
ENHANCING DIRECTED SEARCH IN

BLACK-BOX, GREY-BOX AND WHITE-BOX

FUZZ TESTING

VAN-THUAN PHAM

(M.Eng., HUST)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:

Professor Abhik Roychoudhury

Examiners:

Associate Professor Liang Zhenkai

Dr Prateek Saxena

Associate Professor Cristian Cadar, Imperial College London

DECLARATION

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Pham Van Thuan

15 June 2017

i

ACKNOWLEDGEMENTS

First of all, I would like to thank my advisor, Dr. Abhik

Roychoudhury, for his wonderful support and guidance during my PhD

endeavors. I will recall the weekly meetings when I just joined his group

and got his invaluable advice on formulating research questions and

communicating ideas in a concise yet effective way. His insights and

continuous feedback have shaped the core ideas for all of my work. More

importantly, his passion for doing research influences my working attitude

during my PhD studies as well as in my future career. Without his

support and guidance, this thesis would not have been possible.

I wish to thank all of my family members especially my parents, my

wife, my little daughter and my brothers for their unconditional love and

support. I thank my wife for her understanding as well as her

encouragement whenever I have difficulties at work. Without her endless

love and support, I would not have been able to complete my PhD

journey.

I am thankful to Dr. Liang Zhenkai and Dr. Prateek Saxena for agreeing

to serve in my thesis committee and giving constructive comments on my

thesis proposal. I would also like to thank Dr. Cristian Cadar for taking

his precious time to be my external thesis examiner.

My study in NUS could not have been so wonderful without my

colleagues, collaborators and friends. I would like to thank Sudipta, Lee

Kee, Clement, Konstantin, Wei Boon, Subhajit, Saakar, Jooyong, Chia

Yuan and especially Marcel for their productive discussions and great

collaborations. I would also like to thank my friends and my labmates,

Manh Dung, Quang Loc, Duc Hiep, Quang Trung, Ton Chanh, Minh

Thai, Duy Khanh, Truong Khanh, Abhijeet, Sergey, Shin Hwei for

inspiring discussions about research topics and the life.

ii

The work presented in this thesis was partially supported by a grant

from DSO National Laboratories, Singapore, and the National Research

Foundation, Prime Ministers Office, Singapore under its National

Cybersecurity R&D Program (TSUNAMi project, Award No.

NRF2014NCRNCR001-21) and administered by the National

Cybersecurity R&D Directorate. They are all gratefully acknowledged.

iii

PAPER APPEARED

1. Van-Thuan Pham, Sakaar Khurana, Subhajit Roy, and Abhik

Roychoudhury. Bucketing failing tests via symbolic analysis. 20th

International Conference on Fundamental Approaches to Software

Engineering (FASE) 2017. pp.43–59.

2. Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Model-

based whitebox fuzzing for program binaries. In Proceedings of the

31st IEEE/ACM International Conference on Automated Software

Engineering (ASE) 2016. pp.543–553.

3. Van-Thuan Pham, Wei Boon Ng, Konstantin Rubinov, and Abhik

Roychoudhury. Hercules: reproducing crashes in real-world

application binaries. In Proceedings of the 37th International

Conference on Software Engineering - Volume 1 (ICSE ’15).

pp.891–901.

iv

Table of Contents

1 Introduction 1

1.1 Thesis Overview . 6

1.2 Thesis Organization . 11

2 Background 12

2.1 Running Example . 12

2.2 Black-box Fuzzing . 14

2.3 White-box Fuzzing . 17

2.3.1 Symbolic Execution 17

2.3.2 Symbolic Execution based White-box Fuzzing 19

2.4 Coverage-based Grey-box Fuzzing 25

3 Literature Review 28

3.1 Enhancing Directedness in Fuzz Testing 28

3.2 Improving Scalability of Symbolic Execution 31

3.3 Hybrid Fuzz Testing . 34

3.4 Bucketing Failing Tests . 35

4 Directed Search in White-box Fuzzing 38

4.1 Introduction . 38

4.2 Motivating Example . 41

4.3 Preprocessing and Generating Hybrid Symbolic Files 45

4.3.1 Recovering Program Structure and Selecting Seed Files 46

4.3.2 Generating Hybrid Symbolic Inputs 47

4.4 Unsat-core Directed Search Strategy 48

4.4.1 Replay . 49

4.4.2 Summarizing Crashing Module Symbolically 50

4.4.3 Searching for a Crashing Path 53

4.5 Tackling Limitations of Concolic Execution 55

v

4.5.1 Synthesizing Crash Conditions for Loop-controlled

Crashes . 55

4.5.2 Path Grouping in String Manipulation Functions . . 57

4.6 Implementation . 60

4.6.1 CFG Refinement and Path Pruning Functionality . . 60

4.6.2 Extensions of the S2E Core 61

4.6.3 Analysis and Search Plugins 61

4.7 Experimental Evaluation . 63

4.7.1 Experimental Setup 64

4.7.2 Reproducing Crashes 65

4.7.3 Comparing with the Baseline 67

4.8 Chapter Summary . 68

5 Closed-loop Model-based Black-box and White-box

Fuzzing for Program Binaries 69

5.1 Introduction . 70

5.2 Motivating Example . 75

5.2.1 Exposing Vulnerabilities 77

5.3 Model-based Black-box and White-box Fuzz Testing 83

5.3.1 Directed Model-based Search 85

5.3.2 Transplantation, Instantiation, and Repair 87

5.3.3 Selective and Targeted Symbolic Execution 88

5.3.4 Handling Incomplete Memory Modeling 89

5.4 Implementation . 90

5.5 Experimental Evaluation . 91

5.5.1 Experimental Setup 92

5.5.2 Results and Analysis 94

5.6 Threats to Validity . 100

5.7 Chapter Summary . 100

6 Directed Coverage-based Grey-box Fuzz Testing 102

6.1 Introduction . 102

6.2 Motivating Example . 106

6.3 Background . 109

6.3.1 Simulated Annealing 109

6.3.2 Coverage-based Greybox Fuzzing 110

6.4 Directed Greybox Fuzzing 112

6.4.1 A Measure of Distance Between the Exercised Path

and Multiple Targets 113

vi

6.4.2 Temperature-based Power Schedule 115

6.5 Implementation . 118

6.5.1 All Program Analysis at Compile Time 118

6.5.2 Efficient Search at Runtime 120

6.6 Experimental Evaluation . 121

6.6.1 Experimental Setup 122

6.6.2 Results and Analysis 126

6.7 Threats to Validity . 131

6.8 Chapter Summary . 132

7 Bucketing Failing Tests via Symbolic Analysis 133

7.1 Introduction . 133

7.2 Overview . 136

7.3 Reasons of Failure . 140

7.4 Clustering Framework . 142

7.4.1 Clustering Algorithm 142

7.4.2 Clustering-aware Search Strategy 146

7.4.3 Generalize Reasons for Failure 149

7.5 Experimental Evaluation . 150

7.5.1 Results and Analysis 151

7.5.2 User Study . 155

7.6 Chapter Summary . 157

8 Conclusion 158

8.1 Thesis summary . 158

8.2 Future work . 160

vii

Enhancing Directed Search in

Black-box, Grey-box and White-box Fuzz Testing

Abstract

Security bugs can exist in every single software system, and software

testing aims to find these bugs ahead of attackers, who are hunting for

zero-day bugs and/or managing to exploit them for profit (e.g., by

stealing users’ credentials like credit card information) or to cause serious

problems (e.g., by attacking critical systems like nuclear power plant).

Fuzz testing (or fuzzing) techniques, which include (model-based)

black-box, coverage-based grey-box and white-box approaches, have

become prominent for software testing. However, given an inadequate test

suite they are not skillful at directing the exploration to reach given

target locations and expose bugs in large program binaries that take

highly-structured inputs. We observe that these limitations can be

circumvented by improving the directedness of fuzzing approaches.

In this thesis, we first design a directed search algorithm in Hercules, a

symbolic execution based white-box fuzzing engine working directly on

large multi-module (stripped) program binaries. The directedness of

Hercules is attributed to its ability to steer the exploration towards target

locations using the module dependency graph and control flow graph

lifted directly from application binaries. Moreover, by exploiting the

results produced by SMT constraint solver (e.g., minimal unsatisfiable

core), Hercules systematically navigates the search between non-crashing

paths and crashing ones. White-box fuzzing tools like Hercules excel at

reasoning about values of data fields but it could easily get “stuck” at

synthesizing the whole (optional) data block (a.k.a data chunk) which

may not exist in an inadequate test suite of highly-structured inputs like

viii

PNG, WAV and PDF files. To tackle this problem, we develop MoBWF

— a novel combination of model-based black-box fuzzing (as embodied by

Peach fuzzer) and white-box fuzzing (as embodied by Hercules). In this

combination setup, Hercules can inform Peach about where it gets stuck.

Peach takes this information and leverages the input model to generate

and transfer the missing data block to the current input of Hercules,

helping Hercules get unstuck and continue its directed exploration. Apart

from expensive symbolic analysis based approaches, the directedness can

also be achieved by augmenting coverage-based grey-box fuzzing (CGF),

a more lightweight technique. We build AFLGo, a directed CGF, by

integrating Simulated Annealing global search algorithm into the fuzzing

process so that the testing is steered towards target locations with a

higher probability than other locations.

The experimental evaluations on two applications of directed fuzzing –

crash reproduction and patch testing for vulnerability detection – show

that Hercules, MoBWF and AFLGo effectively guide the search and

successfully reproduce crashes in large real-world (binary) programs (e.g.,

Adobe Reader, Windows Media Player, OpenSSL) taking

highly-structured file formats (e.g., PNG, WAV, PDF). Notably, AFLGo

can expose the famous HeartBleed vulnerability almost four (4) times

faster than the state-of-the-art AFL fuzzer. In addition, AFLGo has

discovered 14 zero-day vulnerabilities in the widely-used Binutils toolset.

All the vulnerabilities have been confirmed and fixed by Binutils’

maintainers, and we have obtained five (5) CVEs assigned to the most

critical ones.

ix

List of Tables

4.1 Experimental setup and results 64

5.1 Subject Programs . 92

5.2 Information on the Input Models 93

5.3 The vulnerabilities exposed by our MoBWF tool, the

Hercules TWF, and the Peach MoBF. Vulnerabilities

from the Hercules benchmark are marked as grey. 94

5.4 Vulnerabilities exposed by our MoBWF tool if no initial seed

files are provided. 98

7.1 Clustering result: Symbolic analysis 139

7.2 Test Clustering: number of clusters 151

7.3 Test clustering: overhead . 152

7.4 Sample culprit constraints 155

7.5 Responses from the user study. 156

x

List of Figures

1-1 Control flow graphs of (a) a program having multiple

branches and (b) a program with loop 4

2-1 Example file format . 13

2-2 Architecture of Peach as a File Fuzzer 16

2-3 Symbolic execution tree of get sign program 18

2-4 Architecture of KLEE . 22

2-5 Architecture of S2E . 24

2-6 Architecture of AFL as a File Fuzzer 25

4-1 An overview of our approach and Hercules tool 39

4-2 Crash analysis information for CVE-2010-0718 42

4-3 Schematic module dependence graph with paths to crashing

module highlighted . 44

4-4 Phases of targeted exploration 49

4-5 Example of loop-dependent crash in Real Player 56

4-6 Components of the Hercules toolset 60

5-1 The structure and the hex code of a PNG file. A data

chunk is a section in the hex code embedding one piece of

information about the image. The hex code above the

light-grey boxes identifies the data chunk type while the

hex code above the dark-grey boxes protects the

correctness of the data chunk (via checksum). 72

5-2 Closed-loop Model-based Blackbox and Whitebox Fuzzing.

