated by performing: (1) semantic equivalence check that compares

automatically generated patches with human ones [95], or (2) validation to check

if the automatically generated patches pass the held-out test suite (a set of tests

that are not revealed to the repair system) [134].

Moreover, almost all past evaluations of automated program repair tools [95,

96, 108, 141] for C programs use GenProg ManyBugs benchmark [141] which means

that the current design of repair operators of these program repair tools may be

derived based on the same benchmark. Moreover, the best result reported so far on

the ManyBugs benchmark is �nding correct �xes for only 18/105=17% of all the

defects [96]. This raises several questions regarding the e�ectiveness of program

repair tools: (1) how well these tools perform outside of the evaluated benchmarks

and (2) how well these tools �x classes of defects that they are designed to address.

More importantly, prior research mainly focuses on the improvement of the

e�ectiveness of the underlying algorithms [96, 108, 141] but neglects the

e�ectiveness of individual repair operators which is one of the most essential

components of program repair tools. In fact, the e�ectiveness of individual repair

operators is either not measured in prior studies [107, 82, 108, 141] or has only

been measured in terms of repair rate [91]. Without thorough investigation of

the e�ectiveness of each repair operator in current program repair tools and

comprehensive comparisons of these repair operators across di�erent tools, the

reasons behind the ine�ectiveness of repair tools could not be assessed.

These three problems of prior evaluations of program repair tools limit the

insight into their e�ectiveness and pose challenges to the objective evaluation of

future tools. Consider a developer of a new program repair tool who would like

to decide whether to add new repair operators to �x new types of defects or to

employ a set of repair operators commonly used by existing program repair tools.

While adding new repair operators seem to be a viable solution, prior study reveals

24

that increasing the search spaces by supporting more repair operators may cause

repair systems to �nd less correct patches [95].

We present the �rst large-scale extensive evaluation of the e�ectiveness of

program repair tools. Speci�cally, we measure the impact of defect classes on the

e�ectiveness of di�erent program repair tools. Our study evaluates several repair

techniques, including a search-based tool (GenProg), a tool that uses

machine-learning (Prophet) and a semantics-based tool (Angelix). To allow

comprehensive comparisons between program repair tools, we present a new

benchmark called Code�aws. The Code�aws benchmark provides more objective

evaluation of program repair tools across di�erent defect classes. We employ the

defect classi�cations in Code�aws to study the impact of defect classes on the

e�ectiveness of repair operators in program repair tools. Furthermore, we

evaluate the e�ectiveness of individual repair operators by measuring both the

repair rate and the correctness of patches generated using each repair operator.

Indeed, prior research suggests that biased selection of mutation operators for

evolutionary program repair techniques leads to an increase of the number of

generated repairs and a decrease of repair time [91]. While the study provides

one of the �rst steps towards understanding the role of repair operators in

evolutionary program repair techniques, the e�ect of the reliability of repair

operators (i.e., the probability that a repair generated using a particular repair

operator corresponds to a correct repair) in existing automatic program repair

techniques has not been previously studied. Our study goes beyond prior work,

analyzing the e�ect of repair operators in several automated program repair

techniques, and investigating not only the number of generated repairs but also

the reliability of repair operators in existing automated program repair tools. In

addition, we also propose a novel metric for evaluating repair operators based on

the number of repairable defect classes (we call this the expressiveness of repair

25

operators). Our metric evaluates the fault �xing capability of repair operators

taking into accounts di�erent types of defects. On top of that, we propose three

selection strategies to choose a small number of repair operators in repair tools

to balance the trade-o�s between repair rate and repair precision.

3.1 Common Set of Repair Operators

To better analyze the set of repair operators supported by existing program repair

tools, we performed a detailed analysis on the common syntactic features of all

repair operators supported by each program repair tool. Speci�cally, we manually

analyzed the implementation and de�nition of each repair operator supported

by three state-of-the-art repair tools (e.g., GenProg, Prophet and Angelix). As

di�erent extensions of GenProg (e.g., AE and RSRepair) share the same set of

operators as GenProg, the same analysis is applicable to other GenProg's variants.

Similarly, SPR and Prophet share the same set of operators. Meanwhile, the set of

repair operators in Angelix is similar to the operators supported in its predecessor,

SemFix.

Our analysis attempted to answer two questions:

Q1: What is the set of repair operators supported by a speci�c program repair

tool?

Q2: Do program repair tools share any common repair operators?

The aim was to �nd a set of repair operators that are supported by either some

or all existing program repair tools.

Table 3.1 shows the results of our analysis. Speci�cally, our analysis identi�ed

a set of 17 repair operators, shown in each row of Table 3.1, seven of which are

supported by GenProg, 10 of which are supported by Prophet/SPR (SPR uses

same repair operators as Prophet), and, nine of which supported by Angelix. To

allow a broader understanding of each repair operator, we further classify the 17

26

Table 3.1: Our set of Repair Operators and Example of each Repair Operator

AST Type Repair Category Repair Operator Example GP Prophet Angelix

Statement

Control �ow
(SDIF) Delete control �ow statement (e.g., if, while, return, break) break; ✓ ✗ ✗

(SIIF) Insert control �ow statement (e.g., if, while, return, break) if(l) ✓ ✓ ✓

(SIIR) Insert conditional return/exit statement if(a) return 0; ✓ ✓ ✗

Assignment
(SDLA) Delete assignment answer+=((i-1)*dif); ✓ ✗ ✗

(SISA) Insert assignment t=0; ✓ ✓ ✗

Function call
(SDFN) Delete function call printf(�%s %s\n",s1,s2); ✓ ✗ ✗

(SISF) Insert function call scanf(�%d", &n); ✓ ✓ ✗

(SIME) Insert Initialization memset (str,'+',6); ✗ ✓ ✗

Operator

Logical
(ORRN) Replace relational/logical operator

if(sum>n)
if(sum>=n)

✗ ✗ ✓

(OILN) Insert && (tighten condition) or || (loosen condition)
if(t%2==0)
if(t%2==0 && t!=2)

✗ ✓ ✓

Arithmetic (OAAN) Replace arithmetic operator
v2-=d;
v2+=d;

✗ ✗ ✓

Function call (OFFN) Alternative function call
max(a, b, c);
min(a, b, c);

✗ ✓ ✗

OperanD

Constant (DCCR) Replace constant with variable/constant
for(i=n+1;i<=9000;i++)
for(i=n+1;i<=10000;i++)

✗ ✓ ✓

Variable (DRVV) Replace a read variable with a variable/constant
for (i=0;i<l;i++)
for (i=0;i<m;i++)

✗ ✓ ✓

Expression (DRVA) Replace subexpression
i=1
i=i+1

✗ ✓ ✓

Higher order

Statements (HIMS) Insert multiple statements
if(a) a=a+1;
if(i>2) i++;

✗ ✗ ✓

Expressions (HEXP) Replace multiple operators and operands

if(sum>n)
if(sum>=n)
n=n+1
n=n+2

✗ ✗ ✓

repair operators into 11 repair categories, and four AST types. A repair category

denotes the general syntactic structure that is modi�ed for constructing a repair.

An AST Type denotes the AST node involved for each modi�cation, which includes

single program modi�cation of statement, operator, operand and higher order

modi�cations that contain combinations of several single program modi�cations.

The last three columns of Table 3.1 shows the set of repair operators supported

by GenProg (i.e., GP), SPR and Angelix, where a ✓ for a particular row in the

table means that the repair operator in that row is supported, whereas a ✗ means

that the repair operator in that row is not supported. In each example patch in

column four in Table 3.1 and in patches presented throughout the thesis, code

with a leading � � denotes statements deleted by the patch, while code with a

leading � � marks statements added. Code without any leading symbol denotes

unchanged statements.

27

3.2 E�ectiveness of Repair Operators

Studies [82, 91, 94, 108, 134, 141] that evaluated automated program repair tools

used mainly two metrics for the measurement of e�ectiveness of repair tools�total

number of generated repairs and total number of correct repairs (with respect to

either human patch or the held-out test suite). We measure the e�ectiveness of

repair operators based on: (1) repairability, (2) reliability, and (3) expressiveness.

Compared to previous studies that measure the total number of generated

repairs in all evaluated defects, we measure the total number of repairs produced

by individual repair operator. Speci�cally, we measure the repairability of a repair

operator to calculate its ability to generate repairs.

De�nition 1 A patch is plausible if it passes all tests in the repair test suite. A

plausible �x is correct if it passes all tests in the held-out test suite.

De�nition 2 Repairability of a repair operator op is the ratio of defects repaired

using this operator over all defects:

Repairability(op) =
#plausible fixes by op

#defects

Previous measurement of patch correctness are performed using: (1) semantic

equivalence check that manually compares generated patches with human patches

[95], and (2) patch validation via test executions by checking whether generated

patches pass the held-out test suite [134]. We choose to measure correctness

by using the held-out test suite because this measurement could be computed

automatically.

De�nition 3 Reliability of a repair operator op is the average ratio of correct

28

repairs over all repairs generated by this operator:

Reliability(op) =

∑
d∈defects

#correct fixes by op for d
#plausible fixes by op for d

#fixed defects

Previous research has demonstrated the problem of over�tting in

automatically generated patches [134]. Note that reliability is dual to over�tting:

higher reliability of repair operators reduces the likelihood of producing patches

that over�t the provided test suite.

De�nition 4 Two defects are in the same repair class if they are repaired by

human developers using the same repair operator. A repair class is expressible

by a repair operator if it contains a defect correctly repaired by this operator. The

expressiveness of a repair operator op is the ratio of repair classes expressible

by this repair operator over all repair classes.

Expressiveness(op) =
#repair classes expressible by op

#repair classes

We introduce the expressiveness of repair operators, which measures the ability

of a repair operator to �x defects with di�erent repair classes. A repair operator

that is expressive could be used for �xing a greater variety of repair classes. We

measure the expressiveness of repair operators because the e�ectiveness of repair

operator can vary depending on the type of defects under repair. It is important

to quantify the variation and evaluate if repair operator is capable of �xing

various types of defects. While both the reliability and expressiveness are

measured by calculating the number of correct repairs, the reliability of repair

operator measures only the likelihood of generating a correct repair, whereas the

expressiveness measures the ability to �x di�erent defect types. Figure 3-1 shows

4 di�erent repair classes (DCCR, SDIF, SISA and SMOV) that are expressible

29

// Human Patch using

// DCCR (constant replacement)

if((x*y) >1) {

if((x*y) >0) {

// Angelix Patch using ORRN

if((x*y) >1) {

if(((x * y) >= 1)) {

// Human Patch using

// SDIF (deletion of if-statement)

if(sum ==0)

printf(" -1");

// Angelix Patch using ORRN

if(sum ==0)

if((sum < 0))

printf(" -1");

// Human Patch using

// SISA (insertion of assignment)

dif3 = mx3 -min3;

x = n - min1 - min2 -min3;

if(x == 0) { printf (...); }

else {...

if(x <= dif2) printf (...);

else {

x = x - dif2;

if(x <= dif3)

printf("%d %d %d", mx1 , mx2 ,

min3+x);

// Angelix Patch using ORRN

if(x <= dif3)

if((x != dif3))

printf("%d %d %d", mx1 , mx2 ,

min3+x);

// Human Patch using

// SMOV (move statements)

if(n==1){ printf("%d\n",ara [0]); }

else {...

}}

} //this bracket is moved

if(count ==n){

printf("%d\n",min); }

else{

printf(" -1\n"); }

}

// Angelix Patch using ORRN

if(n==1){ printf("%d\n",ara [0]);}

if((n < 1)){ printf("%d\n",ara [0]);}

Figure 3-1: Human patches across di�erent repair classes and how Angelix can express
these classes using only the ORRN repair operator.

by the ORRN (replacement of relational/logical operator) operator used in

Angelix. Particularly, the ORRN operator could stimulate the DCCR

(replacement of constant) operator and the SDIF (deletion of if-statement)

operator by replacing an existing relational operator with another similar

relational operator. Interestingly, the ORRN operator could also express more

complex repair classes that are more than operator replacement, such as the

SISA (insertion of assignment) operator and SMOV (move statements) used in

human patches. This example illustrates that expressiveness is a measure of the

diversity of defects that could be simulated by a repair operator rather than the

ability to generate equivalent mutants.

30

3.3 Evaluation

3.3.1 Code�aws Benchmark

The Code�aws benchmark consists of 7436 programs in the Codeforces1 online

database. Table 3.2 lists the information about the subject programs in

Code�aws. Each programming contest consists of multiple programming problems

(3�5 problems) with various di�culty levels. Each program represents one user

submission for a speci�c problem to Codeforces. These programs are submittted

by 1653 users with diverse level of expertise, ranging from �Newbie� to

�Legendary Grandmaster�2. Each defect is represented by a rejected submission

and an accepted submission. To obtain more detailed information about each

submission, users of the benchmark could refer to the original submission link:

http://codeforces.com/contest/<contest-num>/submission/<submission-num>.

In terms of the quality of the held-out test suite, Table 3.2 shows that the

held-out test suite has relatively high code coverage (the average statement

coverage is 98.6%, wheareas the average branch coverage is 95.8%). Moreover,

there are several di�erences between Code�aws and other benchmarks: (1) the

held-out test suite are manually crafted by the designer of each programming

problem for automatically grading of many signi�cantly di�erent solutions, (2)

the correctness of each patched program could be checked against the complete

held-out test suite in the Codeforces platform (test cases with long output could

only be partially captured in our crawled held-out test suite); and (3) the oracle

for each test checks for the precise output of a given program (instead of merely

checking the exit status of a program, it validates whether the content and the

format of the output match with the expected output).

To our best knowledge, in automatic program repair evaluation, the Code�aws

1http://codeforces.com/
2http://codeforces.com/blog/entry/20638

31

Table 3.2: Subject programs in Code�aws

Measurement Total/Range Average

No. of Programming Contests 548 -
No. of Programming Problems 1284 -
No. of Programs 7436 -
No. of Defects 3902 -
Size of Repair Test Suite 2�8 3
Statement coverage of Repair Test Suite (%) 6.45�100 96.9
Branch coverage of Repair Test Suite (%) 4.65�100 91.4
Size of Held-out Test Suite 5�350 40
Statement coverage of Held-out Test Suite (%) 9.76�100 98.6
Branch coverage of Held-out Test Suite (%) 10.0�100 95.8
Source Lines of Codes 1�322 36

Table 3.3: Subject programs in IntroClass

Program Description LOC
Defects Tests

bb wb bb wb

checksum Checksum of a string 13 29 49 6 10
digits Digits of a number 15 91 172 6 10
grade Grade from score 19 226 224 9 9
median Median of 3 numbers 24 168 152 7 6
smallest Minimum of 4 numbers 20 155 118 8 8
syllables Count vowels 23 109 130 10 10

total 114 778 845 42 53

benchmark has the largest number of defects obtained from the largest number

of subject programs to date. We think that the diversity in subject programs

and defects would help us to get a comprehensive comparison of di�erent repair

techniques.

We compare the e�ectiveness of repair operator on GenProg, Prophet, and

Angelix using two sets of benchmarks: (1) the Code�aws benchmarks and (2)

the IntroClass benchmarks [89]. We use the Code�aws benchmarks because (1)

it contains diverse types of real defects that allows us to have comprehensive

study of the impact of defect types on the e�ectiveness of repair operators; (2) it

contains many defects that could be automatically repaired by repair tools,

which is important for thorough investigation of the patches generated using

di�erent repair operators; and (3) it contains specially crafted held-out test

32

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

SDFN SDIF SDLA SIIF SIIR SISA SISF
Repair Operator for GenProg

S
co

re

(a) Repair operator for GenProg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DCCRDRVA DRVV HIMS OFFN OILN SIIF SIIR SIME SISA SISF
Repair Operator for Prophet

S
co

re

Measurement repairability reliability expressiveness

(b) Repair operator for Prophet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DCCR DRVA DRVV HEXP HIMS OAAN OILN ORRN SIIF
Repair Operator for Angelix

S
co

re

(c) Repair operator for Angelix

Figure 3-2: Individual repair operator score for repairability, reliability and
expressiveness for GenProg, Prophet and Angelix on Code�aws

suites that allows automatic evaluation of patch correctness. We use the

IntroClass benchmarks because (1) it is designed for empirical evaluation of

automated program repair tools with held-out test suites for evaluation of patch

correctness and (2) it is commonly used in previous empirical study of

automated program repair tools [76, 79]. We use Pearson's chi-squared test [122]

for statistical signi�cance.

Our study aims to investigate the following research questions.

RQ1: Considering the entire search space of a given repair tool, what are the

repairability, reliability and expressiveness of each supported repair operator

in each program repair tools?

RQ2: Are there any redundant repair operators in each program repair tools?

RQ3: Considering the entire search space of a given repair tool, what are the

repair rate versus repair accuracy trade-o� for various repair operator selection

strategies?

3.3.2 Experimental Setup

We evaluate the e�ectiveness of three automated program repair tools in 3902

defects from the Code�aws benchmark and in 778 defects from the IntroClass

benchmark [89].

33

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

SDFN SDIF SDLA SIIF SIIR SISA SISF
Repair Operator for GenProg

S
co

re

(a) Repair operator for GenProg

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DCCR DRVA DRVV OFFN OILN SIIF SIIR SIME SISA
Repair Operator for Prophet

S
co

re

Measurement repairability reliability

(b) Repair operator for Prophet

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

DCCR DRVA DRVV HEXP HIMS OAAN OILN ORRN SIIF
Repair Operator for Angelix

S
co

re

(c) Repair operator for Angelix

*As the classi�cations of repair classes and the correct human �x for each defect are not
available for the IntroClass benchmark, we exclude the expressiveness of operators.

Figure 3-3: Individual repair operator score for repairability and reliability for GenProg,
Prophet and Angelix on IntroClass

3.3.3 RQ1: E�ectiveness of each Repair Operator

Figure 3-2 shows the individual operator measurement for three program repair

tools: GenProg, Prophet and Angelix for Code�aws benchmark, while Figure 3-3

depicts the same measurement for IntroClass benchmark. Each bar in Figure 3-

2 and Figure 3-3 represents the individual score for repairability, reliability and

expressiveness for each repair operator in the x-axis.

According to Figure 3-2a, SISA (insert assignment) operator outperforms other

operators in terms of repairability, reliability and expressiveness. While SDFN

(delete function call) operator is higher than SISA in reliability, SDFN operator

has relatively low repairability. Similarly, Figure 3-3a shows that SISA operator

also outperforms other operators in IntroClass.

Figure 3-2b shows that DRVA (variable replacement) operator performs

better than other operators in terms of repairability, reliability and

expressiveness. While OILN (tighten/loosen condition) operator is relatively

high in repairability and expressiveness, it has relatively low reliability. This

indicates that repairs generated using OILN operator tend to over�t the

provided repair test suite. Meanwhile, the top two most e�ective repair

operators for IntroClass (Figure 3-3b) are also DRVA and OILN.

34

Figure 3-2c illustrates that ORRN (replace relational/logical) operator in

Angelix outperforms other operators in Code�aws. ORRN operator is also most

e�ective for IntroClass (Figure 3-2c). Based on Table 3.1, ORRN operator is

uniquely supported by Angelix. Although HIMS (multiple insertions) operator is

also supported uniquely by Angelix, this operator is low in repairability and

expressiveness.

When we compare scores for individual repair operators across di�erent

repair tools, we observe that SISA (insert assignment) operator is high in

repairability and expressiveness in both GenProg and Prophet. This indicates

that GenProg and Prophet generate similar patches using SISA operator, and

they share similar design of this operator. In contrast, SIIF operator is more

reliable in GenProg than in Prophet but has higher repairability in Prophet.

This di�erence is because (1) Prophet invokes a specialized search algorithm only

for repair operators that involve condition synthesis; (2) Prophet enumerates a

larger set of patches to synthesize a condition for SIIF operator, whereas

GenProg copies an if-statement from other parts of the same program for SIIF

operator. Meanwhile, instead of being restricted by the �xed templates as in

Prophet, Angelix synthesizes conditions using its synthesis engine for SIIF

operator. In all these cases, we observe how the repairability, reliability and

expressiveness of each repair operator re�ect the di�erences in the design of each

operator.

3.3.4 RQ2: Redundancy of Repair Operators

We consider an operator as redundant if this operator has a negligible impact on

the number of correct patches and the number of repaired defects.

As shown in Figure 3-2b, SDME operator generate repair for less than

0.001% of the total evaluated defects in Code�aws and these repairs are all

incorrect repairs. Therefore, we consider SDME operator as redundant for

35

Prophet in Code�aws benchmark. Similarly, as SDME operator is not used to

generate any patches in IntroClass benchmark (Figure 3-3b), we consider SDME

operator as redundant for Prophet in IntroClass benchmark. Moreover, DCCR

operator in Prophet is redundant in IntroClass benchmark as well.

Figure 3-2c demonstrates that HIMS operator has relatively low repairability

for Angelix despite its high reliability. Figure 3-3c illustrates that HIMS operator is

not used in any patches generated by Angelix. Hence, we consider HIMS operator

as redundant for Angelix in IntroClass benchmark. Moreover, DCCR, OAAN,

OILN and SIIF operators are also redundant for Angelix in IntroClass benchmark.

There is no redundant operator for GenProg in Code�aws benchmark.

Meanwhile, Figure 3-3a shows that SDFN, SDIF and SIIR are redundant in

GenProg for IntroClass benchmark.

Overall, the redundancy of repair operators are higher in IntroClass benchmark

than in Code�aws benchmark. This suggests that a repair tool could use a smaller

set of repair operators to �x defects in IntroClass benchmark.

3.3.5 RQ3: Selection Strategies

Although an individual operator could achieve relatively high repairability, it is

often not able to address all classes of defects. We propose three selection

strategies to choose a subset of repair operators that are e�ective. Our goal is to

select a subset of repair operators that could achieve high repair precision

without sacri�cing repair rate.

The three selection strategies include:

Highest Score (best-k): Given k=1, ..., 6, the best-k strategy chooses a subset

of operators consists of k repair operators with the best score. We calculate the

score of each operator based on the weighted sum of its repairability, reliability

and expressiveness:

36

●●
●
●

●

●●●
●

●

●

●●●

●

●

●
●●
●

●

●
●

●

●

●

●

●●
●

●
●
●
●●●

●●

●

●●
●
●

●
●●●

● ●●
●●

●

●
●●
●

●

●

●

●●●
●●●●●●●●●●●●●●●●●

●●●●●
●

●
●
●
●

●●●●●●●●
●●

●●●●●●●●
●●

●
●●●●
●●●●●●

●

●●●●

●

●●●

●●

●

●●●●●●

●

●

●

●●

●●●
●

●
●

●
●
●●

●

●
●

●●
●

●
●●
●

●

●
●●●

●● ●

●

●●●●●●
●

−120

−100

−80

−60

−40

−20

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●
●
●

●●

●●●

●●

●

●●●
●●
●
●●
●●

●●●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●
●
●
●

●
●

●

●
●
●●●

●

●

●

●

●
●
●
●
●●●●●
●

●
●

●

●●
●
●

●
●

●

●●
●

●

●
●●
●
●

●

●

●

●
●
●
●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●

● ●● ●
●

●

●
●●
●
●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(a) △ Repair Rate vs △ Repair Precision for best-k on
Code�aws

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

● ●

−90
−80
−70
−60
−50
−40
−30
−20
−10

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(b) △ Repair Rate vs △ Repair Precision for best-k on
IntroClass

●
●●
●
●●●●●●●

●

●

●

●●
●●●
●
●●
●

●
●
●
●●
●
●
●
●

●

●
●
●●●●●
●● ●

●
●●●●●●
●

●●●●●
●
●●

●

●
●
●●●●
●●
● ●

●
●
●●●
●●●●

●●
●
●
●
●●●
●
●

●
●●
●
●
●●●
●●
●

●
●

●
●●●
●●
●

●●
●
●
●●●●●●

●
●

●
●●
●
●●●●●●

●●
●
●●●●●●

●●●●●●●●●●

●
●●●

●

●
●
●

●
●

●●●●●●●●●
●

●●●●●
●●
●
●
●

−120

−100

−80

−60

−40

−20

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

● ●●

●

●●
●
●●●●●

●

●

●

●
●

●●

●

●●

●●

●

●

●

●

●●
●

●

● ●

●

●●
●●
●●

● ●

●

●●

●
●●●●

●

●

●
●
●●

●
●

●

●

●

●

●
●●●●

● ●

●

●

●

●●●●●
●

●

●

●

●
●
●
●
●●

●
●

●

●

●
●
●

●
●

●

●
●●

●

●
●●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●
●

●

●●

●

●
●

●
●
●

●

●
●●●●
●●●●●

●●●

●●

●

●
●

●

●

●

●
●●●
●
●●●
●

●

●

●●

●

●

●

●●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(c) △ Repair Rate vs △ Repair Precision for most-exp
on Code�aws

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

−90
−80
−70
−60
−50
−40
−30
−20
−10

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(d) △ Repair Rate vs △ Repair Precision for most-exp
on IntroClass

●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

● ●

●●

●

●

●●

●

●

●

●●

●

●
●
●●●●

●

●

●●

●

●

●

●●

●●
●●

●

●●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●
●

●
●●

●

●●

●●●

●

●

●

●

●● ●●●
●●

●

●
●●

●

●●

●

●

●

●

●

● ●

●

●

●●
●
●

●●

●
●

●●

●

●
●

●●

●

●

●
●
●
●
●

●

●
●

●

●●

●

●

●
●●●

●●
●●

●
●

●●
●●

●●

●

●●

●

●

● ●

●●

●

●

●●

●●●

●

●●

●

●
●

●
●

●●

●

●●●
●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

● ●●

●
●

●●

●

●●

●

●

●
●●

●●

●●●

●
●●
●●

●

●
●

●
●

●

●
●
●●

● ●●
●

●
●

●
●

●
●

● ●●

●●

●●●
●

●
●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●
●

●

●

●●

●

●●

●

●

●●

●

● ●

●●●●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●●

●

●

●
●

●

●
●●●●●●

●●

●

●
●

●●
●
●

●
●

●●●

● ●

●

●●

●●

●●

●●

●

●

●

●●

●● ●

●

●

●
●

●●●●●●
●
●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●●

●●

●●

●

●
●●

●●

●

●

●● ●

●

●

●

●

●

●

●
●

●●●

●

●
●●●

●

●●

●
●

●●

●

●

●●

●

●

●●
●●●●●●●●

●

●●

●

●●

●●

●

●●

●●

●

●●

●

●●

●

●●

●
●●●

●

●●

●

●
●

●
●●●●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●●

●
●

●●

●

●

●

●
●

●●

●●
●
●
●●●●●

●

●●

●

●

●
●

●

●
●●

●

●

●
●●

●●
●●
●●

●

●

●

●

●●
●

●●●

●
●●

●

●●●●

●

●

●●

●

●
●

●

●
●●

●●

●

●

●●

●

●●

●

●

● ●

●

●

●● ●● ●

●

●

●

●●●

●●●

●
●
●●

●●

●

●●

●

●

●

●

●
●

●●

●

●
●●

●

●●

●●

● ●●●

●

●

●
●

●●

●

●

●

●●

●●

●
● ●●

●

●

●●

●

●●

●
●●

●

●

●●

●

●
●●●

●●

●

●●●

●

●
●

●●

●

●●

●●

●

●

●

●

●●

●●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●
●

●

●●●

●●

●

●●

●●

●

●

●

●

●● ●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●
●●●

●

●●

●

●
●●

●

●●

●●

●

●

●●

●●

●

●

●●

●
●
●
●●●●

●●

●●

●●●
●

●●

●●
● ●

●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●● ●

●

●●

●

●●

●

●●

●

●
●●

●

●

●

●●

●●
●●

●●

●

●●
●

●●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

−120

−100

−80

−60

−40

−20

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●●
●●
●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●●
●

●●●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●

● ●

●●

●

●●

●

●

●
●●

●

●
●●

●● ●
●

●●

●

●

●

●

●

●

●●

●

●

● ●●
●

●

●

●

●●

●●●

●

●●
●

●●

●●
●

●

●●
●

● ●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●●●

● ●
●●

●●
●●

●●
●

●

●

●

●

●●

●
●

●

●

●

●●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●●

●

●●

●

● ●●

●

●

●●●●

●●●

●

●●

●

●●

●●

●
●●

●●

●

●●

●●●

●

●●

●

●
●
●

●

●●

●

●
●●●●

●

●
●

●

●●
●

●

●
●●

●

● ●
●

●

●●

●

●

●●

●

●
●●

●

●●

●
●●●

●●

●
●●●

●

●●

●

●

●

●
● ●

●●

●

●

●

●●

●●
●●

●●

●●

●

●

●●

●
●

●●● ●

●●

●●
● ●●

●
●
●
●●

●●

●

●

●●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●●

●

●

● ●

●

●●

●

●●

●●

● ●●●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●●

●
●

●●

●

●

●●

●●

●

●

●●

●

●

●●● ●●

●

●●
●

●

●

●

●●

●

●●

●●

●
●

●

●●

●● ●
●●●

●

●

●

●
●

●●

●
●

●

●

● ●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●●
●

●

●

●

●
●●

●
●●

●

●
●
●

●

●●

●●

●

●

●●

●●

●
● ●●

●

●

●

●●●

●

●●

●
●

●

●●

●
●●

●●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●
● ●● ● ●

●●

●

●●
●●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●
●

●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(e) △ Repair Rate vs △ Repair Precision for random
on Code�aws

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−90
−80
−70
−60
−50
−40
−30
−20
−10

0

1 2 3 4 5 6
of operator

R
ep

ai
r

R
at

e
C

ha
ng

e

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

−10

0

10

20

30

40

50

60

1 2 3 4 5 6
of operator

R
ep

ai
r

P
re

ci
si

on
 C

ha
ng

e

Tool ● ● ●angelix genprog prophet

(f) △ Repair Rate vs △ Repair Precision for random
on IntroClass

Figure 3-4: Overall Repair Rate Change vs Overall Repair Precision Change with various
strategies

37

De�nition 5 The score of a repair operator op is:

Score(op) = α ∗ Repairability(op)+

β ∗ Reliability(op)+

γ ∗ Expressiveness(op)

(3.1)

Most expressive (most-exp): Given k=1, ..., 6, the most-exp strategy chooses

a subset of operators with k repair operators that have the highest

expressiveness score for a particular repair tool.

Random Selection (random): Given k=1, ..., 6, the random selection strategy

chooses a subset of operators consists of k repair operators based on random

selection among the set of all operators for a particular repair tool.

We measure the e�ectiveness of di�erent selection strategies by computing the

overall repair rate change and the overall repair precision change of the chosen

subset. For the best-k strategy, we tune the values for α,β, and γ by varying these

values in the Code�aws benchmark. We use α = 0.2, β = 0.45 and γ = 0.35 for

our experiment to give higher priority to reliability.

De�nition 6 Given a set S, repair rate is the ratio of plausible �xes among

all evaluated defects. Repair rate change (△RepairRate) between the selected

subset (sub) of operators and the original set of operators (orig) is the di�erence in

the probability of obtaining plausible �xes. Repair precision is the average ratio

of the number correct �xes for a defect over all �xes for that defect. The repair

precision change (△RepairPrecision) between sub) and orig) is the change in

the average probability of obtaining correct �xes.

RepairRateS =
#plausible fixes for S

#defects

△RepairRate(%) =
RepairRatesub − RepairRateorig

RepairRateorig

38

RepairPrecisionS =

∑
d∈defects

#correct fixes for S for d
#plausible fixes for S for d

#fixed defects forS

△RepairPrecision(%) =
RepairPrecisionsub − RepairPrecisionorig

RepairPrecisionorig

We distinguish repairability/repair rate and reliability/repair precision because

repairability and reliability are properties of a repair operator, while repair rate and

repair precision measure the e�ect of a set of operators over the entire patch spaces.

Note that a positive value for the repair rate change and the repair precision change

indicates an increment for a measurement, whereas a negative value denotes a

decrease of the measurement.

The best-k strategy assumes that repair operators that are e�ective individually

could form a combined subset that has high overall e�ectiveness. As the best-k

strategy consider all measurements of e�ectiveness, it is more likely to achieve a

balance for the trade-o�s between repair rate and repair precision. Although the

most-exp strategy is the same as the best-k strategy that ignores repairability and

reliability, we evaluate themost-exp strategy to determine the e�ect of defect types

on the trade-o�s between repair rate changes versus repair precision changes. The

random strategy serves as the baseline for comparing other strategies. To study the

general impact of applying various selection strategies across di�erent benchmarks,

we compute all di�erent subsets using Code�aws benchmark and compare their

e�ects on both benchmarks.

Figure 3-4 shows the e�ectiveness of di�erent strategies. The x-axis (# of

operator) of all the sub�gures in Figure 3-4 represents the size of the subset (k),

whereas the y-axis denotes the relative changes of di�erent measurement (repair

rate changes and repair precision changes). Each color in all the �gures represents

a repair tool (Angelix, GenProg and Prophet). The individual dots in Figure 3-4

39

indicates the results for each fold in the 10-fold cross validation, while the di�erent

lines shows the overall trend line as computed by loess regression, a smoother based

on polynomial regression [57].

Figure 3-4a shows the e�ect of selecting a subset of repair operators using

best-k strategy on Code�aws. The �rst graph in Figure 3-4a shows that adding

more operators (increasing value of k) with best-k strategy increases the overall

repair rate. Meanwhile, the second graph in Figure 3-4a shows that adding more

operators causes a decrease in the overall repair precision. Figure 3-4a also shows

that choosing less than three repair operators leads to an increase in overall repair

precision and a decrease in overall repair rate. However, adding more than three

operators is less bene�cial since the increase in repair precision cannot compensate

for the decrease in repair rate. Figure 3-4b demonstrates that a similar trend can

be observed in IntroClass.

Figure 3-4c illustrates the overall e�ectiveness with most-exp strategy on

Code�aws, whereas Figure 3-4d demonstrates the change of e�ectiveness in

IntroClass. It can be seen from Figure 3-4c that using the two most expressive

repair operators in Angelix causes a decrease in the repair rate (around -15%)

but induces a similar magnitude of increment in repair precision (+15%).

Similarly, Figure 3-4d shows that selecting less than three repair operators in

IntroClass is su�cient for Angelix to increase repair precision without sacri�cing

repair rate.

One notable di�erence between the results on the benchmarks is that all repair

tools perform di�erently in both benchmarks when applying best-k strategy and

most-exp strategy. This di�erence is due to (1) the diversity of defects is di�erent in

both benchmarks with Code�aws containing more diverse defects than IntroClass

and (2) many repair operators are redundant in IntroClass. As the most-exp

strategy selects repair operators based on the number of repair classes, it is more

40

resilient to di�erent defect types across various benchmarks.

Figure 3-4e shows the e�ectiveness changes for the random strategy. It can be

seen from Figure 3-4e and Figure 3-4f that both the repair rate changes and the

repair precision changes �uctuate. More importantly, these �gures demonstrate

that the random strategy may lead to a decrease in all aspects (repair rate and

repair precision). This suggests that developers of future repair tools should be

careful in their selection of the set of operators as random selection may lead to

decrease in overall e�ectiveness.

3.4 Discussion

Number of supported repair operators in repair tools. Figure 3-2 shows

that the reliability for individual repair operator is signi�cantly low (p-value <

0.05) in Prophet than in GenProg. This is because Prophet supports more repair

operators than other program repair tools. By supporting 10 repair operators

(Table 3.1), the design of Prophet strike to achieve higher repair rate which may

cause a decrease in overall repair precision (as indicated by the low reliability

of individual repair operator in Prophet). This observation con�rms with our

hypothesis that using reduced set of repair operators could achieve a balance

between changes in repair rate and changes in repair precision.

Higher Order Repair Operators. Our results demonstrate that higher order

repair operators (HIMS and HEXP) contributes as much to the overall

e�ectiveness of repair tools as other repair operators that involve single-line

modi�cations. Particularly, Figure 3-2c reveals that the HIMS (multiple

insertions) operator has signi�cantly higher reliability (p-value<0.05) than other

repair operators in Code�aws benchmark, while the HEXP (multiple

replacements) operator is e�ective in IntroClass benchmark.

The importance of identifying redundant operators. Our empirical

41

evaluation in Section 3.3.4 reveals the redundancy of repair operators in existing

repair tools. We think that identifying redundant repair operators are important

because (1) including these operators could pollute the patch spaces such that

repair tools will need to spend more time in exploring the patches generated by

these repair operators, (2) redundant operators may also lead to decrease in

overall repair precision if these operators are prioritized before other more useful

operators; and (3) redundant repair operators represent rare defect classes since

these removing these repair operators do not have any impact on the overall

repair rate and repair precision. For example, we observe that SDME (insertion

of initialization) is redundant in both Code�aws and IntroClass benchmarks. In

fact, this redundancy is similar in the GenProg benchmark [141] where only two

correct patches out of 105 evaluated defects (less than 2% of defects) could be

generated using the SDME operators [94].

Diversity of defects in benchmarks. If we compare the redundancy of repair

operators across the two benchmarks, the redundancy of repair operators are

higher in IntroClass benchmark than in Code�aws benchmark. It can be seen

from Figure 3-3 that only a small subset of repair operators are needed from

each repair tool to �x the defects in IntroClass benchmark. We think this

di�erence is because programs in IntroClass benchmark has less diverse defects

compared to programs in Code�aws benchmark. The high redundancy of repair

operators and the lack of diversity in IntroClass benchmark provide concrete

evidence that the selection of benchmarks are important for the thorough study of

the e�ectiveness of program repair tools

E�ectiveness of di�erent selection strategies. In Section 3.3.5, we

introduce three selection strategies (best-k,most-exp and random) which behaves

di�erently with varying subset sizes. It is obvious from Figure 3-4e and

Figure 3-4f that random selection of repair operators may lead to decrease in

42

overall e�ectiveness. As our empirical evaluations shows that the most-exp

strategy performs better for Angelix in IntroClass benchmark and as the

expressiveness score are easier to compute, we recommend using the most-exp

strategy for benchmark with less diverse defects. Meanwhile, the best-k strategy

takes into account all three aspects of the e�ectiveness of repair operators

(repairability, reliability and expressiveness), this strategy allows developers of

repair tools to design their set of repair operators according to the preferred

trade-o�s between changes in repair rate versus changes in repair precision.

3.5 Threats to Validity

We acknowledge the following threats to validity of our results:

Set of Repair Operators. We de�ne the set of repair operator in Table 3.1 to

facilitate comparisons between repair operators supported by di�erent repair tools.

As it is non-scalable to manually classify over 3000 defects, we categorize each

repair operator automatically by modifying GumTree's AST di�erencing [66]. The

classi�cation is based on the mutant operators designed for the C programming

language [26]. While it may be interesting to check whether the �x ingredients

for the insertion of new code exists within the same program (assumption made

by GenProg), our classi�cation only consider the syntactic structure of each patch

instead of the expressions used in the patch. The set of repair operator may

be di�erent from the repair operator stated by developers of repair tools. For

example, although GenProg AE supports only two mutation operations (insertion

and deletion of statements), we identify seven repair operators in Table 3.1 because

our set of operators consist of program transformations at the AST-level. We

believe that having a more �ne-grained set of repair operators allow more thorough

investigation of their e�ectiveness.

Our Measurement of E�ectiveness. We measure e�ectiveness of repair

43

operator in terms of repairability, reliability and expressiveness. Although our

measurement of e�ectiveness takes into account more dimensions of e�ectiveness

than previous study [91], there may be other dimensions not studied in this

chapter that a�ect the e�ectiveness of repair operators.

E�ectiveness of Program Repair Tools. As we only empirically assess the

e�ectiveness of three publicly available tools (GenProg, Prophet and Angelix),

our results are restricted to these three tools. Nevertheless, the measurement that

we derived for computing the e�ectiveness of repair operators and the selection

strategies that we proposed could be used as guidelines for evaluation of future

program repair tools.

Generality of our results beyond the evaluated benchmarks. As we only

compare the e�ectiveness of repair tools in the Code�aws benchmark and the

IntroClass benchmark, the result may be di�erent for other benchmarks.

Nevertheless, our evaluated benchmarks are diverse and contain large number of

defects.

Repair operator selection strategies. Our proposed selection strategies show

the trade-o� between repair rate and repair accuracy. While the dynamic selection

of repair operators may help to balance this trade-o�, we leave the derivation of

other selection strategies as future work.

3.6 Chapter Summary

This chapter present the �rst study that investigates the e�ectiveness of repair

operators supported by current program repair tools. Our empirical evaluation

takes into account the impact of di�erent defect types to the e�ectiveness of

repair tools and identi�es repair operators that are e�ective in each repair tool.

Speci�cally, the most e�ective repair operator in GenProg is the SISA (insert

assignment) operator, while the most e�ective operator in Prophet is DRVA

44

(variable replacement); and the most e�ective operator in Angelix is ORRN

(replace relational/logical). Our study also reveals that there exists redundancy

in the set of repair operators used by existing program repair tools. Future

developers of repair tools should be aware of the redundancy in their set of

repair operators as these redundant operators could be assigned lower priority to

avoid polluting the patch spaces.

Moreover, we proposed and compared three selection strategies (best-k,most-

exp and random) which allow developers of future repair tools to make explicit

design decision according to their preferred trade-o�s between repair rate and

repair accuracy. Our study indicates that random selection of the set of repair

operators may cause decrease in the overall e�ectiveness of repair tools. Our

empirical assessment of the e�ectiveness of repair operators in existing program

repair tools aim to provide guidance for future design of repair operators.

45

46

Chapter 4

A Correlation Study between

Automated Program Repair and

Test Suite Metrics

Mutation testing is a technique that evaluates the quality of a given test suite by

applying small changes to a program and checking if the test suite could detect the

introduced changes [118]. The concept of automated program repair techniques is

innately related to the idea of mutation testing in several aspects. First, as most

automated repair techniques rely on test cases for ranking and validating each

automatically generated patch, mutation testing could be used to assess the quality

of the test suite used by program repair systems. Second, although mutation

operators in mutation testing are program transformations designed speci�cally

for simulating arti�cial defects, these operators have been successfully applied

for generating �xes automatically [62]. This chapter focus on the �rst aspect �

investigating the relationship between the test suite quality and the quality of

the automatically generated patches where several metrics (including metrics in

mutation testing) are used to assess test suite quality.

47

4.1 Introduction

In recent years, existing automated program repair approaches have showed

initial success in generating �xes for real-world large-scale software such as the

PHP interpreter and the well-known Heartbleed vulnerability in

OpenSSL [82, 87, 108, 117, 126, 141, 143]. Meanwhile, the research focus is

gradually shifting from the feasibility of automated program repair to the quality

of generated patches [38, 95, 127, 134]. In particular, these latest research results

raise a question about how to generate a correct patch�a patch that not only

passes all tests available to a repair system, but also indeed �xes the bug. Most

of the automated program repair approaches use a test-suite as a proxy of

software speci�cation, since formal speci�cation is hardly used in the industry.

While the fact that software tests are widely available is advantageous, a

test-suite is merely incomplete speci�cation that may make a generated repair

incomplete. In general, there is no guarantee that an automatically generated

repair will not cause new regressions. This problem of automated program repair

is akin to the problem of software testing in that even if all available tests pass,

there is generally no guarantee that no other new tests will fail the software

under test. Despite this limitation, it is possible to improve software quality by

improving the quality of a test-suite. Likewise, is it possible to control the quality

of automatically generated repair by controlling the quality of a test-suite? This

is our key high-level research question we aim to answer in this chapter. Apart

from this main research question, we also investigate how test-suite metrics a�ect

repairability (repair success rate) and repair time.

To answer our main research question, we conduct large-scale experiments

about the correlation between test-suite quality and automated program repair.

Our subject programs contain four large-scale real-world programs such as a PHP

interpreter and a TIFF image processing library, in addition to a well-known

48

benchmark, SIR [65]. In comparison, previous studies were conducted with small

student programs or SIR subjects. As a result, we can provide stronger empirical

evidences about the correlation between the quality of test-suites and the quality of

automatically generated repairs than previous studies. Also, we for the �rst time

compare various test-suite metrics such as statement coverage, branch coverage,

test-suite size, and mutation score, focusing on their degrees of correlation (i.e.,

correlation coe�cients) with repair quality. As a result, we can answer the question

whether the traditional test suite metrics proposed for the purpose of software

testing are also useful in the context of automated program repair, and which

test-suite metric is most e�ective.

In terms of the quality of automatically generated repairs, we focus on the

reliability of a generated repair, that is, whether regressions occur in a repair.

Judging whether a repair is correct is often subjective and di�cult to be

automated in the absence of formal speci�cations. Previous studies investigate

the reliability of repairs instead, because checking whether a generated repair

causes regressions can be performed in an automated way [38, 80, 83, 134]. That

is, once a repair is generated, this repair can be tested with a test-universe

(held-out test-suite) which contains tests that were not given to the program

repair system. If a failing test is found in the test-universe, the repair is

considered incorrect as it causes regressions. As in previous studies, we also

similarly investigate how often regressions occur to measure the quality of a

repair. Meanwhile, we obtain automatically generated repairs by running

GenProg [90, 141]. In total, we collected 3818 repairs from 142 buggy versions of

10 di�erent programs of various sizes (173�1046K LoC), using 14600 randomly

sampled test suites. We sample test suites from the whole test cases available in

our subjects. While we retrieve the main results from GenProg-generated

repairs, we also conduct smaller scale experiments with another repair tool

49

SemFix [117] to see whether our main results extend beyond GenProg. GenProg

and SemFix are �rst search-based and constraint-based repair tools, respectively.

Search-based repair tools navigate a set of repair candidates through a search

algorithm until a repair is found, while constraint-based repair tools �rst

construct repair constraints that should be satis�ed by a repair and symbolically

search for a repair satisfying the repair constraint using a theorem prover. While

our experiments may not generalize to all other repair tools, GenProg, the repair

system we mainly use in our study, has been used in many previous studies on

automated program repair [83, 87, 88, 127, 134, 141]. Our experimental results

obtained from GenProg complement the results from earlier studies.

Our results show that in general, the traditional metrics of test-suites, that

is, statement coverage, branch coverage, test-suite size, and mutation score, are

negatively correlated with the likelihood that a generated repair causes a regression.

In other words, as the traditional metrics of a test-suite increase, generated repair

tend to cause regressions less often. Our result implies that the traditional test

suite metrics proposed for software testing can also be used for automated program

repair. Among the test-suite metrics we investigate, statement coverage is shown

to be most strongly correlated with regression ratio. A practical implication is

that to reduce regression ratio, increasing statement coverage is likely to be more

e�ective than improving the other test-suite metrics such as branch coverage.

However, it should be noted that the highest correlation of statement coverage

does not necessarily imply that a statement coverage-adequate test-suite is better

than a branch coverage-adequate test-suite.

In summary, our main contributions are:

� We for the �rst time conduct a correlation study of automated program

repair with various test-suite metrics such as statement coverage, branch

coverage, test-suite size, and mutation score. According to our study,

50

traditional test-suite metrics proposed for software testing are negatively

correlated with the likelihood that a generated repair causes regressions.

Therefore, improving a test-suite based on traditional test-suite metrics is

bene�cial both for software testing and automated program repair. Among

test-suite metrics we investigate, statement coverage is shown to be most

strongly correlated.

� We conduct the largest experiments to date about the correlation between test-

suite quality and the e�ectiveness of automated program repair (in particular,

the reliability of repairs). Our subject programs contain four large-scale real-

world programs. Our experimental results provide strong empirical evidences

that the repair quality problem is indeed quite severe (the average regression

ratio of 3818 repairs we obtained from GenProg is 40%), and traditional test

suite metrics can be used to control the quality of automatically generated

repairs.

Apart from our main contributions, we also report other noteworthy results

in this chapter. We for the �rst time investigate the correlation between

mutation score and repair quality (regression ratio of repairs). Despite the

conceptual similarity of automated program repair to mutation testing, the

correlation of mutation score with repair quality is not observed to be stronger

than the correlation of coverage-based metrics. Our new mutation-based metric,

capable-tests ratio, is observed to be more strongly correlated with the reliability

of repairs in real-world subjects than mutation score. We also investigate how

test-suite metrics a�ect repairability (repair success rate) and repair time. While

we could not �nd a correlation pattern consistent across all subjects, positive

correlations between repairability and test-suite metrics (as test-suite metrics

increase, repairability increases) and negative correlations between repair time

and test-suite metrics (as the test-suite metrics increase, repair time decreases)

51

were observed in some subjects.

4.2 Background

In this section, we �rst provide the background for the correlation coe�cients used

for our correlation study (Subsection 4.2.1). Next, in Subsection 4.2.2, we describe

the relationship between mutation testing and automated program repair as this

relationship motivates our study on how mutation scores of test suite used for

repair a�ect automatically generated patches.

4.2.1 Correlation Coe�cient

A correlation coe�cient measures the statistical relationship between two

variables. Pearson Product-Moment Correlation Coe�cient is a widely-used

statistical formula that measures the strength of the linear relationship between

two variables [122]. Kendall rank correlation coe�cient measures statistical

associations based on the rankings of the data [81].

To check whether the correlation coe�cient is statistically signi�cant,

statistical hypothesis testing is performed. The null hypothesis for the Pearson's

correlation coe�cient and Kendall rank correlation coe�cient is:

Null hypothesis H0 : ρ = 0 (the correlation coe�cient is 0)

Alternative hypothesis H1 : ρ ̸= 0 (the correlation coe�cient is not 0)

In statistical hypothesis testing, the p-value or probability value is often used

to determine whether to reject the null hypothesis. If the p-value is less than or

equal to the signi�cance level α, we reject the null hypothesis in favor of the

alternative. The commonly used signi�cance level is α = 0.05. The p-value for

Pearson's correlation coe�cient is computed using the t-distribution: t= r
√
n−2√
1−r2

where r denotes the correlation coe�cient and n denotes the number of

observations. For Pearson's coe�cient, a small p-value indicates that the null

hypothesis is false, and we can conclude that the correlation coe�cient is

52

di�erent from zero and that a linear relationship between the two variables

exists. Meanwhile, for the Kendall's correlation coe�cient, a variation of the

correlation coe�cient, the Kendall's tau-b (τb) coe�cient is used to handle data

samples with ties rank. The Kendall's tau-b coe�cient is computed using the

formula: τB = # of concordant pairs−# of discordant pairs√
N1·
√
N2

where N1 denotes the number

of data pairs not tied in a target feature and N2 denotes the number of data

pairs not tied in another target feature. For Kendall's coe�cient, we test the null

hypothesis that τB = 0. If the p-value is smaller than α, then the null hypothesis

is false, and we can conclude that the ordinal association between the two

variables exists.

4.2.2 On Duality between Mutation Testing and

Automated Program Repair

There is not only similarity between automated program repair but also duality

between mutation testing and automated program repair. As pointed out in [141],

�our con�dence in mutant testing increases with the set of non-redundant mutants

considered, but our con�dence in the quality of a program repair gains increases

with the set of non-redundant tests.� Note that mutation score measures the non-

redundancy of killed mutants, not the non-redundancy of tests capable of killing

mutants. We introduce a new metric called capable-tests ratio in the next section

that measures the non-redundancy of capable tests.

4.3 Research Questions

The key high-level research question of this study is whether it is possible to

control the quality of automatically generated repair by controlling the quality of

a test-suite. To address this question quantitatively, we investigate the correlation

between the quality of a test-suite and the quality of an automatically generated

repair. If a positive correlation is found, this means that using a high-quality test

53

(a) A killed mutant (b) A survived mutant

Figure 4-1: The cross marks represent the tests in a test-suite. Overlapping with a cross
mark means that the mutant fails the corresponding test.

suite is likely to lead to a high-quality repair. Thus, our �rst research question is:

Research Question 1: Is there a positive correlation between the quality of

a test-suite and the quality of an automatically generated repair?

However, this research question should be re�ned, because it does not state

how to measure the quality of a test-suite and the quality of a generated repair.

We �rst describe how we measure them, before re�ning the research question.

Measuring Test-Suite Quality with Traditional Metrics and Capable-

Tests Ratio. We measure the quality of a test-suite using �ve kinds of test-

suite metrics: (1) statement coverage, (2) branch coverage, (3) test-suite size,

(4) mutation score, and (5) capable-tests ratio. All metrics except for the last

one are traditional test-suite metrics. We introduce the last metric � capable-

tests ratio � to complement a potential shortcoming of the mutation score which

will be described shortly. Figure 4-1 pictorially describes mutation testing. The

tests in a provided test-suite (represented with cross marks in the �gure) guard

the program against regression-causing changes (represented with a mutant that

overlaps with a cross mark). We hypothesize that the more the provided test-suite

TS contains tests that kill one of mutants (we call such tests capable tests), the

more likely TS can prevent regression-causing repairs. However, mutation score

does not measure the percentage of capable tests in a test-suite; it only shows the

percentage of killed mutants, and adding or removing tests killing no mutant does

54

(a) An unreliable repair (b) A reliable repair

Figure 4-2: The dots represent the tests in the test-universe, while the cross marks
represent the tests in a test-suite used to guide automated program repair. Crossing
over a dot or a cross mark means that the repair fails the corresponding test.

not change the mutation score of the test-suite. To complement this shortcoming

of the mutation score, we introduce a new metric capable-tests ratio de�ned as

following:

Capable-tests Ratio(TS) =
number of capable tests in TS

total number of tests in TS

Namely, capable-tests ratio of a test-suite TS is the ratio of the number of capable

tests in TS, that is the number of tests that kill at least one mutant, over the total

number of tests in TS.

Measuring Repair Quality. Meanwhile, we measure the quality of repair

from the perspective of reliability. We deem a repair R to be reliable if there

is no regression detected when testing R with its test-universe.1 Note that the

test-universe is the superset of a test-suite used to drive automated repair. In

Figure 4-2, both repairs (the shaded areas) are valid because they pass all tests

in a given test-suite, represented with the cross marks in the �gure. However, the

one in Figure 4-2a is unreliable because it fails some tests in the test-universe (the

dots).

We evaluate the reliability of repairs through regression ratio, which is

computed as the number of regression-causing repairs over the total number of

1Only positive tests are considered; an output change for negative tests is not a regression.

55

Figure 4-3: A scatter plot that illustrates the correlation between the mutation score
(the MUT_SCORE axis) and the regression ratio (the Reg_Ratio axis). Coordinate
(0.55, 62/97) of the plot denotes the following: (1) among test-suites with which repairs
are successfully generated, there are 97 test-suites whose mutation scores are less than
0.55; (2) out of these 97 cases, a regression is detected in 62 cases. Similarly, coordinate
(0.79, 347/970) indicates that there are 970 test-suites whose mutation scores are not
greater than 0.79, and regressions are detected in 347 cases.

repairs obtained with the test-suites under investigation. Note that for each pair

of a test-suite TS and a repair R generated with TS, we record whether regression

is observed in R when tested against the test-universe. Our primary goal in this

paper is to examine the correlations between the reliability of repairs and various

test-suite metrics. We compute regression ratio at each metric score as follows.

First, we collect repairs, each of which is generated with a test-suite whose

metric is not greater than the score under investigation; for example, to compute

the regression ratio at mutation score 0.5, we collect repairs generated with

test-suites whose mutation scores are not greater than 0.5. Subsequently, we

proceed to count how many of these repairs cause regressions when tested with

the test-universe. Formally, the following formula is used to calculate the

regression ratio at metric score s.

Reg_Ratio(s) =
|{TS|repaired(TS) ∧metric ≤ s ∧ regression(TU)}|

|{TS|repaired(TS) ∧metric ≤ s}|

56

where TS and TU represent a test-suite and a test-universe, respectively (note

that TS ⊆ TU). In the formula, predicate repaired(TS) denotes that a repair

is successfully generated within the timeout when TS is used to guide automated

program repair. Another predicate regression(TU) means that a regression error

is observed when testing the obtained repair with TU (i.e., regression(TU) is true

if there is a test t ∈ TU \ TS for which the obtained repair fails). By tracking the

regression ratio at di�erent metric scores, we can retrieve the correlation between

the regression ratio and a test-suite metric. Note that the lower the regression

ratio is, the higher reliability of repairs.

Figure 4-3 shows how the regression ratio (the Reg_Ratio axis) changes as the

mutation score (the MUT_SCORE axis) changes in one of our subjects, tcas. For

example, among test-suites with which repairs are successfully generated, there are

97 test-suites whose mutation score is not greater than 0.55, and a regression is

detected in 62 cases out of those 97 cases. By increasing the mutation score

threshold to 0.79, we can consider 873 more test-suites, in the majority of which a

regression is not detected, as evidenced by a lower regression ratio there (347/970).

Now that we described how we measure the quality of a test-suite and a repair,

we now re�ne our Research Question 1 as follows:

Research Question 1 (Re�ned): Is there a negative correlation between

the metrics of a test-suite and the regression ratio of automatically generated

repairs? In other words, are generated repairs less likely to cause regressions,

as test-suite metrics increase?

Apart from showing a general tendency about how test-suite metrics are

associated with the quality of repairs, correlation analysis can also be used to

illustrate which test-suite metric is most strongly associated with the quality of

repairs, by comparing the correlation coe�cients of di�erent test-suite metrics.

We thus ask the following research question.

57

Research Question 2: Which test-suite metric is most strongly correlated

with the regression ratio of automatically generated repairs?

Answering this research question can be practically important. Imagine the

scenario where a test-suite available for automated program repair is neither

statement coverage-adequate nor branch coverage-adequate. In this scenario, in

terms of increasing the likelihood of obtaining a regression-free repair, would it

be more bene�cial to improve statement coverage or branch coverage? It would

be more cost-e�ective to improve a test-suite metric which is more strongly

negatively correlated with the regression ratio of repairs.

Meanwhile, a higher-quality test suite may make it more di�cult for a program

repair tool to generate a repair as the repair needs to satisfy stricter constraints

imposed by the test suite. We therefore evaluate whether the repairability of

automated program repair is negatively correlated with test-suite metrics.

Research Question 3: Is there a negative correlation between the metrics of

a test-suite and the repairability of automated program repair? In other words,

would repairability be sacri�ced in an attempt to obtain a higher-quality repair

via a higher-quality test-suite?

Similar to our measurement of regression ratio, we compute repairability at

each metric score. First, we collect test-suites, each of which has a metric not

greater than the score under investigation. For example, to compute the

repairability at mutation score 0.5, we collect test-suites whose mutation scores

are not greater than 0.5. Then, we proceed by calculating the number of these

test-suites that leads to a repair within the time budget. Formally, we use the

following formula to compute repairability at metric score s.

Repairability(s) =
|{TS|metric ≤ s ∧ repaired(TS)}|

|{TS|metric ≤ s}|

58

Table 4.1: Subjects of our experiments

Subject LOC Versions Test-Universe Size Test-Suites Test-Suite Size
tcas 173 41 1608 4100 1�100
tot_info 565 23 1052 2300 1�100
print_tokens 726 7 4130 700 1�100
print_tokens2 570 10 4115 1000 1�100
schedule 412 9 2650 900 1�100
schedule2 374 9 2710 900 1�100
php 1046K 21 200 2100 1�100
libti� 77K 11 78 1100 1�78
grep 9.4K 5 1582 900 1�100
�ndutils 18K 6 82 600 1�82

Total 142 18207 14600

where predicate repaired(TS) denotes that a repair is successfully generated

within one hour when test-suite TS is used as input for an automated program

repair tool.

Apart from repairability, the quality of a test suite may also a�ect repair time

(i.e., the time taken to generate a repair). We thus ask the following similar

research question.

Research Question 4: Is there a negative correlation between the metrics

of a test-suite and repair time? In other words, would more time be spent in

an attempt to obtain a higher-quality repair via a higher-quality test-suite?

4.4 Experimental Methodology

We perform our evaluation on 10 C programs obtained from various benchmarks,

including the Software-artifact Infrastructure Repository (SIR) [65] benchmark,

the GenProg benchmark [87] and CoREBench [48]. We evaluate these subject

programs on GenProg and SemFix.

4.4.1 Subjects, Test-Universes and Test-Suites

Table 4.1 shows the information for the 10 C programs evaluated in our

experiments. The �rst six subjects in Table 4.1 are obtained from the SIR

benchmark, whereas the four subjects at the bottom are non-SIR subjects. The

59

column �LOC� shows the lines of code, while the column �Versions� denotes the

number of buggy versions for each subject program. Meanwhile, the column

�Test-Universe Size� indicates the number of tests in the test universe of each

subject, whereas column �Test-Suites� denotes the number of test suites

constructed by sampling the test universe, and the column �Test-Suite Size�

shows the number of tests in the constructed test-suites. As shown in the �LOC�

column in Table 4.1, subject programs used in our experiments are of various

sizes (ranging from 173 LOC to 1046K LOC).

Our subjects consist of six well-known Siemens programs collected from SIR

benchmark [65], two real-world programs (php and libtiff) previously used to

evaluate GenProg [87, 141],2 and another two real-world programs (grep and

findutils) obtained from CoREBench [48].3 We choose these real-world

subjects because they have large number of tests and multiple buggy versions,

and contains more versions that could be automated �xed. In particular, in php

and libtiff, GenProg is able to generate repairs in many buggy versions in

previous study [87]. Similarly, buggy versions of grep and findutils could be

repaired by GenProg in our pilot experiment. The �Versions� column in

Table 4.1 shows that our subjects contain a total of 142 buggy versions, among

which the six SIR subjects have 99 buggy versions and the four non-SIR subjects

have 43 buggy versions.

Each of our subjects has relatively large number of tests, which is our test-

universe. The test-universes of our large subjects consist of developer-written tests.

Assuming that these tests are well-maintained, the tests in the test-universe are

likely to be di�erent from each other. In other words, the risk that some tests are

identical to each other�which is undesirable because then, the training test-suite

2We used the original GenProg benchmark. At the time of writing this paper, the benchmark
was updated after a few problems in the test scripts of php and libti� are reported in [127].

3The grep subject in CoREBench contains real errors unlike the grep versions in SIR that
contains seeded errors.

60

and the held-out test-suite can have the same test�is low. Meanwhile, the test-

universes of our small subjects are extracted from the SIR benchmark [65], which

are generally considered high-quality and were used in many prior studies [32, 78].

The �Test-Universe Size� column of Table 3.3 shows the total number of tests

in the test-universe of each subject.4 We construct a large number of test-suites by

randomly selecting tests from these test-universes (without replacement) at each

test-suite-construction iteration.

The �Test-Suites� column shows how many test-suites we constructed for each

subject. For each buggy version of a subject, we constructed 100 test-suites such

that it contains at least one failing test case. One exception is that we constructed

180 test-suites in grep. We constructed more test suites in grep to compensate for

the fact that grep contains the smallest number of buggy versions (�ve versions),

which means that less number of repairs could be obtained from these buggy

versions. The size of each test-suite is chosen uniformly at random between 1

and 100, except for in libtiff and findutils where the maximum size is the

size of the test-universe, that is, 78 and 82, respectively. Note that in our study,

we compare experimental results across test-suite metrics, not across subjects. In

each subject, we compute diverse test-suite metrics for each constructed test-suite.

In total, we prepare 14600 test-suites.

We acknowledge that our simple random test-suite construction method in

itself does not distinguish the e�ect of test-suite size and the e�ect of other test-

suite metrics such as coverage (coverage tends to increase as the size of the test-

suite increases). An alternative more controlled test-suite construction method is

to construct a set of test-suites of identical size with di�erent levels of coverage, and

similarly a set of test-suites of identical coverage with di�erent sizes, although prior

study [115] reported that it is di�cult to obtain such a more ideal set of test-suites.

4While php contains 8471 tests, we randomly selected 200 tests out of them due to the long
running time of the php tests.

61

To compensate for the shortcoming of our test-suite construction method, we

perform ANCOVA (analysis of covariance) and separate out the e�ect of coverage,

similar to the prior work [115].

4.4.2 Automated Repair Algorithm

Our main experiment focuses on generating repairs using GenProg [87, 141] as it

is often used in previous studies [83, 134]. We fed GenProg with the 14600

test-suites that we prepared. When running GenProg, we use almost the same

con�guration parameters as those that were used in an earlier GenProg

experiment [87]. One noteworthy di�erence is that we use the deterministic

repair algorithm of GenProg [141] to minimize randomness during experiments.

All experiments were performed by distributing the load on 10 machines, each of

which has two Intel Xeon E5520 2.2GHz processors and 24GB of main memory.

To obtain a large number of repairs, which is essential for our study, we use a

relatively short timeout of one hour. In total, we obtained 3818 repairs.

In addition to running GenProg, we also conducted smaller scale

supplementary experiments with another repair tool (SemFix [117]) to

investigate whether our results extend beyond GenProg. We chose SemFix

because the repair algorithm of SemFix is fundamentally di�erent from that of

GenProg. Essentially, SemFix extracts from the runs of a test-suite a set of

constraints in the form of logical formulas, and subsequently solves these

constraints to obtain a repair. This deductive style of repair of SemFix is in

contrast to GenProg's generate-and-validate approach; GenProg repeats the

iteration of generating a repair candidate and validating it until a repair is found.

In our experiments with SemFix, we used the same test-suites as used for our

main experiments with GenProg. We collected repairs using SemFix from the same

SIR subjects as used in our main experiments except for tot_info which does not

62

work with the current version of SemFix.5 Meanwhile, testing our non-SIR subjects

requires running non-trivial test-scripts written in scripting languages. To deal

with these non-SIR subjects with the current version of SemFix, it is necessary

to transform these test-scripts into corresponding C program statements. This

is because SemFix extracts logical formulas through a symbolic-execution tool,

KLEE [51] that currently cannot handle scripting languages. Still in an attempt

to deal with a large subject at least partially, we manually transformed the test-

scripts of 4 versions of libtiff (i.e., 01209c9, 3af26048, d13be72c, and 0661f81).

4.4.3 Measuring Test-Suites Metrics

It is well known that computing mutation score typically takes a long time due

to the high volume of mutants. Each and every mutant should be tested with the

test suite under investigation, resulting in running the same test repeatedly for

di�erent mutants. For large programs, obtaining mutation score is particularly

challenging because there are too many mutants to be tested within a reasonable

time budget. To alleviate the problem, it is customary to sample parts of the

mutants, and compute the mutation score only with the sampled mutants.

We measure the mutation score and the capable-tests ratio of each test-suite

using Proteum [99].6 To deal with enormous size of mutants generated from the

4 large subjects (php, libtiff, grep, findutils), we randomly sampled 1 � 3%

of the total mutants, using the options Proteum provides. Although we do not

distinguish equivalent mutants, note that the same mutant samples of program P

are used across all test-suites for P in our experiments. Thus, the mutation scores

of these test-suites are a�ected at the same rate by equivalent mutants that may

exist, making the correlations between mutation scores of these test-suites and the

reliability of repairs una�ected accordingly. Meanwhile, to measure the statement

5tot_info includes non-linear arithmetic expressions which are not currently supported by the
underlying SMT solver SemFix uses.

6We extended its parser to handle the large subjects (php, libti�, grep, and �ndutils).

63

Table 4.2: GenProg experiments: statistics for repairs and regressions

Subjects Test-Suites Repairs Repair Ratio Regressing Regression Ratio

tcas 4100 972 24 % 348 36 %
tot_info 2300 137 6 % 17 12 %
print_tokens 700 28 4 % 0 0 %
print_tokens2 1000 235 24 % 9 4 %
schedule 900 37 4 % 37 100 %
schedule2 900 108 12 % 53 49 %

php 2100 1666 79 % 915 55 %
libti� 1100 313 28 % 42 13 %
grep 900 128 14 % 41 32 %
�ndutils 600 194 32 % 83 43 %

Total 14600 3818 26 % 1545 40 %

and branch coverage of our test-suites, we use gcov. 7 When running GenProg

or SemFix, it is necessary to mark the source �le(s) allowed to be repaired. Our

measurements of mutation score and statement/branch coverage are performed on

these marked �les.

4.5 Experimental Results

In this section, we outline the results from our experiments with the repair tools

GenProg and SemFix. We �rst present the results from our main experiments

performed with GenProg. The results from SemFix is presented in Section 4.5.5.

4.5.1 Basic Statistics � Repair Ratio and Regression Ratio

Table 4.2 illustrates the basic statistics for our experiments, including how often

repairs are generated (repair ratio) and how often regressions are observed

(regression ratio). The �Test-Suites� column in Table 4.2 shows the number of

test-suites in each subject, and the �Repairs� column the total number of

obtained repairs for each subject. In total, we obtained 3818 repairs out of 14600

trials, resulting in average repair ratio of 26%. The repair ratio of each subject is

de�ned as the ratio of the total number of obtained repairs (available in the

7https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

64

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

T
ab
le
4.
3:

G
en
P
ro
g
ex
p
er
im
en
ts
:
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
va
ri
ou
s
te
st
-s
u
it
e
m
et
ri
cs

S
ta
te
m
en
t
C
ov
er
ag
e

B
ra
n
ch

C
ov
er
ag
e

T
es
t-
S
u
it
e
S
iz
e

M
u
ta
ti
on

S
co
re

C
ap
ab
le
-T
es
ts
R
at
io

S
u
b
je
ct

r
M
in

M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

tc
as

-0
.9
2
78
%
10
0%

95
%

-0
.8
4
39
%
95
%

90
%

-0
.8
7

2
10
0

60
-0
.9
3
0.
05

0.
79

0.
67

-0
.0
3
0.
42

1.
00

0.
65

p
ri
n
t_

to
ke
n
s2

-1
∗
7%

8%
7%

0.
65

3%
4%

3%
-0
.8
8

2
10
0

59
-0
.8
0
0.
24

0.
83

0.
79

0.
51
0.
33

1.
00

0.
56

to
t_

in
fo

-0
.8
9
76
%

97
%

95
%

-0
.8
8
67
%
92
%

89
%

-0
.8
4

3
99

56
-0
.8
6
0.
51

0.
88

0.
80

0.
91
0.
19

1.
00

0.
49

sc
h
ed
u
le
2

-0
.4
98
%

99
%

99
%

0.
12
∗
81
%
94
%

90
%

0.
48

16
10
0

67
0.
83
0.
67

0.
73

0.
70

0.
41
0.
23

0.
90

0.
38

p
h
p

-0
.6
5
0%

89
%

22
%

-0
.7
5
0%

50
%

13
%

-0
.8
8

1
10
0

50
-0
.0
6
0.
00

1.
00

0.
45

-0
.7
0.
00

1.
00

0.
3

li
b
ti
�

-0
.7

9%
31
%

20
%

-0
.7
3
6%

23
%

15
%

-0
.7
7

1
71

19
-0
.4
4
0.
00

1.
00

0.
43

-0
.4
7
0.
00

1.
00

0.
82

gr
ep

-0
.9
2
36
%

68
%

51
%

-0
.8
5
22
%
53
%

36
%

-0
.6
2

4
93

18
-0
.5
1
0.
01

0.
10

0.
02

-0
.8
1
0.
73

1.
00

0.
95

�
n
d
u
ti
ls

-0
.9
5
2%

33
%

22
%

-0
.9
5
1%

22
%

15
%

-0
.8
6

1
56

18
-0
.7
8
0.
00

0.
54

0.
18

-0
.8
2
0.
00

1.
00

0.
65

A
ve
ra
ge

-0
.8
4
34
%

70
%

51
%

-0
.8
3
23
%
56
%

43
%

-0
.6
6

4
90

43
-0
.6
4
0.
13

0.
84

0.
55

-0
.1
2
0.
24

0.
99

0.
6

T
h
e
�r
�
co
lu
m
n
sh
ow

s
th
e
co
rr
el
at
io
n
co
e�

ci
en
t
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
th
e
co
rr
es
p
on
d
in
g
m
et
ri
c
in

P
ea
rs
on
's

r.
N
eg
at
iv
e
co
rr
el
at
io
n
co
e�

ci
en
ts

(h
ig
h
li
gh
te
d
ce
ll
s)

im
p
ly

th
at

re
gr
es
si
on
s
d
ec
re
as
e
as

th
e
m
et
ri
c

in
cr
ea
se
s.
T
h
e
�A
ve
ra
ge
�
ro
w
sh
ow

s
th
e
av
er
ag
e
co
e�

ci
en
ts
of

ea
ch

m
et
ri
c
ac
ro
ss

al
l
su
b
je
ct
s.