Elements marked in grey are informed by the data model. . 74

5-3 Components of our MoBWF tool 90

6-1 Overview AFLgo architecture. 107
6-2 Improvement of AFLgo over AFL for Heartbleed. 108
6-3 Rate of convergence for the exponential multiplicative

cooling schedule, Tk = 0.9k where T0 = 1. 110

xi

6-4 Difference between node distance defined in terms of

arithmetic mean versus harmonic mean. Node distance is

shown in the white circles. The targets are marked in gray. . 114

6-5 Impact of path distance d̃(ξ,Γ) and temperature Tk on the

energy p(Tk, ξ,Γ) of the seed exercising path ξ. 116

6-6 Temperature-based power factor which controls the energy

that was originally assigned by AFL’s power schedule (tx =

40), (a) for seed with minimal path distance to all targets

(d̃ = 0) and (b) for a seed with maximal distance to all

targets (d̃ = 1). Notice the different scales on the y-axis. . . 118

6-7 AFL shared memory – extended layout (x86-64) 119
6-8 Subjects for Crash Reproduction. 123

6-9 Improvement of AFLgo over AFL in crash reproduction

application. We run this experiment 20 times and highlight

statistically significant values of Â12 in bold. A run that

does not reproduce the vuln. within 8 hours receives a TTE

of 8 hours. CVEs 2016-4491 and 2016-6131 are difficult to

find even in 24 hours [22]. 126

6-10 Sensitivity to the time to exploitation tx. We show the

individual improvement for each vulnerability. 128

6-11 Discovered zero-day vulnerabilities. 130

7-1 Symbolic execution tree for motivating example 138

7-2 A Branching Tree . 147

xii

Chapter 1

Introduction

Computing devices are omnipresent in our everyday life. As of October

2014, there were about 2 billion of personal computers (including PCs and

Macs) and more than 7 billion of handheld devices in use worldwide [12].

This figure will be much bigger if we also count the embedded devices

in this era of internet of things (IoT). Millions of software applications

are running to control the devices and provide utilities to end users. In

this situation, any bug/defect in a (critical) software can lead to costly

remedial actions. A software application can have different types of bugs.

A bug can be simple and harmless like the one which only affects user

experiences (e.g., incorrect font or improper display screen size). More

seriously, a logical bug can cause programs to output unexpected results.

From a security perspective, most severe bugs stop a software system from

running properly (e.g., denial of service) or pave the ways for attackers

to install and execute malicious code which can steal users’ confidential

data (e.g., credit card information). For example, the Heartbleed bug [103]

in the popular OpenSSL cryptographic software library caused secret key

leak, and allowed anyone on the Internet to steal data directly from the

compromised services. Even worse, malicious code can control the whole

1

software and physical system. In December 2015 a malware, which has

recently been dubbed “Crash Override” 1, showed its ability to control the

Ukraine power grid and disrupt electricity supply to the end consumers.

The cyberattack left 230 thousands people without electricity in several

hours[13].

To achieve high level of correctness and security in software applications,

software manufacturers should continuously conduct three steps – testing,

debugging and fixing through the whole life of their software products,

during development process and even after the software is released. In

these three steps, testing plays a key role to produce test cases proving the

presence of software defects. Once such a test case is generated, developers

can debug the buggy program, find its root cause and fix it.

Software testing can be done manually, semi-automatically or

automatically. Even though manual testing is still a common practice in

software development and maintenance process, it is a time and human

resource consuming task. Nowadays software systems are getting larger

and more complicated, and it makes manual testing much more

challenging. Hence, (semi) automatic testing has been in high demand

especially when computing resources are getting more accessible and

cheaper than ever as a result of significant advances in Cloud computing

technology.

Several automatic testing techniques have been proposed, and we can

categorize them into static and dynamic approaches. Static techniques

include static analysis [20, 6, 64] and software model checking

[55, 38, 18, 37]. While static analysis tools perform without executing the

program under test (PUT), model checkers work on a model of the PUT.

Although static approaches have shown their effectiveness in finding

1https://dragos.com/blog/crashoverride/

2

program bugs, they can only indicate potential buggy locations and

produce program traces to these locations – they cannot produce concrete

test cases to trigger the bugs. Consequently, developers/testers still need

to spend substantial time and efforts to check whether the reported bugs

(i.e., alarms from static analysis tools) are real bugs. Indeed, static

approaches suffer from high false positive rate, that is, they usually raise

lots of false alarms because of lacking run-time information or the

imprecision of the program model. In contrast, dynamic approaches (e.g.,

Fuzz testing [9, 4, 5, 35, 51, 8, 101]) execute the PUT and generate

concrete test cases as witnesses for program bugs. There is minimal to no

effort needed by developers to validate the bugs reported by dynamic

tools.

In the scope of this thesis, we focus on dynamic approaches particularly

fuzzing techniques and their combinations. Fuzz testing or fuzzing was

first proposed by Miller et al. in 1990 [83] to understand the reliability

of UNIX tools. This is known as black-box fuzzing technique because it

does not require any structural information of the PUT; in fact the PUT

is viewed as a black box. Basically, black-box fuzzing randomly mutates

selected program inputs (i.e., modify part(s) of them) to produce other

inputs which hopefully can trigger some abnormal behaviors of the program

like crashes and hangs. Due to its lack of program understanding, inputs

generated by black-box fuzzing are likely to be rejected by input sanitizer

component (e.g., parser code). To address the problem, the work of [50]

proposed white-box fuzzing technique (a.k.a concolic execution) that runs

PUT both symbolically and concretely. This work explores into how PUT

is running (e.g., control flows, data flows, CPU and memory states), and

traverses deep paths that are unlikely to be reached by black-box approach.

Although white-box fuzzing is more systematic, its scalability is limited due

3

...
...
(a) (b)

Figure 1-1: Control flow graphs of (a) a program having multiple branches
and (b) a program with loop

to the well-known path explosion problem. In a program having multiple

conditional branches and/or unbounded loops (as depicted in Figure 1-1),

the number of program paths can grow exponentially.

Many research works have been done to maximize the effectiveness

and efficiency for both black-box and white-box fuzzing techniques by

intelligently control their search space. For instance, model-based

black-box fuzzing [9, 11] and grammar-based white-box fuzzing [49]

exploit input data model and input grammar to add more constraints to

input data and hence prevent fuzzing engines from generating totally

invalid inputs. BuzzFuzz [45] was designed to use taint analysis to

identify parts of the input that control critical locations (e.g., system

calls) and sensitive data so they focus modifying these parts instead of

treating all parts equally. TaintScope [101] moved one step further to

handle checksum integrity checks in highly-structured inputs. ESD [107]

and KATCH [81] systematically direct symbolic exploration towards some

specific location using control flow graph extracted from program source

code. In addition, several powerful symbolic execution frameworks

supporting smart search heuristics and ability to work with real-world

(binary) applications have been developed such as BitBlaze, SAGE,

Mayhem, KLEE and S2E [51, 28, 95, 35, 33], to name a few.

4

Coverage based grey-box fuzzing (grey-box fuzzing for short) [4, 5, 8]

has gained lots of attention from both academia and industry. Unlike

black-box fuzzing, grey-box fuzzing has access to some internal program

structure like branch coverage information. Unlike white-box fuzzing,

grey-box fuzzing uses lightweight instrumentation to determine control

flow coverage – no heavy program analysis and no control flow graph

extraction are needed. The technique turns out to be effective and

efficient in finding bugs, especially security related ones. Recently,

Stephens et al. [96] have combined grey-box fuzzing and white-box

fuzzing in a framework named Driller to leverage the best of both worlds.

All of the aforementioned research has significantly improved fuzzing

techniques; however, they still have several drawbacks. Grammar based

white-box fuzzing only works with context free grammar and cannot

handle integrity checks which are very common in highly-structured file

format like PNG, WAV and PDF. The directed search algorithms in ESD

and KATCH are smart but they work on subjects where source code is

available, and hence more precise structural information is available.

Taint analysis directed fuzzing approaches like BuzzFuzz and TaintScope

implicitly assume they have seed inputs to reach critical functions. It

means they ignore handling reachability analysis which is extremely

challenging in program binaries. Meanwhile, coverage-based grey-box

fuzzing is still undirected – given a specific target location, it cannot be

directed towards quickly generating seeds that can reach the target.

Due to the pointed limitations, given an inadequate test suite , the

current fuzzing techniques are not skillful at directing the exploration to

reach certain locations and expose errors in large program binaries

that take highly-structured file inputs.

5

1.1 Thesis Overview

In this thesis, we propose techniques to enhance the directed search

algorithms in major types of fuzzing – black-box, grey-box and white-box

fuzzing. Our algorithms take into account the inadequacy of given test

suite, the complex structures of program inputs (e.g., the presence of

optional data chunks, integrity checks like checksum), the incompleteness

of program structure (e.g., control flow graph) lifted from binaries, and

also the complexity of the program under test (e.g., multi-module design).

Our final goal is to develop a fuzzing-based automated testing framework

that scales well to large real-world (binary) programs. Moreover, being

aware of the overwhelming number of failing tests could be generated

during fuzzing process, we also develop a fine-grained bucketing technique

to effectively manage and group the tests to ease the debugging phase.

To this end, we first design a directed search algorithm in Hercules, a

symbolic execution based white-box fuzzing that works directly on

(stripped) program binaries. Given a target location l and a set of benign

inputs T in which none of them reaches l, Hercules can generate concrete

test case(s) to reach l and satisfy given certain condition (e.g., crash

condition). The directedness of Hercules is attributed to its ability to

bound the exploration space using the module dependency graph and

control flow graph lifted directly from application binaries. Moreover,

once Hercules reaches location l but the given condition is not satisfiable,

it leverages the minimal unsatisfiable core produced by SMT constraint

solver to first extract the reason of contradiction (in form of branch

condition(s)). Afterwards, based on the reason of the contradiction

Hercules can identify which conditional IF statement caused the

contradiction and hence backtrack to it, negate the branch and follow the

6

opposite program path towards location l.

Hercules requires a satisfactory test suite having benign test input to

explore paths towards some control location which is close enough to the

target location l. For example, the control location can be an entry point of

the module (e.g., shared library) that contains l. However, the assumption

may not always work in programs taking highly-structured file formats such

as PNG, WAV and PDF because in these file formats, there are several

optional data chunks which normally do not exist in an inadequate test

suite. In fact, the existence of optional data chunk(s) at certain place(s)

in a file input can decide whether a control location of the consuming

programs can be reached. To tackle the problem, we propose MoBWF, a

novel combination of model-based black-box fuzzing (as embodied in Peach

Fuzzer[9]) and directed white-box fuzzing (as implemented in Hercules)

to exploit the best of both worlds. We implement in Peach a so-called

“data chunk transplantation” capability to generate and insert missing data

chunk under guidance of Hercules while Hercules effectively explores the

value space of data bytes in the newly inserted chunk to drive the search

towards the target location.

MoBWF significantly improves effectiveness and efficiency of

model-based black-box fuzzing and white-box fuzzing in large program

binaries taking highly-structured file inputs. Nevertheless, it is still a

heavyweight technique because it involves complicated program analysis

and constraint solving. In contrast, coverage-based grey-box fuzzing

(CGF) is a lightweight technique that has impressive records in

discovering (security) bugs. However, its limitation is the lack of

directedness. Recently, Böhme et al. [5] have found that CGF can be

modeled as Markov chain. The finding opens a chance to integrate

Markov Chain Monte Carlo meta-heuristics into CGF and make it

7

directed. To realize the observation, we build AFLGo – a directed CGF

by integrating into it the Simulated Annealing [65] – a Markov Chain

Monte Carlo approach. Simulated annealing allows AFLGo to regulate

the so-called “fuzzing energy”, which decides how much time should be

allocated to fuzzing a selected seed, for a seed input based on its path

distance to provided target location(s) and the current “temperature”.

The reader can refer to Section 6.4.1 for a full definition of path distance.

The novel combination allows AFLGo to focus on mutating more

“interesting” seeds but still take into account less “interesting” seeds and

hence increase the chance to discover program bugs – which is equivalent

to the global optimum in original Simulated Annealing.

A fuzzing tool could generate an overwhelming number of failing test

cases where many of the tests are likely to fail due to same “reason” and

hence it wastes developers’ time and efforts. So bucketing – a technique

to effectively group the failing tests – would be extremely useful. So far,

people have only used pretty coarse grained run-time information like point-

of-failure or stack trace to do the grouping. In this thesis, we propose

a new symbolic analysis-based clustering algorithm that uses a semantic

“reason” behind failures to group failing tests into “meaningful” clusters.

The reason is defined as the constraint introduced by the branch at which

the failing execution path deviates from the nearest correct path. The

experimental results show that our technique is effective at producing more

fine grained clusters as compared to the point-of-failure based and call-

stack-based clustering schemes. As a side-effect, our technique also provides

a semantic characterization of the fault represented by each cluster – a

precious hint to guide debugging.

The main contributions of this thesis are as follows.

• Unsat-core guided search algorithm in white-box fuzzing.

8

The search algorithm in Hercules detects reasons for infeasibility of

non-crashing paths and directs concolic execution towards target

location until the location is reached and the crash condition is

satisfied. The algorithm is supported by program structure

information (e.g., module dependency graph and control flow graph)

lifted directly from program binaries and several heuristics working

on loops and string manipulation functions.