65

�Repairs� column) over the total number of repair trials (available in the

�Test-Suites� column). Note that the total number of repair trials is equivalent

to the number of test-suites, because we initiate a separate repair session for

each constructed test-suite.

For the obtained repairs, we investigate whether regressions are observed by

running each repaired program against its test universe. If a repaired program

fails any of the previously passing tests in the test universe, we consider that a

regression occurs. The �Regressing� column in Table 4.2 denotes the number of

repairs for which regressions are observed. For example, in tcas, 348 out of 972

repairs are observed to be regression-causing repairs. The �Regression Ratio�

column of Table 4.2 represents the regression ratio in each subject, which is

de�ned as the ratio of the number of regression-causing repairs (as shown in the

�Regressions� column) over the total number of repairs (as shown in the

�Repairs� column). For example, the regression ratio in tcas is 348/972, which is

approximately 36%. The overall regression ratio ranges from 0% of

print_tokens to 100% of schedule. The �Total� row shows that the average

regression ratio of all subjects is 40%.

Ideally, an automated program repair tool should generate more repair

(which is indicated by a high repair ratio), and the generated repair should be

regression-free as much as possible (which can be indicated by a low regression

ratio). However, Table 4.2 shows that the current repair tool has not achieved

this ideal scenario. The overall repair ratio is as low as 26%, while the overall

regression ratio is as high as 40%. Particularly, in subject schedule, the repair

ratio is only 4% and all generated repairs cause regressions. Meanwhile, although

the repair ratio is relatively high (79%) in php, the regression ratio is also quite

high (55%).

66

4.5.2 Correlation Coe�cients about Regression Ratio

Our �rst research question investigates the correlation between test-suite metrics

and the regression ratio of repairs:

Research Question 1: Is there a negative correlation between the metrics

of a test-suite and the regression ratio of automatically generated repairs? In

other words, as test-suite metrics increase, are generated repairs less likely to

cause regressions?

Table 4.3 shows the correlations between the regression ratio and various

metrics of test-suites (i.e., statement coverage, branch coverage, test-suite size,

mutation score, and capable-tests ratio). For each metric, the �r� column shows

Pearson's product moment correlation coe�cients (Pearson's r) [121] rounded to

two decimal places. The correlation coe�cients of print_tokens and schedule

are not available because in our experiments, repairs for these subjects either

always caused regressions (in the case of schedule) or always did not cause

regressions (in the case of print_tokens). All correlation coe�cients shown in

Table 4.3 are statistically signi�cant at the 0.05 level except those asterisked. In

Table 4.3, we also show the minimum, maximum and mean values of each metric

(under the �Min�, �Max�, and �Mean� columns, respectively) of our randomly

constructed test-suites.8 For example, the test-suites of tcas has an average of

95% statement coverage ranging between 78% and 100%. Note that we only

retrieve these min/max/mean values from the test-suites that have successfully

guided repairs, excluding test-suites where no repair is found within the time

limit; for these excluded test-suites, the regression ratio of repairs is unde�ned.

Encouraging Results of Traditional Metrics. In Table 4.3, negative

correlation coe�cients are highlighted. A negative correlation coe�cient of a

8The minimum statement/branch coverage of php is 0 because some tests do not execute the
marked source �les.

67

metric M implies that as the value of M increases, the regression ratio decreases,

which means that the reliability of repairs increases. In general, negative

correlations are observed across all traditional test-suite metrics that we

investigated (i.e., statement coverage, branch coverage, test-suite size, and

mutation score). In particular, statement coverage consistently shows negative

correlations across all subjects. Similarly, the other traditional test-suite metrics

also show negative correlations in most of the evaluated subjects. Our results

suggest that traditional test-suite metrics can also be e�ectively used to control

the regression rate of automatically generated repairs.

As the traditional test-suite metrics (statement coverage, branch coverage,

test-suite size, and mutation score) increase, the regression ratio of

automatically generated repairs generally decreases, showing the promise of

using the traditional test-suite metrics to improve the regression ratio of

automatically generated repairs.

Our �ndings also imply that the e�orts to improve test-suites for the purpose

of testing�which is already practiced in the industry�can also bene�t automated

program repair. Indeed, our main �ndings are consistently observed across real-

world large-scale software and controlled small-scale subjects (SIR subjects).

Discouraging Results of Capable-Tests Ratio. Compared to our results on

traditional test-suite metrics, the results from capable-tests ratio are discouraging.

The expected negative correlations are observed only in large real-world subjects

(php, libtiff, grep, and findutils). In all the small subjects except for tcas,

positive correlations are observed. Capable-tests ratio does not seem as useful as

the traditional metrics in controlling the quality of generated repairs.

Next, we compare correlation coe�cients of di�erent test-suite metrics to

investigate our second research question:

68

Table 4.4: Average rankings of test-suite metrics

Metric
Statement Branch Test-SuiteMutationCapable-Tests
Coverage Coverage Size Score Ratio

Avg. Ranking 1.75 2.5 2.75 4 3.875

Research Question 2: Which test-suite metric is most strongly correlated

with the regression ratio of automatically generated repairs?

To investigate this research question, we rank test-suite metrics in each subject

in ascending order of the correlation coe�cients. The metric whose correlation

coe�cient is the smallest is ranked �rst in each subject. For example, in tcas,

mutation score is ranked �rst, statement coverage is ranked second, test-suite

size is ranked third, etc. Table 4.4 shows the average ranking of each test-suite

metric. Statement coverage has the highest average ranking. Indeed, statement

coverage is ranked �rst in 5 subjects (print_tokens2, tot_info, schedule2,

grep, and findutils) out of total 8 subjects, and ranked second (tcas) in one

subject. Moreover, only statement coverage consistently demonstrates a negative

correlation across all subjects.

In our experiments, statement coverage is, on average, more strongly

correlated with regression ratio than other test-suite metrics. Our results

suggest that to reduce the regression ratio, increasing statement coverage is

more promising than improving the other test-suite metrics.

Implication and Limitation of Correlation. It should be noted that the

highest correlation of statement coverage does not necessarily imply that a 100%

statement coverage-adequate test-suite is most e�ective in controlling the

reliability of repairs. A correlation between A and B only shows how B tends to

change as A changes, or vice versa. In fact, as executing a buggy statement may

not be su�cient to reveal a bug, more sophisticated test-suite metrics such as

branch coverage is more commonly advocated in software testing. Our �ndings

69

only imply that improving statement coverage seems to be more bene�cial than

improving other metrics. In other words, a practical implication of our �ndings

is that if the currently available test-suite is neither statement coverage-adequate

nor branch coverage-adequate, improving the statement coverage of the test-suite

would improve the reliability of repairs more e�ectively than improving branch

coverage.

In Table 4.4, mutation score has the lowest average ranking. Mutation score

is ranked even lower than another mutation-based metric, capable-tests ratio,

although the average ranking gap between these two metrics is marginal. Mutation

score is ranked last in 5 subjects (schedule2, php, libtiff, grep, and findutils)

out of total 8 subjects. A possible reason for the low ranking of mutation score

is that the mutants used in mutation testing are sampled evenly from all possible

mutants, whereas in automated program repair, repair edits are performed only on

suspicious program locations (the suspicious locations are identi�ed through the

fault localization step of automated program repair). When the mutant sampling

rate is 100% as in the case of our small subjects, a mutant M can be sampled

at a non-suspicious program location L in which a program repair tool does not

generate a repair candidate. Even if M is killed, the increase of the mutation score

has no direct bearing on improving the reliability of a repair in this case, because

no repair candidate is generated at L. In other words, M is not likely to represent

unreliable repairs. Meanwhile, when the mutant sampling rate is low as in the case

of our large subjects, the chance that a mutant is sampled at suspicious program

locations is also low. Another possible reason for the low ranking of mutation

score is the discrepancy between mutation operators and repair operators. Given

that the mutation scores can change depending on which mutation operators are

used [146], using selective mutation operators�instead of all mutation operators�

may change the correlation coe�cients.

70

Comparison with Test-Suite Size. In Table 4.4, mutation score and

capable-tests ratio show lower average ranking than test-suite size, whereas

statement coverage and branch coverage show higher average rankings than

test-suite size. This results suggest that increasing statement coverage or branch

coverage is likely to reduce regression ratio more e�ectively than blindly adding

arbitrary tests into the test suite. To further investigate whether (a) improving

coverage indeed in�uences the reduction of regression ratio in the statistical

sense or (b) regression ratio reduces merely because the test-suite size increases,

we perform ANCOVA (analysis of covariance). When performing ANCOVA with

statement coverage and test-suite size, the p-value of the statement coverage is

less than 0.05 in all subjects except in php where the p-value is 0.057. This

indicates that the impact of statement coverage on regression ratio is, in general,

statistically signi�cant. Meanwhile, the interaction e�ect between statement

coverage and test-suite size is not as signi�cant. The p-value of the interaction

e�ect is statistically insigni�cant (> 0.05) in tot_info, php, libtiff, grep, and

findutils. The results on branch coverage are similar. The p-value of the

branch coverage is less than 0.05 in all subjects except in print_tokens2 where

the p-value is 0.075. The p-value of the interaction e�ect between branch

coverage and test-suite size is also statistically insigni�cant (> 0.05) in

tot_info, php, libtiff, grep, and findutils.

4.5.3 Correlation Coe�cients about Repairability

Next, we investigate a research question regarding repairability:

Research Question 3: Is there a negative correlation between the metrics of

a test-suite and the repairability of automated program repair? In other words,

would repairability be sacri�ced in an attempt to obtain a higher-quality repair

via a higher-quality test-suite?

71

T
ab
le
4.
5:

G
en
P
ro
g
ex
p
er
im
en
ts
:
co
rr
el
at
io
n
s
b
et
w
ee
n
re
p
ai
ra
b
il
it
y
(r
ep
ai
r
su
cc
es
s
ra
te
)
an
d
va
ri
ou
s
te
st
-s
u
it
e
m
et
ri
cs

S
ta
te
m
en
t
C
ov
er
ag
e

B
ra
n
ch

C
ov
er
ag
e

T
es
t-
S
u
it
e
S
iz
e

M
u
ta
ti
on

S
co
re

C
ap
ab
le
-T
es
ts
R
at
io

S
u
b
je
ct

r
M
in

M
ax
M
ea
n

r
M
in
M
ax
M
ea
n

r
M
in
M
ax
M
ea
n

r
M
in
M
ax
M
ea
n

r
M
in
M
ax

M
ea
n

tc
as

0.
55
45
%
10
0%

94
%

0.
88
14
%
95
%

85
%

0.
92

2
10
0

54
0.
97
0.
00

0.
83

0.
65

-0
.0
3
0.
00

1.
00

0.
68

p
ri
n
t_

to
ke
n
s

0.
13
53
%

97
%

90
%

0.
24
∗
39
%
93
%

82
%

0.
64

1
10
0

49
0.
78
∗
0.
35

0.
85

0.
80

0.
72
0.
37

1.
00

0.
62

p
ri
n
t_

to
ke
n
s2

-0
.8
2
7%

8%
7%

-0
.4
∗
3%

4%
3%

0.
87

1
10
0

52
0.
26
0.
02

0.
84

0.
79

0.
38
0.
02

1.
00

0.
60

to
t_

in
fo

0.
71
65
%

98
%

94
%

0.
87
60
%
93
%

88
%

0.
87

1
99

52
0.
92
0.
42

0.
90

0.
82

-0
.1
9
0.
17

1.
00

0.
50

sc
h
ed
u
le

0.
33
30
%

99
%

96
%

0.
43
14
%
95
%

86
%

0.
93

1
10
0

49
0.
71
0.
00

0.
89

0.
81

0.
42
0.
00

1.
00

0.
47

sc
h
ed
u
le
2

0.
31
66
%

99
%

99
%

0.
71
49
%
96
%

88
%

0.
99

1
10
0

54
0.
65
0.
28

0.
77

0.
69

0.
26
0.
20

1.
00

0.
45

p
h
p

0.
73

0%
89
%

22
%

0.
76

0%
50
%

13
%

0∗
1
10
0

50
-0
.0
8
0.
00

1.
00

0.
44

0.
81
0.
00

1.
00

0.
28

li
b
ti
�

-0
.3
1
6%

31
%

23
%

-0
.1
9
4%

23
%

17
%

-0
.9
3

1
77

29
-0
.3
3
0.
00

1.
00

0.
47

0.
83
0.
00

1.
00

0.
81

gr
ep

-0
.9
9
36
%

73
%

60
%

-0
.9
9
22
%
58
%

45
%

-0
.9
1

4
10
0

43
-0
.4
6
0.
00

0.
77

0.
02

-0
.6
9
0.
00

1.
00

0.
58

�
n
d
u
ti
ls

-0
.9
4
2%

36
%

28
%

-0
.9
4
1%

24
%

19
%

-0
.9
9

1
81

40
-0
.6
6
0.
00

0.
61

0.
20

-0
.2
2
0.
00

1.
00

0.
70

A
ve
ra
ge

-0
.0
3
31
%

73
%

61
%

0.
19
20
%
67
%

55
%

0.
27

1
95

47
0.
22
0.
08

0.
84

0.
54

0.
23
0.
08

1.
00

0.
57

T
h
e
to
p
m
os
t
co
lu
m
n
sh
ow

s
th
e
�
ve

te
st
-s
u
it
e
m
et
ri
cs

w
e
in
ve
st
ig
at
ed

fr
om

st
at
em

en
t
co
ve
ra
ge

to
ca
p
ab
le
-t
es
ts

ra
ti
o.

T
h
e
�r
�
co
lu
m
n
of

ea
ch

te
st
-s
u
it
e
m
et
ri
c
sh
ow

s
th
e
co
rr
el
at
io
n
co
e�

ci
en
t
b
et
w
ee
n
th
e
re
p
ai
ra
b
il
it
y
an
d
th
e

co
rr
es
p
on
d
in
g
m
et
ri
c
in

P
ea
rs
on
's
r.
A
ll
sh
ow

n
co
e�

ci
en
ts
ar
e
st
at
is
ti
ca
ll
y
si
gn
i�
ca
n
t
at

th
e
0.
05

le
ve
l
ex
ce
p
t
th
os
e

as
te
ri
sk
ed
.
N
eg
at
iv
e
co
rr
el
at
io
n
co
e�

ci
en
ts
,
sh
ad
ed

in
th
e
ta
b
le
,
im
p
ly

th
at

le
ss

re
p
ai
rs

ar
e
ob
ta
in
ed

as
th
e
m
et
ri
c

in
cr
ea
se
s.

In
th
e
�A
ve
ra
ge
�
ro
w
,
th
e
co
e�

ci
en
ts

of
ea
ch

m
et
ri
c
is
av
er
ag
ed

ac
ro
ss

al
l
su
b
je
ct
s.

F
or

ea
ch

m
et
ri
c,
w
e

al
so

sh
ow

th
e
m
in
im
u
m
/m

ax
im
u
m
/m

ea
n
va
lu
es

of
ou
r
te
st
-s
u
it
es
.

72

Table 4.5 shows the correlations between the repairability and various

test-suites metrics. Pearson's correlation coe�cients are shown in the table with

negative coe�cients being highlighted.9 The overall correlation patterns are

di�erent between the small SIR subjects and the large real-world subjects. In

the small subjects, positive correlations are observed more often than negative

correlations across traditional test-suite metrics (statement/branch coverage,

test-suite size, and mutation score); test-suite size and mutation score are

positively correlated with repairability across all small subjects, and

statement/branch coverage is also positively correlated in the majority of the

small subjects. This implies that as test-suite metrics increase, it is more likely

for a repair to be generated automatically in the small subjects. Meanwhile, the

opposite pattern is observed in the large subjects. In the large subjects, negative

correlations are observed across the same traditional test-suite metrics as the

preceding; mutation score is negatively correlated with repairability across all

large subjects, and the remaining traditional test-suite metrics

(statement/branch coverage and test-suite size) are also negatively correlated

except for in php.

Our experimental data indicates that a high quality test-suite helps program

repair tool to �nd a �x in small programs. One possible explanation is that the

use of a higher quality test-suite for statistical fault localization leads to more

precise fault localization as reported in previous studies [36, 45], and having

more precise information about the faulty locations is important in �xing a

program. However, it can also be more di�cult to satisfy the constraints given in

more tests, which makes a negative impact on repairability. Depending on the

situations in which repair takes place, test-suite may impact on repairability

9Min/Max/Mean values of the table are di�erent from those of Table 4.3, because there we
consider only test-suites from which repairs are generated, whereas in Table 4.5, we consider
all test-suites.

73

Table 4.6: Mean and max time of successful repairs with a one-hour timeout

Subject
Repair Time

Mean Max

tcas 2.7 m 14.1 m
print_tokens 6.9 m 48.3 m
print_tokens2 0.6 m 29 m

tot_info 1.4 m 4.9 m
schedule 3 m 24 m
schedule2 1 m 13 m

Subject
Repair Time

Mean Max

php 7.2 m 56 m
libti� 14.1 m 57.6 m
grep 24 m 59.6 m

�ndutils 11.6 m 59.5 m

positively or negatively. We conjecture that our inconclusive result on

repairability may be due to interaction e�ects. For example, repairability may be

a�ected signi�cantly by failing-tests ratio (the proportion of failing tests in a

test-suite), and the interaction between failing-tests ratio and test-suite metrics

may cause the observed inconclusive result. We leave the investigation of this

conjecture as future work.

Our experimental results are inconclusive about the correlation between test-

suites and repairability. However, we note that increasing test-suite metric

does not always decrease repairability. In some subjects, positive correlations

were observed between test-suite metrics and repairability, indicating that as

the test-suite metrics increase, repairability tends to increase.

4.5.4 Correlation Coe�cients about Repair Time

Our last research question involves repair time:

Research Question 4: Is there a negative correlation between the metrics

of a test-suite and repair time? In other words, would more time be spent in

an attempt to obtain a higher-quality repair via a higher-quality test-suite?

Table 4.6 shows the mean and the maximum time taken to generate repairs in

each subject. Repair time of small subjects (shown in the left-hand side table) is

generally smaller than the repair time of large subjects (shown in the right-hand

74

T
ab
le
4.
7:

G
en
P
ro
g
ex
p
er
im
en
ts
:
co
rr
el
at
io
n
s
b
et
w
ee
n
re
p
ai
r
ti
m
e
an
d
va
ri
ou
s
te
st
-s
u
it
e
m
et
ri
cs

S
ta
te
m
en
t
C
ov
er
ag
e

B
ra
n
ch

C
ov
er
ag
e

T
es
t-
S
u
it
e
S
iz
e

M
u
ta
ti
on

S
co
re

C
ap
ab
le
-T
es
ts
R
at
io

S
u
b
je
ct

r
M
in

M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

r
M
in
M
ax

M
ea
n

tc
as

0.
92
78
%
10
0%

95
%

0.
77
39
%
95
%

90
%

0.
99

2
10
0

60
0.
85
0.
05

0.
79

0.
67

-0
.8
8
0.
42

1.
00

0.
65

p
ri
n
t_

to
ke
n
s

-0
.9
6
74
%

95
%

88
%

-0
.9
4
62
%
92
%

79
%

-0
.9
8

9
10
0

50
-0
.7
9
0.
76

0.
86

0.
82

0.
78
0.
46

0.
94

0.
62

p
ri
n
t_

to
ke
n
s2

-1
∗
7%

8%
7%

0.
04
∗
3%

4%
3%

-0
.5
7

2
10
0

59
-0
.3
7
0.
24

0.
83

0.
79

0.
75
0.
33

1.
00

0.
56

to
t_

in
fo

0.
68
76
%

97
%

95
%

0.
73
67
%
92
%

89
%

0.
95

3
99

56
0.
9
0.
51

0.
88

0.
80

-0
.8
4
0.
19

1.
00

0.
49

sc
h
ed
u
le

-0
.6
6∗
95
%

99
%

97
%

-0
.7
5
83
%
93
%

89
%

-0
.4
5∗

8
10
0

64
-0
.8
9
0.
74

0.
86

0.
84

-0
.4
8
0.
21

1.
00

0.
40

sc
h
ed
u
le
2

0.
84
∗
98
%

99
%

99
%

0.
92
81
%
94
%

90
%

0.
93

16
10
0

67
0.
94
† 0
.6
7
0.
73

0.
70

0.
24
0.
23

0.
90

0.
38

p
h
p

-0
.3
6
0%

89
%

22
%

-0
.2
9
0%

50
%

13
%

-0
.7
4

1
10
0

50
0.
53
0.
00

1.
00

0.
44

-0
.7
8
0.
00

1.
00

0.
30

li
b
ti
�

0.
98

9%
31
%

20
%

0.
99

6%
23
%

15
%

0.
87

1
71

19
0.
75
0.
00

1.
00

0.
43

0.
61
0.
00

1.
00

0.
82

gr
ep

0.
85
36
%

68
%

51
%

0.
95
22
%
53
%

36
%

0.
76

4
93

18
0.
65
† 0
.0
0
0.
10

0.
01

0.
66
0.
00

1.
00

0.
58

�
n
d
u
ti
ls

0.
86

2%
33
%

22
%

0.
87

1%
22
%

15
%

0.
86

1
56

18
0.
6
0.
00

0.
54

0.
18

0.
67
0.
00

1.
00

0.
65

A
ve
ra
ge

0.
42
39
%

73
%

56
%

0.
36
40
%
68
%

57
%

0.
34

4
91

44
0.
2
0.
29

0.
84

0.
62

0.
07
0.
18

0.
98

0.
54

T
h
e
to
p
m
os
t
co
lu
m
n
sh
ow

s
th
e
�
ve

te
st
-s
u
it
e
m
et
ri
cs

w
e
in
ve
st
ig
at
ed

fr
om

st
at
em

en
t
co
ve
ra
ge

to
ca
p
ab
le
-t
es
ts

ra
ti
o.

T
h
e
�r
�
co
lu
m
n
of

ea
ch

te
st
-s
u
it
e
m
et
ri
c
sh
ow

s
th
e
co
rr
el
at
io
n
co
e�

ci
en
t
b
et
w
ee
n
th
e
re
p
ai
ra
b
il
it
y
an
d
th
e

co
rr
es
p
on
d
in
g
m
et
ri
c
in

P
ea
rs
on
's
r.
A
ll
sh
ow

n
co
e�

ci
en
ts
ar
e
st
at
is
ti
ca
ll
y
si
gn
i�
ca
n
t
at

th
e
0.
05

le
ve
l
ex
ce
p
t
th
os
e

as
te
ri
sk
ed
.
N
eg
at
iv
e
co
rr
el
at
io
n
co
e�

ci
en
ts
(h
ig
h
li
gh
te
d
),
im
p
ly

th
at

le
ss
ti
m
e
te
n
d
s
to

b
e
ta
ke
n
to

ob
ta
in

a
re
p
ai
r,

as
th
e
m
et
ri
c
in
cr
ea
se
s.
In

th
e
�A
ve
ra
ge
�
ro
w
,
th
e
co
e�

ci
en
ts
of
ea
ch

m
et
ri
c
is
av
er
ag
ed

ac
ro
ss
al
l
su
b
je
ct
s.
F
or

ea
ch

m
et
ri
c,
w
e
al
so

sh
ow

th
e
m
in
im
u
m
/m

ax
im
u
m
/m

ea
n
va
lu
es

of
ou
r
te
st
-s
u
it
es
.

75

side table). Table 4.7 illustrates the correlation between repair time and test-suite

metrics. Similar to the case of repairability, no conclusive pattern is observed.

Our experimental results are inconclusive about the correlation between test-

suites and repair time. However, we note that increasing test-suite metric

does not always increase repair time. In some subjects, negative correlations

were observed between test-suite metrics and repair time, indicating that as

the test-suite metrics increase, repair time tends to decrease.

4.5.5 Generalizing the Results

To mitigate external threats to our results, we perform the following. First, we

replace Pearson's correlation coe�cients shown earlier with Kendall's rank

correlation coe�cients, and check if similar results are observed (Section 4.5.5).

Second, we replace GenProg, an automated program repair tool used in our

experiments, with another program repair tool, SemFix [117], and check if

similar results are observed (Section 4.5.5).

Di�erent Correlation Coe�cient: Kendall Rank Correlation Coe�cient

To investigate how our results are a�ected by the use of di�erent kinds of

correlation coe�cients, Table 4.8 shows the correlation coe�cients between

regression ratio and test-suites in Kendall's rank correlation coe�cients. We use

Kendall's τb to handle tied ranks [81]. Despite the changes of correlation

coe�cients, the overall results remains similar. Similar to our previous analysis,

we �nd that:

� Negative correlations are generally observed across all test-suite metrics.

� Statement coverage is, on average, most strongly correlated with regression

ratio. The average ranking of test-suite metrics is ordered as follows: statement

coverage (2.25) ≤ test-suite size (2.25) ≤ branch coverage (3) ≤ mutation score

(3.25) ≤ capable-tests ratio (4.25), where the numbers in parentheses show the

76

average ranking of the corresponding metrics.

� Coverage-based metrics generally show stronger correlation with regression

ratio than mutation-based metrics.

� In large real-world subjects, capable-tests ratio is shown to be negatively

correlated with regression ratio.

Di�erent Repair Algorithm: SemFix

Apart from our main experiments with GenProg, we also conduct supplementary

experiments with another repair tool, SemFix. The objective of this additional

SemFix experiments is to investigate if our �ndings obtained from the GenProg

experiments also hold when a di�erent repair algorithm is used. We emphasize

that comparing the performance of GenProg and SemFix is not the purpose of this

study. In fact, comparing correlation coe�cients between the two tools may not

meaningful because one tool may show a stronger correlation with the test-suite

quality than the other tool, while it may still generate regression-causing repairs

more frequently.

Table 4.9 shows the correlations between the regression ratio observed in the

SemFix experiments and various test-suite metrics. We used the same test-suites

as used in our GenProg experiments. In general, the results are similar to those

obtained from the GenProg experiments. As in the GenProg experiment,

negative correlations between regression ratio and the traditional test-suite

metrics (statement coverage, branch coverage, test-suite size, and mutation

score) are observed in the majority of cases. In particular, statement coverage

and test-suite size are negatively correlated with regression ratio in all subjects.

Mutation score shows negative correlations except in schedule2, similar to the

GenProg experiment. While branch coverage shows positive correlations in two

subjects (print_tokens2 and schedule2), these results are not statistically

signi�cant (p > 0.05).

77

T
ab
le
4.
8:

C
or
re
la
ti
on
s
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
va
ri
ou
s
te
st
-s
u
it
e
m
et
ri
cs

(K
en
d
al
l'
s
τ b
)

S
ta
te
m
en
t
C
ov
er
ag
e

B
ra
n
ch

C
ov
er
ag
e

T
es
t-
S
u
it
e
S
iz
e

M
u
ta
ti
on

S
co
re

C
ap
ab
le
-T
es
ts
R
at
io

S
u
b
je
ct

τ b
M
in

M
ax

M
ea
n

τ b
M
in

M
ax

M
ea
n

τ b
M
in

M
ax

M
ea
n

τ b
M
in

M
ax

M
ea
n

τ b
M
in

M
ax

M
ea
n

tc
as

-0
.8
9
78
%

10
0%

95
%

-0
.6
4
39
%

95
%

90
%

-0
.8
2

2
10
0

60
-0
.9
6
0.
05

0.
79

0.
67

-0
.1
2
0.
42

1.
00

0.
65

p
ri
n
t_

to
ke
n
s2

-1
∗

7%
8%

7%
0.
98

3%
4%

3%
-0
.9
7

2
10
0

59
-0
.9
9
0.
24

0.
83

0.
79

0.
25

0.
33

1.
00

0.
56

to
t_

in
fo

-0
.8
6
76
%

97
%

95
%

-0
.9
2
67
%

92
%

89
%

-0
.9
9

3
99

56
-0
.8
2
0.
51

0.
88

0.
80

0.
49

0.
19

1.
00

0.
49

sc
h
ed
u
le
2

-0
.7
1
98
%

99
%

99
%

-0
.0
8∗

81
%

94
%

90
%

0.
51

16
10
0

67
0.
82

0.
67

0.
73

0.
70

0.
47

0.
23

0.
90

0.
38

p
h
p

-0
.4
4

0%
89
%

22
%

-0
.3
6

0%
50
%

13
%

-0
.8
3

1
10
0

50
0.
27

0.
00

1.
00

0.
45

-0
.7
4
0.
00

1.
00

0.
3

li
b
ti
�

-0
.9
5

9%
31
%

20
%

-0
.9
4

6%
23
%

15
%

-0
.9
9

1
71

19
-0
.5
8
0.
00

1.
00

0.
43

-0
.4
5
0.
00

1.
00

0.
82

gr
ep

-0
.9
8
36
%

68
%

51
%

-0
.9
9
22
%

53
%

36
%

-0
.9
7

4
93

18
-0
.9
3
0.
01

0.
10

0.
02

-0
.7
1
0.
73

1.
00

0.
95

�
n
d
u
ti
ls

-0
.8
7

2%
33
%

22
%

-0
.8
8

1%
22
%

15
%

-0
.8
9

1
56

18
-0
.9
0.
00

0.
54

0.
18

-0
.7
3
0.
00

1.
00

0.
65

A
ve
ra
ge

-0
.8
3
34
%

70
%

51
%

-0
.7
9
23
%

56
%

43
%

-0
.7
4

4
90

43
-0
.6
6
0.
13

0.
84

0.
55

-0
.1
9
0.
24

0.
99

0.
6

T
h
e
to
p
m
os
t
co
lu
m
n
sh
ow

s
th
e
�
ve

te
st
-s
u
it
e
m
et
ri
cs

w
e
in
ve
st
ig
at
e.

T
h
e
�τ

b
�
co
lu
m
n
of

ea
ch

te
st
-s
u
it
e
m
et
ri
c
sh
ow

s
th
e

co
rr
el
at
io
n
co
e�

ci
en
t
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
th
e
co
rr
es
p
on
d
in
g
m
et
ri
c
in
K
en
d
al
l'
s
τ b
.
N
eg
at
iv
e
co
rr
el
at
io
n
co
e�

ci
en
ts
,

sh
ad
ed

in
th
e
ta
b
le
,
im
p
ly
th
at

re
gr
es
si
on
s
ar
e
le
ss
ob
se
rv
ed

as
th
e
m
et
ri
c
in
cr
ea
se
s.
In

th
e
�A
ve
ra
ge
�
ro
w
,
th
e
co
e�

ci
en
ts
of
ea
ch

m
et
ri
c
is
av
er
ag
ed

ac
ro
ss
al
l
su
b
je
ct
s.
F
or

ea
ch

m
et
ri
c,
w
e
al
so

sh
ow

th
e
m
in
im
u
m
/m

ax
im
u
m
/m

ea
n
va
lu
es

of
ou
r
te
st
-s
u
it
es
.
A
ll

co
rr
el
at
io
n
co
e�

ci
en
ts
sh
ow

n
in

th
e
ta
b
le
ar
e
st
at
is
ti
ca
ll
y
si
gn
i�
ca
n
t
at

th
e
0.
05

le
ve
l
ex
ce
p
t
th
os
e
as
te
ri
sk
ed
.

78

T
ab
le
4.
9:

S
em

F
ix

ex
p
er
im
en
ts
:
co
rr
el
at
io
n
s
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
va
ri
ou
s
te
st
-s
u
it
e
m
et
ri
cs

S
ta
te
m
en
t
C
ov
er
ag
e

B
ra
n
ch

C
ov
er
ag
e

T
es
t-
S
u
it
e
S
iz
e

M
u
ta
ti
on

S
co
re

C
ap
ab
le
-T
es
ts
R
at
io

S
u
b
je
ct

r
M
in

M
ax

M
ea
n

r
M
in

M
ax

M
ea
n

r
M
in

M
ax

M
ea
n

r
M
in

M
ax

M
ea
n

r
M
in

M
ax

M
ea
n

tc
as

-0
.9
78
%

10
0%

95
%

-0
.6
2
39
%

95
%

90
%

-0
.7
9

2
10
0

59
-0
.7
3
0.
05

0.
79

0.
67

-0
.0
1
0.
42

1.
00

0.
64
6

p
ri
n
t_

to
ke
n
s2

-1
∗

7%
8%

7%
0.
46
∗

3%
4%

3%
-0
.6
9

4
10
0

60
-0
.9
7
0.
49

0.
83

0.
80

0.
66

0.
36

1.
00

0.
55
4

sc
h
ed
u
le
2

-0
.3
5∗

98
%

99
%

99
%

0.
64
∗
82
%

93
%

90
%

-0
.3
∗

16
10
0

68
0.
86

0.
67

0.
73

0.
70

-0
.5
3
0.
23

0.
69

0.
37
4

li
b
ti
�

-0
.8
2

6%
31
%

23
%

-0
.8
1

4%
23
%

17
%

-0
.8
7

1
74

27
-0
.3
7
0.
00

1.
00

0.
45

-0
.8
3
0.
00

1.
00

0.
82
4

A
ve
ra
ge

-0
.7
7
47
%

59
%

56
%

-0
.0
8
32
%

54
%

50
%

-0
.6
6
5.
75

93
.5

53
-0
.3
0
0.
30

0.
84

0.
66

-0
.1
8
0.
25

0.
92

0.
6

T
h
e
to
p
m
os
t
co
lu
m
n
sh
ow

s
th
e
�
ve

te
st
-s
u
it
e
m
et
ri
cs

w
e
in
ve
st
ig
at
e.

T
h
e
�r
�
co
lu
m
n
of

ea
ch

te
st
-s
u
it
e
m
et
ri
c

sh
ow

s
th
e
co
rr
el
at
io
n
co
e�

ci
en
t
b
et
w
ee
n
th
e
re
gr
es
si
on

ra
ti
o
an
d
th
e
co
rr
es
p
on
d
in
g
m
et
ri
c
in

P
ea
rs
on
's
r.
N
eg
at
iv
e

co
rr
el
at
io
n
co
e�

ci
en
ts
,
sh
ad
ed

in
th
e
ta
b
le
,
im
p
ly

th
at

re
gr
es
si
on
s
ar
e
le
ss

ob
se
rv
ed

as
th
e
m
et
ri
c
in
cr
ea
se
s.

In
th
e

�A
ve
ra
ge
�
ro
w
,
th
e
co
e�

ci
en
ts

of
ea
ch

m
et
ri
c
is
av
er
ag
ed

ac
ro
ss

al
l
su
b
je
ct
s.