• Leveraging input model to handle inadequate test suite of

highly-structured input files. Input model is used to glue

model-based black-box fuzzing (as embodied by Peach Fuzzer [9])

and directed white-box fuzzing (as embodied by Hercules) together

to handle missing data chunk problem due to inadequate test suite.

We design a so-called “data chunk transplantation” technique that

can “transplant” missing data chunk(s) into an input under the

guidance of white-box fuzzing and some input model. While

white-box fuzzing informs Peach about what and where to

transplant, input model helps Peach to decide how to transplant.

• Directed coverage-based grey-box fuzzing. We integrate

Simulated Annealing – a Markov Chain Monte Carlo approach into

coverage-based grey-box fuzzing to direct the exploration towards a

given set of target locations. To the best of our knowledge, we

develop the first multiple-target search-based software testing

technique where the single objective is to generate an input that

exercises as many of the given targets as possible.

• Fuzzing framework and evaluation. We have developed three

fuzzing systems, which are Hercules, MoBWF and AFLGo, and

evaluated them on two main applications – patch testing for

9

vulnerability detection and crash reproduction. These toolset

successfully reproduce crashes in large real-world (binary) programs

(e.g., Adobe Reader, Windows Media Player, OpenSSL, Binutils etc

) taking highly-structured file formats (e.g., PDF, PNG, WAV etc).

Notably, AFLGo can expose the well-known HeartBlead

vulnerability in OpenSSL library almost four (4) times faster than

the state-of-the-art AFL fuzzer. AFLGo has discovered 14 zero-day

vulnerabilities in Binutils’ utilities; all of them have been confirmed

and fixed by Binutils’ maintainers. Five (5) CVEs have been

assigned to critical vulnerabilities.

• Fine-grained failing tests bucketing technique. We leverage

symbolic analysis and symbolic execution tree to identify semantic

“reasons” behind failures and group failing tests into “meaningful”

clusters. The semantic reason makes our approach more fine-grained

compared to off-the-self point-of-failure and call-stack-based

approaches.

Impact on current state of practice. Our proposed techniques can

be applied to various applications; some applications will be shown in this

thesis such as crash reproduction of field-failures, vulnerability detection,

patch testing and debugging. Using our techniques, developers can do

fuzz testing on large real-world (binary) programs taking highly-structured

inputs in the presence of inadequate test suites. Our crash reproduction and

vulnerability detection techniques need minimal to no help from developers

– all information can be extracted automatically from software version in

patch testing or little information about call stack needs to be provided.

Our bucketing method can significantly reduce number of failing tests to

be analyzed and hence save substantial time and efforts of developers.

10

1.2 Thesis Organization

The remainder of this thesis is organized as follows. We first discuss

about prerequisite knowledge and related work in Chapter 2 and Chapter

3. In Chapter 4, we present our directed search algorithm for white-box

fuzzing to reach target location. Chapter 5 shows the combination of

model-based black-box fuzzing and directed white-box fuzzing. In

Chapter 6, we describe how we make coverage based grey-box fuzzing

directed. Chapter 7 shows the symbolic analysis based bucketing

technique and Chapter 8 concludes this thesis as well as discuss about

potential future research directions.

11

Chapter 2

Background

Based on the awareness about structure of the program under test we can

categorize fuzz testing techniques into three main types – black-box, grey-

box and white-box fuzzing. While black-box technique has no information

about program structure, the white-box one has access to both control

flows and data flows of the PUT. Grey-box fuzzing lies in between, it might

have some (partial) information about program control flows (e.g., branch

coverage) or about data flows (e.g., via taint analysis). In this chapter we

explain how different fuzz testing techniques work in details and indicate

their advantages and disadvantages in software testing.

2.1 Running Example

To make a clear explanation and comparison between black-box, grey-box

and white-box fuzzing, we design an example which could challenge all

the three techniques. Listing 2.1 shows the example in which a simple

structured file is read. As depicted in Figure 2-1, the file starts with a

signature (a.k.a a magic number) having value of 0x41424344 in

hexadecimal or “ABCD” string in ASCII followed by the number of data

12

blocks (a.k.a data chunks), and all data blocks. Each data block start

with its data size followed by the block’s data and a checksum value

calculated on the data for integrity assessment. This simple file format

resembles several widely-used files such as PNG, PDF and WAV. The

program will crash (at line 16 in Listing 2.1) if the file is valid – its

signature and the checksum values calculated on blocks’ data are correct

– and the value returned by processing content of some block’s data

equals to a specific value (line 15).

Signature
0x41424344

Number of
data blocks

Size Data CRC32 ...

4 bytes 4 bytes Data block 1

Size Data CRC32

Data block N

Figure 2-1: Example file format

� �
1 int main(void)

2 {

3 file_t *file = read_file ();

4 if (file ->signature != 0x41424344) {

5 puts(‘‘Unsupported file format ’’);

6 return 1;

7 }

8 for (int i = 0; i < file ->block_size; i++) {

9 block_t *block= get_next_block(file);

10 if (block ->crc32 != calculate_crc32(block ->data

)) {

11 puts(‘‘Bad checksum value’’);

12 return 2;

13 }

14 int result = process_block_data(block ->data);

15 if (result == CRASH_VALUE) {

16 program_crash ();

17 }

18 }

19 return 0;

20 }� �
Listing 2.1: Example program which processes a structured file

13

2.2 Black-box Fuzzing

Miller et al. pioneered the idea of fuzzing in 1991 [83] to examine the

reliability of UNIX command line utilities. The first fuzzing technique

is known as Black-box Fuzzing because no structural information of the

program under test is required. It randomly mutates/modifies selected

program inputs (i.e., seed inputs) using several mutation operators (e.g.,

bit-flip, boundary value substitution, block deletion and duplication) to

generate massive number of new inputs before feeding them to PUT. Then,

the PUT is executed and monitored to capture abnormal behaviors like

program crashes or hangs. The effective yet simple technique paved the

way for later research on automated software testing. However, since the

traditional black-box fuzzing technique (as embodied by zzuf[76]) does not

take into account the structures of program inputs (i.e., file formats or

network protocols), it is very likely that a large portion of the generated

inputs are rejected by the PUT’s parser since they do not conform to the

structure of expected input. The early rejection prevents traditional black-

box fuzzing from digging into deep paths of the program to find persistent

bugs.

Refer the the running example in Listing 2.1, a traditional black-box

fuzzing could easily get stuck at generating some input having correct

signature to bypass the very first check (at line 4). In fact, the chance for

a single try to randomly generate a specific 32-bit value is extremely slim,

just one out of four billions. If an adequate corpus of valid benign seed

inputs is provided, the fuzzer should be able to pass the first check and

continue mutating the main contents of the seeds. However, the inputs

generated by mutating a valid seed still have almost no chance to trigger

the crash because of the checksum integrity check at line 10.

14

� �
1 <DataModel name="FileModel">

2 <Number name="Sign" size="32" value="0x41424344

"/>

3 <Number name="BlockSize" size="32">

4 <Number size="32" signed="false">

5 <Relation type="count" of="Blocks" />

6 </Number >

7 </Number >

8 <Block name="Blocks" maxOccurs="10000">

9 <Number name="Size" size="32"/>

10 <Blob name="Data"/>

11 <Number name="Crc32" size="32">

12 <Fixup class="Crc32Fixup">

13 <Param name="ref" value="Data" />

14 </Fixup >

15 </Number >

16 </Block >

17 </DataModel >� �
Listing 2.2: Peach data model for the sample file format

To address this problem, Model-based Black-box Fuzzing technique was

proposed and implemented in several fuzzing frameworks like Peach and

Spike[9, 11]. Essentially, the technique leverages information of input’s

structure to mutate program input (e.g., input file or network message)

in a smarter way; it only modifies “mutable” part(s) of the input and

makes the whole input valid “enough” respect to the defined structure.

The technique improves the validity of generated inputs and hence it is

more likely to reach deeper and critical program statements before exposing

program bugs. Listing 2.2 presents how the sample structured file depicted

in Figure 2-1 can be modeled using Peach modeling language. The Peach

modeling language allows to specify a file format as Peach Pit [10]. It

uses primitive data types (e.g., number and flag) and composite ones (e.g.,

string, block, blob) to describes data blocks and data fields. Moreover, it

can model the relationships (e.g., size-of, count-of, offset-of) between data

blocks and data fields. Peach also supports “fixups” and “transformers”.

While fixups allow to repair related data fields like checksums, transformers

15

Figure 2-2: Architecture of Peach as a File Fuzzer

are used for encoding, decoding and compression.

Figure 2-2 shows the architecture of Peach fuzzer. One unique

component of Peach is the Cracker. Given a set of seed inputs and the

written input model, Peach uses Cracker to decompose each seed input

into smaller data parts based on the input format specified in the model.

Once the seed is decomposed, Peach applies several mutation strategies to

modify data parts before reassembling them to create new complete

inputs and sending the inputs to PUT. All data parts are mutated with

the support of input model so the generated inputs are valid respect to

the model. As a result, the inputs are more likely to be accepted by the

parser code in the PUT and they could lead to deeper paths to expose

hidden program bugs. Specifically, in the example code in Listing 2.1,

Peach would easily generate inputs to reach the processing code part

(lines 14-17) and it could generate some data block to satisfy the crash

condition to trigger program crash (line 15).

16

In several cases generating such crashing data block would challenge

even the model-based black-box fuzzers like Peach. Peach would be good

at generating data fields that have some boundary values (i.e. maximum

and minimum of a data type); however due to its randomness, it is difficult

to produce some specific value especially in case the values are calculated on

several distinct data fields. Moreover, Peach requires input models which

could be tough to construct especially in case of proprietary file formats or

protocols – no specification is available.

2.3 White-box Fuzzing

2.3.1 Symbolic Execution

Symbolic execution is a powerful program analysis technique invented by

King in 1976 [63]. Even though it was introduced long time ago, the

technique has only been widely used in software testing recently because

of the advancements in computer architecture and constraint solver.

Unlike normal program execution (a.k.a concrete execution), symbolic

execution does not take concrete values as inputs. Instead, it starts with

symbolic inputs (i.e., the inputs can take any value in the value ranges of

corresponding data types) and (theoretically) explores all feasible

program paths. To this end, at each conditional IF statement it collects

condition(s) of feasible branch(es), namely branch condition(s), and

encodes the condition(s) in logical formula(s). The conjunction of all

branch conditions along a specific program path π forms path

constraint/path condition which captures the set of all inputs executing

π. The feasibility of a path is decided by invoking a constraint solver like

Z3 [40].

17

[PC: True] x = β

[PC: True] β == 0?

[PC: β == 0] [PC: β != 0] β < 0?

[PC: β != 0 ^ β < 0] [PC: β != 0 ^ β ≥ 0]

True

True

False

False

Figure 2-3: Symbolic execution tree of get sign program

� �
1 int get_sign(int x)

2 {

3 if (x == 0) {

4 return 0;

5 } else if (x <0) {

6 return -1;

7 } else {

8 return 1;

9 }

10 }� �
Listing 2.3: Example program get sign of an integer number

Listing 2.3 shows a simple example we use to demonstrate how

symbolic execution works. The program takes an integer number as input

and returns a value representing the sign of the input. It has three

distinct paths where x equals to zero, x is smaller than zero and x is

bigger than zero. Figure 2-3 is the so-called symbolic execution tree of the

example program. Symbolic execution starts by substituting the concrete

program input (variable x in the example) by a symbolic value β. At each

program statement, symbolic execution maintains a program state called

symbolic state; a symbolic state keeps the current path condition, which

is the conjunction of all preceding branch conditions and a symbolic

memory state that manages the symbolic variables and its propagation

during program execution. The initial symbolic state is created when the

18

program starts and the path condition is set to true. When a conditional

statement is executed, symbolic execution requests the integrated

constraint solver to check the feasibilities of both two branches. For each

feasible branch, it updates the symbolic state (i.e., path condition and

memory state) and follows the branch to explore deeper code part(s). For

example, at line 3 where the current path condition PC is still true,

symbolic execution checks whether β can be zero. It is obvious that both

the two branches (β equals to zero and β is different from zero) are

feasible so two new symbolic states are created with updated path

conditions and memory states – one for the True branch and one for the

False branch. Similarly, two symbolic states are created for the IF

statement at line 5. As a result, all three paths of the example program

have been explored, and the constraint solver can be invoked to generate

three concrete values of the symbolic variable β for these paths

accordingly.