F
or

ea
ch

m
et
ri
c,

w
e
al
so

sh
ow

th
e

m
in
im
u
m
/m

ax
im
u
m
/m

ea
n
va
lu
es

of
ou
r
te
st
-s
u
it
es
.
A
ll
co
rr
el
at
io
n
co
e�

ci
en
ts

sh
ow

n
in

th
e
ta
b
le
ar
e
st
at
is
ti
ca
ll
y

si
gn
i�
ca
n
t
at

th
e
0.
05

le
ve
l
ex
ce
p
t
th
os
e
as
te
ri
sk
ed
.

79

Table 4.10: Average rankings of test-suite metrics (SemFix)

Metric
Statement Branch Test-Suite Mutation Capable-Tests
Coverage Coverage Size Score Ratio

Avg. Ranking 1.5 4 2.75 3.75 3

Similar to the GenProg experiment, we compute the average ranking of each

test-suite metric. Table 4.10 shows the average ranking of test-suite metrics for

SemFix. Recall that in each subject, the metric whose correlation coe�cient is

the smallest is ranked �rst. Statement coverage again is ranked highest as in

our GenProg experiment. All other metrics are, on average, ranked lower than

test-suite size.

Our experimental results from SemFix generally coincide with our �nding

from the GenProg experiment, despite the di�erences in repair algorithms and

fault localization techniques. Similar to our experiments with GenProg, the

traditional test-suite metrics are, overall, negatively correlated with regression

ratio. Speci�cally, statement coverage remains to be most strongly correlated

with regression ratio.

4.6 Threats to Validity

External: Subjects, Test Universes, Mutants, and Repair Tools. Our

�ndings may not generalize to other subjects, although our subjects consist of

various software projects of di�erent sizes, extracted from diverse sources (SIR,

GenProg, and CoREBench) that contain seeded bugs (SIR), actual bugs

(GenProg), and actual regression bugs (CoREBench). Similarly, our test

universes may not be representative of the whole test case population, which is

theoretically in�nite. In general, the larger a test universe is, the more likely

regressions are observed when testing a repaired program. To mitigate this

threat, we selected subjects that have a large number of test cases.

80

Similarly, the use of one hour timeout also threatens the external validity of

our experimental results. Results may vary if longer timeout is used in the

experiments. The external validity of our mutants are also similarly threatened,

because in large subjects, we randomly sampled 1�3% of mutants to be able to

handle the large size of the mutant population (for SIR subjects whose sizes are

smaller, we used the whole mutant population). The relatively weak correlation

between mutation score and regression ratio as compared to other test-suite

metrics may be due to the di�erences between mutation testing and automated

program repair. Repair candidates generated from an automated program repair

tool are not necessarily identical with or similar to mutants generated from a

mutation testing tool. Moreover, an automated program repair tool modi�es

only suspicious program locations, whereas mutation testing does not consider

the suspiciousness of program locations when sampling mutants. Our results

obtained with randomly sampled mutants is, despite its limitations, still

interesting from practical point of view, because mutant sampling is a common

approach taken in mutation testing to deal with a large number of mutants

practically. One way to mitigate the threats posed by sampled mutants is to

change the sampling rate and check if similar results are observed. We leave this

investigation as future work.

Lastly, the selection of repair tool may a�ect the experimental results, and

di�erent results may be obtained when a di�erent repair tool is used. To mitigate

this threat, we also conducted additional experiments with SemFix, and observed

that the overall results are similar to the results from our main experiments. Note

that SemFix uses a fundamentally di�erent repair approach from GenProg used

for our main experiments.

Internal: Correctness of Tools. Our �ndings are based on the raw data

generated by various tools, i.e, gcov, GenProg, SemFix, and Proteum, where

81

the latter three tools are research prototypes. We also modi�ed Proteum because

the original Proteum cannot handle any of our non-SIR subjects. To mitigate

this threat, our modi�cation to Proteum is minimally restricted to its parser.

4.7 Conclusion

Many automated program repair tools use a test-suite as the speci�cation of the

software under repair. As test cases are merely incomplete speci�cations,

automated program repair tools may end up generating a repair that fails new

tests that were not available at the time of repair, causing regressions. Indeed,

our experimental results show that regressions often occur in automatically

generated repairs. Our study is the largest to date that demonstrates how severe

the regression problem of automatically generated repairs is. To address this

problem, we investigate the possibility of using test-suite metrics proposed for

software testing to control the regression ratio of automatically generated repairs.

Our results indicates that traditional test-suite metrics are generally negatively

correlated with the regression ratio of repairs, implying that traditional test-suite

metrics can also be applied for automated program repair. Among all evaluated

test-suite metrics, statement coverage is shown to be most strongly correlated.

This implies that to reduce the regression ratio, increasing statement coverage is

generally more promising than improving branch coverage or mutation score.

82

Chapter 5

Anti-patterns for Search-Based

Program Repair

Chapter 3 demonstrates that some repair operators in automated program repair

tools are ine�ective and careful selection of repair operators could help in

balancing the trade-o� between repair rate and repair precision. However,

eliminating a repair operator may reduce the repair rate signi�cantly if it is

needed to �x a particular classes of defects. Hence, �nding the set of program

transformations that should be removed due to their high likelihood of

introducing over�tting patches allows more �exibility in balancing the trade-o�

between repair rate and repair precision. Instead of focusing on the selection of

repair operators, this chapter introduces a novel way of solving the

ine�ectiveness of repair operators in repair tools by proposing a set of rules that

restrict the allowed program transformations for each repair operator.

5.1 Introduction

A major challenge in automated program repairs arises from the �incomplete

speci�cation� of intended behavior. Indeed, any repair technique tries to patch

errors so as to achieve the intended behavior. Yet, in reality, the intended

83

behavior is incompletely speci�ed, often through a set of test cases. Thus, repair

methods attempt to patch a given buggy program, so that the patched program

passes all tests in a given test-suite T . Unsurprisingly, this may not only lead to

incomplete �xes but the patched program may also end up introducing new

errors, because the patched program may fail tests outside T , which were

previously passing [134].

Several recent research articles have pointed out the pitfalls of using test-suites

as speci�cation to drive program repair [127, 134]. Furthermore, if the test oracles

of the tests in the test-suite are not strong enough, simple program modi�cations,

such as deletion of program functionality, have been shown to be su�cient to

repair programs [127]. The situation presents us with an unenviable dilemma �

we want to avoid incomplete or incorrect �xes but it is not practical to assume the

presence of formal speci�cations to drive program repair towards correct �xes.

In this chapter, we propose to use anti-patterns to help alleviate the problem

of incorrect or incomplete �xes resulting from program repair. We present our

technique in the context of search-based program repair systems. These repair

tools seek to repair a buggy program (one failing at least one test in a given test-

suite T) by searching among possible �xes by applying �x templates. A proposed

�x is �validated� if it passes all the tests in the given test-suite T . One key problem

faced in the resulting �xes is that they often boil down to program modi�cations

like deletion of functionality � which, though su�cient to pass tests in given

test-suite T , may fail tests outside T and can be unacceptable to developers in

general.

Our main idea is simple � for any search-based repair technique which is

searching for a plausible repair, we de�ne a set of anti-patterns that essentially

capture disallowed modi�cations to the buggy program. In other words, even if

such a modi�cation results in the modi�ed program passing all tests in the given

84

test-suite, we do not count them as repairs. Our set of anti-patterns is generic

and does not vary across application domains.

Conceptually, our idea is di�erent from the strategy of using human patch

templates to guide program repair [82]. Generally speaking, the use of human

patch templates is geared towards producing patches close to human patches �

the underlying assumption being that by going close to human patches, we will

avoid incorrect or incomplete �xes. However, this requires providing human patch

templates, which is limited by a �xed set of templates, and hence the produced

repair may over�t the provided set of templates. Furthermore, there is a strong

assumption that by �tting patches to human patch templates, we have a greater

chance of the �x being accepted by developers � an assumption that may or

may not be true (e.g., [112] argues that ��x acceptability may be an unanswerable

question�).

Instead of gearing our repair towards human patches by providing human patch

templates, we ask ourselves the following research question � is it possible to drive

the repair search towards correct and complete �xes, simply by providing a generic

set of anti-patterns? Many of our anti-patterns are at the level of the control �ow

graph � forbidding certain manipulations to the control �ow graph. A few of the

anti-patterns involve assignments a�ecting branch outcomes and one anti-pattern

forbids adding tautologies as branch conditions. Overall, our anti-patterns are

generic.

Furthermore, and more importantly, we are not proposing a separate repair

method based on anti-patterns. Our proposed set of anti-patterns can be

integrated into any existing search-based repair tool, and we can then compare

the repair produced after enforcing anti-patterns with the original repairs

produced by the search-based repair tool. Indeed, we propose a small set of

anti-patterns and we have integrated them into two existing search based

85

program repair tools: GenProg [141] and SPR [94].

Any automated program repair system is driven by a correctness criterion (to

which we repair to), and since formal speci�cations are usually absent, test-suites

are used as correctness criteria. As a fully automated derivation of a formal

correctness criterion is often impossible, our anti-patterns are not meant to solve

the problem of deriving better correctness criteria. Instead, the value of our

anti-patterns lies in their ability to provide more precise repair hints to

developers [78], which is illustrated through our evaluation on patch quality. We

evaluated our anti-patterns on 86 real bugs obtained from 12 subjects. Results

from our experiments indicate that anti-patterns could lead search-based

program repair tools to producing patches that localizes better by isolating

either the correct line or the correct function. Moreover, anti-patterns could also

reduce the destructive e�ect of search-based repair tools by producing patches

that removes less functionality. Our anti-patterns also provide considerable

amount of speedup in obtaining the �nal repair because our anti-patterns prune

the repair search space. All experimental data are available at the following

website: https://anti-patterns.github.io/search-based-repair/ .

5.2 Prevalence of Anti-patterns

Although various search-based program repair techniques [126, 138, 141] show

promising results in generating a large number of patches, prior studies show

that most of these patches are often only plausible but incorrect [127].

Speci�cally, SPR generates 28 out of 40 (i.e, 70%) plausible but incorrect

patches, while GenProg generates 50 out of 53 (i.e., 94.33%) plausible patches,

for the GenProg benchmarks [87].

To better understand the nature of the plausible patches (see De�nition 8

for de�nition of plausible patches), we performed a manual inspection on all the

86

https://anti-patterns.github.io/search-based-repair/

T
ab
le
5.
1:

P
re
va
le
n
ce

of
A
n
ti
-p
at
te
rn
s
in

P
la
u
si
b
le
P
at
ch
es

A
n
ti
-d
el
et
e
C
F
G
ex
it
n
o
d
e

A
n
ti
-d
el
et
e
C
on
tr
ol
S
tm

t
A
n
ti
-d
el
et
e

S
in
gl
e-
st
m
t
C
F
G

A
n
ti
-d
el
et
e

S
et
-B
ef
or
e-
If

A
n
ti
-d
el
et
e

L
o
op
-C
ou
n
te
r
U
p
d
at
e

A
n
ti
-a
p
p
en
d
E
ar
ly

E
x
it

A
n
ti
-a
p
p
en
d

T
ri
v
ia
l
C
on
d
it
io
n
s

D
el
et
e

ex
it

D
el
et
e

re
tu
rn

D
el
et
e

go
to

D
el
et
e

er
ro
r

D
el
et
e

if
-s
tm

t

D
el
et
e

lo
op

D
el
et
e
th
e
so
le

st
m
t
in

if

D
el
et
e

co
n
d
it
io
n

D
el
et
e
lo
op

co
u
n
te
r
u
p
d
at
e

In
se
rt

ea
rl
y
re
tu
rn

In
se
rt

ea
rl
y
ex
it

In
se
rt

ea
rl
y
go
to

In
se
rt

T
au
to
lo
gy

In
se
rt

C
on
tr
ad
ic
ti
on

G
en
P
ro
g

4.
00

8.
00

2.
00

14
.0
0

28
.0
0

6.
00

4.
00

4.
00

2.
00

2.
00

0
2.
00

0
0

S
P
R

0
7.
14

7.
14

14
.2
9

10
.7
1

21
.4
3

7.
14

7.
14

3.
57

7.
14

3.
57

3.
57

7.
14

39
.2
9

A
ve
ra
ge

2.
00

7.
57

4.
57

14
.1
4

19
.3
6

13
.7
1

5.
57

5.
57

2.
79

4.
57

1.
79

2.
79

3.
57

19
.6
5

A
ll
va
lu
es

in
th
is
ta
b
le
is
ca
lc
u
la
te
d
in

te
rm

s
of
p
er
ce
n
ta
ge

ac
ro
ss
al
l
au
to
m
at
ic
al
ly
ge
n
er
at
ed

p
at
ch
es

fo
r
a
gi
ve
n
re
p
ai
r
to
ol
.

N
ot
e
th
at

ou
r
ca
lc
u
la
ti
on

co
n
si
d
er
s
th
e
fa
ct

th
at

on
e
p
la
u
si
b
le
p
at
ch

m
ay

ex
h
ib
it
se
ve
ra
l
fe
at
u
re
s.

87

Table 5.2: Our set of anti-patterns with examples that illustrate the usage of each anti-pattern

Anti-patterns Example
A1: Anti-delete CFG exit node.

This pattern disallows removal of return
statements, exit calls, functions with the
word �error� (i.e., ignoring letter case),
and assertions.

Ex1: The example below shows a patch generated by GenProg for
libtiff-8f6338a-4c5a9ec. The patch removes the erroneous exit call.

static void BadPPM(char* file) {

fprintf(stderr , "%s: Not a PPM file.\n", file);

exit(-2);

}

Listing 5.1: Example patch for Anti-delete CFG exit node
A2: Anti-delete Control Statement

This pattern disallows removal of control
statements, e.g., if-statements, switch-
statements, and loops.

Ex2: The example below shows a patch generated by GenProg
for php-307931-307934. The patch removes the whole if-then-
else statement that checks for the return value of a function call.

call_result = call_user_function_ex (...);

if(call_result == SUCCESS && retval !=NULL && ...) {

if(SUCCESS == statbuf_from_array (...))

ret = 0;

} else if(call_result == FAILURE) {

php_error_docref (...); }

Listing 5.2: Example for Anti-delete Control Statement
A3: Anti-delete Single-statement

CFG

This pattern disallows deletion of the
statement within a CFG node that has
only one statement.

Ex3: The example below presents a candidate patch generated by
GenProg for libtiff-90d136e4-4c66680f. The patch removes the
statement that assigns the return value of 1 which indicates a failure.

fail:{

ret = 1;

}

Listing 5.3: Example for Anti-delete Single-statement CFG

A4: Anti-delete Set-Before-If

This pattern disallows deletion of a
variable de�nition if the variable in
the de�nition is used in subsequent if-
statement.

Ex4: The example shows a GenProg generated candidate patch for
libtiff-d13be72c-ccadf48a. The patch removes the statement that
stores the value of the expression EstimateStripByteCounts(...)<0.

tmp=EstimateStripByteCounts(tif ,dir ,dircount) <0;

if(tmp !=0)

goto bad;

Listing 5.4: Example patch for Anti-delete Set-Before-If
A5:Anti-delete Loop-Counter

Update

Although more sophisticated techniques
are needed to ensure termination in
patches, we implement an approximation
of this pattern by disallowing deletion
of an assignment inside a loop if
the variables used in the terminating
condition intersects with the variables
used in the LHS of the assignment.

Ex5: The example below shows a patch that deletes the increment
statement within a loop.

while(x> 5)

x++;

Listing 5.5: Example: Anti-delete Loop-Counter Update

A6: Anti-append Early Exit

This pattern disallows insertion of
return statement and goto statement at
any location except for after the last
statement in a CFG node.

Ex6: The example shows a SPR's patch for
php-308262-308315. The patch adds a conditional return
statement before a function call that throws an error.

if ((type != 0))

return;

zend_error ((1<<3L),"Uninitialized string ...);

Listing 5.6: Example patch for Anti-append Early Exit
A7: Anti-append Trivial Conditions

This expression-level pattern disallows
insertion of trivial conditions. A
condition is trivial i� (1) it is either
true or false constant (e.g., if (0)), (2)
it is evaluated to true or false by any
assignment of the program variables (e.g.,
if(x || y || !y)), and (3) it is always
evaluated to true or false by any values
that program variables can take based on
static analysis (e.g., if(x || y != 0) in which
y is initialized).

Ex7: The example below shows SPR patch for lighttpd-2661-2662.
The patch in Listing 5.7 appends !(1) to the existing condition, which
is semantically equivalent to removing the branch.

if ((fmap[j].key != format ->ptr[i + 1]))

if ((fmap[j].key != format ->ptr[i + 1]) && !(1))

continue;

Listing 5.7: Example patch with contradiction

88

Table 5.3: Problems in search-based program repairs and the corresponding anti-patterns
aim to solve these problems

Problem Anti-patterns
Weak Oracle. Instead of checking for the actual output of
a program, developers may validate the outcome of a failing
test by relying on the exit status or assertions of the program.
Such statements serve as proxies for verifying the correctness of a
program, and thus, they should not be manipulated by machine-
generated patches. However, such restrictions are not imposed
on automatically generated patches. In fact, patches that simply
remove such statements may be more preferable for test-driven
program repair techniques as they can be generated faster [127].

A1: Anti-delete CFG exit node.

Inadequate Test Coverage. If the program under test
has low code coverage, test-driven program repair tools could
incorrectly remove a logical block of statements as they are seen
as redundant code to the test suite. This may lead to regressions
in the patched program [134]

A2: Anti-delete Control Statement

A3: Anti-delete Single-statement CFG

A4: Anti-delete Set-Before-If

Mask Existing Vulnerabilities. A patched program may
mask previously exposed vulnerability by removing certain
branches through implicit data-�ow.

A4: Anti-delete Set-Before-If

Non-termination. Program repair tools may incorrectly
remove a loop update statement, causing in�nite loop in the
patched program. If no timeout is speci�ed, search-based repair
tools may spend the entire repair session to validate the patched
program. Worst still, such patches could be mistakenly treated
as a repair if the test only checks if an error is thrown within a
time limit.

A5:Anti-delete Loop-Counter Update

Trivial Patch. An incorrectly patched program may bypass
an important functionality or an error check through insertions
of premature exit calls. The worst scenario happens when
repair tools produce trivial patches that simply insert return-
statements based on the value of the expected output of the
failing test (e.g., a trivial patch that insert if(test1) return

expected-out;)

A6: Anti-append Early Exit

Functionality Removal Repair tools like SPR may produce
patches that are semantically equivalent to functionality removal
by inserting tautological condition or contradiction. A tautology
will cause the elimination of the check condition while a
contradiction will cause the entire branch to be removed.

A7: Anti-append Trivial Conditions

89

machine-generated patches produced by SPR and GenProg (including plausible

and correct patches) as well as on the correct developer-provided patches for these

bugs. Speci�cally, we manually analyzed each patch and attempted to answer two

questions:

Q1: What makes a given patch plausible? Why is it incorrect (i.e., does not

capture the semantics of the developer-provided patch)?

Q2: Do the plausible patches, as a whole, share any common syntactic features

that explain their �plausibility� as well as distinguish them from the pool of

correct patches (human as well as machine generated)?

The aim was to �nd a compact set of syntactic features that are independent

of the repair templates used by the tool. Table 5.1 shows the results of our

manual inspection. Interestingly, our manual inspection identi�ed a set of 14

simple features, shown in the second row of Table 5.1, one or more of which appear

in each of the plausible patches produced by SPR and GenProg and almost none

of the correct patches 1. They correspond to various modi�cations to the control

�ow or the data �ow of the program. Each column corresponds to a speci�c feature

and denotes the percentage of plausible patches bearing that feature. For example,

Delete if-statement (column 6) deletes an if statement and appears in 28% of

plausible GenProg patches and 10.71% of plausible SPR patches. Similarly, Insert

Tautology (column 14) inserts a trivial tautological condition into the program

and appears in 7.14% of the plausible SPR patches but none of the plausible

GenProg patches. We further generalize and consolidate these 14 features into 7

transformations, shown in the �rst row of Table 5.1, which we chose to further

develop as anti-patterns in our approach. Table 5.2 lists the anti-patterns that we

identi�ed through our manual inspection [50].

1Except for one PHP defect and one Python defect.

90

// GenProg AE patch for findutils -84aef0ea -07 b941b1

static boolean parse_noop (const struct parser_table* entry , char **argv , int *

arg_ptr)

{

(void) entry;

return parse_true(get_noop (), argv , arg_ptr);

}

Listing 5.8: Example patch generated by GenProg

// mGenProg patch for findutils -84aef0ea -07 b941b1

static boolean insert_regex (char **argv , int *arg_ptr , const struct parser_table

*entry , int regex_options)

{...

if (error_message)

error (1, 0, "%s", error_message);

(* arg_ptr)++;

our_pred ->est_success_rate = estimate_pattern_match_rate(argv[* arg_ptr], 1);

return true;

// Developer patch for findutils -84aef0ea -07 b941b1

insert_regex (char **argv , int *arg_ptr , const struct parser_table *entry , int

regex_options)

{...

if (error_message)

error (1, 0, "%s", error_message);

(* arg_ptr)++;

our_pred ->est_success_rate = estimate_pattern_match_rate(argv[* arg_ptr], 1);

(* arg_ptr)++;

return true;

Listing 5.9: Example patches generated by mGenProg and Findutils developer

5.3 How Anti-patterns may Help

We illustrate how anti-patterns can improve program repair by showing two

examples of �xes in two projects. The �rst example shows the e�ect of applying

anti-patterns for improvement in �x localization (the program location at which

the human �x is applied), while the second example demonstrates the bene�t of

anti-patterns in reducing patch generation time.

Example 1: Improving �x localization. Listing 5.8 shows the GenProg

patch for findutils-84aef0ea-07b941b1 generated by GenProg. The GenProg

patch deletes the only return statement in parse_noop(...). This patch

violates our Anti-delete CFG exit node pattern. In contrast, our version of

GenProg modi�ed with anti-patterns, called mGenProg, removes the statement

that assigns the return value of estimate_pattern_match_rate to the �eld

our_pred->est_success_rate. Meanwhile, Findutils developer moved the

91

// GenProg , mGenProg & Developer patch for php -309111 -309159

if ((p = memchr(s, '?', (ue - s)))) {

pp = strchr(s, '#');

if (pp && pp < p) {

if (pp - s) {

ret ->path = estrndup(s, (pp-s));

php_replace_controlchars_ex(ret ->path , (pp - s));

}

p = pp;

goto label_parse;

}

}

Listing 5.10: Example patch generated by GenProg, mGenProg and PHP developers

statement (*arg_ptr)++ to the location after the problematic statement

our_pred->est_success_rate=estimate_pattern_match_rate(...); that

throws �Segmentation fault� error due to out-of-bound access of the argv array

(Listing 5.9). We argue that in this example, our mGenProg patch is preferable

to GenProg's because (1) mGenProg localizes the correct function compared to

the GenProg patch, which is applied inside a completely di�erent function

parse_noop(); (2) mGenProg correctly pinpoints the function call that causes

the error, while the GenProg patch completely removes the functionality

encapsulated by the parse_noop() function. This example shows that

anti-patterns can improve �x localization and eliminate nonsensical patches that

remove functionality.

Example 2: Accelerating program repair. Listing 5.10 shows a patch that

inserts a conditional statement that can be copied from other places within the

same �le. While both GenProg and mGenProg generate the patch in listing 5.10

that is in fact equivalent to the correct patch, mGenProg takes only 13.7 hours

compared to 20.6 hours taken by GenProg (i.e., mGenProg achieves a 20.6/13.7

= 1.5x speedup). Thus, if the correct repair can be found within the repair space,

our anti-patterns can serve as a search-space pruning mechanism that reduces the

time taken to �nd the correct repair through �ltering of invalid patches.

Table 5.3 shows the common problems in the patches generated by search-based

program repair tools together with the anti-patterns that solve these problems.

92

5.4 Integrating Anti-patterns

We integrate our anti-patterns directly into two search-based repair tools (i.e.,

GenProg AE [141] and SPR [94]).

Input: P': Program
Input: M: Transformations functions
Output: isAnti: indicates if M violates any anti-patterns
isAnti← false;1

if M.type == delete then2

if isSingleCFGStmt(M.stmtk) then3

isAnti← true;4

else if isExitNode(M.stk) || isCondition(M.stk) then5

isAnti← true;6

else if isAssignment(M.stmtk) then7

isAnti← isSetBfIf(M.stk) || isSetInLoop(M.stk);8

end9

else if M.type == append then10

isAnti← isExitNode(M.stk) ∧ ¬isLastStmt(M);11

end12

return isAnti13

Procedure isAntipattern
M.stk: the AST node type of M.
M.type: the edit type of M

Procedure 2 shows our anti-patterns �ltering algorithm. The function

isSingleCFGStmt(E.stmtk) corresponds to the Anti-delete Single-Statement

CFG pattern. Similarly, isSetBefIf (E.stk) checks for the Anti-delete

Set-Before-If pattern, while isSetInLoop(E.stk) corresponds to the Anti-delete

Loop-Counter Update pattern. The function isCondition(E.stk) indicates

whether an edit E involves a conditional statement, which is used in the

Anti-delete Control-Statement. The function isExitNode(E.stk) checks if the

statement in Edit E is a CFG exit node. Both Anti-Delete CFG exit node and

Anti-append Early Exit use this function. The function isLastStmt(E) checks if a

statement will be inserted as the last statement in a CFG block to ful�ll the

requirement for the Anti-append Early Exit pattern. As many search-based

approaches [82, 94, 138, 141] are based on evolutionary algorithm [85] in which a

93

population is reproduced, evaluated, and selected, we recommend integrating our

anti-patterns �ltering algorithm before the initial population is generated to

reduce the time spent in evaluating each individual in a population.

Modi�cation of SPR and GenProg. Algorithm 3 shows the pseudo-code of

the mSPR repair generation algorithm. We implement our anti-patterns on two

parts of mSPR: (1 � �rst box). For candidate repairs that do not require

condition synthesis, we apply similar modi�cations to mSPR and mGenProg

(refer to Procedure 2). (2 � second box). For candidate repairs that require

condition synthesis in mSPR, we apply the Anti-append Trivial Conditions

pattern to each synthesized condition. The function isTrivialCondition(c)

checks if the given condition c is a trivial condition (refer to Table 5.2 for

de�nition of trivial conditions). As our modi�cations on GenProg is similar to

the changes on mSPR for repairs that do not require condition synthesis, we

leave out the details for mGenProg.

5.5 Experiments

We compare the e�ectiveness of anti-patterns on GenProg and SPR using two

sets of benchmarks: (1) the CoREBench benchmarks [48] and (2) the GenProg

benchmarks [87]. We use the CoREBench benchmarks for the evaluation set

because it contains real errors in widely used C programs. Although our manual

inspection for deriving anti-patterns in Section 5.2 was based on plausible

patches from the GenProg benchmarks, this study used just one generated patch

per buggy program. A recent study shows that the typical repair search space

for these bugs contains up to thousands of plausible patches [95]. Thus, we feel it

is still meaningful to study the impact of anti-patterns on the complete repair

space of these bugs. Our evaluation studies the following research questions:

RQ1 How do anti-patterns a�ect the quality of patches generated by search-based

94

Input: P: Program
Input: positive and negative test cases NegT and PosT
Input: M : Transformation functions.
Output: the repaired program P' or ∅ if failed
for P' in M(P) do

if ¬isAntipattern(P ′,M) then
M ′ ←M ∪ P ′;

end

end
1

for P' in M'(P) do2

if P' contains abstc then3

C ← CondSynthesis(P ′, NegT, PosT);4

for c in C do

if ¬isTrivialCondition(c) then
C ← C/c;
if Test(P'[c/abstc],NegT, PosT) then

return P'[c/abstc]
end

end

end
5

else if Test(P ′, NegT, PosT) then6

return P ′7

end8

end9

Algorithm 3: mSPR Repair generation algorithm
CondSynthesis(P,NegT, PosT): searches for a sequence of values in P that pass all tests in NegT and PosT.
The output of this function is C � the set of all synthesized conditions in the repair space.
P [c/abstc]: the result of replacing every occurrence of abstc in P with the condition c.
Test(P,NegT, PosT) : check if the program P passes all tests.

95

Table 5.4: Subject Programs and Their Basics Statistics

Subjects Description kLoC Tests
coreutils File, Shell and Text manipulation Utility 83.1 4772
�ndutils Directory Searching Utility 18.0 1054
grep Pattern Matching Utility 9.4 1582
make Program executable generation utilities 35.3 528

php Programming Language 1046 8471
libti� Image Processing Library 77 78
python Programming Language 407 35
gmp Math Library 145 146
gzip Data Compression Utility 491 12
wireshark Network Packet Analyzer 2814 63
fbc Compiler 97 773
lighthttpd Web Server 62 295

program repair tools?

RQ2 How many nonsensical patches can our anti-patterns eliminate to reduce

manual inspection costs?

RQ3 When our modi�ed tools produce the same patch, what is the speedup that

we achieve?

RQ4 How does the use of anti-patterns compare to an approach that simply

prohibits deletion?

5.5.1 Experimental Setup

We evaluate the e�ects of anti-patterns on 49 defects from the CoREBench

benchmarks and at least 37 defects from the GenProg benchmarks. We exclude

some versions in our evaluation due to speci�c technical di�culties, such as

benchmarks that require speci�c system con�gurations to be built. Speci�cally,

we exclude 21 defects from the CoREBench benchmarks. For the GenProg

benchmarks, we manage to reproduce the bugs for 42 defects in the original

GenProg experiment and 37 defects in the original SPR experiments.

Table 5.4 lists information about these subjects. The �rst four rows of the table

list the details for the four CoREBench subjects while the remaining rows show

relevant statistics about the GenProg subjects. For each bug, we run GenProg,

mGenProg, SPR and mSPR to produce repairs.

96

Many of our anti-patterns block functionality deletion, so it is natural to ask

if the same e�ect could be achieved by simply disallowing deletion in repair. To

answer RQ4, we implement a customized version of GenProg, called dGenProg,

where we disallow the usage of the deletion mutation operator. We reuse the

same parameters listed in previous work [87] for running GenProg. One

signi�cant di�erence is that we switch to the deterministic adaptive search

algorithm (AE) [141] to control potential randomness. Each run of GenProg,

mGenProg, dGenProg, SPR, and mSPR terminates either after all candidate

repairs have been evaluated or when a patch is found (i.e., each tool runs to

completion without timeout). All experiments for GenProg, mGenProg, and

dGenProg were performed by distributing the load on 20 virtual machines with

single-core Intel Xeon 2.40GHz processor and 19GB of memory. All experiments

for SPR and mSPR were performed on a 12-core Intel Xeon E5-2695 2.40Ghz

processor and 408GB of memory.

After collecting all the repairs, we manually inspect each of these patches

and compare the quality of patches generated by GenProg versus mGenProg,

mGenProg versus dGenProg, and SPR versus mSPR.

De�nition 7 We measure the quality of patches generated by search-based repair

tools using the criteria de�ned below:

(Q1) Same Patch. A generated repair is considered �Same Patch� if both the

original tool and the modi�ed tool generate exactly the same repair.

(Q2) Localizes Correct Line. A generated repair is considered �Localizes

Correct Line� if both the generated patch and the human patch generate

repairs that modify the same line. For example, we categorize the mGenProg

patch in Listing 5.9 as �Localizes Correct Line�.

(Q3) Localizes Correct Function but Incorrect Line. A generated repair is

considered a patch that localizes the correct function if both the generated patch

97

and the human patch modify statements within the same function.

(Q4) Removes Less Functionality. A generated repair is considered a repair

that removes less functionality if the repair removes or skips over (e.g., by

inserting return) fewer lines of source code than the repair generated by the

unmodi�ed repair tool.

(Q5) No Repair. We label a benchmark as �No Repair� when the original tool

generates a repair but the modi�ed tool has iterated through the entire repair

space and produce no �nal patch.

We categorize the patch quality of each repair according to the order listed above

(i.e, we �rst check if a patch is �Same Patch� and only categorize a patch as

�Removes Less Functionality� if it does not satisfy other more preferable criteria

(e.g, �Localizes Correct Function but Incorrect Line�). We eliminate the potential

discrepancies on categorization by ensuring that each de�ned criteria can be

measured through comparisons of the syntactic di�erences between two patches.

Each column in Tables 5.5, 5.6 and 5.9 corresponds to the criteria de�ned

above. The �Others� column denotes the cases where the patch does not ful�ll

any of the de�ned criteria. Numbers in the last row in Tables 5.5, 5.6, and 5.9 are

of the form x+y = z, where x represents the number of patches in the CoREBench

benchmarks, y denotes the number of patches in the GenProg benchmarks, and z

is the total number of patches in both benchmarks.

We also manually classify and compute the number of correct repairs and the

number of plausible repairs.

De�nition 8 We use the de�nition below for our patch correctness analysis:

Correct Repair. A repair r is a correct repair if (1) r passes all test cases in the

test suite and (2) r is semantically equivalent to the repair issued by developer.

Plausible Repair. A repair r is a plausible repair if (1) r passes all test cases

in the test suite but (2) r is not semantically equivalent to the repair issued by

98

developer.

5.5.2 Evaluation on CoREBench benchmarks

The �rst four rows of Table 5.5, 5.6, 5.8, and 5.9 show the evaluation results for

the CoREBench benchmarks.

Patch Quality (RQ1)

Table 5.5 shows that both GenProg and mGenProg produce the same patch for 10

defects in the CoREBench benchmarks. mGenProg could localize the correct line

in 7 more defects than GenProg. mGenProg also generates patches that remove

less functionality in 7 defects.

Table 5.6 shows that both SPR and mSPR produce the same patch in 17

defects. mSPR localizes the correct line in 2 more defects than SPR. For 7 defects,

mSPR generates patches that removes less functionality.

Table 5.7 shows the overall patch correctness analysis results for GenProg,

mGenProg, SPR, and mSPR for each subject. GenProg generates 34 plausible

patches while mGenProg produces 33 plausible patches for the CoREBench

benchmarks. Speci�cally, mGenProg does not produce any repair for

findutils-e8bd5a2c-66c536b because the patch violates our anti-patterns.

Both SPR and mSPR generate 34 plausible patches for the CoREBench

benchmarks.

Improvement on �x localization. Our results show that anti-patterns could

lead both mGenProg and mSPR to producing patches that localize either the

correct line or the correct function. Anti-pattern-enhanced techniques may achieve

this improvement because anti-patterns may �lter all invalid repairs on a given

location, forcing �xes to be generated at other locations. We claim that the

ability to localize more precisely is important because when the repair tools fail

to generate the correct repair, the next best thing is to check whether they can

99

still generate hints that may lead developers to the repair faster.

Less functionality removal. Under the presence of weak oracles [127], search-

based repair tools may generate patches that pass the test suite by removing

untested functionality. Our results shows that anti-patterns help in producing

patches that remove less functionality and thus reduce the potential destructive

e�ects of generated patches.

Comparison between mGenProg and mSPR. Our anti-patterns integration

achieves greater improvement of patch quality on GenProg compared to SPR. We

think that this di�erence may be due to SPR being innately restricted by its set

of transformation schemas, which contain transformations that are often used in

human patches.

Predominance of Plausible Patches. Both GenProg and SPR do not

generate any correct patch for the CoREBench benchmarks. One possible

explanation is that the defects in the CoREBench have higher error complexity

than other benchmarks. Thus, more substantial patches are required to �x the

errors in these benchmarks [48]. These results also agree with our earlier

observation (in Section 5.2) that there is a clear predominance of plausible but

incorrect patches among all automatically generated patches.