2.3.2 Symbolic Execution based White-box Fuzzing

Symbolic execution is a systematic program analysis technique and it can

complement the randomness of black-box (and even grey-box) fuzz

testing. In 2005, [50] and [30] independently proposed ideas to leverage

symbolic execution for systematic testing by running symbolic execution

along with concrete execution. The technique is now known as Symbolic

Execution based White-box Fuzzing (white-box fuzzing for short) or

concolic execution. In DART [50], it first runs the test program on one

random input and symbolically gathers constraints at decision points

(e.g., conditional IF statements) that use input values. Then, DART

negates these symbolic constraints one by one to generate new test cases.

The process is repeated so that DART can explore large number of

19

program paths deviating from the path followed by the selected random

input. In EGT [30], rather than running the test code with concrete input

which can be manually written or generated by random testing, EGT

runs it on symbolic input that is initially allowed to be “anything”. As

the code executes and processes the input, at each branch point EGT

“fork” the execution for feasible path(s) – create new symbolic state(s)

and update the path condition(s). Once a concrete value is needed (e.g.,

to interact with outside network interface and external libraries or to get

a concrete test case) EGT uses constraint solver to solve the

corresponding path constraint.

Using symbolic analysis and constraint solver, both DART and EGT

are effective at reasoning about specific values. As a result, they can

easily generate input to pass the first check (magic number check at line

4) and the crash condition (the check at line 15) of the running example

at Listing 2.1 which are challenging for (model-based) black-box fuzzing.

However, they would get stuck at reasoning about the loop condition (at

line 8) and the checksum validation (at line 10) due to the path explosion

problem. That is, in large programs or even in small programs having

several conditional branches and/or loops, the number of program paths

can grow exponentially increase so that the computing resources can

quickly get exhausted. Several studies have been conducted to tackle the

problem, we will discuss them in details in Chapter 3.

In more than ten years, since 2005, several white-box fuzzing tools

have been developed based on the core ideas of DART and EGT such as

SAGE, KLEE, BitBlaze, S2E, Mayhem [51, 28, 95, 35, 33], to name a few,

some are closed-source (SAGE, Mayhem) while others are open access.

These tools have shown successful applications in both industry and

20

academia. Very recently, Microsoft have released its Springfield1

fuzzing-as-a-service project in which SAGE is a key component. In this

thesis, we have extensively used two open-source symbolic execution

engines KLEE and S2E for implementing our proposed ideas. Thus we

discuss here the architectures of the tools in more details to ease the

understanding of our implementations.

Cadar et al [28] first introduced KLEE at the OSDI conference in 2008.

KLEE is implemented as a virtual machine working on LLVM bytecode

[67] instead of machine code. The original version of KLEE supported

LLVM-2.9, and now in its newest version KLEE already supports LLVM-

3.4. KLEE takes LLVM bytecode as input, executes the bytecode to explore

different program paths, and uses run-time checkers (e.g., memory access

violation checker) to detect program bugs and generate test cases for both

benign and buggy paths. KLEE has shown its ability to automatically

generate test inputs to get high code coverage and find deep bugs in the

Coreutils and BusyBox toolset.

Figure 2-4 shows the architecture of KLEE. Like other symbolic

execution engines, a major component in KLEE is the interface with

constraint solver. In current version, KLEE supports metaSMT interface

to provide a handful of choices including STP, Boolector and Z3 solver.

Another important component of KLEE is its set of search strategies.

KLEE provides a rich set of search strategies for different objectives –

random search, explore deeply (Depth first search), explore widely

(Breadth first search), maximize code coverage and the interleaving

between them. It also supports a clean interface for developing new

search strategy for specific requirements.

1Springfield service: https://www.microsoft.com/en-us/springfield/

21

Figure 2-4: Architecture of KLEE

� �
1 void main() {

2 uint32 x,y;

3 fread(stdin , &x, sizeof(x));

4 make_symbolic (&x, sizeof(x));

5 make_symbolic (&y, sizeof(y));

6 y = f_env(x);

7 if(y == 0) abort;

8 }� �
Listing 2.4: Environment interaction in KLEE

In Figure 2-4, one notable component of KLEE is symbolic

environment. The advantages of the component are threefold. First, it

allows KLEE to mitigate path explosion problem using simplified versions

of external libraries (e.g., standard libc). Second, KLEE can model

closed-source libraries based on their provided/inferred specifications to

symbolically execute programs working with these libraries. Third, KLEE

can also model specific environments like network communications [92] to

test network applications. Despite the advantages, the environment

22

modeling is somewhat adhoc and manual. Listing 2.4 shows a contrived

example in which the program calls a function, namely f env and we

have no access to its source code. Based on a specification of the function,

we need to manually write a simplified version of f env and compile it to

LLVM bytecode to make KLEE work. KLEE runs and generate a test

case that triggers the crash at line 7. However, it is possible that we

cannot reproduce the crash on the binary version of f env because if in

this original version of f env there is no paths to output the value of 0 to

satisfy the crash condition. It means KLEE raises a false alarm.

Therefore, a (semi) automated environment modeling approach is in high

demand and it is still an open research problem.

In 2011, Chipounov et al [35] introduced S2E, a new symbolic

execution framework which can directly work on program binaries.

Moreover, S2E supports symbolic execution in full software stack (i.e.,

from application down to C-library, OS kernel and device drivers) and

hence unlike KLEE, S2E requires no abstractions (i.e., models) for the

operating system and external libraries. As a result, in our example listed

in Listing 2.4, S2E should not report any error because there is no feasible

path to trigger the crash. S2E is implemented by augmenting QEMU

emulator [98], specifically the dynamic binary translator, to make it work

with KLEE. The modified dynamic binary translator can translate binary

code into LLVM bytecode which can be interpreted by KLEE.

To mitigate the path explosion problem, S2E supports Selective

Symbolic Execution to choose which modules to be run in symbolic mode

and leave other modules run in concrete mode. More specifically, while

running in symbolic mode, S2E extracts and converts the current

Translation Block (i.e., a block of binary code) into LLVM bytecode and

pass it to KLEE. While running in concrete mode, S2E runs similar to

23

QEMU. S2E needs to switch back and forth between symbolic mode and

concrete mode, so it has to maintain the consistency of the whole system

execution.

Figure 2-5: Architecture of S2E

The architecture of S2E is shown in Figure 2-5. It is designed in such

a way that users can easily extend its functionality. Apart from the core

of S2E, other components can be implemented as plugins to the core. A

plugin can belong to the Selector or Analyzer category depends on its

functionality. A selector plugin selects state to be run or choose which

modules to be symbolically executed. For instance, a search algorithm

can be implemented as a selector plugin. An analyzer plugin is used to

analyze the execution information; some examples are the memory

analyzer, memory checker, crash detector.

24

2.4 Coverage-based Grey-box Fuzzing

Coverage-based grey-box fuzzing (CGF) [4, 5, 8] leverages control flow

information of the program under test to guide random testing. For

instance, AFL fuzzer [4], the state-of-the-art CGF fuzzing tool, has been

widely used in industry and academia to find remarkable number of

security vulnerabilities in real-world programs. To achieve the

effectiveness, AFL relies on lightweight instrumentation mechanism which

allows it to capture basic block transitions and coarse branch-taken hit

counts information in run-time.

Figure 2-6: Architecture of AFL as a File Fuzzer

Figure 2-6 displays the architecture of AFL as a file fuzzer. Note that

AFL can be used to test command line and network based applications as

well provided that some adapter needs to be designed to convert back and

forth between file and command arguments or network messages. Since

AFL has information about the edge coverage of the mutated inputs, it

can decide which one is interesting (e.g., covers new edge(s)) and should

be retained for further fuzzing phases. AFL maintains an input queue

which only keeps interesting inputs. For each fuzzing round, it iterates

25

through items in the input queue, mutates them and enqueues inputs that

trigger new behaviors. Since the queue is getting larger, AFL has smart

heuristics to rank items in the queue so that those have higher rank should

be prioritized. Meanwhile, the lower ranked items can be skipped with

some probability. The input queue is designed to be easily shared between

different fuzzing engines. This feature allows us to run AFL in parallel

mode or run AFL with other test generation engines.� �
1 cur_location = <COMPILE_TIME_RANDOM >;

2 map_index = cur_location ^ prev_location

3 shared_mem[map_index]++;

4 prev_location = cur_location >> 1;� �
Listing 2.5: AFL’s instrumentation.

The instrumentation can be done during compilation time or directly on

program binaries. Listing 2.5 shows the pseudo code for instrumentation

in AFL. AFL allocates a shared memory region – shared mem – to keep

track the hit counts. At each control statement (e.g., conditional jump or

call), AFL randomly generates a value for the cur location variable and

uses this value with its previous value to calculate the index to the shared

memory. The index calculation is performed in such a way that AFL can

distinguish between two basic block transitions – (A,B) versus (B,A).

In the running example shown in Listing 2.1, CGF would be more

effective than both black-box fuzzing and white-box fuzzing on handling

the loop (at line 8). Indeed, CGF only retains inputs covering new

control-flow behaviors (e.g., new branch or new number of loop

iterations), so it does not waste time to generate huge number of inputs

which might cover same behaviors like black-box approach. In addition,

since CGF only keeps the control flow transitions of “interesting” inputs,

26

not the full program state for each program path (i.e., registers’ state,

memory state and path condition) like symbolic-execution based

white-box fuzzing, CGF can easily explore the loop with no scalability

problem. However, like black-box fuzzing, CGF could get stuck at

generating specific values for the file signature (line 4) and the crash

condition (line 15). Moreover, it has almost no chance to bypass the

checksum validation (line 10). In practice, one normally tries to identify

the checksum check in source code or in binary and disable it or jump out

of it. Once the crashing input is generated, the checksum will be repaired

[101].

27

Chapter 3

Literature Review

In this chapter we present related work in improving the effectiveness and

efficiency of fuzz testing techniques. The improvements mostly come from

1) techniques to enhance the directedness of fuzz testing, 2) techniques

to tackle the path explosion problem of symbolic execution and 3) the

combination of different fuzzing approaches to leverage the best of all. Due

to the advances in fuzz testing techniques, they have been used broadly in

industry and academia to discover program defects. A common problem

is that the fuzzing tools normally generate an overwhelming number of

failing test cases where many of the tests are likely to fail due to same

“reason”. So in this chapter, we also review relevant research on bucketing

techniques which aim to group similar failing tests together to significantly

reduce number of tests to be analyzed. The results of bucketing techniques

would remarkably ease the debugging process.

3.1 Enhancing Directedness in Fuzz Testing

Since the search space to explore a real-world program could be huge, a

rich set of approaches has been proposed to make fuzzing techniques more

28

targeted [46, 53, 101, 81, 107, 31, 87, 93]. That is, the approaches focus on

exploring “critical” program locations (e.g., system calls, memory access

instructions, code changes etc) instead of treating all code parts equally.

BuzzFuzz [46], TaintScope [101], Flax [93] and Dowser [53] leverage

the taint analysis to localize the program input should get be stress

tested. Basically, they first run the test program with some input and use

taint analysis to locate which part(s) of the input can control critical

program locations. Afterwards, they spend much more effort to “mutate”

the located the input part(s) to discover program bugs. The mutation can

be done in black-box manner using mutation operators or in white-box

way using constraint solver. TaintScope [101] can automatically identify

integrity checks (e.g., checksums) in program binaries and bypass the

checks. Flax [93] uses dynamic tainting on client web applications and

directed fuzzing to discover client-side validation (CSV) vulnerabilities.

Dowser uses taint analysis to identify program inputs that influence

memory accesses and uses concolic execution with partially symbolic

inputs for learning about pointer access patterns [53]. Using this

information, Dowser steers fuzzing technique towards complex pointer

calculations in the program.

Debugging approaches such as ESD [107], BugRedux [58] and patch

testing approach KATCH [81] systematically direct symbolic exploration

towards a specific program location. ESD and KATCH utilize the program

source code to extract system information including inter-procedural CFG

to inform the techniques and apply data flow analysis. Both approaches

analyze data-flows to identify reaching definitions responsible for taking

critical control-dependent edges and steer symbolic execution towards these

intermediate goals using proximity metric. BugRedux also requires source

code because it needs to instruments program under test before deploying

29

it to the user side. Once a field failure happens, all execution data (e.g.,

point of failure, stack trace etc) is collected. First, BugRedux uses the

execution data from the field to identify a set of intermediate goals that

can guide the exploration of the solution space. Second, it uses a heuristic

based on distance to select which states to consider first when trying to

reach an intermediate goal during the exploration.

Approaches that work on program binaries focus on resolving

sufficient system information using static and dynamic

analyses [17, 36, 32]. Approach by Babić et al. uses static analysis to

guide automated dynamic test generation [17]. Dynamic analysis resolves

indirect jumps with seed tests, and the static analysis helps symbolic

execution directing exploration towards vulnerabilities based on the

shortest paths and loop pattern heuristics. MACE by Cho et al.

combines symbolic and concrete execution to build and refine an abstract

finite state model of the system-environment interaction and use it to

guide the program exploration [36]. HI-CFG by Caselden et al. generates

hybrid information- and control-flow graph of a program to direct stages

of backwards symbolic execution. Brumley et al. [26] lift control flow

graph from the intermediate representation of the program and compute

a “chop” of the graph which includes only those program paths which

may reach the vulnerability point. The approach prunes paths that might

not be relevant to reaching the target location.

In summary, to make fuzz testing more directed previous research

requires source code to extract precise program structure. Some can work

directly on program binaries but cannot handle highly-structured inputs

or assume the availability of adequate test inputs to reach critical

locations. In Chapter 4 and Chapter 5, we show that our directed

white-box fuzzing approach and its closed-loop combination with

30

model-based black-box fuzzing work directly on (stripped) program

binaries in the presence of inadequate test suite of highly-structured file

formats. In Chapter 6, we present directed coverage-based grey-box

fuzzing in which no taint analysis is involved.

3.2 Improving Scalability of Symbolic

Execution

Path explosion is the main problem which limits the scalability of symbolic

execution. A lot of research has been done to tackle and mitigate the

problem.

Loops and string manipulation functions are two main causes of path

explosion. Many techniques have been proposed to handle loops and

strings in symbolic execution [68, 27, 106]. Larson and Austin

characterize and track bounds and null termination of string variables for

dynamically checking validity of program inputs [68]. Bucur et al.

associate high-level execution paths of the program to some low-level

execution paths during symbolic execution of python programs [27]. Xie

et al. [106] propose a classification of multi-path loops to understand the

complexity of the loop execution and use a path dependency automaton

(PDA) to capture the execution dependency between the paths.

The idea of summarizing functions or problematic behavior in

symbolic execution have been investigated earlier. Godefroid proposed a

compositional approach to capture and reuse function summaries to scale

dynamic symbolic execution [48]. Brumley et al. describe vulnerability

signatures as weakest preconditions [23]. Several approaches have

explored similar intuition for summarizing and reasoning about

problematic behavior in a backwards fashion to find program inputs that

31

trigger such behavior [25, 80, 37, 32].

Kuznetsov et al. introduced dynamic state merging and query count

estimation [66]. By estimating the impact of symbolic variables on solver

queries their approach merges states balancing between the number of

generated states and the complexity of the queries to the solver. Mayhem

by Cha et al. combines online and offline symbolic execution and models

symbolic memory at the binary level [34]. Built on Mayhem, Veritesting

enhances dynamic symbolic execution with static symbolic execution [16].

Grammar-based Whitebox Fuzzing (GWF) [49] generates inputs that

are valid w.r.t. a context-free grammar G. By that, it can prune paths

leading to invalid inputs and hence reduce the exploration space. We use

the example in Listing 3.1 for illustration.

� �
1 int i;

2 char* input;

3 char getNextToken () {

4 return input[i++];

5 }

6 bool isSorted () {

7 int prev_digit = 0;

8 if (’{’ == getNextToken ()) {

9 do {

10 char token = getNextToken ();

11 if (’,’ == token) continue;

12 if (’}’ == token) return true;

13 int digit = asInt(token);

14 if (prev_digit > digit) return false;

15 prev_digit = digit;

16 } while (true);

17 }

18 return false;

19 }� �
Listing 3.1: isSorted() returns true if the input is a sorted list of single digit
numbers

The context-free grammar G may be written as

32

G → {Numbers} (3.1)

Numbers→ Numbers,Numbers (3.2)

Numbers→ Digit (3.3)

Digit→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 (3.4)

which encodes that valid inputs start with an open curly bracket

followed by a comma-separated list of (at least one) digits and a closing

curly bracket. GWF encodes a path condition as regular expression such

that a context-free constraint solver can generate an input that is

accepted by both, the grammar and the regular expression. For input

{1,2}, GWF yields the following constraint R to explore the alternative

branch where the input does not end in a curly bracket. Notice that to

ease the explanation, we show R in a user-friendly representation; GWF

has a customized representation called regular path constraint.

token1 = { (3.5)

∧ token2 = Digit (3.6)

∧ token3 = , (3.7)

∧ token4 = Digit (3.8)

∧ token5 6= } (3.9)

where Digit is a symbolic variable. Using a context-free constraint

solver, it is possible to derive an array with three digits that is accepted

by both G and R (e.g., {0,0,0}). However, since the regular expression

cannot express the arithmetic relationship between token2 and token4 (i.e.,

1 < 2), a completely different path might be exercised. This renders GWF

both unsound and incomplete. Moreover, the context-free language which

encodes the file format cannot express integrity constraints such as the

checksum or the size of a data chunk. Functions computed over the data in

a data field, such as a compression algorithm, cannot be expressed either.

33

In summary, previous techniques to tackle path explosion problem

vary from function summary, path merging, loop analysis to grammar

based white-box fuzzing. In Chapter 4 and Chapter 5, we will present our

practical techniques to bound the loop iterations and group high-level

paths of string manipulation functions to manage the increase of

execution paths. We also leverage input models to prune most paths that

are exercised by invalid inputs. Unlike grammar-based white-box fuzzing,

our input models allow to specify integrity constraints and compression

algorithms. Moreover, our technique maintains full path conditions as

SMT formulas so it retains the soundness and completeness of symbolic

execution.

3.3 Hybrid Fuzz Testing

Since no fuzzing technique is perfect, designing hybrid approaches to

amplify the power and mitigate the weakness of each composing

technique is a promising direction [86, 96].

[86] first proposed the idea of hybrid fuzz testing in 2012. In this

approach, symbolic exploration is utilized to find “frontier nodes” and

then fuzzing is invoked to execute the program with random inputs,

which are preconstrained to follow the paths leading to a frontier node.

Recently, Stephens et al. [96] released Driller – a hybrid fuzzing

framework which combines the efficiency of coverage-based grey-box

fuzzing and the effectiveness of symbolic execution based white-box

fuzzing. White-box fuzzing is effective at reasoning about specific values

while coverage-based grey-box fuzzing can efficiently explore program

paths in a scalable way. In Driller, grey-box fuzzing initiates the fuzzing

progress and it only seeks help from symbolic execution when it gets

34

stuck (i.e., grey-box fuzzing cannot discover new interesting paths)

because it cannot generate some specific value (e.g., magic number).

Symbolic execution takes a seed input from grey-box fuzzing, executes the

program with the seed to collect path condition and negates constraints

in the path condition to generate new inputs. Grey-box fuzzing takes

some input which contains the required specific value and continues its

fuzzing process. The hybrid approach provides an innovative way to

leverage the advantages of both two worlds - grey-box and white-box

fuzzing. However, the criteria to detect whether grey-box fuzzing is

getting stuck is still very naive. Moreover, the power of symbolic

execution is not fully exploited in this approach. Further research is

needed to address these problems.

In Chapter 5, we present our approach to combine model-based

black-box fuzzing and directed white-box fuzzing (MoBWF) to amplify

the best of both worlds and target on programs taking highly-structured

inputs. Driller does not primarily target such programs; in this respect,

our approach is orthogonal to Driller. Driller can benefit from MoBWF

when testing programs processing highly structured inputs.

3.4 Bucketing Failing Tests

One related line of research involves clustering crash reports or bug

reports. This line of research is well-studied with several techniques have

been proposed [39, 47, 62, 84, 91]. All of these techniques perform

clustering based on the run-time information of programs. The Windows

Error Reporting System (WER) [47] tries to place crash reports into

various clusters using several heuristics involving module names, program

versions, function offsets and other attributes. An improvement of the

35

bucketing in WER - ReBucket [39] - bases the clustering on specific

attributes such as the call stack in an crash report. Crash Graph [62] uses

graph theory (in particular, similarity between graphs), to detect

duplicate reports. It builds a graph named crash graph for each crash

report and detects the duplicate report by checking the similarity between

two crash graphs. In terms of duplicate bug report detection,

Runeson [91] proposed a technique based on natural language processing

to check similarity of bug reports.

Another relevant work involves clustering program failing traces. Liu

and Han [77] proposed the technique to use results of fault localization

methods for clustering failing traces. Given two set of failing and passing

traces which are collected from instrumented predicates of software

program, they statistically localize the faults and two failing traces are

considered to be similar if the pointed fault locations in the two traces are

the same. Podelski et al.[89] cluster failure traces by building symbolic

models of their execution (using model checking tools) and use

interpolants as signatures for clustering tests. Due to the cost of symbolic

model-checking, their technique seems to suffer from scalability issues as

in their experiments, even their intra-procedural analysis times out (or

the interpolant generator crashes) on a large number of methods.

Although the above-mentioned lines of research are relevant to our

work, we target our research on clustering failing tests — instead of crash

reports, bug reports or failing traces. Specifically, we work on failing tests

obtained during symbolic exploration of software programs or provided by

test teams.

To the best of our knowledge, all popular symbolic execution engines

like KLEE, SAGE and MergePoint [29, 51, 16] only borrow and slightly

change the techniques that have been proposed for clustering crash reports

36

to cluster their generated failing tests. The clustering approach can be as

simple as using point of failure and error type in KLEE [29] or using call

stack information in SAGE [51] and MergePoint [16].

37

Chapter 4

Directed Search in White-box

Fuzzing

In this chapter, we present a directed method for generating inputs which

reach a given “potentially crashing” location. Such potentially crashing

locations can be found by a separate static analysis (or by gleaning crash

reports submitted by internal / external users) and serve as the input to

our method. The test input generated by our method serves as a witness

of the crash.

4.1 Introduction

Complex software systems are released and deployed with faults. Some

faults trigger application crashes that elevate system security risks and are

difficult to trace, analyze and reproduce. The problem of finding crashing

paths has been addressed by previous research, however, few techniques

cope with large real-world binaries. Real-world binaries present challenges

for program analysis techniques due to their size, complexity, and multitude

and depths of execution paths. In addition, the information about structure

38

Test Suite
Test Suite

Selected
input files

push ebp
mov ebp,esp
mov edx,esi
push edi
mov esi,[ebp+arg_0]
mov edi,[ebp+arg_4]

Static and
dynamic
analyses

+
IDAPro

Binaries CFG and MDG

Symbolic file

Concolic
exploration

and
precise taint

tracking

CFG and MDG
(pruned)

File structure
info

Hybrid symbolic file

Targeted
concolic

exploration

Crash-revealing input

Crash explanation

1 2 3

Crash
Report

!

Figure 4-1: An overview of our approach and Hercules tool

of programs in a stripped binary is incomplete when collected statically,

while recovering such information dynamically is often infeasible.

Reproducing crashes in multi-module systems requires targeted

exploration. The search space of potential crashing paths is too large to

be exhaustively checked path by path (for instance, using symbolic

execution); the complexity of program inputs is too high for exhaustive

set of inputs to be generated combinatorially or randomly (for instance,

using fuzzing). The space of program paths is intractable for modern

analysis techniques – a novel targeted exploration is needed.

Given a real-world program binary with a crash report, our approach

Hercules tackles the problem of finding program paths and corresponding

program inputs that cause a crash in a given program location. The core

idea behind our approach is to systematically detect, bound and explore a

subset of program paths necessary and sufficient for reaching and triggering

a given program crash.

The approach builds upon concolic exploration and propagates a

necessary, but minimal subset of input data in symbolic form, while

keeping the remaining input data concrete. The exploration uses targeted

search strategy that helps to explore as few as possible paths, while

resolving enough information about program structure for finding the

crashing path.

Our approach works in three main steps (Figure 4-1). Each step

progressively more precisely establishes program and input structures

39

that are relevant to reproducing the crash. The approach starts with a

preprocessing step for initial reconstruction of a program structure and

selection of input files (Step 1) followed by two passes of concolic

exploration. Application of two passes of concolic exploration is a distinct

feature of the approach. Each pass serves different purpose: the first pass

(Step 2) establishes a relationship between program input and relevant

program structures, and provides an input to the second pass (Step 3) – a

focussed fine-granularity search for a crashing path. Our search strategy

infers the reasons for infeasibility of specific non-crashing paths, thus

helping us to avoid exploring large numbers of paths that are

non-crashing for the same reason, and to direct the search towards the

paths that will crash the system.