Reducing Manual Inspection Cost (RQ2)

SPR may produce multiple patches in one repair session due to the use of batch

compilation and its staged repair algorithm. Given several candidate repairs,

developers need to manually inspect and verify each individual patch.

Figure 5-1 shows the total number of patches generated by SPR versus mSPR

for the CoREBench subjects. As SPR and mSPR can produce multiple patches

for a given bug, Figure 5-1 reports the total number of patches, while the data

in Tables 5.5, 5.6 and 5.7 uses a single, best patch (according to the order in

De�nition 7) among all generated patches for a particular bug. Overall, SPR

100

generates 87 patches while mSPR only generates 54 patches. Our patch analysis

reveals that all 33 additional patches generated by SPR (not generated by mSPR)

are indeed plausible but incorrect patches.

coreutils �ndutils grep make

10

20

30

21

31

20

15

12

19
17

6

N
u
m
b
er

of
P
at
ch
es

SPR
mSPR

Figure 5-1: Number of Patches Found by SPR vs. mSPR

Discussion on Number of Plausible Patches. Though prior evaluation of

search-based repair [141] focuses on measuring the number of successful repairs,

our results show that mSPR actually produces less number of candidate repairs

than SPR because some of the plausible patches produced by SPR are actually

nonsensical patches that are eliminated by our anti-patterns. Producing less

plausible patches could save the time spent on manual �ltering of invalid

patches, which would eventually be rejected by developers.

Speedup (RQ3)

The �Average Speedup (Same Patch)� column in Tables 5.5, 5.6, and 5.9 denotes

the average speedup obtained when we only considered the subjects where both the

original tool and the modi�ed tool produce the same patch. We use the formula

below for our speedup calculation (Repair Time is de�ned as the time taken for a

repair to be generated):

Repair T ime Speedup = Original Repair T ime
Modified Repair T ime

(5.1)

101

When GenProg and mGenProg produce the same patch, mGenProg obtain an

average repair time speedup of 1.39x while mSPR obtain an average repair time

speedup of 1.78x, for the CoREBench benchmarks.

Table 5.8 shows the overall reduction in the total number of repair candidates

generated for mGenProg and mSPR. The last row is of the form x, y, z where x

denotes average for CoREBench subjects, y denotes average for GenProg

subjects and z denotes the average for all subjects. We calculate the �Repair

Space Reduction� according to the formula below (where TotC refers to the total

number of repair candidates within the entire repair search space):

Repair Space Reduction = (1− Modified TotC
Orig TotC

) ∗ 100 (5.2)

On average, mGenProg achieves 41% repair space reduction compared to GenProg

while mSPR obtains 27% repair space reduction compared to SPR for CoREBench

subjects.

Discussion on Speedup. Tables 5.5 and 5.6 show that by enforcing

anti-patterns, we produce patches faster due to repair space reduction shown in

Table 5.8. One conceptual argument against the idea of anti-patterns may be

that it might make the repair search unduly ine�cient. These results show that

it is not so. In fact, the anti-patterns skip �irrelevant� parts of the repair space

(i.e., repairs that causes undesirable behavior, such as the deletion of the

symptoms of a bug).

Comparison with dGenProg (RQ4)

Table 5.9 shows the results for dGenProg versus mGenProg for the CoREBench

benchmarks. While both mGenProg and dGenProg produce 12 same patches,

mGenProg localizes better compared to dGenProg in seven more subjects than

dGenProg. Although dGenProg explicitly prohibits deletions, our results show

102

that mGenProg actually removes less functionality in �ve subjects compared to

dGenProg. Our analysis reveals that dGenProg may produce patches that skip

over many source lines of code by introducing early return. For

make-73e7767f-d584d0c1, mGenProg localizes the correct line while dGenProg

do not produce any repair.

When mGenProg and dGenProg produce the same patch, mGenProg achieves

an overall speedup of 1.20x over dGenProg in the CoREBench benchmarks.

Improvement over dGenProg. Our results on the CoREBench benchmarks

show that GenProg with anti-patterns produce patches of better quality and

faster than GenProg that simply prohibits deletions.

5.5.3 Evaluation on GenProg benchmarks

The 5-12th rows of Tables 5.5, 5.6, 5.8, and 5.9 show the experimental results

for the GenProg benchmarks. Tables 5.5 and 5.6 illustrate that our anti-patterns

achieve similar improvement on patch quality on the GenProg benchmarks. In

particular, mGenProg localizes better than GenProg in seven more defects.

mGenProg also removes less functionality in 12 defects. In contrast, mSPR

removes less functionality than SPR in three defects on GenProg benchmarks.

Table 5.7 shows that GenProg produces 3 correct repairs and 39 plausible

repairs while mGenProg produces two correct repairs and 37 plausible repairs for

the GenProg benchmarks. mGenProg does not generate any repair for three

subjects due to their violations of anti-patterns. Instead of producing correct

repair as in GenProg, mGenProg only generates plausible repairs for

php-309892-309910 because the correct repair actually involves deletion of a

if-statement, which violates our Anti-delete Control Statement pattern. In

contrast, mSPR produces one more correct patch than SPR and 23 plausible

repairs. Speci�cally, mSPR produces correct patch for php-308262-308315 while

SPR only generates plausible patch for this version. For libtiff-086036

103

-1ba752, mSPR does not generate any repair while SPR generates patch with

trivial condition that disables a branch. As the correct repair for this libti�

defect requires modi�cations of multiple statements, our analysis reveals that the

correct repair is indeed outside of SPR's repair space.

We also achieve similar reduction on repair time on the GenProg benchmarks,

as in the CoREBench benchmarks.

Restrictiveness of anti-patterns. Another conceptual argument against the

idea of anti-patterns may be that anti-patterns will be overly restrictive and will

rule out any repair in many cases whereas, if an existing search-based tool produces

some repair, it still helps the developers to some extent. Our results on the

GenProg benchmarks show that anti-patterns are not overly restrictive and, in

the few cases where it ruled out any repair, indeed no valid repair existed.

Weak Proxies. Our experiments for SPR and mSPR use the updated proxies in

previous work [127], which modi�es the test harness and the developer test script

for php and libtiff. In contrast, we reuse the weak proxies for our experiments

on GenProg and mGenProg. We used the weak oracles for GenProg and the

strong oracles for SPR because they are provided together with the original tool

distribution. If we compare the row 5-6 of Tables 5.5 and 5.6 in which di�erent

set of proxies are used, we observe that having a stronger proxy does not help

SPR substantially in terms of �x localization. Indeed, the improvement of mSPR

over SPR in terms of localizing the correct line, is similar to the improvement of

mGenProg over GenProg.

Discussion on Patch Correctness. Our results show that enforcing

anti-patterns does not necessarily lead to patches that are exactly equivalent to

the human patches. This is not entirely unexpected, because we only mark a

generated patch as correct, if it is near identical to the developer provided patch.

Our repair method is driven by a suite of test cases and aims to pass the

104

test-suite while not inserting any of the anti-patterns. It frees the developers

from providing di�erent human patch patterns for di�erent defect classes,

exception types, vulnerabilities, etc. Nevertheless, mSPR still generates one

more correct repair than SPR while mGenProg generates one plausible repair

that removes a branch from the original program.

5.6 Threats To Validity

We identify the threats to validity of our experiments.

Set of anti-patterns. Our anti-patterns merely represent bug, tool, and

language agnostic patterns that we found frequently occurred in bad patches and

seldom in correct ones. Though our experimental results show that our proposed

anti-patterns are e�ective in eliminating invalid patches, we do not claim that

our proposed set is a �complete� set.

Search. We terminate the search for repairs in both GenProg and SPR after a

repair has been found, due to limited resources. While both tools support full

exploration that may generate similar patches as in our modi�ed versions, such

exploration may also lead to increase in the number of invalid patches and longer

manual inspection time. As �we use the deterministic adaptive search algorithm

(AE) to control potential randomness� (Section 5.5.1), we will re-evaluate the

savings for the stochastic algorithm in future work.

Patch Correctness Analysis. While we tried to assess repair quality across

multiple dimensions, our check for semantic equivalence is inherently incomplete

and many �xes exist for a particular fault. Our conservative patch analysis

classi�es a patch as �correct� only when near identical to the human patch.

Hence, the number of repairs reported as �correct� may be an underestimate

because a plausible patch marked as not correct could very well be semantically

equivalent to the developers' provided patch.

105

Generality of anti-patterns. As we only evaluate the e�ect of anti-patterns on

CoREBench benchmarks [48] and the GenProg benchmarks [87], our anti-patterns

may have di�erent e�ects on other benchmarks. Nevertheless, our experimental

results show that anti-patterns provide similar bene�ts at least in both these

benchmarks.

5.7 Chapter Summary

In this chapter, we proposed integrating anti-patterns to search-based program

repair. Our experimental results show that by enforcing anti-patterns, we

produce patches with more pleasant properties, such as patches that delete less

functionality, and localize better. Tools integrated with anti-patterns also could

generate patches faster due to repair space reduction. A recent study [95] shows

the abundance of plausible patches and sparsity of correct patches � thereby

arguing for rich speci�cations (beyond test-suites) to guide the repair process.

Our results indicate that our anti-patterns, while they are not correctness

speci�cations, form one such set of speci�cations whose enforcement can improve

patch quality.

While in this work we explicitly speci�ed a set of anti-patterns as prohibited

code transformations, in future, it is feasible to implicitly specify anti-patterns as

selected �code smells�. Thus, during the repair search, any program modi�cation

that produces a program with a bad code smell could be e�ectively prohibited.

Our work opens the possibility of adapting the idea of anti-patterns to other

search-based software engineering activities beyond program repair. For

example, speci�c code anti-patterns identifying energy hot-spots may be

employed for energy reduction.

In future, we are unlikely to have programming environments that

automatically patch all errors without su�cient intervention or domain

106

knowledge. Meanwhile, it might be possible to have programming environments,

which attempt to patch programs so as to pass a given test-suite and point the

developers to likely error locations and likely �xes. Our proposal of anti-patterns

is a step in this direction.

107

T
ab
le
5.
5:

O
ve
ra
ll
R
es
u
lt
s
on

G
en
P
ro
g
(A

E
)
ve
rs
u
s
m
G
en
P
ro
g
(m

A
E
)

S
u
b
je
ct
s

S
am

e
P
at
ch

D
i�
er
en
t
P
at
ch

L
o
ca
li
ze
s
B
et
te
r

L
es
s
F
u
n
ct
io
n
al
it
y

R
em

ov
al

N
o
R
ep
ai
r

O
th
er
s

A
ve
ra
ge

S
p
ee
d
u
p

L
o
ca
li
ze
s
C
or
re
ct

L
in
e

L
o
ca
li
ze
s
C
or
re
ct

F
u
n
ct
io
n
b
u
t

In
co
rr
ec
t
L
in
e

(S
am

e
P
at
ch
)

A
E

m
A
E

A
E

m
A
E

A
E

m
A
E

A
E

m
A
E

co
re
u
ti
ls

0
0

0
4

4
5

0
0

5
0

-
�
n
d
u
ti
ls

4
0

4
2

1
1

0
1

5
0

1.
11

gr
ep

4
0

2
3

2
1

0
0

2
0

1.
30

m
ak
e

2
0

1
3

2
0

0
0

0
0

1.
77

p
h
p

10
1

1
0

2
6

0
0

8
0

2.
08

li
b
ti
�

3
0

4
3

1
5

0
3

10
0

1.
13

p
y
th
on

1
0

0
0

0
0

0
0

0
0

0.
98

gm
p

-
-

-
-

-
-

-
-

-
-

-
gz
ip

1
0

0
0

0
0

0
0

0
0

1.
12

w
ir
es
h
ar
k

0
0

3
0

0
0

0
0

3
0

-
fb
c

-
-

-
-

-
-

-
-

-
-

-
li
gh
th
tt
p
d

1
0

0
0

0
1

0
0

1
0

1.
85

T
ot
al

10
+
16
=
26

0+
1=

1
7+

8=
15

12
+
3=

15
9+

3=
12

7+
12
=
19

0+
0=

0
1+

3=
4
12
+
22
=
34

0+
0=

0
1.
39
+
1.
43
=
1.
42

108

T
ab
le
5.
6:

O
ve
ra
ll
R
es
u
lt
s
on

S
P
R
ve
rs
u
s
m
S
P
R

S
u
b
je
ct
s

S
am

e
P
at
ch

D
i�
er
en
t
P
at
ch

L
o
ca
li
ze
s
B
et
te
r

L
es
s
F
u
n
ct
io
n
al
it
y

R
em

ov
al

N
o
R
ep
ai
r

O
th
er
s

A
ve
ra
ge

S
p
ee
d
u
p

L
o
ca
li
ze
s
C
or
re
ct

L
in
e

L
o
ca
li
ze
s
C
or
re
ct

F
u
n
ct
io
n
b
u
t

In
co
rr
ec
t
L
in
e

(S
am

e
P
at
ch
)

S
P
R

m
S
P
R

S
P
R

m
S
P
R

S
P
R

m
S
P
R

S
P
R

m
S
P
R

co
re
u
ti
ls

6
0

0
2

2
3

0
0

3
0

1.
56

�
n
d
u
ti
ls

6
1

2
1

0
1

0
0

1
0

1.
62

gr
ep

5
0

1
3

3
2

0
0

3
0

2.
15

m
ak
e

0
0

0
2

2
1

0
0

1
0

-

p
h
p

15
0

2
2

0
0

0
0

0
0

1.
96

li
b
ti
�

2
1

1
1

0
1

0
1

1
0

2.
10

p
y
th
on

2
0

0
1

1
0

0
0

0
0

1.
50

gm
p

2
0

0
0

0
0

0
0

0
0

1.
42

gz
ip

1
0

1
0

0
0

0
0

1
0

1.
08

w
ir
es
h
ar
k

3
0

1
1

0
0

0
0

0
0

1.
85

fb
c

-
-

-
-

-
-

-
-

-
-

-
li
gh
th
tt
p
d

0
0

2
1

0
2

0
0

3
0

-

T
ot
al

17
+
25
=
42

1+
1=

2
3+

7=
10

8+
6=

14
7+

1=
8

7+
3=

10
0+

0=
0
0+

1=
1
8+

5=
13

0+
0=

0
1.
78
+
1.
65
=
1.
69

109

Table 5.7: Patch Correctness Analysis Result on mGenProg and mSPR

Subjects
GenProg mGenProg SPR mSPR

Correct Plausible Correct Plausible Correct Plausible Correct Plausible
coreutils 0 9 0 9 0 11 0 11
�ndutils 0 11 0 10 0 9 0 9
grep 0 9 0 9 0 11 0 11
make 0 5 0 5 0 3 0 3

php 2 17 1 18 8 9 9 8
libti� 0 16 0 13 1 4 1 3
python 1 0 1 0 1 2 1 2
gmp 0 0 0 0 1 1 1 1
gzip 0 1 0 1 1 1 1 1
wireshark 0 3 0 3 0 4 0 4
fbc 0 0 0 0 0 0 0 0
lighthttpd 0 2 0 2 0 4 0 4

Total 0+3=3 34+39=73 0+2=2 33+37=70 0+12=12 34+25=59 0+13=13 34+23=57

Table 5.8: Subject Programs and Repair Space Reduction Results for mGenProg and
mSPR

Subject
Repair Space Reduction(%)
mGenProg mSPR

coreutils 43 22
�ndutils 47 19
grep 38 32
make 37 36

php 37 20
libti� 43 61
python 31 26
gmp - 9
gzip 43 31
wireshark 42 35
fbc - -
lighthttpd 41 15

Average 41, 40, 40 27, 28, 28

110

T
ab
le
5.
9:

O
ve
ra
ll
R
es
u
lt
s
on

m
G
en
P
ro
g
(m

A
E
)
ve
rs
u
s
d
G
en
P
ro
g(
d
A
E
)

S
u
b
je
ct
s
S
am

e
P
at
ch

D
i�
er
en
t
P
at
ch

L
o
ca
li
ze
s
B
et
te
r

L
es
s
F
u
n
ct
io
n
al
it
y

R
em

ov
al

N
o
R
ep
ai
r

O
th
er
s

A
ve
ra
ge

S
p
ee
d
u
p

L
o
ca
li
ze
s
C
or
re
ct

L
in
e

L
o
ca
li
ze
s
C
or
re
ct

F
u
n
ct
io
n
b
u
t

In
co
rr
ec
t
L
in
e

(S
am

e
P
at
ch
)

d
A
E

m
A
E

d
A
E

m
A
E

d
A
E

m
A
E

d
A
E

m
A
E

co
re
u
ti
ls

4
0

0
1

1
3

0
0

3
0

1.
80

�
n
d
u
ti
ls

3
0

5
1

1
0

0
0

5
0

1.
03

gr
ep

2
0

1
3

3
2

0
0

4
1

0.
79

m
ak
e

3
0

1
1

1
0

1
0

0
0

1.
18

T
ot
al

12
0

7
6

6
5

1
0

12
1

1.
20

111

112

Chapter 6

Reli�x: Automated Repair of

Software Regressions

As our study of repair operators in Chapter 3 illustrates the ine�ciency of the

current set of operators, we introduce a new program repair approach that

employs a careful selection of repair operators in this chapter. Compared to

anti-patterns (Chapter 5) that are designed to solve the problems found in

automatically generated patches, the set of repair operators proposed in this

chapter aims to solve the problem in human generated patches � the �software

regression� problem.

6.1 Introduction

Software regression captures the scenario where failures occur in previously

passing tests. As software evolves due to changes in software requirement and

bug �xes, regression bugs may be introduced. Even worse still, �xing a

regression bug is likely to introduce another regression bug due to low-quality

patches and inadequate testing.

Prior studies on regression errors primarily focus on techniques for localizing

and understanding of regressions. The delta debugging approach searches for

113

failure-inducing circumstances contributing to test failures (i.e., the set of code

changes and the state di�erences between passing and failing tests) using a

divide-and-conquer algorithm [148]. Given a reference program, a buggy

program, and an input that fails on the buggy program, the Darwin approach

generates alternative input that fails on the buggy program, then compare the

executions of the two inputs to pinpoint the root cause of the error [125].

Previous studies show promising results in locating the cause of regression errors.

However, after locating the cause of regression errors, how do we utilize the

availability of a previous working version to automatically repair such errors?

This is addressed in the current chapter.

Fixing regression errors manually is time-consuming and error-prone. Recent

study stated that some regression errors could take up to 8.5 years before they

are detected and �xed by developers [48]. Recently, several automated program

repair techniques have been introduced. Arcuri and Yao suggested adapting

evolutionary algorithms for automatic program generation [34]. Weimer et al.

utilized genetic programming for automated program repair [67, 90]. Wei et al.

leverages software contract to automatically �x faulty Ei�el classes [140]. Nguyen

et al. employed symbolic execution and component-based program synthesis for

discovering the code required for �xing the buggy program [117]. Kim et al.

proposed an automated patch generation approach (i.e., PAR) that utilizes

common �x patterns learned from manual inspection of human patches [82].

Recent study shows that statements or expressions required for �xing exist in

previous commits of the programs [43, 106]. However, existing automated

program repair techniques have not fully exploited information from the software

change history for automated repair of regressions. In this chapter, we verify the

possibility of using syntactical information between program versions and test

execution history to repair problematic changes that causes regressions.

114

The key challenge in repairing regression errors is to retain as much of the new

functionalities introduced along with the new version as possible while reproducing

the regression tests' behavior in the previous version.

Criteria 1 We want our automated repair of regression error to follow the

following criteria:

C1: Introduces small changes Retains as much of the code of the new version

as possible as more changes may lead to more regression errors.

C2: Produces readable code Generates source code that developers can

understand and verify easily.

C3: Passes progression tests Progression tests that pass in the new version

and fail in the previous version must remain passing after the repair.

C4: Passes previously failed regression tests Regression tests that fail in

the previous version and pass in the current version must be made passing in

the new version.

C5: Only change if no regression will be introduced If changes caused

other tests in the test suite to fail, then leave the source code unchanged. The

repaired version should not introduce further regression error.

We present a novel approach, called reli�x, for automated repair of software

regressions. In particular, our contributions can be summarized as follows:

New Domain: We focus on program �xing on a new domain, speci�cally on

repairing software regression errors. This domain was not studied in prior work

in automated program repair, but various researches on fault localization [148,

147, 125, 42] and regression testing [131, 130] showed that this domain is

important and widely represented in software development activities.

New Perspective: We formulate the software regression repair problem as a

problem of reconciling problematic changes. We hypothesize that the �xes

for regression bugs can be crafted using code from both the previous version

115

Figure 6-1: reli�x 's Overall Work�ow

(speci�cally, the preceeding version before the regression error occurs) and the

current program version. We justify this formulation further in section 6.2.

This formulation allows us to introduce �xes only to the changed lines.

Program Repair using previous version : Our approach leverages di�erent

program versions and code changes for guiding automated repair of regression

bugs.

New contextual operators: We manually inspected 73 real regression bugs

from the CoREBench benchmarks [48]. Our manual inspection produces a set

of operators that uses information from two program versions, including

changed statements and program location of the changed statements.

Evaluation: We applied reli�x on eight open-source C projects (Make, Find,

Vim, Tar, Indent, Python and Perl), which have well-developed and well-

tested code. We compare the repairability of reli�x with GenProg on 36 real

regression errors. reli�x successfully repaired 23 bugs, while GenProg only �xes

�ve bugs. To compare the likelihood of both approaches in introducing new

regressions, we also evaluated the regression rate of both approaches given

the reduced test suite (test suite that contains the tests with di�erent test

behaviors in the two program versions). Our experimental results show that

our approach is less likely to introduce new regressions compared to GenProg.

116

6.2 Repairing Regression as Reconciling

Problematic Changes

When a developer �xes a regression error, he or she needs to execute the failing

regression test, locate the cause of the test failure, and �x the current version

of the program by referring to the previous version. This suggests that while

repairing regression we probably try to �nd a �x that replicates the regression

tests' behavior in the previous version. In fact, trivial �xes exist in the context

of regression � execute the previous version for the failing regression test and run

the current version for the remaining test cases. Such �xes are quick to issue,

and they pass all tests in the test suite. However, they are costly to maintain

and di�cult to understand. Worse still, the number of program versions will

double when another regression bug emerges. Thus, a good repair must be able

to reproduce the behavior of the regression tests in the previous working version

while maintaining the working functionality for the current version.

There are generally three types of software regressions.

Local A code modi�cation breaks existing functionality in the changed program

element.

Unmask A code modi�cation unmasks an existing bug that had no e�ect to some

test's behavior before the modi�cation.

Remote A code modi�cation introduces a bug in another unchanged program

element.

Intuitively, if a functionality works in the previous version, the Local regression

error can be �xed by rolling back to its old implementation in previous version.

This intuition is supported by the Revert to previous statement operator derived

from the Corebench benchmarks. Our hypothesis that �xes for regression errors

exist in the immediate version before a regression error occurs, is in line with this

117

intuition. Recent studies that speculate on the probabilities of locating �xes from

multiple program versions [106, 43] further validates this hypothesis.

In contrast, if some source code in previous version had successfully hidden

an existing bug, the Unmask regression error may be �xed by re-masking the

problematic changes. In this case, �xing regression involves searching for a

condition under which the problematic code modi�cations have no e�ect to the

tests' behavior. This intuition is supported by the Add condition operator

derived from the Corebench benchmarks. We hypothesize that the condition for

hiding the problematic changes can be found among the program expressions in

the current version. Some existing automated program repair techniques [90, 82]

share similar hypothesis.

From these two observations, we formulate the software regression repair

problem as a problem of reconciling problematic changes.

6.3 Experience about Real-life Regressions

We manually examined 73 benchmarks obtained from four subject programs to

understand how software evolves during real-world regressions. We used the

CoREBench benchmarks1 for our manual investigation. This set of benchmarks

is derived from regression errors that were systematically deduced from version

control repositories and bug reports of four open source GNU projects (i.e.,

Make2, Grep3, Findutils4,Coreutils5).

For each of the 73 benchmarks, we examined two set of code changes: (1)

changes that occur between the version before the regression is introduced (i.e.,

version P1) and the version immediately after P1 (i.e., version P2); and (2) code

changes that occur between the version before the regression is �xed (i.e., version

1http://www.comp.nus.edu.sg/~release/corebench/
2http://www.gnu.org/software/make/
3http://www.gnu.org/software/grep/
4http://www.gnu.org/software/�ndutils/
5http://www.gnu.org/software/coreutils/

118

http://www.comp.nus.edu.sg/~release/corebench/

Table 6.1: This table summarizes the number of code transformation operators that are
used for �xing regression bugs.

Operator Count
Add condition 27
Add statements 21
Use changed expression as input for other operator 13
Revert to previous statement 10
Replace with new expression 13
Remove incorrectly added statement 9
Change type 5
Add method 5
Add parameter 4
Add local variable 3
Swap changed statement with neighbouring statement 2
Negate added condition 1
Refactoring Analysis 1
Convert statement to condition variable statement 1
Add �eld 1
Total 116
Total Requires 2 operators 43

P3) and the version after the regression is �xed (i.e., version P4). We refer to each

program version as P1, P2, P3 and P4 to denote the corresponding program version

for the rest of the chapter. We then derived a set of general code transformations

by comparing version P3 with P4. This set of code transformations form the

operators that can be applied to repair the regression bugs. Table 6.1 shows the

code transformation derived from the benchmarks, together with the number of

benchmarks that uses the corresponding operator in regression bug �xing. The

table is sorted with the most commonly used operators at the top of the table. The

last row in the table shows that 43 repairs that involves two code transformation

operators (the other 73-43 = 30 repairs involve only one code transformation

operator). Overall, our manual inspection shows that information given by code

changes between program versions are often included in human patches.

119

6.3.1 Contextual Operators that Use Information from

Di�erent Program Versions

Our manual inspection produces a set of operators that utilize information

obtained from the previous version and from the code changes that occur

between two consecutive program versions. We refer to this set of operators as

contextual operators due to their references to di�erent program versions. We

next provide examples of our contextual operators.

Below are the details of each contextual operator:

Use changed expression as input for other operator This operator uses the

program expressions that change (i.e., modify, add or remove) between two

versions as input to other non-contextual operators (e.g., Add condition).

The example below shows a patch in regression bug-�xing for Coreutils.

The expression max_range_endpoint < eol_range_start was removed in

the evolution from version P1 to version P2.

if(output_delimiter_specified && !complement && eol_range_start && ...

&& !is_printable_field(eol_range_start))

(max_range_endpoint < eol_range_start || !is_printable_field(eol_range_start)))

Listing 6.1: Example for use changed expression as input for other operator

Revert to previous statement This operator replaces newly added statements with

the corresponding statements from old version, essentially reverting back some

statements to the old version. The example in the following show a loop that

was removed when Make evolves from version P1 to version P2. The developer

added back the same loop to �x the regression in version P4.

while(out > line && isblank ((unsigned char)out[-1]))

--out;

Listing 6.2: Revert to previous statement example

Remove incorrectly added statement This operator deletes program statements

120

that were incorrectly added by the developer due to wrong bug �x.

Swap changed statement with neighboring statement This operator exchanges a

changed statement with another consecutive statement. The changed

statement serves as the pivot position for the exchange. Listing 6.3 shows the

code modi�cations from version P3 to version P4. The FindUtils developer

added our_pred->est_success_rate=estimate_pattern_match_rate(...); in

version P2, and later changed the statement order relative to the

statement(*arg_ptr)++;.

(* arg_ptr)++;

our_pred ->est_success_rate = estimate_pattern_match_rate(argv[* arg_ptr], 1);

(* arg_ptr)++;

Listing 6.3: Example for Swap changed statement with neighbouring statement

Negate added condition This operator negates a branch condition that was

previously added by the developer. For example, the Grep developer added

the condition included_patterns && !excluded_file_name(...) in version

P2. The bug is �xed by changing the added condition to included_patterns

&& excluded_file_name(...) in version P4.

Convert statement to condition variable statement This operator convert a

statement with Boolean return type to a condition variable statement.

Listing 6.4 presents the changes between version P3 and P4. The Coreutils

developer forgets to check for the condition when the set_acl function

returns 0. The �x requires converting the function call statement to a

condition variable statement.

set_acl(dst_name , dest_desc , 0666 &~ cached_umask ());

if(set_acl(dst_name , dest_desc , 0666 & ~cached_umask ()) != 0)

Listing 6.4: Code changes between version P3 and P4 to illustrate convert statement to condition

variable statement

121

6.4 Example

We illustrate how reli�x can be used by showing three examples of �xes generated

by reli�x in three projects. The �rst two examples illustrate various operators

involved in the �xes while the last example compares our generated �xes with the

patches issued by developers. Consider �rst the Vim project 6, a popular editor

that supports e�cient text editing. A regression is introduced in version 7.2.50 of

Vim, causing failures in two tests in Vim's existing test suite. Listing 6.5 shows the

repair generated by reli�x with an application of the Revert to previous statement

operator. This example demonstrates how reli�x repairs a Local regression error.

Note that there are approximately 18 change hunks7 in the faulty source �les

between the two program versions, while the produced repair only modi�es one

hunk. Instead of reverting the entire source �les to the previous version, the

produced repair only reverts the faulty lines. This shows that our repair satis�es

the criterion C1.

fwrite(p, l, (size_t)1, fd);

fwv &= fwrite(p, l, (size_t)1, fd);

Listing 6.5: Example patch generated by relifix using "Revert to previous statement"

Consider next the GNU Indent project 8, a utility that formats C source �les

according to speci�c indent style. An Unmask regression occurs in version

2.2.10 of Indent, causing the buggy version to append too many newlines

between variable declarations of a C source �les. Listing 6.6 shows the repair

generated by reli�x using the �Add inverted condition� operator and �Use

changed expression as input for other� operator. reli�x �rst generates the

condition !(parser_state_tos->decl_on_line) by negating an existing

6http://www.vim.org/
7A change hunk is a single sequence of contiguous source codes which has been modi�ed from
one version to another [102, 116, 120].

8http://www.gnu.org/software/indent/

122

// Patch that repairs the reduced test suite

if (/* added */(!(parser_state_tos ->decl_on_line)){

...

}

// Patch that repairs all tests in the test suite

if (/* added */(!(parser_state_tos ->decl_on_line)

|| parser_state_tos ->procname != "\0")}){

Listing 6.6: Example patches generated by relifix using two operators

Boolean expression. This intermediate patch passes the reduced test suite that

contains one failing test, but it introduces new regression in other tests from the

whole test suite. reli�x then repairs the regression that it introduced by

modifying the changed lines (i.e., the added condition). The �nal patch that

passes all tests in the entire test suite is formed by appending another condition

parser_state_tos->procname != "\0" (i.e., condition obtained by converting

the assignment statement parser_state_tos->procname = "\0" to disequality)

to the intermediate patch. This example illustrates the two-phase patch

evaluation performed by reli�x.

We next discuss one example that illustrates the di�erences between the patch

generated by our approach and the patches issued by the developer. For this

example, consider the GNU Make project9, a tool that builds executables for a

program from its source �les. Two regression bugs (i.e., bug #12202 and bug

#12267) are introduced with version 73e7767 of Make. Listing 6.7 shows the two

patches generated in two di�erent commits by the Make developer to �x the bugs.

Listing 6.8 presents the code changes that causes the regression, while listing 6.9

shows the single patch generated by reli�x that repairs both regression errors. To

�x both regression bugs, reli�x appends the condition isintermed_ok to one of the

code change hunks. In this case, we consider that the code changes in listing 6.8

unmask a latent regression error and the added condition isintermed_ok has

successfully masked both regression errors. While the �x generated by reli�x is

signi�cantly di�erent from the developer's patches, it may be preferable because

9http://www.gnu.org/software/make/

123

// Developer fixes for regression bug #12202

f->is_target = 1;

. . .
file ->is_target = 1;

// Developer fixes for regression bug #12267

register struct file *f = enter_file (imf ->name);

register struct file *f = lookup_file (imf ->name);

if (f != 0)

f->precious = 1;

else

f = enter_file (imf ->name);

. . .
if (!f->precious)

Listing 6.7: Example patches issued by the developer

//In file.c

f2->is_target = 1;

// In implicit.c

struct file *f;

...

if (lookup_file (p) != 0

if (((f = lookup_file (p)) != 0 && f->is_target)

Listing 6.8: Example code change hunks between version 73e7767 and its preceeding versions

// Patches generated by relifix

if (((f = lookup_file (p)) != 0 && f->is_target)

if (((f = lookup_file (p)) != 0 && (f->is_target || isintermed_ok))

Listing 6.9: Example patch generated by relifix using one operator

(1) it satis�es all criteria in Criteria 1 , and (2) it �xes both regression errors

using only one patch.

6.5 Algorithm

Figure 6-1 shows the overall work-�ow of our approach. Our reli�x approach

follows a three-step process. The �rst step takes as input the source code of the

two program versions and the whole test suite with at least one failing test case that

captures the regression error, and generates a ranked list of suspicious statements.

The second step modi�es the source code for the buggy version at the program

location according to the list generated at previous step to produce a candidate

repair. The last step builds the modi�ed source code and re-executing the test

suite to check if the generated repair passes all test cases. The main novelty in

our work is in coming up with the contextual operators, and then applying them

at the �right� places.

124

Input: List of suspicious statements RankList
Input: Set of test suite T , Reduced test suite Tr ⊆ T
Input: List of contextual operators O
Input: Set of program expression E
Input: Period P � the number of iterations for each location before considering next location
Output: Program mutant that passes all test cases
iter ← 0; currO ← Shuffle(O); currTS ← Tr;1

Tabu← {}; currL← 0; currC ← original program;2

while repair not found do3

currL← next top ranked location ∈ RankList;4

changedCount← 0;5

while iter ≤ P ∧ changedCount < size(CurrO)− 1 do6

op← Dequeue(CurrO);7

if op is parameterizable then8

/* select expression that are not in tabu */ repeat
currE ← randomly chosen expr ∈ E;

until currE ̸∈ Tabu ;

9

/* apply operator op with currE as parameter to candidate currC at location currL */10

c← currC.apply(op, currL, currE);
else11

/* apply operator op to candidate currC at location currL */12

c← currC.apply(op, currL);13

end14

Result← Evaluate(c, currTS);15

/* two-phrase mutant evaluation */16

if ∀r ∈ Result, r = passes then17

currTS ← T ;18

AResult← Evaluate(c, currTS);19

//check if repair is found20

if ∀a ∈ AResult, a = passes then21

break;22

else23

/* c causes new regressions, repair c with the whole test suite */24

currC ← c;25

/* reset and re-shu�e O */ currO ←Shu�e(O);26

end27

else28

/* check if the operator op can be applied at location currL and if candidate c is29

compilable */
if canBeApplied(op, currL) ∧ isCompiled(c) then30

/* reuse operator used in candidate c if it induces any change in the test execution
results for any test in the test suite */
if op is parameterizable ∧ ∃r ∈ Result,di�Result(r) then

Enqueue(CurrO, op);
end

31

changedCount← changedCount+ 1;32

iter ← iter + 1;33

else34

Tabu← Tabu ∪ currE;35

end36

end37

end38

end39

Algorithm 4: reli�x Mutant Generation and Evaluation Algorithm

125

6.5.1 Fault Localization

Our goal is to �nd a faulty program location that leads to the regression error.

We �rst compute a suspiciousness score for each statement in the buggy program

using the Ochiai formula [23] given below:

suspiciousness(s) =
failed(s)10√

total failed11 × (failed(s) + passed(s)12)

We choose the Ochiai formula due to its e�ectiveness demonstrated by previous

studies [24, 22]. To obtain the code changes between the two versions, we use the

open-source GNU Di�utils 13. Di�utils perform plain text comparisons to �nd the

di�erences between two text �les. After sorting the suspiciousness score for each

statement, we remove the statements that do not lie within the set of modi�ed

statements from the list of suspicious statements. This step allows us to (1) reduce

the inspection cost for the location to apply the �x and (2) increase the probability

of applying our contextual operators. We share assumptions that are commonly

used to evaluate testing and debugging techniques [65], that the error is among

the changed statements. Note that this may lead to loss of residual latent error

that are not manifested by the current test suite.

6.5.2 Mutant Generation and Evaluation

After reli�x generates the list of suspicious statement, it uses our mutation

generation component to generate a mutant. Our de�nition of program mutant

is similar to prior work on mutation testing [64]: each mutant is de�ned as a

program that are modi�ed through some applications of mutation operators at

some faulty locations.

12failed(s): Number of failing tests that executes statement s
12total failed: Total number of failing tests
12passed(s): Number of passing tests that executes statement s
13http://www.gnu.org/software/di�utils/

126

We collect a set of program expressions of type Boolean to be combined with

all the parameterizable operators at later step. This set contains (1) all Boolean

program expressions (that are within the program scope at the faulty location),

and (2) expressions formed by converting the assignment operators in all the

assignment statements (that are within the program scope at the faulty location)

to the equality operators.

Algorithm 4 shows the pseudo-code of the reli�x mutant generation and

evaluation algorithm. Our reli�x approach applies a randomly chosen contextual

operator at a faulty location, evaluates each mutant against the current test

suite, and iteratively repeats these steps until all the tests pass, no contextual

operators apply, or the time limit is reached. Before applying each operator, we

check whether the statement at the faulty location matches the given context for

the operator and gather the required contextual information from both program

versions. For example, if the faulty location has integer return type, the Convert

statement to conditional statement operator cannot be applied.

We implement two optimizations for our random search algorithm: (1 �

highlighted in �rst box) we store the index for the program expressions that do

not compile in a tabu list, which helps us to avoid reusing program expressions

that are not compilable. (2 � highlighted in second box) we enumerate the

number of well-formed mutants (De�nition 9). As each well-formed mutant

indicates progress in generating the �nal repair, the operator involved in

generating that mutant can be reused in generating the next set of mutants.

De�nition 9 Well-formed mutants are mutants that satisfy the following

conditions:

Compilable Mutants generated should not generate any compilation errors

Match Given Context The program location and the structural type of the

program element must match the context for the chosen operator used in

127

generating the repair.

Induce Change in Test Execution Results Mutants generated should induce

changes that a�ect the test behavior of some tests within the test suite.

We modify the clang-mutate tool 14 to implement our mutant generation

component. clang-mutate is built on top of the Clang 15 LibTooling library that

o�ers utilities for parsing C programs and performing source-to-source

transformations. Our mutant generation component satis�es the criterion C2 as

it modi�es C source �les directly to produce understandable code annotated with

code comments (see Section 6.4 for examples of our generated code).

We implement all the contextual operators listed in section 6.3.1, including

�ve non-parameterizable operators: (1) Revert to previous statement, (2) Remove

incorrectly added statement, (3) Swap changed statement with neighboring

statement, (4) Negate added condition , and (5) Convert statement to condition

variable statement. We also implement four parameterizable operators (i.e,

operators that needs to be with program expression), including (1) Add condition

to changed expression (this operator combines the operator Use changed

expression as input for other operator and the operator Add condition), (2) Add

condition , and (3) Add statement. The �rst four parameterizable operators aim

to �nd the condition for hiding an Unmask regression error.

Before applying contextual operators, we collect contextual information

(program location, changed expression and type of changes) required to support

the de�ned operations.

6.5.3 Test Case Prioritization and Reduced Test Suite

We evaluate each patch using a two-phase approach. We �rst execute the resulting

patch against the reduced test suite. The reduced test suite (Figure 6-1) consists

14https://github.com/eschulte/clang-mutate
15http://clang.llvm.org/

128

Table 6.2: Subject Programs and Their Basic Statistics

Subject Description Size in kLOC Bug Introducing Commit Bug Report PT Size/Test Suite Size
Vim Text Editor 150 f80e67 [18] [17] 1/74

509890 [16] [15] 2/73
a3552c [20] [19] 1/71
220906 [14] [13] 1/72

CPython Programming language 407 b878df [4] [3] 1/268
5b0fda [2] [1] 1/286

Perl Programming language 271 dca606 [10] [9] 1/159
bb9ee97 [8] [7] 1/159

Indent Source code re-format utilities 15 2.2.10 [6] [5] 1/159
Tar Archives manipulation utilities 21 1.14 [12] [11] 1/15

Findutils Directory searching utilities 18 6 versions 10 bugs [1,10]/1054
Make Program executable generation utilities 35.3 12 versions 15 bugs [1,2]/528

Table 6.3: Operators used in �xes generated by reli�x

Subject Operators Used Number of Operators Change Hunks
Vim-f80e67 [18] Swap 1 1
Vim-509890 [16] Revert 1 1
Vim-a3552c [20] AddIf 1 1
Vim-220906 [14] - - -

Cpython-b878df [4] Revert 1 1
Cpython-5b0fda [2] AddIf 1 1
Perl-dca606 [10] Revert 1 3
Perl-bb9ee97 [8] - - -
Indent-2.2.10 [6] AddIf & AddOld 2 1

Tar-1.14 [12] Revert 1 2

Findutils 4 AddIf, 3 Revert, 1 Insert 8/8 10/8
Make 3 AddIf, 3 AddNegated, 1 Revert 7/7 7/7

Total/Mean 10 AddIf, 8 Revert, 3 AddNegated, 1 AddOld, 1 Swap, 1 Insert 24/23=1.04 28/23=1.22

of tests with di�erent execution results in both versions, namely the progression

tests (tests that fail in the previous version but pass in current version) and the

failing regression tests (tests that fail in the previous version but pass in current

version). When a patch that passes both set of tests is found, we then check if it

introduces any new regression by re-executes all tests in the test suite.

We prioritize test cases using the reduced test suite based on the assumption

that test cases that evolve across the two versions are more likely to fail in future

execution [131]. Our goal is to save the time spent in evaluating each patch against

the entire test suite, and to allow more candidate mutants to be generated within

the time limit.

6.6 Experimental Evaluation

We perform an evaluation on real regressions by comparing the e�ectiveness of

our approach with GenProg [90]. To evaluate the e�ectiveness of our approach,

we aim to address the following research questions:

129

Table 6.4: Overall Repairability (i.e., RP) and Regression Rate (i.e. RR) for reli�x and
GenProg on the new Subject Programs

Subject reli�x reli�x GenProg GenProg rGenProg rGenProg
Reduced test suite

Whole test suite
Reduced test suite

Whole test suite
Reduced test suite

Whole test suite
RP RR RP RR RP RR

Vim-f80e67 [18] 1 0 1 0 0 0 0 0 0
Vim-509890 [16] 1 0 1 0 0 0 0 0 0
Vim-a3552c [20] 1 0 1 0 0 0 0 0 0
Vim-220906 [14] 0 0 0 0 0 0 0 0 0

Cpython-b878df [4] 1 0 1 0 0 0 0 0 0
Cpython-5b0fda [2] 1 0 1 0 0 0 0 0 0
Perl-dca606 [10] 1 0 1 0 0 0 0 0 0
Perl-bb9ee97 [8] 0 0 0 0 0 0 0 0 0
Indent-2.2.10 [6] 1 1 1 0 0 0 0 0 0

Tar-1.14 [12] 1 0 1 0 0 0 0 0 0

Findutils 8/10 0/8 8/10 2/10 2/2 5/10 0 0 5/10
Make 8/15 1/8 7/15 0/15 0/15 0/15 0/15 0/15 0/15
Total 24/35 2/24 23/35 2/35 2/2 5/35 0/35 0/35 5/35

RQ1 How many regression errors can our approach repair compared to GenProg?

RQ2 Given only the test cases that evolves across the two versions, how likely is

our approach to introduce new regressions, as compared to GenProg?

RQ3 Are our produced �xes suitable for patching latent regression errors or for

patching errors due to code changes?

RQ4 Can we �x regression errors by making only small code changes without

introducing new regressions?

The �rst question (RQ1) assesses the repairability of both approaches in the

context of regression error, given the whole test suite. The second question (RQ2)

evaluates the likelihood of both approaches in producing other test failures after

repairing a regression error based on a reduced test suite (see Subsection 6.5.3 for

de�nition of reduced test suite). The third question (RQ3) asks if our approach is

more e�ective in �xing existing errors (i.e., latent errors) compared to new errors

that are introduced due to the code modi�cation. Lastly, the fourth question

(RQ4) validates our hypothesis that mutant with small code changes (according

to our below de�nition of small code changes) are less likely to introduce new

regressions.

At the beginning of this chapter, we presented Criteria 1 which guides our

regression repair. We now present Criteria 2 which checks whether our approach

produces repairs with small code changes, and further clari�es the �rst property

130

mentioned in Criteria 1.

Criteria 2 Our repair should introduce small code changes, such that each repair

should satisfy the following criteria:

Least number of change hunks Our repair should introduce the least number

of change hunks. A change hunk is a single sequence of contiguous source codes

which has been modi�ed from one version to another [120, 116, 102].

Least number of applied operators Our repair should apply the least number

of operators to the original program.

6.6.1 Experimental Setup

We evaluate reli�x on 35 real regression errors collected from seven open-source

C projects. Table 6.2 lists information about these projects. The last column

in Table 6.2 shows the number of progression tests(PT) and the total number of

tests in the whole test suite. For each regression error, we run both reli�x and

GenProg [87] to generate repair. GenProg provides several options that control

the fault localization scheme used (e.g., path-based and line-based). We use the

line-based fault localization scheme and provide the changed lines for the faulty

locations to simulate a specialized version of GenProg for �xing regression errors

(we call this rGenProg). We then compare the repairability (RQ1) of all the three

approaches: reli�x, GenProg and rGenProg. We also compare how likely each

approach introduces new regressions.

All subject programs in Table 6.2 are utilities or libraries that are commonly

used. As we perform our evaluation only on real regression errors, we select two

subjects (i.e., Findutils and Make) from the CoREBench benchmarks [48], (2)

two subjects (i.e., Indent and Tar) from [147] and one subject used in GenProg

experiments. We also add two additional subjects (i.e., Vim and Perl). We choose

these regression errors because (S1) they contain detailed bug report that speci�es

the bug introducing commit, and (S2) all the regression errors are reproducible

131

with at least one test that passes in previous version and fails in the faulty version.

We exclude 8 bugs (i.e, 5 bugs from Findutils and 3 bugs from Make) from the

CoREBench benchmarks as they violate (S2).

For running GenProg, we reuse the same parameters stated in [87]. One

signi�cant di�erence is that we switch to the deterministic adaptive search

algorithm (AE) [141] to control potential randomness. Each run of reli�x,

GenProg and rGenProg is terminated after one hour or when a repair is found.

All experiments were performed on a machine with a dual-core Intel i5-2520M

2.50GHz processor and 4GB of memory.

6.6.2 Repairability (RQ1)

Table 6.4 presents the repairability and the regression rate for the 10 individual

regression errors (subjects outside CoREBench). For all tables, we denote x bugs

out of a total of y bugs with x/y. The last row of Table 6.4 shows the aggregated

repairability (i.e., repairability for all bugs) and the aggregated regression rate for

reli�x and GenProg on the two CoREBench subjects. Given the entire test suite,

reli�x successfully repair 15 out of 25 regression errors (as stated in the �Whole

test suite� column in Table 6.4) for the two CoREBench subjects, while GenProg

only �xes 5 bugs. For the 10 regression errors in subjects outside CoREBench in

Table 6.4, reli�x �xes 8 out of 10 regression errors but GenProg fails to generate

any repair for all the 10 bugs. Although GenProg is able to �x approximately half

of the evaluated programs in their recent study in [87], GenProg can only �x 14.3%

(i.e., 5 out of 35 bugs) of all the evaluated subjects. In comparison, reli�x repairs

65.7% (i.e., 23 out of 35 bugs). We attribute the low repairability of GenProg

to (1) the high complexity of the real regression errors as some regression errors

in CoREBench has fairly high error complexity [48], (2) the lack of availability

of �xes within the same program (i.e., the �xes may only exist in the previous

version of the same program as argued in the recent paper [43]).

132

Next, we compare the repairability of both reli�x and GenProg for the reduced

test suites (read Subsection 6.5.3 for de�nition of reduced test suite). Given the

reduced test suite, GenProg generates only 2 out of 35 repairs, whereas reli�x

produces 24 out of 35 repairs. In comparison, rGenProg that �xes only the changed

lines fails to produce any repair with both set of test suites. The repairability of

GenProg decreases (i.e., from generating 5 repairs to generating only 2 repairs)

when provided with the reduced test suite compared to the whole test suite because

the search space for the faulty locations increases signi�cantly due the reduced test

suite. reli�x does not su�er from the same problem as (1) it reduces the search

space for the faulty location by ignoring program location that are not within the

set of code modi�cations, and (2) it further re�nes the �x location by applying

�xes to each faulty location iteratively for a limited period of time.

On average, GenProg requires 44 patch evaluations (i.e., patch trials in [126])

before generating a repair while reli�x takes 25 mutant evaluations for producing

the �nal repair.

6.6.3 Regression Rate (RQ2)

The �RR� columns in Table 6.4 represent the regression rate of each approach using

only the reduced test suite, while the �RP� columns denotes the measurement given

the whole test suite. We de�ne regression rate as the likelihood of introducing new

regression errors after �xing all tests in the reduced test suite. We calculate the

regression using the formula below:

RR = Number of Repairs that introduce new regression
Number of All Generated Repairs

(6.1)

In total, reli�x introduces new regressions in 2 out of 24 repairs with the reduced

test suite (see Subsection 6.5.3 for explanation of reduced test suite). In

comparison, GenProg introduces regression in all repairs (i.e., 2 out of 2)

133

generated with the reduced test suite, while rGenProg does not generate any

repair with the reduced test suite.

We next discuss the regressions introduced by both approaches. reli�x causes

a regression in a test that check if parallel execution of Make works correctly

when �xing the regression error for Make-bug-#3920316. This regression cannot

be �xed when executing reli�x on the entire test suite. reli�x also introduces

new regression when �xing the Indent program [5]. As discussed in section 6.4,

this regression can be repaired given the entire test suite. GenProg causes 45

test failures out of 80 tests in the entire test suite when �xing the regression

error for the Findutils-bug-#1822217, while it makes one out of 81 tests fail in

the whole test suite when repairing the Findutils-bug-#1960518. We classify

the �xes for Findutils-bug-#18222 as a bad �x because it causes more failures

compared to the original buggy versions that has only one test failure. We think

that the high regression rate of GenProg may be due to (1) the imprecise fault

localization used, and (2) the massive number of modi�cations in the patches.

The speculation regarding the problem with fault localization is supported by the

fact that rGenProg , which �xes only the changed lines, does not share similar

regression rate as the original GenProg.

6.6.4 Repairability of Latent Errors versus New Errors

(RQ3) and the Simplicity of the Generated Repair

(RQ4)

Table 6.3 lists the operators involved in the �xes generated by reli�x. The table

below explains the abbreviation used to denote the name of the operator in

Table 6.3.

16http://savannah.gnu.org/bugs/?39203
17http://savannah.gnu.org/bugs/?18222
18http://savannah.gnu.org/bugs/?19605

134

http://savannah.gnu.org/bugs/?39203
http://savannah.gnu.org/bugs/?18222
http://savannah.gnu.org/bugs/?19605

Revert Revert to previous statement

Swap Swap changed statement with neighboring statement

AddIf Add condition

AddOld Add condition to changed expression

AddNegated Add negated condition

Insert Add statement

As the classi�cation of a regression error as a latent error or a new error caused

by code modi�cations requires deep understanding of the regression error, we

cannot provide a precise answer for RQ3. However, since the Revert to previous

statement operator are directly related to the Local regression error that are

caused by a broken existing functionality, we can provide an rough estimate of

latent errors repaired by reli�x by calculating the number of �xes generated using

the Revert to previous statement operators. Based on this estimation, 8 out of 24

generated �xes are latent errors. This suggest that reli�x can �x both types of

errors (i.e., latent errors and new errors due to code modi�cation) equally well.

We hypothesize that repair that makes only small code changes are less likely

to introduce new regressions. Hence, we check if our repair satis�es all criteria in

Criteria 2. The last two columns in Table 6.3 shows the number of operators used

and the number of change hunks involved for each generated repair. As shown in

the last row of the table, the mean value for the number of operator used in the

�nal repair is 24/23 ≈ 1.04, while the mean value for the number of change hunks

involved in the generated �xes is 28/23 ≈ 1.22. The two low mean values suggest

that most �xes generated by reli�x involve making only small code changes to the

original program. While we do not have enough data to support the claim that the

small code changes are less likely to introduce new regressions, we observe that

all the new regressions produced by reli�x and GenProg with the reduced test

suite involve introducing more than one change hunks and applying more than

one mutation operators in the generated �xes.

135

6.7 Threats To Validity

We identify the following threats to the validity of our experiments:

Subjects While our evaluation uses subjects of various sizes and from various

sources, we reuse two subjects, in which we obtained the set of contextual

operators, for evaluation. This selection compensates for the lack of

benchmarks with real regression errors but it may be biased towards reli�x

due the operators derived in our manual inspection. However, we note that

the operators used in generating repair by reli�x in those subjects are

generally di�erent from the original operators observed due to the gap

between the error introducing commit and the bug-�xing commit.

Contextual Operators We derived the set of contextual operators from a

benchmark that contains only C programs. The same set of operators may

not be generalized to other languages. As we investigated only open-source

projects, the operator may not be generalized to closed-source projects.

Readability of Patches We claim that the code generated by reli�x are

understandable with some examples in Section 6.4. This claim relies on the

intuition that source code annotated with comments are generally more

readable than CIL (i.e., Common Intermediate Language) �le produced by

other tools (e.g., GenProg). We leave detailed evaluation of the readability of

automatically generated patches as future work.

Time We restrict the time limit for evaluating reli�x and GenProg to one hour

due to limited resources. The repairability for both tools may increase given a

longer timeout.

6.8 Related Work

Fault Localization There are several fault localization techniques that utilizes

multiple program versions [28, 42, 125, 129, 147, 148]. DARWIN uses the previous

136

version to localize the regression bug using dynamic symbolic execution in both

program versions [125]. Delta debugging isolates failure-inducing circumstances

that are responsible to test failures using a divide-and-conqueer algorithm [148].

It can be used to repair regression errors by �rst isolating problematic changes

and reverting these changes. This way of repairing regressions is part of our set

of contextual operators.

Automatic Program Repair A few automated program repair techniques

have been proposed to reduce the time and e�ort required to �x software bugs.

Arcuri and Yao proposed adopting evolutionary algorithms for automatic

program generation [34]. Weimer et al. proposed using genetic programming for

automated program repair [67, 90]. GenProg generates �xes using statements

that exist within the same program, while we utilize statements in the previous

program version to repair regression errors. After generating a repair, GenProg

requires a separate minization step to produce patches with simpler code

changes. Our repair algorithm does not require this step as it generates repairs

by applying only a small number of operators to some changed lines.

Kim et al. proposed an automated patch generation that utilizes common �x

templates learned from manual inspection of human patches [82]. Their user study

demonstrated that patches generated by PAR are more acceptable than patches

produced by GenProg. While we also derive our contextual operators from human

patches, our operators are more general as they are not designed to �x a particular

defect class (i.e., null pointer exceptions and array out-of-bound errors) [112].

Wei et al. leverages software contract to automatically repair faulty Ei�el

classes [140]. Our approach does not require manually written program contract

as it utilizes syntactical information from the previous program version that may

serve as an implicit speci�cation.

Nguyen et al. employs program synthesis for discovering the intent pieces of

137

code required for �xing the buggy program [117]. While we employed random

search for the condition to hide the Unmask regression errors due to scalability

issues, we believe that program synthesis may be used to generate the required

condition.

Repair that uses domain speci�c knowledge There are several program

repair techniques that utilizes domain speci�c information. In particular,

PACHIKA relies on di�erences between passing and failing runs to automatically

infer object behavioral model from Java program and produce �xes by either

inserting or deleting method calls [61]. BugFix is a tool that incorporates

information gathered from several debugging sessions in order to increase

precision for producing bug-�x suggestion [74]. R2Fix closes the loop between

bug report submission and patch generation by automatically classify the type of

bug discussed in bug report and extracting pattern parameters to generate �xes

based on a several prede�ned �x patterns [93]. PHPRepair �xes malformed

HTML generation errors by encoding the string output for each test case

execution as a constraint over variables corresponding to constant prints in the

program and uses a constraint solver to generate string modi�cation [132].

Martinez and Monperrus mine semantic code modi�cations(which they referred

to as repair actions) from human patches and attach a probability distribution to

the mined repair actions [104]. None of these techniques focus on repairing

regression errors.

Utilizing Previous Version as a �x Various studies speculate on the

possibility of locating �xes from various program versions [27, 43, 106]. Martinez

et. al. demonstrates that statements or expressions that are required for �xing

exist in previous commits of the programs [106]. Barr et al. analyzes commits

from several open-source Java projects, and they found that commits can be

reconstructed from codes from the preceeding versions [43]. Alkhalaf et al. uses

138

semantic di�erences between a reference function and a target function to

synthesize a validation, a length, and a sanitization patch for repairing

web-application code [27]. We share similar observation that the previous

program version may be used for automatic repair generation, speci�cally in

�xing Local regression bugs. The key di�erence is that some of our contextual

operators use program location information from the previous version, while

other operators utilize program expressions from the current version.

Furthermore, to the best of our knowledge, ours is the �rst work to develop a

repair method and tool speci�cally for patching regression bugs.

6.9 Chapter Summary

In this chapter, we proposed reli�x� an approach of automated repair of

software regression. This was achieved by considering the regression repair

problem as a problem of reconciling problematic changes. We justi�ed our claim

using a set of contextual operators derived from our manual inspection of 73 real

software regressions. Our evaluation on 36 real regression bugs shows that reli�x

can repair 23 bugs, while GenProg only �xes �ve bugs. Our experimental results

with the reduced test suite suggests that our approach is less likely to introduce

new regression compared to GenProg.

139

140

Chapter 7

Emerging Applications: Repairing

Crashes in Mobile Apps

As all repair operators studied in Chapter 3 are program transformations that

mimic programming errors in C programs, a di�erent set of repair operators may

be required for �xing di�erent types of applications.

This chapter presents a novel program repair approach that automatically

generates �xes for Android applications. As event transitions in Android

applications are governed by Android Activity/Fragment lifecycle management

rules, violations of these rules may cause crashes in Android applications. To

address this problem, we design a new set of repair operators that leverage

Android Activity/Fragment lifecycle information for �xing crashes in Android

applications.

7.1 Introduction

Smartphones have become pervasive, with 492 millions sold worldwide in the

year of 2011 alone [70]. Users tend to rely more on their smartphones to

conduct their daily computing tasks as smartphones are bundled with various

mobile applications. Hence, it is important to ensure the reliability of mobile

141

applications running in their smartphones.

Testing and analysis of mobile apps, with the goal of enhancing reliability,

have been studied in prior work. Some of these works focus on static and dynamic

analysis of mobile apps [25, 37, 59, 145], while other works focus on testing of

mobile apps [29, 30, 98, 100, 128].

To further improve the reliability of mobile applications, several approaches

go beyond automated testing of apps by issuing security-related

patches [35, 114]. While �xing security-related vulnerabilities is important, a

survey revealed that most of the respondents have experienced a problem when

using a mobile application, with 62 percent of them reported a crash, freeze or

error [21]. Indeed, frequent crashes of an app will lead to negative user

experience and may eventually cause users to uninstall the app. In this chapter,

we study automated approaches which alleviate the concern due to app crashes

via the use of automated repair.

Recently, several automated program repair techniques have been introduced

to reduce the time and e�ort in �xing software errors [82, 96, 108, 117, 126, 141].

These approaches take in a buggy program P and some correctness criterion in

the form of a test-suite T , producing a modi�ed program P ′ which passes all

tests in T . Despite recent advances in automated program repair techniques,

existing approaches cannot be directly applied for �xing crashes found in mobile

applications due to various challenges.

The key challenge in adopting automated repair approaches to mobile

applications is that the quality of the generated patches is heavily dependent on

the quality of the given test suite T. Indeed, any repair technique tries to patch

errors so as to achieve the intended behavior. Yet, in reality, the intended

behavior is incompletely speci�ed, often through a set of test cases. Thus, repair

methods attempt to patch a given buggy program, so that the patched program

142

passes all tests in a given test-suite T (We call repair techniques that use test

cases to drive the patch generation process test-driven repair). Unsurprisingly,

test-driven repair may not only produce incomplete �xes but the patched

program may also end up introducing new errors, because the patched program

may fail tests outside T , which were previously passing [134, 138]. Meanwhile,

several unique properties of test cases for mobile applications pose unique

challenges for test-driven repair. First, regression test cases may not be available

for a given mobile app A. While prior researches on automated test generation

for mobile apps could be used for generating crashing inputs, regression test

inputs that ensure the correct behaviors of A are often absent. Secondly, instead

of simple inputs, test inputs for mobile apps are often given as a sequence of UI

commands (e.g., clicks and touches) leading to crashes in the app. Meanwhile,

GUI tests are often �aky [97, 109]: their outcome is non-deterministic for the

same program version. As current repair approaches rely solely on the test

outcomes for their correctness criteria, they may not be able to correctly

reproduce tests behavior and subsequently generate incorrect patches due to

�aky tests.

Another key challenge in applying recent repair techniques to mobile

applications lies on their reliance on the availability of source code. However,

mobile applications are often distributed as standard Android .apk �les since the

source code for a given version of a mobile app may not be directly accessible

nor actively maintained. Moreover, while previous automated repair techniques

are applied for �xing programs used by developers and programmers, mobile

applications may be utilized by general non-technical users who may not have

any prior knowledge regarding source code and test compilations.

We present a novel framework, called Droix for automated repair of crashes in

Android applications.

143

Our contributions can be summarized as follows:

Android repair: We propose a novel Android repair framework that

automatically generates a �xed APK given a buggy APK and a UI test.

Android applications were not studied in prior work in automated program

repair, but various researches on analysis [25, 37, 59, 145] and automated

testing [29, 30, 98, 100, 128] illustrate the importance of ensuring the reliability

of Android apps.

Repairing UI-based test cases: Di�erent from existing repair approaches

based on a set of simple inputs, our approach �xes a crash with a single UI

event sequence. Speci�cally, we employ techniques allowing end users to

reproduce the crashing event sequences by recording user actions on Android

devices instead of writing test codes. The crashing input could be either

recorded manually by users or automatically generated by GUI testing

approaches [98, 136].

Lifecycle-aware transformations Our approach is di�erent from existing

test-driven repair approaches since it does not seek to modify a program to pass

a given test-suite. Instead, it seeks to repair the crashes witnessed by a single

crashing input, by employing program transformations which are likely to

repair the root-causes behind crashes. We introduce a novel set of

lifecycle-aware crashing resolving strategies that could automatically patch

crashing android apps by using management rules from the activity lifecycle

and fragment lifecycle.

Evaluation: We propose DroixBench, a collection of 24 reproducible crashes in

15 open source Android apps. Our evaluation on 24 defects shows that Droix

could repair 15 out of the 24 bugs, and seven of these repairs are syntactically

equivalent to the human patches.

144

7.2 Background: Lifecycle in Android

onCreate()

onStart()

onResume()

onPause()

onStop()

onActivityCreated()

onDestroy()

onCreateView()

onCreate()

onAttach()

onStop()

onPause()

onResume()

onStart()

onDetach()

onDestroy()

onDestroyView()

Activity
launched

Activity
running

Activity
shutdown Fragment is destroyed

onRestart()

Created

Started

Resumed

Paused

Stopped

Destroyed

Fragment is active

Fragment is added

User navigates
to the activity

User returns
to the activity

App process
killed

User navigates
to the activity

App with higher
priority need memory

The fragment
returns to the

layout from back stack

Another activity comes
into the foreground

The activity is
no longer visible

The activity is finishing or
being destroyed by the system

User navigates backward
or fragment is

removed/replaced

Fragment is added to
the back stack,

then removed/replaced

Activity lifecycle Fragment lifecycle

Figure 7-1: Activity Lifecycle, Fragment Lifecycle and the Activity-Fragment
Coordination

Di�erent from Java programs, Android applications do not have a single main

method. Instead, Android apps provide multiple entry points such as onCreate

and onStart methods. Via these methods, Android framework is able to control

the execution of apps and maintain their lifecycle.

Figure 7-1 shows the lifecycle of activity and fragment in Android. Each

method in Figure 7-1 represents a lifecycle callback, a method that gets called

given a change of state. Lifecycle transition obeys certain principles. For

instance, an activity with the paused state could move to the resumed state or

the stopped state, or may be killed by the Android system to free up RAM.

A fragment is a portion of user interface or a behavior that can be put in

an Activity. Each fragment can be modi�ed independently of the host activity

(activity containing the fragment) by performing a set of changes. For a fragment,

it goes through more states than an Activity from being launched to the active

145

(a) Open Transistor (b) Press back

(C) Open again and change an icon(d) Crashed with a notification

Figure 7-2: Continuous snapshots of a crash in Transistor.

state, e.g., onAttach and onCreateView states.

The communication between an activity and a fragment needs to obey

certain principles as well. A fragment is embedded in an activity and is allowed

to communicate with the host activity after it being attached. The available

states of a fragment are determined by the state of its host activity. For

instance, a fragment is not allowed to reach the onStart state before the host

activity enters the onStart state. A violation of these principles may cause

crashes in Android apps.

7.3 A Motivating Example

In this section, we show an example app, and its crash, to illustrate the work�ow

of our automated repair technique. The crash occurred in Transistor, a radio app

for Android with 63 stars in GitHub. According to the bug report1, Transistor

crashes when performing the event sequence shown in Figure 7-2: (a) starting

Transistor; (b) shutting it down by pressing the system back button; (c) starting

Transistor again and changing the icon of any radio station. Then, it crashes with

a noti�cation "Transistor keeps stopping"(d). Listing 7.1 shows the log relevant

to this crash. The stack trace information in Listing 7.1 suggests that the crash

is caused by IllegalStateException.

Our automated repair framework, Droix performs analysis of the Activity-

1https://github.com/y20k/transistor/issues/21

146

Fragment coordination (dashed lines in Figure 7-1) and reports potential violations

in the communication between a fragment and its host activity. Our manual

analysis of the source code for this app further reveals that the crash occurs because

the fragment attempts to call an inherited method startActivityForResult at line

482, which indirectly invokes a method of its host activity. However, the fragment

is detached from the previous activity during the termination of the app and needs

to be attached to a new activity in the restarting app. The method invocation

occurs before the new activity has been completely created and leads to the crash.

FATAL EXCEPTION: main

Process : org . y20k . t r a n s i s t o r , PID : 2416

java . lang . I l l e g a l S t a t eEx c ep t i o n :

Fragment MainActivityFragment {82 e1bec } not attached to Act i v i ty

at android . . . s t a r tAc t i v i t yFo rRe su l t (Fragment . java : 925)

at y20k . . . se lectFromImagePicker (MainActivityFragment . java : 482)

Listing 7.1: Stack trace for the crash in Transistor

if (g e tAc t i v i t y () !=null)

482 : s t a r tAc t i v i t yFo rRe su l t (pickImageIntent , REQUEST_LOAD_IMAGE) ;

Listing 7.2: Droix's patch for the crash in Transistor

s t a r tAc t i v i t yFo rRe su l t (pickImageIntent , REQUEST_LOAD_IMAGE) ;

482 : mActivity . s t a r tAc t i v i t yFo rRe su l t (pickImageIntent , REQUEST_LOAD_IMAGE) ;

Listing 7.3: Developer's patch for the crash in Transistor

Droix de�nes speci�c repair operators based on our study of crashes in

Android apps and the Android API documentation (see Section 7.4). One of the

transformation operators identi�ed through our study, GetActivity-check, is

designed to check if the activity containing the fragment has been created. The

condition getActivity()!=null prevents the scenario where a fragment

communicates with its host activity before the activity is created.

Listing 7.2 shows the patch automatically generated by Droix. With the

147

patch, method startActivityForResult will not be invoked if the host activity

has not been created. The related function (i.e., changing station icon) works

well after our repair. In contrast, although the developer's patch does not crash

on the given input, it introduces regressions. Listing 7.3 shows the developer's

patch where mActivity is a �eld of the fragment referencing its host activity.

When restarting the app, this �eld still points to the previously attached

activity. The developer's patch explicitly invokes startActivityForResult

method of the previously attached activity instead of the newly created activity.

After applying the Developer's patch, a user reports that the system back button

no longer functions correctly when changing the station icon (i.e., pressing the

back button does not close the app but mistakenly opens a window for selecting

images). Speci�cally, the user reports the following event sequence when the app

fails to function properly: open Transistor → tap to change icon →

press back twice → open Transistor → tap to change icon → press

back twice. We test the �xed APK generated by Droix with the user-provided

event sequence and we observe that our �xed APK does not exhibit the faulty

behavior reported by the user. In this case, we believe that the patch generated

by Droix works better than the developer's patch.

7.4 Identifying Causes of Crashes in Android

Applications

To investigate the possible causes of crashes in Android applications, we perform

manual inspection of open-source Android apps on GitHub. Our goal is to identify

a set of common causes for Android crashes. We �rst obtain a set of popular

Android apps by crawling GitHub. Particularly, we search for the word "android

app" written in Java using the GitHub API 2. For each app repository, we search

2https://developer.github.com/v3/

148

Table 7.1: Root cause of crashes in Android apps

Category Speci�c reason Description GitHub Issues (%) Exception Type Category Total (%)

Lifecycle

Con�guration changes activity recreation during con�guration changes 5.61 NullPointer

14.02
Stateloss transaction loss during commit 2.80 IllegalState
GetActivity activity-fragment coordination 2.80 IllegalState
Activity backstack inappropriate handling of activity stack 1.87 IllegalArgument
Save instance uninitialized object instances in onSaveInstance() 0.93 IllegalState

Resource
Resource-related resource type mismatches 10.28 NullPointer

16.82
Resource limit limited resources 4.67 OutOfMemory
Incorrect resource retrieve a wrong resource id 1.87 SQLite

Callback

Activity-related missing activities 7.48 NullPointer

17.76
View-related missing views 6.54 NullPointer
Intent-related missing intents 3.74 NullPointer
Unhandled callbacks missing callbacks 2.80 NullPointer

Others

Missing Null-check missing check for null object reference 12.15 NullPointer

52.34
External Service/Library defects in external service/library 8.41 NullPointer
Workaround temporary �xes for defect 4.67 IndexOutOfBound
API changes API version changes 2.80 SQLite
Others project-speci�c defects 24.30 -

for closed issues (resolved bug report) with the word �crash�. We only focus on

closed issues because those issues have been con�rmed by the developers and are

more likely to contain �xes for the crashes. From the list of closed issues concerning

app crashes, we further extract issues that contain at least one corresponding

commit associated with the crash. The �nal output of our crawler is a list of closed

issues concerning crashes that have been �xed by Android developers. Overall,

our crawler searches through 7691 GitHub closed issues where 1155 (15%) of these

issues are related to crashes. The relatively high percentage of crash-related issues

indicates the prevalence of crashes in Android apps. Among these 1155 issues,

107 of these issues are annotated with corresponding bug-�xing commits. We

manually analyzed all 107 issues and attempted to answer two questions:

Q1: What are the possible root causes and exceptions that lead to crashes in

Android apps?

Q2: How does the complexity of activity/fragment lifecycle a�ect crashes in

Android apps?