We call our tool and method as Hercules, largely because of the

Herculean task (of finding crashing inputs) it accomplishes in a

reasonable time-frame. This is because of smart search heuristics and

structuring of the search into phases. Our approach builds upon selective

symbolic execution technique S2E [35], extends it, and makes a number

of technical contributions, namely -

• Targeted search strategy implements our targeted search algorithm

that detects reasons for infeasibility of non-crashing paths and directs

concolic execution.

• Approximation of string functions scales concolic execution by

bounding exploration of string manipulation functions that

generally cause path explosion.

• Analysis of loop-controlled crash instructions enables automatic

synthesis of loop-dependent crash conditions.

• Dynamic module selection adds flexibility to the S2E technique –

40

in the process of selective concolic execution our technique allows

dynamic selection of program structures for concolic execution (state

forking).

• Dynamic CFG refinement. In addition to the standard S2E

functionality our technique builds and dynamically refines program

control flow graph (CFG) and uses it for reachability analysis to

inform concolic exploration.

Assumptions The few significant assumptions we make concern

availability of a test suite (a set of non-crashing benign input files)

TestSuite and indication of a crash location CL in a crashing module

CrashingModule, where execution of at least one test case in TestSuite

reaches CrashingModule. We optionally assume availability of a list of

modules invoked during crashing execution ModuleList, call stack and

values of the program registers at the moment of crash that form a crash

condition CC. If available, the knowledge about input file structure and

layout may aid seed file selection and generation of hybrid symbolic

inputs. The required information is external to the approach and can be

often produced by a separate static/dynamic analysis.

4.2 Motivating Example

We illustrate the pertinent aspects of the approach using data from a

vulnerability CVE-2010-0718 in Windows Media Player – a

buffer-overflow that triggers a system crash in a divide-by-zero exception.

Figure 4-2 shows fragments of information used by our approach in the

search for crashing input. According to the crash report, the list of

modules involved in crashing behavior contains quartz.dll, wmp.dll and a

41

Entry Point 0x74834010

...
(Eq (w32 0x46464952)
 (Concat w32 (Read w8 0x0 v3_sym_byte_3)
 (Concat w24 (Read w8 0x0 v2_sym_byte_2)
 (Concat w16 (Read w8 0x0 v1_sym_byte_1)
(Read w8 0x0 v0_sym_byte_0)))))
Constraint (Eq false
 (Eq (w32 0x44494d52)
 (Concat w32 (Read w8 0x0 v11_sym_byte_11)
 (Concat w24 (Read w8 0x0 v10_sym_byte_10)
 (Concat w16 (Read w8 0x0 v9_sym_byte_9)
(Read w8 0x0 v8_sym_byte_8))))))
...

RetAddr Module
7490232d quartz+0xf2224
74901d96 quartz+0xf232d
... ...
748340a2 quartz!DllGetClassObject+0x404c
7483df85 quartz!DllGetClassObject+0xa36
... ...
4b70c27a wmp!Ordinal3000+0x19284
4b70c225 wmp!Ordinal3000+0xa677d
7c80b713 wmp!Ordinal3000+0xa6728

Call stack

Path constraint at 0x74834010

Input file

Crashing module -- quartz.dll

...

.text:74834010 lpCriticalSection= dword ptr 8

.text:74834010 arg_4 = dword ptr 0Ch

.text:74834010 arg_8 = dword ptr 10h

.text:74834010 mov edi, edi

.text:74834012 push ebp

.text:74834013 mov ebp, esp

...

Entry Point 0x7490220A
...
.text:7490221D shr ebx, 1
.text:7490221F add eax, ebx
.text:74902221 adc edx, 0
.text:74902224 div ecx
.text:74902226 shld edx, eax, 10h
.text:7490222A pop ebx
.text:7490222B pop ebp
...

 eax=00000000 ebx=00000000 ecx=00000000
 edx=00000000 esi=00138078 edi=00000001
 eip=74902224 esp=0167f6c0 ebp=0167f6c4
 iopl=0 nv up ei pl zr na po nc
 cs=001b ss=0023 ds=0023 es=0023
 fs=003b gs=0000 efl=00000246

Register dump

...
4D 54 68 64 00 00 00 06 00 01 00 0B 00 F0 4D 54 MThd.........ðMT
72 6B 00 00 00 13 00 FF 58 04 04 02 18 08 00 FF rk.....ÿX......ÿ
...

4D 54 68 64 00 01 00 0B MThd crash conditiontaint sources

modules to analyze

taint info
crash location

entry close to crash

Figure 4-2: Crash analysis information for CVE-2010-0718

main module wmplayer.exe (out of total 84 modules loaded by the

program).1 The module quartz.dll crashes at the program location

0x74902224, instruction ‘div ecx‘. A set of benign inputs does not

reach this location.

In Step 1 of the approach we reconstruct the structure of a system

with static analysis and dynamically, by exploring the system with benign

input files. The result of this step is an incomplete program structure

incorporating module dependence and control flow information. Step 1

also selects benign inputs that trigger execution in the modules involved in

the crash. For CVE-2010-0718, Step 1 identifies a benign input that reaches

the crashing module at an entry point (internal function 0x74834010), but

does not reach the crash location. A fragment of the benign file is shown

in Figure 4-2.

In Step 2, we use concolic exploration as an apparatus for precise taint

1We refer to a module to denote an executable file (main module) and any library
it loads, while for the entry points of a module we consider both exported and internal
functions.

42

tracking and identifying input fragments relevant to reaching the crashing

module. From these data we generate hybrid symbolic inputs that maintain

correct input file structure.2 For CVE-2010-0718, Step 2 collects a path

constraint with a symbolic version of the benign input. The path constraint

indicates symbolic bytes from the input file that are propagated to the

module entry point 0x74834010 (arrows between the path constraint and

the input file in Figure 4-2). These input portions are relevant to reaching

crashing module and we mark them symbolic in a hybrid symbolic file.

Generation of hybrid symbolic inputs addresses two main issues in

symbolic execution for real-world program binaries. First, hybrid

symbolic inputs prompt less constraint solving in concolic exploration and

result in smaller symbolic formulae. Second, exploration with structurally

correct hybrid inputs has higher chances of bypassing the parser

component that incorporates multitude of conditions that cause state

explosion in symbolic execution and prevent it from reaching deep

program paths.

In Step 3, we apply a targeted search strategy (second pass of concolic

execution) to explore the system in a directed fashion systematically

eliminating groups of paths from analysis and generate crashing input.

The strategy stems from the observation that groups of non-crashing

paths often have the same cause for which they do not crash the system.

The main intuition behind our strategy is that we can detect a reason

of infeasibility of a certain path and eliminate from consideration in

concolic execution groups of paths that do not crash for the same reason.

A contrived example of a shared cause for non-crashing paths is shown in

Figure 4-3. Paths through nodes highlighted in yellow (horizontal bars)

cannot crash the system because they are guarded by the condition (x>0)

2We refer to hybrid symbolic inputs as files containing fragments of symbolic and
concrete data, in contrast with fully symbolic files that contain only symbolic data.

43

that does not satisfy the crashing condition (x<0 ∧ y!=0).

To detect the reason of infeasibility of non-crashing paths, we conjoin

the path constraint φ for a path that reaches crashing module with the

symbolic summary Σ of a crashing module with respect to crash location.

Intuitively, terms in path constraint φ that contradict terms in symbolic

summary Σ are the reasons of infeasibility of a complete path from program

entry point to the crash location (term (x>0) in path constraint PC in

Figure 4-3).

Summary:
(x<0 ∧ y!=0)

Main module

module C

...

module B

φ_2φ_1

Crashing module

branch
condition
CT: (x>0)

module A

PC: (x>0 ∧ y==7)

 (x:=-1)

!

T F

crash
location

pruned
path

pruned
path

Figure 4-3: Schematic module dependence graph with paths to crashing
module highlighted

Practically, the conjoining of φ and Σ amounts to two steps. First, to

check the satisfiability of formula φ ∧ Σ. And second, if the formula is

44

not satisfiable (the path does not crash the system), to extract a minimal

unsat core that contains contradicting terms T . The contradicting terms

correspond to the causes of the infeasibility of a given non-crashing path.

Our search algorithm keeps track of each term in path constraint

formula and corresponding program location the term is being

introduced. Consequently, a contradicting term indicates a point on a

program execution path to which our search algorithm proceeds to pursue

alternative paths and avoids executing paths that do not crash for the

same identified reason.

Crash reports often contain the values of program registers at the

moment of crash (register dump in Figure 4-2). A constraint on these

values is a crash condition. In case crash condition is available, we can

detect the reasons of infeasibility of a path with respect to specific crash

condition CC in the same way as described above, by extracting terms in

unsat core from an unsatisfiable formula φ ∧ Σ ∧ CC.

Depending on a type of a crash, crash conditions are easier or more

difficult to extract. For instance, crash due to division by zero could appear

in crash report as instruction ‘div ecx‘, where the value of ecx=00000000

as shown in Figure 4-2. Consequently crash condition is (ecx==0). Some

crash conditions can be less evident and require additional effort for being

captured as we discuss in Section 4.5.1.

4.3 Preprocessing and Generating Hybrid

Symbolic Files

The first two steps of our approach prepare information for the third step

– a targeted search for a crashing path (Section 4.4). In particular, the

first step resolves incomplete information about program binaries, while

45

the second step generates a structurally correct hybrid symbolic input

(Figure 4-1).

4.3.1 Recovering Program Structure and Selecting

Seed Files

We statically analyze the system with IDA Pro toolset3

(https://www.hex-rays.com/idapro/) and use analysis results to

obtain a program control flow graph (CFG) and module dependence

graph (MDG) that we dynamically refine in the next steps of the

approach. The main sources of incompleteness in program binaries are

register indirect jumps and calls, and concealed library entry points

(non-exported functions). We process the output of IDA Pro and

statically resolve jump targets for switch statements, detect function

boundaries and statically imported entry-exit points for the modules in a

list of modules involved in a crash.

We execute the system with benign input files to augment the

statically collected information with dynamically imported entry and exit

points of the modules of the system, concrete targets for branches

dependent on indirect register jumps, and resolved register indirect call

targets. A resulting aggregated inter-procedural control flow graph

connects different modules of the system along the discovered module

entry-exit points.

We select seed files from a test suite according to their relevance to the

crash and the modules involved in the crashing behavior. The main criteria

for file selection are traces of system executions with test files and file

structure information. File structure information indicates which objects

in the file are required to exercise certain functionality of the system. We

3IDA is a state-of-the-art multi-processor disassembler and debugger

46

https://www.hex-rays.com/idapro/

aggregate the traces of system execution with the preselected test files and

obtain a histogram for selecting files that most extensively use modules

from ModuleList. We use the selected seed files in the next steps of the

approach as the most relevant to the crashing behavior.

4.3.2 Generating Hybrid Symbolic Inputs

We use concolic execution to detect fragments of inputs that are relevant

to reaching the crashing module – input fragments that propagate data

into the crashing module. Taint tracking using concolic execution precisely

associates the fragments of program inputs and affected program locations.

It is more accurate than “vanilla” taint analysis that traces program paths

affected by program inputs, however does not establish which parts of the

input are propagated to which program locations.

In concolic execution we apply random exploration strategy – upon

branching, the next path to explore is selected randomly, with an exception

that paths generated by string functions are selected from groups of paths as

detailed in Section 4.5.2. We automatically generate fully symbolic versions

of seed files identified in the previous step of the approach and we trace

the propagation of symbolic data from these files during concolic execution;

execution stops when it reaches CrashingModule.

Given a path that reaches crashing module, a path constraint contains

symbolic input bytes (taint sources) relevant for reaching this module.

Together with the knowledge of input file structure, this information

serves to automatically generate hybrid concolic input file that maintains

the original file layout.

We prevent random exploration from “drifting” outside modules in

ModuleList and dynamically refine CFG of the system extending it with

information from concolic exploration. Concolic exploration discovers new

47

paths if it produces new concrete data to take these paths. In particular,

if concolic executor reaches register-indirect jump instruction

‘jmp [eax]‘ with a new concrete value in eax, then it may explore a

new path spanning from a new jump target. A maximum number of

resolved indirect jumps and calls is thus proportional to the number of

new paths we can explore with the concolic data. To prepare CFG for the

targeted search, we prune it with respect to crash location in crashing

module and with respect to exit points that connect modules in

ModuleList. A schematic module dependence graph with pruned paths is

shown in Figure 4-3, where pruned paths are marked with X.

4.4 Unsat-core Directed Search Strategy

In the third step of the approach we apply targeted concolic execution to

find crashing paths – program paths that crash the system in

CrashingModule. The targeted exploration works on a pruned version of

CFG and hybrid concolic inputs generated in the previous step of our

approach. The three phases of the exploration are: (1) replay,

(2) summarization, and a main phase – (3) targeted search. Figure 4-4

illustrates transitions between these phases schematically.