We study Q2 because a survey of Android developers suggests that the

topmost reasons (47%) for NullPointerException in Android apps occur due to

the complexity of activity/fragment lifecycle [60]. Our goal is to identify a set of

generic transformations that are often used by Android developers in �xing

Android apps. To gain deeper understanding of the root causes of each crash

(Q1) and to identify the a�ect of activity/fragment lifecycle on the likelihood of

149

introducing crashes (Q2), we manually examine lifecycle management rules in

the o�cial Android API documentations 3.

Our results show that the most common exceptions among the studied apps

are:

� NullPointerException (40.19%)

� IllegalStateException (7.48%)

The high percentage of NullPointerException con�rms with the �ndings of prior

study of Android apps [58].

Table 7.1 shows the common root causes of crashes in Android apps we

investigated. Column �Category� in Table 7.1 describes the high-level causes of

the crashes, while the �Speci�c reasons� column gives the speci�c causes that

lead to the crash. The last column (Category Total (%)) presents the total

percentage of issues that �ts into a particular category. Overall, 14.02% of

crashes in our study occur due to the violation of management rules for Android

Activity/Fragment lifecycle. The reader can refer to Section 7.5 on the

explanation of these lifecycle-related crashes. Meanwhile, 16.82% of the

investigated crashes are due to improper handling of resources, including

resources either not available (Resource-related) or limited resources like memory

(Resource limit). Furthermore, improper handling of callbacks contributes to

17.76% of crashes. Note that this �Callback� category denotes

implementation-speci�c problems of di�erent components in Android library

(e.g., Activity, View and Intent). Among 40.19% of NullPointerExceptions

thrown in these crashing apps, only 12.15% is related to missing the check for

null objects (Missing Null-check). Interestingly, 4.67% of the GitHub issues

include comments by Android developers acknowledging the fact that the patch

issued are merely temporary workaround (Workaround) for these crashes that

3https://developer.android.com/guide/components/activities/activity-lifecycle.html

150

Table 7.2: Supported Operators in Droix

Operator Description

S1: GetActivity-check
Insert a condition to check whether the activity containing
the fragment has been created.

S2: Retain object Store objects and load them when con�guration changes
S3: Replace resource idReplace resource id with another resource id of same type.

S4: Replace method
Replace the current method call with another method call
with similar name and compatible parameter types.

S5: Replace cast Replace the current type cast with another compatible type.
S6: Move stmt Removes a statement and add it to another location.
S7: Null-check Insert condition to check if a given object is null.
S8: Try-catch Insert try-catch blocks for the given exception.

may require future patches to completely resolve the crash.

Overall, Table 7.1 shows that the complexity of activity/fragment lifecycle

and incorrect resource handling are two general causes of crashes in Android apps.

Moreover, �Missing Null-check� in the �Other� category also often leads to crashes

in Android apps.

7.5 Strategies to Resolve Crashes

Our manual analysis of crashes in Android apps identi�es eight program

transformation operators which are useful for repairing these crashes. Table 7.2

gives an overview of each operator derived through our analysis. As �Missing

Null-check� is one of the common causes of crashes in Table 7.1, we include this

operator (S7: Null-check) in our set of operators. Another frequently used

operator (5%) that �xes crashes that occur across di�erent categories in

Table 7.1 is inserting exception handler (S8: Try-catch) which we also include

into our set of operators. We now proceed to discuss other program

transformation operators in Table 7.2 and the speci�c reasons of crashes

associated with each operator in this section.

Retain stateful object Con�guration changes (e.g., phone rotation and

language) cause activity to be destroyed and recreated which allows apps to

adapt to new con�guration (transition from onDestroy()→ onCreate()).

151

According to Android documentation 4, developer could resolve this kind of

crashes by either (1) retaining a stateful object when the activity is recreated or

(2) avoiding the activity recreation. We choose the �rst strategy because it is

more �exible as it allows activity recreations instead of preventing the

con�guration changes altogether. Listing 7.4 presents an example that explains

how we retain the Option object by using the saved instance after the

con�guration changes to prevent null reference of the object (S2: Retain object).

pub l i c void onCreate (Bundle savedIns tanceState) {

super . onCreate (savedIns tanceState) ;

s e tReta in In s tance (t rue) ; // retain this fragment

}

// new field for saving the object

pr i va t e static Option saveOption ;

pub l i c View onCreateView (Layou t In f l a t e r i n f l a t e r ,

ViewGroup conta iner ,

Bundle savedIns tanceState) {

// saving and loading the object

if (opt ion != nu l l) {

saveOption = opt ion ;

}else{

opt ion = saveOption ;

}

switch (opt ion . getButtonSty le ()) { //crashing point

Listing 7.4: Example of handling crashes during configuration changes

Commit transactions Each fragment can be modi�ed independently of the

host activity by performing a set of changes. Each set of changes that we commit

(perform requested modi�cations atomically) to the activity is called a

4https://developer.android.com/guide/topics/resources/runtime-changes.html

152

transaction. Android documentation 5 speci�es rules to prohibit committing

transactions at certain stages of the lifecycle. Transactions that are committed

in disallowed stages will cause the app to throw an exception. For example,

invoking commit() after onSaveInstanceState() will lead to

IllegalStateException since the transaction could not be recorded during this

stage. We employ two strategies for resolving the incorrect commits: (S6: Move

stmt) moving commit() to a legal callback (e.g., onPostResume()), (S4: Replace

method) replacing commit() with commitAllowingStateLoss().

Communication between activity and fragment The lifecycle of a fragment

is a�ected by the lifecycle of its host activity 6. For example, in Figure 7-1,

when an activity is created (onCreate()), the fragment cannot proceed beyond

the onActivityCreated() stage. Invoking getActivity() in the illegal stage

of the lifecycle will return null, since the host activity has not been created or

the fragment is detached from its host activity. A NullPointerException may

be thrown in the following execution. We employ two strategies for resolving this

problem: (S1: GetActivity-check) inserting condition if(getActivity()==null),

and (S6: Move stmt) moving getActivity() to another stage (when the host

activity is created and the fragment is not detached from the host activity) of the

fragment lifecycle.

Retrieve wrong resource id Android resources are the additional �les and static

content used in Android source code (e.g., bitmaps, and layout) 7. A resource

id is of the form R.x.y where x refers to the type of resource and y represents

the name of the resource. The resource id is de�ned in XML �les and it is the

parameter of several Android API (e.g., findViewbyId(id) and setText(id)).

Android developers may mistakenly use a non-existing resource id which leads to

5https://developer.android.com/reference/android/app/FragmentTransaction.html
6https://developer.android.com/guide/components/fragments.html
7https://developer.android.com/guide/topics/resources/accessing-resources.html

153

Operators

Log analyzer

Buggy APK

Logs

UI sequence

Mutant
generator

Decompiler

Evaluator

Selector

Code checker

Test checker

Mutant

Bug report

Mutants poolAPKsFixed APK

Droix

Bug locations

Violations

Violations

Figure 7-3: Droix's Android Repair Framework

Resources$NotFound exception. Listing 7.5 shows a scenario where the developers

change the string resource id (S3: Replace resource id).

int msgStrId = R. s t r i n g . conf irmation_remove_alert ;

int msgStrId = R. s t r i n g . conf i rmat ion_remove_f i l e_alert ;

Listing 7.5: Example of handling crashes due to wrong resource id

Incorrect type-cast of resource To implement UI interfaces, an Android API 8

(findViewById(id)) could be invoked to retrieve widgets (view) in the UI. As

each widget is identi�ed by attributes de�ned in the corresponding XML �les,

an Android developer may misinterpret the correct type of widget, resulting in

crashes due to ClassCastException. We repair the crash by replacing the type

cast expression with correct type (S5: Replace cast). Listing 7.6 presents an

example where the ImageButton object is incorrectly type casted.

mDef in i t ion=(TextView) findViewById (R. id . d e f i n i t i o n) ;

mDef in i t ion=(ImageButton) findViewById (R. id . d e f i n i t i o n) ;

Listing 7.6: Example of handling crashes due to incorrect type-cast of resource

7.6 Methodology

Figure 7-3 presents the overall work�ow of Droix's repair framework. Droix

consists of several components: a test re player, a log analyzer, a mutant

8https://developer.android.com/reference/android/app/Activity.html

154

Table 7.3: Code-level and Test-level Properties Enforced in Droix

Level Type Description

Code-level
Well-formedness

Verify that a mutated APK is compilable and the structural type of the program matches
with the program context of the selected operator.

Bug hazard Checks whether a transformation violates Java exception-handling best practices.

Exception Type
Checks whether a transformation matches a given exception type.
(e.g., Insert Null-check should be used for �xing NullPointerException exclusively)

Test-level

Lifecycle
Checks that the event transition matches with the activity and fragment lifecycle model
(edges in Figure 7-1).

Activity-Fragment
Checks that the interaction between a fragment and its parent activity matches the
activity-fragment coordination model (dashed lines in Figure 7-1)

Commit
Checks that a commit of a fragment's transactions is performed in the allowed states
(i.e., after an activity's state is saved).

generator, a test checker, a code checker, and a selector. Given a buggy APK P

and UI event sequences U extracted from its bug report, Droix produces a

patched APK P ′ that passes U and has the minimum number of properties

violations.

Droix �xes a crash using a two-phase approach. In the �rst phase, Droix

generates an instrumented APK I to log all executed callbacks. With the

instrumented APK, Droix replays the UI event sequences U on a device. The log

analyzer parses the logs dumped from the execution, extracts program locations

Locs from the stack trace, and identi�es test-level property Rtorig using the

recorded callbacks.

In the second phase, Droix compiles APK P to the intermediate representation.

Based on the intermediate representation, our mutant generator produces a set

of candidate apps (stored in the mutant pool) by applying a set of operators at

each location l in Locs . For each operator op, our code checker records code-level

property Rccand based on the program structure of l and the information in thrown

exception. For each candidate APKC , Droix reinstalls APKC onto the device and

replays U on APKC . Then, our log analyzer parses the dumped logs that include

the execution information of callback methods to extract new buggy locations and

information of test-level property Rtcand . Given as input Rtcand for APKC , the

test checker compares Rtorig with Rtcand to check if APKC introduces any new

property violations. Finally, our evaluator analyzes Rt cand and Rccand to compute

the number of property violations and passes the results to the selector, which

155

chooses the best app as the �nal �xed APK.

We next give detailed descriptions of various components in our repair

framework. As the ability to repair using UI event sequences is one of the main

features of Droix, we describe how we handle UI event sequences in

Subsection 7.6.1. We explain the fault localization step (part of the log analyzer)

in Subsection 7.6.2, followed by the code checker and the test checker in

Subsection 7.6.3. Subsection 7.6.4 introduces our mutant generation and

evaluation algorithm.

7.6.1 Test with UI Sequences

Existing techniques in automated program repair typically rely on unit

tests [103] or test scripts [142, 96, 108] to guide repair process. Droix uses user

event sequences (e.g., clicks and touches) as input to repair buggy apps, which

introduces new challenges: (1) these event sequences are often not included as

part of the source code repository and reproducing these event sequences is often

time-consuming; (2) ensuring that a recorded sequence has been reliably

replayed multiple times is di�cult as UI tests tend to be �aky (the test

execution results may vary for the same con�guration).

To reduce manual e�ort in obtaining UI sequences U , Droix allows users to

specify di�erent kinds of event sequences, including: (1) a set of actions (e.g.,

clicks, touches, swipes) leading to the crash which can be recorded using

monkeyrunner 9 GUI interfaces, (2) a set of Android Debug Bridge (adb)

commands 10, and (3) scripts containing a mixture of recorded actions and adb

commands. Non-technical users could record their actions with monkeyrunner

while Android developers could make use of adb commands to have better

9Monkeyrunner contains API that allows controlling Android devices:
https://developer.android.com/studio/test/monkeyrunner/index.html

10ADB is a command-line tool that are used to control Android devices:
https://developer.android.com/studio/command-line/adb.html

156

control of the devices (e.g., rotate screen).

Droix employs several strategies to ensure that each UI test outcome is

consistent across di�erent executions [109]. Speci�cally, for each UI test of a

buggy app, Droix automatically launches the app from the home screen, inserts

pauses in between each event sequence, terminates the apps after test execution,

and brings the android device back to home screen (ensure that the last state of

the device is the same as the initial state of the device). Furthermore, Droix

executes each UI test for at least three times where each test execution has

pauses of di�erent duration (pauses for 5, 10, 15 seconds) inserted in between

events.

7.6.2 Fault Localization

Our fault localization step aims to pinpoint faulty program locations that lead to

the crash. Since our approach does not require source code nor heavy test suite,

we leverage stack trace information for fault localization. The stack trace contains

(1) the type of exceptions being thrown, (2) the speci�c lines of code where the

exception is thrown, and (3) the list of classes and method calls in the runtime

stack when the exception occurs. We choose to perform fault localization using

stack trace information because (1) this information is often included in the bug

report of crashes (which allows us to compare the actual exception thrown with

the excepted exception) and (2) previous study has demonstrated the e�ectiveness

of using stack trace to locate Java runtime exceptions [133].

7.6.3 Code Checker and Test Checker

Instead of relying solely on the UI test outcome, Droix enforces two kinds of

properties: code-level properties (properties that are checked prior to test

execution) and test-level properties (properties that are veri�ed during/after test

execution). These properties are important because (1) they serve as additional

157

test oracles for checking the validity of a candidate app; (2) they could

compensate for the lack of passing UI test sequences.

Table 7.3 shows di�erent properties enforced in Droix. Bug hazard is a

circumstance that increases likelihood of a bug being present in a program [47].

A recent study of Android apps reveals several exception handling bug hazards

and Java exception handling best practices [58]. Given an exception E that leads

to a crash, our code checker categorizes an exception as either checked exception,

or unchecked exception, or error to determine if we could insert a handler for the

given exception E. According the Java exception handling best practice �Error

represents an unrecoverable condition which should not be handled", hence, our

code checker considers inserting handler (try-catch block) for runtime errors a

hard constraint and eliminates such patches from our search space. In contrast,

inserting handlers for unchecked and checked exceptions are encoded as soft

constraints that could a�ect the score of a mutant. In contrast, our code checker

encodes the well-formedness property and the exception type property as hard

constraints that are required to be satis�ed.

Given a previous lifecycle callback prev and a current lifecycle callback curr ,

our test checker veri�es if prev → curr obeys the activity/fragment lifecycle

management rules (Figure 7-1). Droix considers all test-level properties as soft

constraints because these properties may not be directly related to the crash

(e.g., resource-related crashes).

7.6.4 Mutant Generation and Evaluation

Droix supports eight operators derived from our study of crashes in Android apps

(Section 7.4). Readers could refer to Table 7.2 for the details of each operator.

Algorithm 5 presents our patch generation algorithm. Droix leverages

evolutionary algorithm where each population is reproduced, evaluated and

selected (we adopt similar patch algorithm in PAR [82]). Given as input

158

Input: Buggy APKP , Operators Op, Population size PopSize, UI test U , Program
Locations Locs

Input: Fitness Fit: < Patch,Rc,Rt >→ Z
Result: APK that passes U and contains least property violations
Pop← initialPopulation(APKP , PopSize);1

while ̸ ∃C ∈ Pop.C passes U do2

Mutants←Mutate(Pop,Op, Locs) ; // apply Op at l ∈ Locs3

/* select mutant with least Rc and Rt violations */

Pop← Select(Mutants, PopSize, F it);4

end5

Algorithm 5: Patch generation algorithm

population size PopSize, �tness function Fit , and a list of faulty locations Locs ,

our approach iteratively generates new mutants by applying one of the operators

listed in Table 7.2 at each buggy location in Locs , evaluates each mutant by

executing the input UI event sequences U , and computes the number of

code-level property Rc and test-level property Rt violations. The

generate-and-validate process terminates when either there exists at least one

mutant in the population that passes U or the time limit is exceeded. Our patch

generation algorithm di�ers from existing patch generation systems that use

evolutionary algorithm [82, 142] in which we use a di�erent patch representation

and �tness function. Speci�cally, each mutant is an APK in our representation.

Instead of using the number of passing tests as the �tness function, our �tness

function Fit computes the number of code-level and test-level property

violations.

7.7 Implementation

Our Android repair framework leverages various open source tools to support

di�erent components. Speci�cally, our log analyzer uses Logcat 11, a command-line

tool that generates logs when events occur on an Android device. We implement

the eight operators in Table 7.2 on top of the Soot framework (v2.5.0) [86]. Soot

is a Java optimization framework that supports analysis and transformation of

Java bytecode. Dexpler, a module included in Soot leverages a Dalvik bytecode

11https://developer.android.com/studio/command-line/logcat.html

159

disassembler to produce Jimple (a Soot representation) which enables reading and

writing Dalvik bytecode directly [44]. We use the Dexpler module in Soot for

our decompiler component in Figure 7-3. To support the �S4: Replace method"

operator, we use the Levenshtein distance to select a method with similar method

name and compatible parameter types. Our implementation for the �S3: Replace

resource id" operator uses Android resource parser in FlowDroid [37] to obtain a

resource id of the same type. As each compiled APK needs to be signed before

installation, we use jarsigner 12 for signing the compiled APK. We re-install the

signed APK onto the device using adb commands 13. Instead of uninstalling and

re-installing each signed app, app re-installation allows us to keep the app data

(e.g. account information and settings) to save time in re-entering the required

information during subsequent execution of U .

7.8 Subjects

While there are various benchmarks used in evaluating the e�ectiveness of

automated testing of Android applications [53, 98, 30, 31], a recent study [54]

showed that the crashes in these benchmarks cannot be adequately reproduced

by existing Android testing tools. Meanwhile, Android-speci�c benchmark like

DROIDBENCH [37] does not contain real Android apps and it is designed for

evaluating taint-analysis tools. Although empirical studies on Android

apps [46, 59] investigated the bug reports of real Android apps, none of these

studies try to replicate the reported crashes. Therefore, all existing benchmarks

cannot be used for evaluating the e�ectiveness of analyzing crashes in Android

apps.

We introduce a new benchmark, called DroixBench that contains 24

reproducible crashes in 15 real-world Android apps. While we developed

12http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
13https://developer.android.com/studio/command-line/adb.html

160

DroixBench speci�cally for evaluating Droix, this benchmark could be used to

assess the e�ectiveness of detecting and analyzing crashes in Android apps. To

facilitate future research on analysis of crashes, we made DroixBench publicly

available at the following anonymous link: https://droix2017.github.io/.

DroixBench is a new set of Android apps for evaluating Droix. Apps used for

deriving transformation operators in Section 7.4 are not included in DroixBench

so as to avoid the over�tting problem in the evaluation. Speci�cally, we modi�ed

our crawler to �nd the most recent issues (bug reports) on Android apps crashes

on GitHub. Our goal is to identify a set of reproducible crashes in Android apps.

To reduce the time in manual inspection of these bug reports, our crawler excludes

(1) issues that do not contain bug-�xing commits (which is essential for our study

of patch quality); (2) unresolved issues (to avoid invalid failures); and (3) non-

Android related issues (e.g., iOS crashes). This step yields more than 300 GitHub

issues in which we manually inspect to check for the validity of these bug reports.

For each of these bug reports, we further exclude defects that do not ful�ll the

following criteria:

Device-speci�c defects. We eliminate defects that require speci�c

versions/brands of Android devices.

Resource-dependent defects. We eliminate defects that require speci�c

resources (e.g., making phone calls) as we may not be able to replicate these

issues easily on an Android emulator.

Irreproducible crashes. We eliminate crashes that could not be reproduced

by the developers by checking whether the developers mention any di�culty in

reproducing the reported crashes.

161

7.9 Evaluation

We perform evaluation on the e�ectiveness of Droix in repairing crashes on real

Android apps and we compare the quality of Droix's patch with the quality of the

human patch. Our evaluation aims to address the following research questions:

RQ1 How many crashes in Android apps can Droix �x?

RQ2 How is the quality of the patches generated by Droix compared with the

patches generated by developers?

7.9.1 Experimental Setup

We evaluate Droix on 24 defects from 15 real Android apps in DroixBench.

Table 7.4 lists information about the evaluated apps. The �Type� column

contains information about the speci�c type of exception that causes the crash,

whereas the �TestEx� column represents the time taken in seconds to execute the

UI test. Overall, DroixBench contains a wide variety of apps of various sizes

(4-115K lines of code) and di�erent types of exceptions that lead to crashes.

As Droix relies on randomized evolutionary algorithm, we use the same

parameters (10 trials for each defect with PopSize=40 and a maximum of 10

generations) as used in GenProg [141] for our experiments. Each run of Droix is

terminated after one hour or when a patch with minimal violations is generated.

All experiments were performed on a machine with a quad-core Intel Core

i7-5600U 2.60GHz processor and 12GB of memory. All apps were executed on

Google-Nexus-5x-API25 emulator.

For each defect, we manually inspect the source code of human patched

program and the source code decompiled from Droix's patched program. If the

source code of automatically patched program di�ers from the human patched

program, we further investigate the UI behavior of patched programs by

installing both the human generated APK and the automatically generated APK

162

Table 7.4: Subject Apps and Their Basic Statistics

App Name Description Version LOC Type TestEx(s)

Transistor radio players
1.2.3 4K NullPointer 42.1
1.1.5 4K IllegalState 40.1

Pix-art photo editor
1.17.1 54K NullPointer 37.2
1.17.0 60K NullPointer 42.0

PoetAssistant
poet writing
helper

1.18.2 12K NullPointer 42.3
1.10.4 6K SQLite 60.9

Anymemo �ashcard learning
10.10.1 29K NullPointer 50.5
10.9.922 33K NullPointer 83.9

AnkiDroid �ashcard learning
2.8.1 73K IllegalState 50.6
2.7b1 73K ClassCast 37.2

Fdroid
opensoure app
repository

0.103.2 50K IllegalState 38.7
0.98 38K SQLite 37.3

Yalp app repository 0.17 11K NullPointer 57.4

LabCoat GitLab client 2.2.4 45K NullPointer 49.2

GnuCash
�nance expense
tracker

2.1.4 42K IllegalArgument 32.0
2.1.3 40K NullPointer 37.2
2.0.5 37K IllegalArgument 42.2

NoiseCapture noise evaluator
0.4.2b 10K NullPointer 42.5
0.4.2b 10K ClassCast 41.2

ConnectBot secure shell client 1.9.2 26K OutOfBounds 57.4

K9 email client 5.111 115K NullPointer 42.2

OpenMF Mifosx client 1.0.1 75K IllegalState 134.0

Transdroid torrents client 2.5.0b1 37K NullPointer 45.9

Beem communication tool 0.1.7rc1 21K NullPointer 61.3

onto the Android device. For each APK, we manually perform visual comparison

of the screens triggered by a set of available UI actions (clicks, swipes) after the

crashing point.

De�nition 10 Given the source code of human patched program Srchuman , the

source of an automatically generated patch Srcmachine , the compiled APK of human

patched program APK human , the compiled APK of automatically generated patch

APKmachine , we measure patch quality using the criteria de�ned below:

(C1) Syntactically Equivalent. Srcmachine is �Syntactically Equivalent� if both

Srcmachine and Srchuman are syntactically the same.

163

(C2) Semantically Equivalent. Srcmachine is �Semantically Equivalent� if both

Srcmachine and Srchuman are not syntactically the same but produce the same

semantic behavior.

(C3) UI-behavior Equivalent. APKmachine is �UI-behavior Equivalent� to

APK human , if the UI-state at the crashing point after applying the automatic �x

is same to the UI-state at the crashing point after applying the human patch.

Two UI-state are considered to be same if their UI layouts are same, the set of

events enabled are same, and these events again (recursively) lead to

UI-equivalent states. UI-behavior equivalence of APK human against APKmachine

is checked manually in our experiments.

(C4) Incorrect. We label a APKmachine as �Incorrect" when APKmachine leads to

undesirable behavior (e.g., causes another crash) but this behavior is not observed

in APKhuman.

(C5) Better. We label a APKmachine as �Better" when APK human leads to

regression witnessed by another UI test UR whereas APKmachine passes UR .

Formally, C1 =⇒ C2 ∧ C2 =⇒ C3, hence, a generated patch that is

syntactically equivalent to the human patch is superior than both semantically

equivalent patch and UI-behavior equivalent patch. We acknowledge that, in

general, checking whether a patch is semantically equivalent to the human patch

(C2) is an undecidable problem. However, in our manual analysis, the correct

behavior for all the evaluated patches are well-de�ned. While C1 and C2 investigate

the behavior of patches at the source-code level, we introduce C3: UI-behavior

Equivalent. to compare the behavior of patches at the GUI-level. We consider C3

because our approach uses GUI tests for guiding the repair process. Furthermore,

since our approach does not require source code, direct manual checking of criterion

C2 may be sometimes tedious.

164

Table 7.5: Patch Quality Results

App Version
Time
(s) Fix type Repair Syntactic Equiv. Semantic Equiv. UI-behavior Equiv. Others

Transistor
1.2.3 616 -
1.1.5 987 GetActivity-check

√
better(⊕)

PixArt
1.17.1 1164 -
1.17.0 1525 Null-check

√
△

PoetAssistant
1.18.2 955 Null-check

√
△

1.10.4 3600 -

Anymemo
10.10.1 2104 -
10.9.922 1336 Retain Object

√
⊙

AnkiDroid
2.8.1 3600 -
2.7b1 3600 Try-catch

√
text missing(×)

Fdroid
0.103.2 2293 Replace method

√
⋆

0.98 518 -

Yalp 0.17 2970 -

LabCoat 2.2.4 2074 Null-check
√

⋆

GnuCash
2.1.3 360 -
2.0.5 1492 Try-catch

√
△

2.1.4 3600 -

ConnectBot 1.9.2 572 Try-catch
√

text missing(×)

NoiseCapture
0.4.2b 340 Null-check

√
⋆

0.4.2b 520 Replace cast
√

⋆

K9 5.111 1718 Try-catch
√

crash(×)

OpenMF 1.0.1 3600 GetActivity-check
√

⋆

Beem 0.1.7rc1 2378 Null-check
√

⋆

Transdroid 2.5.0b1 1315 Null-check
√

⋆

24 15 7 1 3 4

7.9.2 Evaluation Results

Table 7.5 shows the patch quality results for Droix. The �Time" column in

Table 7.5 indicates the time taken in seconds for generating the patch before the

one hour time limit is reached. On average, Droix takes 30 minutes to generate a

patch. Meanwhile, the �Repair" column denotes the number of plausible patches

(APKs that pass the UI test) generated by Droix. Overall, Droix generates 15

plausible patches (rows marked with
√
) out of 24 evaluated defects. Our

analysis of the 9 defects that are not repaired by Droix reveals that all of these

defects are di�cult to �x because all the corresponding human patches require at

least 10 lines of edits.

The �Fix type� column in Table 7.5 shows the operator used in each patch

(Refer to Table 7.2 for the description of each operator). The �Null-check�

operator is the most frequently used operators (used in six patches and 4/6=67%

165

of these patches are syntactically equivalent to the human patches). These

results match with the high frequency of �Null-check� operator in our empirical

study (Table 7.1). Interestingly, we also observe that the �GetActivity-check�

operator tends to produce high quality patches because this operator aims to

enforce the �Activity-Fragment� property that checks for the coordination

between the host activity and its embedded fragment.

The �Syntactic Equiv.� column in Table 7.5 shows the number of patches that

ful�ll the C1 criteria, while the �Semantic Equiv.� column denotes the number

of patches that ful�ll the C2 criteria. Similarly, the �UI-behavior Equiv� column

demonstrates the number of �xed APKs that ful�ll the C3 criteria. Particularly,

we consider the patch generated by Droix for Anymemo v10.9.922 as semantically

equivalent to the human patch because both patches use an object of the same

type retained before con�guration changes to �x the NullPointerException but

the used object is retained in di�erent program locations (i.e., not syntactically

equivalent). As shown in Table 7.5, there are three patched APKs that are UI-

behavior equivalent to the human generated APKs. Interestingly, we observed

that although the corresponding human patches for these defects require multi-

lines �xes, the bug reports for these UI-behavior equivalent patches indicate that

speci�c conditions (e.g., mSpinner.getSelectedItemId()!=INVALID_ROW_ID for

the GnuCash v2.0.5 defect) are required to trigger the crashes. As these conditions

are complex and may be impractical to trigger from the UI level, synthesizing

precise conditions is not required for repairing these crashes to ensure UI-behavior

equivalent.

The �Others� column in Table 7.5 includes one patch that is better than the

human patch (marked as ⊕) and three patches that are incorrect (marked as

×). We consider the patch for Transistor v1.1.5 to be better than human patch

as it passes regression test included in the bug report whereas the human patch

166

introduces a new regression (See Section 7.3 for detailed explanations). For two

of the incorrect patches, we notice that some texts that appear on the screen of

human APKs are missing in the screen of �xed APKs (text missing). Meanwhile,

the crash in k9 v5.111 occurs due to an invalid email address for a particular

contact. In this case, the human APK treats the contact as a non-existing contact

while the patched APK displays the contact as unknown recipient and crashes

when the unknown recipient is selected. We think that both the human APK and

the patched APK could be improved (e.g., prompt the user to enter a valid email

address instead of ignoring the existence of the contact). Although the patch

generated by Droix for k9 violates the bug hazard property (catching a runtime

exception), we select this patch as no other patches exist in the search space.

7.10 Threats to Validity

We identify the following threats to the validity of our experiments: Operators

used. While we derive our operators from frequently used operators in �xing

open source apps and from Android API documentation, we note that our set of

operators is not exhaustive.

Reproducing crashes. We manually reproduce each crash in our proposed

benchmark. As we rely on Android emulator for reproducing these crash, the

crashes in our benchmark are limited to crashes that could be reliably

reproduced on Android emulators. Crashes that require speci�c setup (e.g.,

making phone calls) may be more challenging or impractical to replay.

Crashes investigated. As we only investigate open source Android apps in our

empirical study and in our proposed benchmark, our results may not generalize

to closed-source apps. We focus on open source apps because our patch analysis

requires the availability of source codes. Nevertheless, as Droix takes as input

Android APK, it could be used for �xing closed source apps. We leave the

167

empirical evaluation of closed source apps as our future work.

Patch Quality. During our manual patch analysis, at least two of the authors

analyze the quality of human patches versus the quality of automatically generated

patches separately and meet to resolve any disagreement. As most bug reports

include detailed explanations of human patches and the expected behavior of the

crashing UI test, the patch analysis is relatively straightforward.

7.11 Related work

Testing and Analysis of Android Apps. Many automated techniques

(AndroidRipper [30], ACTEVE [31], A3E [40], Collider [75], Dynodroid [98],

FSMdroid [136], Fuzzdroid [128], Orbit [145], Sapienz [100], Swifthand [53], and

work by Mirzaei et al. [110]) are proposed to generate test inputs for Android

apps. Our approach is orthogonal to these approaches and the tests generated by

these approaches could serve as inputs to our Android repair system. Several

approaches focus on reproducing crashes in Java projects [52, 144, 135].

Meanwhile, CRASHSCOPE [113] automatically detects and reproduces crashes

in Android apps. Our benchmark with 24 reproducible crashes could be used for

evaluating the e�ectiveness of these approaches. Similar to Flowdroid [37], we

implement our �x operators on top of the Soot framework, and we use activity

lifecycle information for our analysis of Android apps. Instead of considering

only the activity lifecycle as in Flowdroid, we also encode fragment lifecycle and

activity-fragment coordination as test-level properties. RERAN [71] could

precisely record and replay UI events on Android devices, including gestures

(e.g., multitouch). While our approach allows UI sequences in forms of scripts

recorded in the user interface, the record-and-replay mechanism in RERAN

could allow Droix to handle more complex UI events. Although our code checker

incorporates some Java exception handling best practices listed in recent study

168

of Android apps [60], our empirical study of crashes that occur in Android apps

goes beyond prior study by performing a thorough investigation of the common

root causes of Android crashes.

Automated Program Repair. Several techniques (Angelix [108],

ASTOR [105], ClearView [124], Direct�x [107], GenProg [142], PAR [82],

Prophet [96], NOPOL [143], reli�x [138]) have been introduced to automatically

generate patches. There are several key di�erences of our Android repair

framework compared to other existing repair approaches. Firstly, instead of

relying on the quality of the test suite for guiding the repair process, our

approach augments a given UI test with code-level and test-level properties for

ranking generated patches. Secondly, existing approaches could not handle �aky

UI tests as they may misinterpret the test outcome of UI tests and may

mistakenly produce invalid patches. Finally, our repair framework modi�es

compiled APK and each test execution is performed remotely on Android

emulators, whereas other approaches modify source code directly where each test

is being executed on the same platform as other components of the repair

system. Other studies for automated repair use benchmark for C programs [89],

whereas Droixbench contains a set of reproducible crashes for Android apps.

QACrashFix [68] and work by Azim et al. [39] use Android apps as dataset for

experiments, without any Android-speci�c study of cause for crashes. Their

repair operators are Android-agnostic. Speci�cally, QACrashFix merely

add/delete/replace single node in the Abstract Syntax Tree, wheareas work by

Azim et al only inserts fault-avoiding code that is similar to workaround

identi�ed in our study in Section 7.4. To eliminate invalid patches, anti-patterns

are proposed as a set of forbidden rules that can be enforced on top of

search-based repair approaches [139]. Although our code-level and test-level

properties could be considered as di�erent forms of anti-patterns that are

169

examined prior to and after test executions, we use these properties for selecting

mutants that violate fewer properties instead of eliminating these mutants.

Similar to Droix that uses stack trace information for fault localization, the work

of Sinha et al. uses stack trace information for locating Java exceptions [133].

However, their approach only supports analysis of NullPointerException,

whereas our approach could automatically repair di�erent types of exceptions.

Other Repairs of Android Apps EnergyPatch �xes energy bugs in Android

apps using a repair expression that captures the resource expression and releases

system calls [41]. The battery-aware transformations proposed in [55] aims to

reduce power consumption of mobile devices. Several approaches generate security

patches for Android apps [150, 114]. While energy bugs and security-related

vulnerabilities may cause crashes in Android apps, we present a generic framework

for automated repair of Android crashes, focusing on crashes that occur due to

the misunderstanding of Android activity and fragment lifecycles.

UI Repair. FlowFixer is an approach that repairs broken work�ow in GUI

applications that evolve due to GUI refactoring. SITAR uses annotated

event-�ow graph for �xing unusable GUI test scripts [69]. Although Droix takes

as input UI test, it automatically �xes buggy Android apps rather than the

inputs that crash the GUI applications.

7.12 Chapter Summary

In this chapter, we study the common causes of 107 crashes in Android apps.

Our investigation reveals that app crashes occur due to missing callback handler

(17.76%), improper handling of resources (16%), and violations of management

rules for the Android activity and fragment lifecycle (14%). Based on our analysis

of patches issued by Android developers to �x these crashes and the Android API

documentations that specify the correct usage of Android API, we derive a set

170

of lifecycle-aware transformations. To reduce time and e�ort in �xing crashes in

Android apps, we also introduce Droix, a novel Android repair framework that

automatically generates a �xed APK when given as input a buggy APK and UI

event sequences. To encourage future research of Android crashes, we propose

DroixBench, a benchmark that contains 24 reproducible crashes occurring in 15

open source Android apps. Our evaluation on DroixBench demonstrates that

Droix could generate repair for 63% of the evaluated crashes and seven of the

automatically generated patches are syntactically equivalent to the human patches.

Although our repair framework currently performs analysis and mutation of

Android apps on desktop machine while executing UI tests on an Android

emulator, in future, it is feasible to have a standalone repair system that could

be installed as an app that automatically �xes crashes occurring in other apps on

Android devices. Since our GUI interface based on monkeyrunner does not

assume any programming knowledge, our repair framework could potentially

bene�t general non-technical users who would like to have their own versions of

�xed apps instead of waiting for the o�cial releases.