The targeted exploration starts by deterministically replaying one of the

observed paths to the crashing module with hybrid concolic input (replay).

Consecutive symbolic exploration symbolically summarizes the crashing

module from module entry point to the crashing location using symbolic

data propagated to the module from the program input (summarization).

Finally, a targeted search phase selects and traverses alternative program

paths in search for crashing paths.

Targeted search phase evaluates the feasibility of a given path with

48

Replay phase

Target. search

Summarization

Alt. location

start
Replay Summary

Target.
search

end

start

Crashing module !

A1
A2

s1
s2

s3
s4

Figure 4-4: Phases of targeted exploration

respect to the crashing module summary and detects the reasons of

infeasibility of the non-crashing path as terms in the unsat core of the

conjunction of the path constraint and module summary. The algorithm

uses the program states that introduced the infeasibility reasons as

anchors to select alternative states to which to proceed. As a result, the

search is directed away from groups of infeasible paths. Search proceeds

until it finds a feasible crashing path or terminates after a user-specified

timeout or upon exhausting the memory.

4.4.1 Replay

Algorithm 1 outlines the key elements of each of the phases. The search

algorithm is general and can be implemented on top of any dynamic

symbolic executor. We illustrate the algorithm for a generic language

with instructions identified by their location l. For simplicity we

distinguish two types of instructions: (1) branches identified by branch(l)

predicate with branch condition cond(l), and (2) non-conditional

49

instructions. The target location of a branch instruction is identified by

target(l), while for all instructions the next location is next(l).

Program state s is represented by a triple (l, φ,m), where l is a program

location, φ is a path constraint, and m is a symbolic store. Symbolic

store maps program variables to concrete values or expressions over input

variables. The initial program state is (l0, true,m), where l0 is a program

entry point, path constraint is set to true, and m is initialized with symbolic

variables for each program input variable.

Targeted exploration replays the path to one of the crashing module

entry points e ∈ E. Given a set of states Se (list of states for reaching e

from l0), the replay is a concolic exploration where upon branching the

states for execution are selected from Se (line 8). During replay the

searcher takes snapshots of the alternative states and stores them in a

map µ with constraints introduced in the executed state condition(s)

(line 9). Figure 4-4 schematically shows state s1 and its alternative state

s2 that the algorithm stores in the map µ. Replay terminates after

traversing all the states in Se in a state reaching entry point e of the

crashing module.

Note that in our implementation of the algorithm, Se list is lightweight.

It does not store the complete state representation as used by S2E, but

only the forking program locations.

4.4.2 Summarizing Crashing Module Symbolically

Upon reaching entry point of the crashing module, the algorithm

commences symbolic summarization (line 11, lines 28–44). The summary

is an aggregate of path constraints for each path reaching crash location

from the module entry point using symbolic data that is propagated to

the module entry point. Symbolic store m holds the propagated symbolic

50

Algorithm 1 Targeted search
Input: l0 – initial location; χ – crash location; E – list of module entry points; Se –

list of states for reaching e ∈ E from l0;
// REPLAY PHASE:

1: s ← (l0, true,m) . Initialize current state
2: while Se 6= ∅ do
3: if ¬branch(l) then s ← (next(l), φ,m〈v, e〉)
4: if branch(l) then
5: if (SAT(cond(l) ∧ φ) ∧ SAT(¬cond(l) ∧ φ)) then
6: s1 ← (next(l), cond(l) ∧ φ,m)
7: s2 ← (target(l),¬cond(l) ∧ φ,m)

8: s ← {s1, s2} ∩ Se . Pick next state from Se

9: µ ← µ〈condition(s), ({s1, s2} \ s)〉 . Snapshot

10: Se ← Se \ s
11: Σ ← SymbSummary(s) . Location of the last state in Se is e

// MAIN PHASE:
12: X ← ∅
13: while ¬SAT(φ ∧ Σ) do
14: τ ← UNSAT CORE(φ ∧ Σ)
15: t ← pickTerm(τ, µ) . Pick contradicting term using strategy
16: X ← X ∪ {t}
17: s ← µ[t] . Select alternative state
18: while l /∈ E do . Until reached any of entry points
19: if ¬branch(l) then s ← (next(l), φ,m〈v, e〉)
20: if branch(l) then
21: if (SAT(cond(l) ∧ φ) ∧ SAT(¬cond(l) ∧ φ)) then
22: s1 ← (next(l), cond(l) ∧ φ,m)
23: s2 ← (target(l),¬cond(l) ∧ φ,m)

24: s ← pickNextState(s1, s2)
25: µ ← µ〈condition(s), ({s1, s2} \ s)〉 . Snapshot

26: if l /∈ Echecked then Σ ← SymbSummary(s)

27: OUT ← (φ, X) . We can continue search by proceeding to the remaining
alternative states from line 15.
// SUMMARIZATION

28: procedure SymbSummary(s) . Explore paths from s to χ
29: Require: location(s) ∈ E
30: Echecked ← Echecked ∪ location(s)
31: s ← (l, true,m) . Reset path constraint
32: W ← {s} . Initialize worklist
33: while W 6= ∅ ∨ timeout do
34: if ¬branch(l) then W ← W ∪ (next(l), ϕ,m〈v, e〉)
35: if branch(l) then
36: if (SAT(cond(l) ∧ ϕ) ∧ SAT(¬cond(l) ∧ ϕ)) then
37: W ← W ∪ (next(l), cond(l) ∧ ϕ, m)
38: W ← W ∪ (target(l), ¬cond(l) ∧ ϕ, m)

39: if l == χ then Σ ← Σ ∨ ϕ
40: W ← W \ s
41: s ← pickNextState(W)

42: Σ ← Σ ∧ CC . Add crash condition to the summary
43: return Σ
44: end procedure

51

data as expression over symbolic program inputs. The summary is

independent of the path constraint φ used for reaching the crashing

module and the corresponding path constraint is reset to true (line 31). A

module summary Σ is a disjunction of path constraints ϕi for each path

reaching crashing location χ from a given module entry point:
∨n
i=1 ϕi.

Summarization procedure uses the pruned CFG to inform selection of

the next states in symbolic exploration. States extending outside CFG

are not pursued as they do not reach crashing location. This is

implemented in procedure pickNextState() that uses CFG to select

successors for branching instructions (line 41). This way the algorithm

ensures selection of states for paths that reach crashing location.

The symbolic summary collected with our approach may be incomplete.

Symbolic data in symbolic execution can be injected only from the input

of the system – it is not be generated in the process of symbolic execution.

Concolic exploration may not reach the module with symbolic data for

all of its inputs, some of the inputs may be reached with concrete data

resulting in an incomplete summary.

Symbolic data may not reach the module for a number of reasons.

First, seed input files may be inadequate or deficient with respect to the

functionality of a crashing module, input file may lack data structures

that affect certain input of a crashing module. Second, an input of the

module may be independent of the program input. And third, a symbolic

input may be concretized during concolic execution and propagated to

the module input as a concrete data.

Given a crash condition CC, a module summary Σ is a precondition

with respect to reaching crashing location, where Σ(CrashingModule, CC)

is a logical formula over the module input which is true for all inputs that

cause crashing module to reach a final state satisfying CC. Since CFG of

52

crashing module is pruned, module final state is in the crashing location

χ. The algorithm extends module summary Σ with crash condition CC in

the last step of summarization (line 42).

The summary Σ concisely captures a precondition for reaching crashing

location.

4.4.3 Searching for a Crashing Path

Targeted search phase starts from the point when concolic executor have

reached the crashing module in the replay phase and consequently

collected symbolic summary Σ of the module in the summarization phase.

Targeted search phase identifies program states that do not introduce

infeasible constraints in the paths reaching crashing module and directs

exploration through these states in the search for feasible crashing paths.

Provided that the initial path selected for reaching the crashing

module in the replay phase does not crash, the conjunction of path

constraint and symbolic summary φ ∧ Σ is unsatisfiable. To detect the

reasons of unsatisfiability the algorithm queries SMT solver for minimal

unsat core that contains a list of contradicting terms from both path

constraint φ and summary Σ. The algorithm extracts from unsat core a

list of terms τ (line 14). These terms correspond to the reasons for

infeasibility that originate from the specific program states on the path

reaching crashing module. In the schematic example in Figure 4-3 the

cause for the path infeasibility is located by the contradicting term (x>0)

from the path constraint.

To continue the search for a crashing path, the algorithm selects

alternative program states that do not introduce the identified

infeasibility reasons. The algorithm selects alternative states indicated by

the list of contradicting terms τ using the map of constraints and

53

alternative state snapshots µ captured during replay phase. In particular,

a procedure pickTerm(τ, µ) selects one term t from the list τ and this

term is then used to query the map µ to select the alternative state

(lines 15–17).

In pickTerm(τ, µ) we select a term introduced in the top-most program

location and a corresponding alternative state. Such term represents a

general reason for infeasibility of multiple paths in a symbolic subtree and

thus, when selected, can dramatically reduce the search space. However,

some of the paths in that subtree may be feasible. For instance, in Figure 4-

3, a path that passes through a blue node (vertical bars) in the CFG is

feasible with respect to the crashing module summary.

Each iteration of the targeted exploration continues from the selected

alternative state until it reaches entry point of the crashing module with a

new path constraint φ.

The search algorithm can reach crashing module through an entry point

that it has not reached before (line 26). In this case the module summary

is recomputed to consider new paths to the crashing location, if they are

reachable from this entry point.

Algorithm 1 iterates until the formula φ ∧ Σ is satisfiable and hence

the crashing path is found. The output OUT of the targeted search

consists of a path constraint φ and a list of contradicting terms X used

for navigating the search. The path constraint φ can be solved to

generate a set of program inputs that exercise a particular crashing path.

The list of selected contradicting terms X serves as an additional

explanation for the crashing path highlighting the data and deviation

points (A1 and A2 in Figure 4-4) that are crucial for pursuing it.

54

4.5 Tackling Limitations of Concolic

Execution

4.5.1 Synthesizing Crash Conditions for

Loop-controlled Crashes

To reproduce a crash our approach reaches a crash instruction and,

among other information, uses crash condition CC to direct the targeted

search and, ultimately, synthesize crashing input. In practice, however,

crash condition cannot be formulated symbolically in terms of symbolic

input of the program if concolic executor reaches crashing instruction

without symbolic data in the operands of the instruction. Previous

research demonstrated that this situation can be alleviated for

loop-dependent variables [94].

Hercules solves this problem by inferring a function over dependent

variables (operands of crash instruction) on a number of loop iterations.

This allows us to express the CC at the targeted crash instruction

through another condition CC ′ at the beginning of the controlling

loop(s). Saxena et al. used abstract interpretation and pattern matching

to infer the function [94]. In Hercules, we infer the function using data

fitting on runtime values in registers and memory locations during loop

exploration [44]. A similar idea has been successfully applied in the

context of segmented symbolic analysis to discover symbolic relationships

between program variables [69].

Figure 4-5 shows an example of loop-controlled crash instruction in a

crash module flvff.dll that causes a memory access violation in Real Player

due to an integer overflow vulnerability (CVE-2010-3000). In this example,

the crash function is iteratively called in a loop and the crash instruction

55

...
0x61161745 mov ecx, esi
0x61161747 call ebx

0x61161749 add esi, [ebp + arg4]
0x6116174c dec edi
0x6116174d jnz loop
...

...
0x61161146 mov eax, ecx
0x61161148 xor ecx, ecx

0x6116114a fstp qword ptr ds:[eax+1]
...

crash instruction
Crash function

Call site (loop)

Figure 4-5: Example of loop-dependent crash in Real Player

at 0x6116114a attempts to store data to the targeted memory address

that is calculated using the value of eax register. If the address is out

of bounds, the crash will occur. Hence, the CC in this example must be

expressed through symbolic data in eax as eax == eaxcrash, where the

eaxcrash value comes from the register dump in the crash report. However,

symbolic execution reaches the crash instruction with a concrete value in

eax preventing the approach from formulating a symbolic crash condition.

We apply inter-procedural data flow analysis to establish whether the

crash instruction is loop-controlled and, if so, to detect data dependencies

between the operands of the instruction and the variables within the loop.

In the example, we discover a data dependency between eax and ecx in

the crash function (‘mov eax, ecx‘ at 0x61161146) and between ecx and

esi in the call site (‘mov ecx, esi‘ at 0x61161745). Inside the loop, esi

is incremented by a concrete value (passed through a function argument)

at each iteration. The value of eax in crash instruction depends on the

value of esi register inside the loop and in turn, the value of esi depends

on the number of loop iterations.