As we observe that many crashes occur due to the misunderstanding of

activity/fragment lifecycle that are speci�ed in the Android API

documentations. we think that Droix could be used as a plugin that

automatically provides management rule violations together with patch

suggestions to assist developers in understanding the Android API speci�cations.

171

172

Chapter 8

Conclusion

In this thesis, we �rst studied the e�ectiveness of current repair operators in

existing program repair tools and suggested several selection strategies for

choosing a reduced set of repair operators among all operators used by repair

tools. Moreover, we investigate the relationship between the quality of

automatically generated patches and the quality of test suite to improve the

e�ectiveness of program repair tools using test cases. To further reduce the

number of invalid patches generated by each repair operator, we proposed a set

of anti-patterns that eliminate patches ful�lling certain transformation rules.

Furthermore, we also introduced a program repair tools with repair operators

that are designed to solve the problems of software regressions. Lastly, we

designed specialized repair operators and proposed a novel repair framework to

�x crashes in Android apps.

Overall, this thesis attempts to solve several important challenges in

automated program repair. Our study of the e�ectiveness of repair operators in

existing repair tools and our proposed benchmark in Chapter 3 provides direct

insights to the current design of repair operators and aims to drive the future

design of repair operators. Our correlation study on automated program repair

and test suite metrics suggests the possibility of enhancing quality of automated

173

generated patches by improving the quality of test suite. On the other hand, our

proposed anti-patterns in Chapter 5 not only provide deeper understanding of

existing problems in automatically generated patches, but also allow more

�exible rules to be enforced for each program transformation of the

corresponding repair operator. Furthermore, in Chapter 6, we present a concrete

example of a repair technique that is designed for �xing software regressions. In

our proposed repair tool, reli�x, we also demonstrate how to utilize syntactic

changes between di�erent program versions in the design of repair operators.

8.0.1 Research Outputs

To encourage the usage of the Code�aws benchmark for evaluating program repair

approaches, the benchmark is publicly available at https://code�aws.github.io/.

As the work on anti-patterns are part of a software patent1 with our

collaborators from Fujitsu Laboratories of America, the source code of our

modi�ed versions of SPR and GenProg could not be made publicly available but

other information (including the study in which we derive our anti-patterns and

the patches generated by all evaluated approaches) is publicly available at

https://anti-patterns.github.io/search-based-repair/.

We think that DroixBench that contains a set of reproducible crashes could be

useful for evaluating the e�ectiveness of Android testing approaches. Hence, we

have made DroixBench publicly available at https://droix2017.github.io/. The

link contains the bug report for each defect in DroixBench together with the

corresponding bug-�xing commit. However, the source code for Droix will not be

made publicly available due to the copyright restrictions with our collaboration

with Singapore Telecommunications Ltd.

The source code for reli�x is publicly available at:

https://github.com/stan6/reli�x

1Software program repair: https://www.google.com/patents/US20170060735

174

8.0.2 Future Work

Apart from automated program repair, we believe that the ideas proposed in this

thesis could be applied to other domains. In particular, the benchmark extracted

from submissions of participants in online competitive programming platform is

a �rst step towards the applications of program repair techniques in automated

grading and intelligent tutoring. Moreover, as the usage of anti-patterns could

improve on �x localization, this suggests the possibility of using automated

program repair techniques for improvement of fault localization techniques. In a

broader view, the perspective of reconciling problematic changes introduced in

reli�x is inspired by the idea of merging several con�icting program changes.

With the rapid development of internet of things, the adaptation of automated

program techniques to other platforms (e.g., mobile devices as discussed in

Chapter 7) encourages practical usage of bug-�xing techniques.

Most evaluations proposed in this thesis are performed on mature software

subjects (e.g., Vim, PHP, and the F-droid app), except for the Code�aws

benchmark with small programs from programming competition platform.

Although our selection of software subjects may appear to be biased towards

mature software, we select these subjects because they are well-known real-world

software subjects, and they are part from existing benchmarks (e.g.,

ManyBugs [89] and CoREBench [48]). Meanwhile, in our proposed benchmark,

DroixBench, we eliminate this selection bias by including newer Android apps

with frequent changes (e.g., NoiseCapture and OpenMF). Instead of selecting the

most popular Android apps, we only require that all crashes in DroixBench

should be reproducible. In general, the question �Is automated repair best suited

to mature software?� has to be investigated through detailed experiments.

However, the fact that Droix could repair crashes in newer Android apps as well

as more mature Android apps (e.g., F-droid and K9) show that the maturity of

175

the software subjects may not be directly related to the suitability of these

subjects for automated program repair.

Although we propose an anti-pattern that prohibits the deletion of all

statements that serve as test proxies (e.g., assertions), all the approaches

proposed in this thesis treat the test oracles embedded within a test case as

black-box. To guide the repair system in generating higher quality patches, it is

worthwhile to investigate the possibility of leveraging assertion. An assertion is a

boolean expression that is expected to be always true at the indicated point

during execution. The predicate captured by assertions could be used as repair

constraints in a semantic-based repair approach or augmenting formal

speci�cation in a contract-based repair approach.

One of the major problems in automated program repair discussed in this

thesis is the lack of speci�cation. Although most program repair approaches only

modify source code, the concept of program repair may be useful in the re�nement

of speci�cation. For example, when a program repair technique generates an

incomplete �x due to the input-output constraint represented by a single test, we

could automatically generate a list of possible re�nement to the constraint and

give the generated list to the developer to choose a more general constraint that

capture all other test inputs outside the given test suite.

In conclusion, this thesis not only attempts to solve several important

challenges in automated program repair (i.e., investigating the e�ectiveness of

repair operators, enhancing quality of automatically generated patches by

improving test suite, and supplementing repair operators with anti-patterns),

but also opens many opportunities for future research works beyond program

repair, including potential applications in intelligent tutoring and ensuring the

reliability of mobile applications.

176

Bibliography

[1] Cpython 5b0fda regression bug report. http://bugs.python.org/issue21233.

[2] Cpython 5b0fda source code. http://hg.python.org/cpython/rev/5b0f-
da8f5718.

[3] Cpython b878df regression bug report. http://bugs.python.org/issue16012.

[4] Cpython b878df source code. http://hg.python.org/cpython/rev/b878d
f1d23b1/.

[5] Indent version 2.2.10 regression bug report.
http://savannah.gnu.org/bugs/?27036.

[6] Indent version 2.2.10 source code. http://ftp.gnu.org/gnu/indent/indent-
2.2.10.tar.gz.

[7] Perl bb9ee9 regression bug report. http://perl5.git.perl.org/perl.git/commit/
bb9ee97444732c84b33c2f2432-aa28e52e4651dc.

[8] Perl bb9ee9 source code. http://perl5.git.perl.org/perl.git/commit/
bb9ee97444732c84b33c2f2432aa28e52e4651dc.

[9] Perl dca606 regression bug report. https://rt.perl.org/Public/Bug/
Display.html?id=74290.

[10] Perl dca606 source code. http://perl5.git.perl.org/perl.git/commitdi�/
dca6062a863d0.

[11] Tar version 1.14 regression bug report.
http://lists.gnu.org/archive/html/bug-tar/2004-10/msg00034.html.

[12] Tar version 1.14 source code. http://ftp.gnu.org/gnu/tar/tar-1.14.tar.gz.

[13] Vim commit 220906 regression bug report.
https://groups.google.com/forum/#!searchin/vim_dev/regression/vim_dev/
DbW2gnNqj04/6KaQn2jsDvAJ.

[14] Vim commit 220906 source code. http://code.google.com/p/vim/source/
detail?r=2209060c340d.

177

[15] Vim version 7.2.50 regression bug report.
https://groups.google.com/forum/#!searchin/vim_dev/regression/vim_dev/
9hG4HrhQuhk/ogbOOYwfPPkJ.

[16] Vim version 7.2.50 source code. http://code.google.com/p/vim/source/-
detail?name=v7-3-202.

[17] Vim version 7.3.202 regression bug report.
http://code.google.com/p/vim/issues/detail?id=9.

[18] Vim version 7.3.202 source code. http://code.google.com/p/vim/source/
detail?name=v7-3-202.

[19] Vim version 7.3.251 regression bug report.
https://groups.google.com/forum/#!searchin/vim_dev/regression/vim_dev/
TUbaixgUilQ/YV38sAkof10J.

[20] Vim version 7.3.251 source code. http://code.google.com/p/vim/source/
detail?name=v7-3-251.

[21] What consumers really need and want. https://goo.gl/puYdkG, 2017.
Accessed 2017-03-27.

[22] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan JC Van Gemund. A
practical evaluation of spectrum-based fault localization. Journal of Systems
and Software, 82(11):1780�1792, 2009.

[23] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. On the accuracy
of spectrum-based fault localization. In Proceedings of the Testing: Academic
and Industrial Conference Practice and Research Techniques - MUTATION,
TAICPART-MUTATION '07, pages 89�98, Washington, DC, USA, 2007.
IEEE Computer Society.

[24] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. An evaluation
of similarity coe�cients for software fault localization. In Dependable
Computing, 2006. PRDC'06. 12th Paci�c Rim International Symposium on,
pages 39�46. IEEE, 2006.

[25] Sharad Agarwal, Ratul Mahajan, Alice Zheng, and Victor Bahl. Diagnosing
mobile applications in the wild. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, page 22. ACM, 2010.

[26] Hiralal Agrawal, Richard DeMillo, R_ Hathaway, William Hsu, Wynne Hsu,
Edward Krauser, Rhonda J Martin, Aditya Mathur, and Eugene Spa�ord.
Design of mutant operators for the c programming language. Technical
report, Technical Report SERC-TR-41-P, Software Engineering Research
Center, Department of Computer Science, Purdue University, Indiana, 1989.

178

https://goo.gl/puYdkG

[27] Muath Alkhalaf, Abdulbaki Aydin, and Tev�k Bultan. Semantic di�erential
repair for input validation and sanitization. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, ISSTA 2014,
pages 225�236, New York, NY, USA, 2014. ACM.

[28] E. Alves, M. Gligoric, V. Jagannath, and M. d'Amorim. Fault-localization
using dynamic slicing and change impact analysis. In Automated Software
Engineering (ASE), 2011 26th IEEE/ACM International Conference on,
pages 520�523, Nov 2011.

[29] Domenico Amal�tano, Anna Rita Fasolino, and Por�rio Tramontana. A
gui crawling-based technique for android mobile application testing. In
Software Testing, Veri�cation and Validation Workshops (ICSTW), 2011
IEEE Fourth International Conference on, pages 252�261. IEEE, 2011.

[30] Domenico Amal�tano, Anna Rita Fasolino, Por�rio Tramontana, Salvatore
De Carmine, and Atif M Memon. Using gui ripping for automated testing of
android applications. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 258�261. ACM, 2012.

[31] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang.
Automated concolic testing of smartphone apps. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering, page 59. ACM, 2012.

[32] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate tool
for testing experiments? In Proceedings of the 27th International Conference
on Software Engineering, ICSE '05, pages 402�411, New York, NY, USA,
2005. ACM.

[33] Andrea Arcuri. Evolutionary repair of faulty software. Applied Soft
Computing, 11(4):3494�3514, 2011.

[34] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to automatic
software bug �xing. In Evolutionary Computation, 2008. CEC 2008.(IEEE
World Congress on Computational Intelligence). IEEE Congress on, pages
162�168. IEEE, 2008.

[35] Alessandro Armando, Alessio Merlo, Mauro Migliardi, and Luca Verderame.
Breaking and �xing the android launching �ow. Computers & Security,
39:104�115, 2013.

[36] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test
generation for e�ective fault localization. In Proceedings of the 19th
International Symposium on Software Testing and Analysis, ISSTA '10,
pages 49�60, 2010.

179

[37] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre
Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. Flowdroid: Precise context, �ow, �eld, object-sensitive and
lifecycle-aware taint analysis for android apps. Acm Sigplan Notices,
49(6):259�269, 2014.

[38] F. Y. Assiri and J. M. Bieman. An assessment of the quality of automated
program operator repair. In Proceedings of the 2014 IEEE Seventh
International Conference on Software Testing, Veri�cation and Validation,
ICSE '14, pages 273�282, 2014.

[39] Md Tanzirul Azim, Iulian Neamtiu, and Lisa M Marvel. Towards self-healing
smartphone software via automated patching. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering,
pages 623�628. ACM, 2014.

[40] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-�rst exploration
for systematic testing of android apps. In Acm Sigplan Notices, volume 48,
pages 641�660. ACM, 2013.

[41] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury.
Energypatch: Repairing resource leaks to improve energy-e�ciency of
android apps. IEEE Transactions on Software Engineering, PP(99):1�1,
2017.

[42] Ansuman Banerjee, Abhik Roychoudhury, Johannes A. Harlie, and Zhenkai
Liang. Golden implementation driven software debugging. In Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE '10, pages 177�186, New York, NY, USA, 2010.
ACM.

[43] Earl T Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and
Federica Sarro. The plastic surgery hypothesis. In Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 306�317. ACM, 2014.

[44] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus.
Dexpler: Converting android dalvik bytecode to jimple for static analysis
with soot. In Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, SOAP '12, pages 27�38, New
York, NY, USA, 2012. ACM.

[45] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites
for e�cient fault localization. In Proceedings of the 28th International
Conference on Software Engineering, ICSE '06, pages 82�91, 2006.

[46] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan
Koduru. An empirical analysis of bug reports and bug �xing in open source

180

android apps. In Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on, pages 133�143. IEEE, 2013.

[47] Robert V Binder. Testing object-oriented systems: models, patterns, and
tools. Addison-Wesley Professional, 2000.

[48] Marcel Böhme and Abhik Roychoudhury. CoREBench: Studying complexity
of regression errors. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages 105�115, New York, NY,
USA, 2014. ACM.

[49] Cari Borrás. Overexposure of radiation therapy patients in panama: problem
recognition and follow-up measures. Revista Panamericana de Salud Pública,
20(2-3):173�187, 2006.

[50] William H Brown, Raphael C Malveau, and Thomas J Mowbray.
AntiPatterns: refactoring software, architectures, and projects in crisis.
Wiley, 1998.

[51] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI' 08, pages 209�224, 2008.

[52] N. Chen and S. Kim. Star: Stack trace based automatic crash reproduction
via symbolic execution. IEEE Transactions on Software Engineering,
41(2):198�220, Feb 2015.

[53] Wontae Choi, George Necula, and Koushik Sen. Guided gui testing of
android apps with minimal restart and approximate learning. In Acm Sigplan
Notices, volume 48, pages 623�640. ACM, 2013.

[54] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso.
Automated test input generation for android: Are we there yet?(e).
In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 429�440. IEEE, 2015.

[55] Jürgen Cito, Julia Rubin, Phillip Stanley-Marbell, and Martin Rinard.
Battery-aware transformations in mobile applications. In Automated
Software Engineering (ASE), 2016 31st IEEE/ACM International
Conference on, pages 702�707. IEEE, 2016.

[56] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer.
Experimental assessment of random testing for object-oriented software. In
Proceedings of the 2007 International Symposium on Software Testing and
Analysis, ISSTA '07, pages 84�94, New York, NY, USA, 2007. ACM.

181

[57] William S Cleveland and Clive Loader. Smoothing by local regression:
Principles and methods. In Statistical theory and computational aspects of
smoothing, pages 10�49. Springer, 1996.

[58] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie van Deursen, and
Christoph Treude. Exception handling bug hazards in android. Empirical
Software Engineering, 22(3):1264�1304, Jun 2017.

[59] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie van Deursen.
Unveiling exception handling bug hazards in android based on github
and google code issues. In Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on, pages 134�145. IEEE, 2015.

[60] Roberta Coelho, Lucas Almeida, Georgios Gousios, Arie Van Deursen, and
Christoph Treude. Exception handling bug hazards in android. Empirical
Software Engineering, pages 1�41, 2016.

[61] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating �xes
from object behavior anomalies. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE '09,
pages 550�554, Washington, DC, USA, 2009. IEEE Computer Society.

[62] Vidroha Debroy andW. Eric Wong. Using mutation to automatically suggest
�xes for faulty programs. Software Testing, Veri�cation, and Validation,
2008 International Conference on, 0:65�74, 2010.

[63] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus.
Automatic repair of buggy if conditions and missing preconditions with smt.
In Proceedings of the 6th International Workshop on Constraints in Software
Testing, Veri�cation, and Analysis, CSTVA 2014, pages 30�39, New York,
NY, USA, 2014. ACM.

[64] RA DeMillo, Richard J Lipton, and FG Sayward. Program mutation: A
new approach to program testing. Infotech State of the Art Report, Software
Testing, 2:107�126, 1979.

[65] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. Supporting
controlled experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering, 10(4):405�435, 2005.

[66] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and
Martin Monperrus. Fine-grained and accurate source code di�erencing. In
ACM/IEEE International Conference on Automated Software Engineering,
ASE '14, Vasteras, Sweden - September 15 - 19, 2014, pages 313�324, 2014.

[67] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues.
A genetic programming approach to automated software repair. In
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, pages 947�954. ACM, 2009.

182

[68] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang,
and Hong Mei. Fixing recurring crash bugs via analyzing q&a sites
(t). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM
International Conference on, pages 307�318. IEEE, 2015.

[69] Zebao Gao, Zhenyu Chen, Yunxiao Zou, and Atif M Memon. Sitar: Gui
test script repair. Ieee transactions on software engineering, 42(2):170�186,
2016.

[70] Laurence Goasdu� and Christy Pettey. Gartner says worldwide smartphone
sales soared in fourth quarter of 2011 with 47 percent growth. Visited April,
2012.

[71] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. Reran:
Timing- and touch-sensitive record and replay for android. In Proceedings
of the 2013 International Conference on Software Engineering, ICSE '13,
pages 72�81, Piscataway, NJ, USA, 2013. IEEE Press.

[72] Mary Jean Harrold, James A Jones, Tongyu Li, Donglin Liang, Alessandro
Orso, Maikel Pennings, Saurabh Sinha, S Alexander Spoon, and Ashish
Gujarathi. Regression test selection for java software. In ACM SIGPLAN
Notices, volume 36, pages 312�326. ACM, 2001.

[73] Mary Jean Harrold, Gregg Rothermel, Kent Sayre, Rui Wu, and Liu Yi. An
empirical investigation of the relationship between spectra di�erences and
regression faults. Software Testing Veri�cation and Reliability, 10(3):171�
194, 2000.

[74] D. Je�rey, Min Feng, N. Gupta, and R. Gupta. Bug�x: A learning-based
tool to assist developers in �xing bugs. In Program Comprehension, 2009.
ICPC '09. IEEE 17th International Conference on, pages 70�79, May 2009.

[75] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated
testing with targeted event sequence generation. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA 2013,
pages 67�77, New York, NY, USA, 2013. ACM.

[76] Mingyue Jiang, Tsong Yueh Chen, Fei-Ching Kuo, Dave Towey, and Zuohua
Ding. A metamorphic testing approach for supporting program repair
without the need for a test oracle. Journal of Systems and Software, 2016.

[77] James A. Jones and Mary Jean Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineering,
ASE '05, pages 273�282, New York, NY, USA, 2005. ACM.

[78] Shalini Kaleeswaran, Varun Tulsian, Aditya Kanade, and Alessandro Orso.
Minthint: Automated synthesis of repair hints. In Proceedings of the 36th

183

International Conference on Software Engineering, ICSE 2014, pages 266�
276, New York, NY, USA, 2014. ACM.

[79] Yalin Ke, Kathryn T Stolee, Claire Le Goues, and Yuriy Brun. Repairing
programs with semantic code search (t). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on, pages 295�306.
IEEE, 2015.

[80] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. Repairing
programs with semantic code search (t). In Proceedings of the 2015 30th
IEEE/ACM International Conference on Automated Software Engineering,
ASE '15, pages 295�306, 2015.

[81] M. G. Kendall. The treatment of ties in ranking problems. Biometrika,
33(3):239�251, 1945.

[82] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic
patch generation learned from human-written patches. In Proceedings of
the 2013 International Conference on Software Engineering, pages 802�811.
IEEE Press, 2013.

[83] X. Kong, L. Zhang, W. E. Wong, and B. Li. Experience report: How do
techniques, programs, and tests impact automated program repair? In
Proceedings of the 2015 IEEE 26th International Symposium on Software
Reliability Engineering, ISSRE '15, pages 194�204, 2015.

[84] Philip Koopman. Elements of the self-healing system problem space.
Proceedings of the ICSE WAD03, 2003.

[85] J. R. Koza. Genetic Programming: On the Programming of computers by
Means of Natural Selection. MIT Press, 1992.

[86] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The soot
framework for java program analysis: a retrospective. In Cetus Users and
Compiler Infastructure Workshop (CETUS 2011), volume 15, page 35, 2011.

[87] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In Software Engineering (ICSE), 2012 34th
International Conference on, pages 3�13. IEEE, 2012.

[88] Claire Le Goues, Stephanie Forrest, and Westley Weimer. Current challenges
in automatic software repair. Software Quality Journal, 21(3):421�443, 2013.

[89] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun,
Premkumar Devanbu, Stephanie Forrest, and Westley Weimer. The
manybugs and introclass benchmarks for automated repair of c programs.
IEEE Transactions on Software Engineering, 41(12):1236�1256, 2015.

184

[90] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
Genprog: A generic method for automatic software repair. Software
Engineering, IEEE Transactions on, 38(1):54�72, 2012.

[91] Claire Le Goues, Westley Weimer, and Stephanie Forrest. Representations
and operators for improving evolutionary software repair. In Proceedings of
the 14th annual conference on Genetic and evolutionary computation, pages
959�966. ACM, 2012.

[92] Zheng Li, Mark Harman, and Robert M Hierons. Search algorithms
for regression test case prioritization. IEEE Transactions on software
engineering, 33(4), 2007.

[93] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Ha�z. R2Fix: Automatically
generating bug �xes from bug reports. In Proceedings of the International
Conference on Software Testing, Veri�cation and Validation (ICST), 2013.

[94] Fan Long and Martin Rinard. Staged program repair with condition
synthesis. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 166�178, New York, NY,
USA, 2015. ACM.

[95] Fan Long and Martin Rinard. An analysis of the search spaces for
generate and validate patch generation systems. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, pages 702�
713, 2016.

[96] Fan Long and Martin Rinard. Automatic patch generation by learning
correct code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL '16, pages 298�
312, New York, NY, USA, 2016. ACM.

[97] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An
empirical analysis of �aky tests. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE
2014, pages 643�653, New York, NY, USA, 2014. ACM.

[98] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. Dynodroid: An input
generation system for android apps. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages
224�234, New York, NY, USA, 2013. ACM.

[99] José Carlos Maldonado, Márcio Eduardo Delamaro, Sandra C. P. F. Fabbri,
Adenilso da Silva Simão, Tatiana Sugeta, Auri Marcelo Rizzo Vincenzi, and
Paulo Cesar Masiero. Proteum: A family of tools to support speci�cation
and program testing based on mutation. In W. Eric Wong, editor, Mutation
Testing for the New Century, pages 113�116. Kluwer Academic Publishers,
Norwell, MA, USA, 2001.

185

[100] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, pages 94�105,
New York, NY, USA, 2016. ACM.

[101] Martina Marré and Antonia Bertolino. Using spanning sets for coverage
testing. IEEE Transactions on Software Engineering, 29(11):974�984, 2003.

[102] Matias Martinez, Laurence Duchien, and Martin Monperrus. Automatically
extracting instances of code change patterns with ast analysis. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference on, pages
388�391. IEEE, 2013.

[103] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and
Martin Monperrus. Automatic repair of real bugs in java: A large-scale
experiment on the defects4j dataset. Empirical Software Engineering, pages
1�29, 2016.

[104] Matias Martinez and Martin Monperrus. Mining repair actions for guiding
automated program �xing. Technical report, INRIA, Tech. Rep, 2012.

[105] Matias Martinez and Martin Monperrus. Astor: A program repair library
for java (demo). In Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, pages 441�444, New York, NY,
USA, 2016. ACM.

[106] Matias Martinez, Westley Weimer, and Martin Monperrus. Do the �x
ingredients already exist? an empirical inquiry into the redundancy
assumptions of program repair approaches. arXiv preprint arXiv:1403.6322,
2014.

[107] S. Mechtaev, J. Yi, and A. Roychoudhury. Direct�x: Looking for simple
program repairs. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 448�458, May 2015.

[108] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable multiline
program patch synthesis via symbolic analysis. In Proceedings of the 38th
International Conference on Software Engineering, ICSE '16, pages 691�701,
New York, NY, USA, 2016. ACM.

[109] Atif M. Memon and Myra B. Cohen. Automated testing of gui applications:
Models, tools, and controlling �akiness. In Proceedings of the 2013
International Conference on Software Engineering, ICSE '13, pages 1479�
1480, Piscataway, NJ, USA, 2013. IEEE Press.

[110] Nariman Mirzaei, Sam Malek, Corina S. P s reanu, Naeem Esfahani, and
Riyadh Mahmood. Testing android apps through symbolic execution.
SIGSOFT Softw. Eng. Notes, 37(6):1�5, November 2012.

186

[111] Audris Mockus, Roy T Fielding, and James D Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(3):309�346, 2002.

[112] Martin Monperrus. A critical review of "automatic patch generation
learned from human-written patches": Essay on the problem statement
and the evaluation of automatic software repair. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, 2014.

[113] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher
Vendome, and Denys Poshyvanyk. Automatically discovering, reporting and
reproducing android application crashes. In Software Testing, Veri�cation
and Validation (ICST), 2016 IEEE International Conference on, pages 33�
44. IEEE, 2016.

[114] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda.
Patchdroid: Scalable third-party security patches for android devices. In
Proceedings of the 29th Annual Computer Security Applications Conference,
pages 259�268. ACM, 2013.

[115] Akbar Siami Namin and James H. Andrews. The in�uence of size and
coverage on test suite e�ectiveness. In Proceedings of the 8th International
Symposium on Software Testing and Analysis, ISSTA '09, pages 57�68, 2009.

[116] Shimul Kumar Nath, Robert Merkel, Man Fai Lau, and Tanay Kanti Paul.
Towards a better understanding of testing if conditionals. In Software
Engineering Conference (APSEC), 2012 19th Asia-Paci�c, volume 1, pages
772�777. IEEE, 2012.

[117] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. Sem�x: Program repair via semantic analysis. In Proceedings of
the 2013 International Conference on Software Engineering, pages 772�781.
IEEE Press, 2013.

[118] A Je�erson O�utt and Roland H Untch. Mutation 2000: Uniting the
orthogonal. In Mutation testing for the new century, pages 34�44. Springer,
2001.

[119] Jie Pan and Loudon Tech Center. Procedures for reducing the size of
coverage-based test sets. In Proceedings of International Conference on
Testing Computer Software, 1995.

[120] Kai Pan, Sunghun Kim, and E James Whitehead Jr. Toward an
understanding of bug �x patterns. Empirical Software Engineering,
14(3):286�315, 2009.

[121] Karl Pearson. Note on regression and inheritance in the case of two parents.
Proceedings of the Royal Society of London, 58:240�242, 1895.

187

[122] Karl Pearson. On the Criterion that a Given System of Deviations from
the Probable in the Case of a Correlated System of Variables is Such that it
Can be Reasonably Supposed to have Arisen from Random Sampling, pages
11�28. Springer New York, New York, NY, 1992.

[123] Yu Pei, Yi Wei, Carlo A Furia, and Martin Nordio Bertr. Evidence-based
automated program �xing. CoRR, 2011.

[124] Je� H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios
Sidiroglou, Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst,
and Martin Rinard. Automatically patching errors in deployed software. In
SOSP, pages 87�102, 2009.

[125] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. Darwin:
An approach to debugging evolving programs. ACM Transactions on
Software Engineering and Methodology (TOSEM), 21(3):19, 2012.

[126] Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. The
strength of random search on automated program repair. In Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014,
New York, NY, USA, 2014.

[127] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, ISSTA 2015, pages 24�36, New York, NY, USA, 2015.
ACM.

[128] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel.
Making malory behave maliciously: Targeted fuzzing of android execution
environments. In Proceedings of the 39th International Conference on
Software Engineering, ICSE '17, pages 300�311, Piscataway, NJ, USA, 2017.
IEEE Press.

[129] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia
Chesley. Chianti: A tool for change impact analysis of java programs.
In Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, OOPSLA
'04, pages 432�448, New York, NY, USA, 2004. ACM.

[130] Gregg Rothermel and Mary Jean Harrold. A safe, e�cient regression
test selection technique. ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(2):173�210, 1997.

[131] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
Prioritizing test cases for regression testing. Software Engineering, IEEE
Transactions on, 27(10):929�948, 2001.

188

[132] Hesam Samimi, Max Schäfer, Shay Artzi, Todd Millstein, Frank Tip,
and Laurie Hendren. Automated repair of html generation errors in php
applications using string constraint solving. In Proceedings of the 34th
International Conference on Software Engineering, ICSE '12, pages 277�
287, Piscataway, NJ, USA, 2012. IEEE Press.

[133] Saurabh Sinha, Hina Shah, Carsten Görg, Shujuan Jiang, Mijung Kim, and
Mary Jean Harrold. Fault localization and repair for java runtime exceptions.
In Proceedings of the eighteenth international symposium on Software testing
and analysis, pages 153�164. ACM, 2009.

[134] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. Is the
cure worse than the disease? over�tting in automated program repair.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, pages 532�543. ACM, 2015.

[135] Mozhan Soltani, Annibale Panichella, and Arie van Deursen. A guided
genetic algorithm for automated crash reproduction. In Proceedings of
the 39th International Conference on Software Engineering, pages 209�220.
IEEE Press, 2017.

[136] Ting Su. Fsmdroid: Guided gui testing of android apps. In Proceedings
of the 38th International Conference on Software Engineering Companion,
ICSE '16, pages 689�691, New York, NY, USA, 2016. ACM.

[137] Sriraman Tallam and Neelam Gupta. A concept analysis inspired greedy
algorithm for test suite minimization. ACM SIGSOFT Software Engineering
Notes, 31(1):35�42, 2006.

[138] Shin Hwei Tan and Abhik Roychoudhury. Reli�x: Automated repair of
software regressions. In Proceedings of the 37th International Conference on
Software Engineering, ICSE 2015, pages 471�482. ACM, 2015.

[139] Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik
Roychoudhury. Anti-patterns in search-based program repair. In Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 727�738. ACM, 2016.

[140] Yi Wei, Yu Pei, Carlo A Furia, Lucas S Silva, Stefan Buchholz, Bertrand
Meyer, and Andreas Zeller. Automated �xing of programs with contracts.
In Proceedings of the 19th international symposium on Software testing and
analysis, pages 61�72. ACM, 2010.

[141] W. Weimer, Z.P. Fry, and S. Forrest. Leveraging program equivalence for
adaptive program repair: Models and �rst results. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on,
Nov 2013.

189

[142] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
Automatically �nding patches using genetic programming. In ICSE, pages
364�374, 2009.

[143] J. Xuan, M. Martinez, F. DeMarco, M. Clement, S. Lamelas Marcote,
T. Durieux, D. Le Berre, and M. Monperrus. Nopol: Automatic repair
of conditional statement bugs in java programs. IEEE Transactions on
Software Engineering, PP(99):1�1, 2016.

[144] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. Crash reproduction via
test case mutation: Let existing test cases help. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pages 910�913.
ACM, 2015.

[145] Wei Yang, Mukul R Prasad, and Tao Xie. A grey-box approach for
automated gui-model generation of mobile applications. In International
Conference on Fundamental Approaches to Software Engineering, pages 250�
265. Springer, 2013.

[146] Xiangjuan Yao, Mark Harman, and Yue Jia. A study of equivalent and
stubborn mutation operators using human analysis of equivalence. In
Proceedings of the 36th International Conference on Software Engineering,
ICSE '14, pages 919�930, 2014.

[147] Kai Yu, Mengxiang Lin, Jin Chen, and Xiangyu Zhang. Towards
automated debugging in software evolution: Evaluating delta debugging
on real regression bugs from the developers' perspectives. J. Syst. Softw.,
85(10):2305�2317, October 2012.

[148] Andreas Zeller. Yesterday, my program worked. today, it does not. why?
SIGSOFT Softw. Eng. Notes, 24(6):253�267, October 1999.

[149] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Trans. Softw. Eng., 28(2):183�200, February 2002.

[150] Mu Zhang and Heng Yin. Appsealer: Automatic generation of vulnerability-
speci�c patches for preventing component hijacking attacks in android
applications. In NDSS, 2014.

[151] Michael Zhivich and Robert K Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2), 2009.

190

	The Need for Automated Program Repair
	Prior Works on Automated Program Repair
	Fault Localization
	Spectrum-based Fault Localization
	Fault Localization based on Multiple Program Versions

	Testing and Automated Program Repair
	Mutation Testing and Program Repair
	Regression Testing

	Automatic Program Repair Techniques
	Search-Based Repair
	Semantic-Based Repair
	Contract-Based Repair
	Repair that Incorporates Domain Specific Knowledge

	Selections of Repair Operators in Automated Repair
	Common Set of Repair Operators
	Effectiveness of Repair Operators
	Evaluation
	Codeflaws Benchmark
	Experimental Setup
	RQ1: Effectiveness of each Repair Operator
	RQ2: Redundancy of Repair Operators
	RQ3: Selection Strategies

	Discussion
	Threats to Validity
	Chapter Summary

	A Correlation Study between Automated Program Repair and Test Suite Metrics
	Introduction
	Background
	Correlation Coefficient
	On Duality between Mutation Testing and Automated Program Repair

	Research Questions
	Experimental Methodology
	Subjects, Test-Universes and Test-Suites
	Automated Repair Algorithm
	Measuring Test-Suites Metrics

	Experimental Results
	Basic Statistics – Repair Ratio and Regression Ratio
	Correlation Coefficients about Regression Ratio
	Correlation Coefficients about Repairability
	Correlation Coefficients about Repair Time
	Generalizing the Results

	Threats to Validity
	Conclusion

	Anti-patterns for Search-Based Program Repair
	Introduction
	Prevalence of Anti-patterns
	How Anti-patterns may Help
	Integrating Anti-patterns
	Experiments
	Experimental Setup
	Evaluation on CoREBench benchmarks
	Evaluation on GenProg benchmarks

	Threats To Validity
	Chapter Summary

	Relifix: Automated Repair of Software Regressions
	Introduction
	Repairing Regression as Reconciling Problematic Changes
	Experience about Real-life Regressions
	Contextual Operators that Use Information from Different Program Versions

	Example
	Algorithm
	Fault Localization
	Mutant Generation and Evaluation
	Test Case Prioritization and Reduced Test Suite

	Experimental Evaluation
	Experimental Setup
	Repairability (RQ1)
	Regression Rate (RQ2)
	Repairability of Latent Errors versus New Errors (RQ3) and the Simplicity of the Generated Repair (RQ4)

	Threats To Validity
	Related Work
	Chapter Summary

	Emerging Applications: Repairing Crashes in Mobile Apps
	Introduction
	Background: Lifecycle in Android
	A Motivating Example
	Identifying Causes of Crashes in Android Applications
	Strategies to Resolve Crashes
	Methodology
	Test with UI Sequences
	Fault Localization
	Code Checker and Test Checker
	Mutant Generation and Evaluation

	Implementation
	Subjects
	Evaluation
	Experimental Setup
	Evaluation Results

	Threats to Validity
	Related work
	Chapter Summary

	Conclusion
	Research Outputs
	Future Work