Using data fitting, Hercules infers a relationship between esi and a

loop count it: esi = esi0 + it*0x23. In the example, the number of

loop iterations is controlled by the value of register edi that holds symbolic

data (instructions at 0x6116174c and 0x6116174d). In other words, the

value of eax in crash instruction is indirectly controlled by the symbolic

56

input data in edi.

As a result, we transform the concrete constraint CC on eax at the

crash instruction to a symbolic constraint CC ′ on the value of edi before

the start of the loop. With this data we can synthesize crashing input by

solving the formula φ′ ∧CC ′, where φ′ is the path constraints to reach the

loop.

4.5.2 Path Grouping in String Manipulation

Functions

To avoid path explosion during concolic execution of real-world binaries our

approach tackles its most prevalent sources – loops and string manipulation

functions. To tackle path explosion in loops we bound a number of loop

iterations in which concolic executor forks new feasible states. Beyond the

bound the executor does not fork new states in a loop. Recent research

shows that bounding loop iterations is a practical and effective solution in

the context of symbolic execution [105].

String manipulation functions are more difficult to tackle than loops.

In essence these functions are sophisticated loops over string data that

are modelled with bit-vectors and processed as unbounded data causing

generation of infinitely many symbolic states. Yet, symbolic exploration

with string data is important, a large class of crashes in software is caused

by buffer- and heap-overflows when programs operate on string data.

We define a heuristic that leverages string length estimation and

approximation of standard string manipulation functions to help concolic

execution in generating states with realistic string data while reducing the

risk of path explosion. The intuition behind our heuristic comes from the

following observations: there are many concrete strings encoded in the

57

program code and thus many string length bounds can be obtained based

on operations between symbolic and concrete strings. Moreover, there are

practical limitations on the size of strings such as function stack frame

size and input file layout that provide estimates of string lengths. Finally,

semantics of several standard string manipulation functions can be

abstracted to the level of groups of paths and inform symbolic execution.

For functions like strlen(sym) we bound concolic exploration in the

function according to the length estimate of a symbolic string parameter

sym that we gather dynamically from a number of sources. A length

estimate for strings allocated on stack should not exceed a current stack

frame size, while file layout and object boundaries (boundaries between

symbolic and concrete input data) indicate upper bounds for lengths of

strings derived from input file data.

For other standard string functions that operate on pairs of strings we

approximate these functions by mapping their few semantically different

high-level paths to a multitude of low-level paths. One example of groups

of high-level paths for a function stricmp(str1,str2) would be: (1)

strings are equal, (2) strings are equal length and differ in content, and

(3) strings differ in both length and content. These three groups map to

thousands of feasible low-level paths stemming from two reasons. First, in

LLVM based symbolic execution engine – S2E in our case – the string

function is converted to LLVM bitcode that has larger number of branch

instructions that in source code or binary. For stricmp(str1,str2)

function the number of branches in LLVM bitcode is 13 versus 3 in source

code. Second, the number of paths is also controlled by the number of

loop iterations that depends on the length of the input strings. We define

the high-level semantics of the string functions as a logical formula over

function input, output and properties of the input, such as length of a

58

string argument.

To avoid path explosion, during concolic execution we bound the

exploration of these functions until paths from all semantically different

path groups are generated, while controlling the number of generated

paths. Consecutively, we prioritize groups of paths and select single paths

from each group for further concolic exploration. For instance, for

stricmp() function we give a higher priority to the path producing equal

strings which covers the highly relevant case.

An experimentation with Orbital Viewer case study (CVE-2010-0688)

highlights the degree of reduction in path numbers our technique achieves

for concolically exploring a standard string function. S2E with depth-

first search configuration would need to fork (213) ∗ 18 ≈ 150K paths to

fully concolically explore stricmp(str1,str2) function with one symbolic

string argument and one concrete string of length 18.

With our heuristic concolic executor only needs to explore 8K paths

to populate elements for three high-level groups of total 19 paths that we

keep: one path (strings are equal), one path (strings of equal length and

differ in content), and 17 paths (strings differ in both length and content).

Each path in the third group corresponds to the strings being unequal in

any of the first 17 characters. We only need to keep 19 paths to cover all

of the three high level paths of the stricmp(str1,str2) function, while

the remaining low-level paths can be removed from exploration. Overall,

we generate few paths that cover all high-level paths of a function in a

balanced way and produce realistic strings.

59

S2E core
system

WindowsMonitor

Standard plugins

FunctionMonitor

ModuleExecution
Detector*

CorePlugin

ExecutionTracker

DynamicCodeSelector

CrashDetector

TargetedSearcher

StringFuncInterceptor

ConditionSynthesizer

LoopExplorer

* - modified plugin
EdgeKiller

CFG
processing/
refinement

Custom plugins

Z3
integration

IDA Pro

BAP

Figure 4-6: Components of the Hercules toolset

4.6 Implementation

Our approach Hercules builds upon and extends the selective symbolic

execution technique S2E [35]. Figure 4-6 shows an overall view of the

components of our toolset. The main components of our system are built

as custom S2E plugins. In addition, Hercules provides tools for control

flow graph processing outside S2E and data flow analysis built on BAP.

4.6.1 CFG Refinement and Path Pruning

Functionality

Hercules implements analyses for post-processing the output of IDA Pro

toolset and obtaining the static and the dynamic program structure

information. We build CFG for each selected module of the system using

the static program structure information (direct jumps, direct calls, jump

tables) and the dynamic information (indirect register jumps and calls).

We refine the CFG whenever the dynamic program structure is updated,

while exploring the program under test in Steps 2 and 3 of our approach.

A PathPruner module implements a pruning algorithm similar to the

60

algorithm for computing “chop” by Brumley et al. [23]. PathPruner

indicates every path that does not lead to interesting targets in a module

dependency chain. In the crashing module, this tool will prune the paths

that do not reach the crash location. The output of the tool will be used

as the input of a plugin EdgeKiller that will kill a S2E state in runtime if

it executes an undesirable path.

4.6.2 Extensions of the S2E Core

STP, the SMT solver in S2E, does not compute unsat cores. To get the

unsat core of a symbolic expression we integrate Z3 with S2E and pass

symbolic constraints between them in SMT2 format. Our framework

augments S2E to output symbolic formulae in SMT2 format and

implements a wrapper function to invoke Z3 solver from S2E.

Another S2E core update takes snapshots of S2E states in the targeted

search. We make snapshots of symbolic states at each branch location

during concolic execution to enable backtracking of concolic executor. This

functionality is implemented on top of cloning functionality of KLEE used

by S2E and our version supports state cloning at an arbitrary execution

point.

4.6.3 Analysis and Search Plugins

An ExecutionTracker plugin outputs important runtime information. It

handles signals emitted by S2E core plugin when it executes an instruction

or a basic block. In addition, it detects the Process ID of the program

under analysis to keep track of the information it produces and excludes

information produced by other programs that use shared libraries.

A DynamicCodeSelector plugin enables flexible runtime selection of

61

modules executed concolically (with forking enabled). The original S2E

CodeSelector plugin is less flexible and only supports static configuration

of a list of modules in which S2E selectively enables forking. Our

TargetedSearcher plugin heavily relies on DynamicCodeSelector for

dynamically switching different search stages each having different

configurations of forking-enabled modules.

To synthesize crash conditions for loop-controlled crash instructions,

we have developed three components. First, ConditionSynthesizer is built

as S2E plugin. It outputs runtime values of all registers and updated

variables at each iteration inside the controlling loop. Second, a

light-weight data flow analysis is built on Binary Analysis Platform

(BAP) [24]. Its output supports user in selecting registers/variables

having relationship with a number of loop iterations. Third, a tool to

interface with the R statistical package to invoke its regression models

and infer function on dependent registers/variables and the number of

loop iterations [90]. Hercules infers functions for simple and nested loops

and covers three function forms – linear, polynomial, and exponential –

by using simple linear and multiple linear regression models with

logarithm and variable substitution transformations.

StringFunctionInterceptor controls the exploration inside string

functions. It intercepts every call to the list of standard string library

functions such as strlen, strcpy, strcmp, stricmp, strcat, strchr and

strstr using handling signals emitted by the FunctionMonitor plugin of

S2E (onFunctionCall and onFunctionRet signals). For each of the

functions we implement a special structure to define groups of

semantically distinct high-level paths (Section 4.5.2). Each group is

defined as a logical expression over function input, lengths of manipulated

strings and function output. Finally, the module dynamically extracts the

62

stack frame size of the caller to estimate string length bounds.

A TargetedSearcher plugin is a combination of the three searchers (1)

PathReplaySearcher, (2) SymbolicSummarization and (3)

EntryPointTargetedSearcher. Each searcher implements the dedicated

phases of the targeted search algorithm defined in Section 4.4. The plugin

switches between the searchers in the process of concolic execution using

several signals emitted by the S2E Core plugin (onStateFork,

onStateSwitch, onExecuteInstruction) and signals from our custom

plugins. In particular, onStringFunctionStart and

onStringFunctionEnd signals generated by the StringFunctionInterceptor

plugin are used for state grouping and prioritization for string

manipulation functions. TargetedSearcher populates the groups of states

defined for each string function, prioritizes these states and removes

redundant ones.

A CrashDetector module detects application crash by tracking

Windows error reporting service invocation and calls S2E API to solve

path constraint and generate crashing input.

4.7 Experimental Evaluation

We evaluated our approach experimentally on real-world application

binaries. In this section we present the results of the evaluation that

demonstrate that Hercules successfully reproduced six distinct crashes in

five applications: Adobe Reader (AR), Windows Media Player (WMP),

Real Player (RP), Orbital Viewer (OV) and Music Animation Machine

(MAM) Player. Table 4.1 summarizes the results for the effectiveness of

our approach as compared to the original S2E technique and widely used

industrial black-box fuzzing tool PeachFuzzer

63

Table 4.1: Experimental setup and results
CVE IDs 2014-2671 2010-0718 2010-0688 2011-0502 2010-2204 2010-3000

Application WMP v9.0 WMP v9.0 OV v1.04 MAM v0.35 AR v9.2 RP SP 1.0
Selected /
total modules

4 / 84 3 / 86 2 / 49 1 / 51 2/78 2/129

Size of crash.
module

1.22 MB 1.22 MB 538 KB 368 KB 2.32 MB 60 KB

Test suite –
No. of files

10 15 10 10 5 6

Test suite – file
size

2–137K 2–54K 3–5K 2–5K 55–307K 87–654K

S2E (Random
search)

8 (>12 hr) 8 (>12 hr) 8 (>12 hr) 4 (2 min) 8 (>12 hr) 8 (>12 hr)

S2E (DFS
search)

8 (>12 hr) 8 (>12 hr) 8 (mem exh.) 8 (>12 hr) 8 (>12 hr) 8 (>12 hr)

PeachFuzzer 8 (>24 hr) 8 (>24 hr) 4 (10 hr) 4 (10 min) 8 (>24 hr) 8 (>24 hr)
Hercules 1 5 min 5 min 2 min 1 min 5 min 5 min
Hercules 2 45 min 90 min 120 min ∼0 sec 120 min 120 min
Hercules 3 4 (15 min) 4 (60 min) 4 (40 min) 4 (30 sec)* 4 (60 min)* 4 (45 min)

(http://peachfuzzer.com). Hercules generated test inputs and

reproduced all six crashes, whereas baseline techniques failed or took

considerably more time to succeed.

4.7.1 Experimental Setup

We conducted all of the experiments on a computer with a 3.4 GHz Intel

Core i7-2600 CPU and 8 GB of RAM. The host OS is Ubuntu 12.04

64-bit. The guest OS are Windows 7 Enterprise 32-bit SP1 and

Windows XP 32-bit SP3. Our approach is implemented on S2E version

from May 2, 2014 obtained at https://github.com/dslab-epfl/s2e.

We used freeware IDA Pro 5.0 to disassemble binaries. In Table 4.1, case

studies marked with (*) have been tested on both Windows XP and

Windows 7.

The case studies cover vulnerabilities of the four prevalent types (buffer

overflow, integer overflow, memory access violation and division-by-zero)

from http://cve.mitre.org/ and operate on five distinct structured file

formats. For the OV case study we used a developer test suite obtained

at http://www.orbitals.com/orb/ov.htm. For the Adobe Reader case

64

http://peachfuzzer.com
https://github.com/dslab-epfl/s2e
http://cve.mitre.org/
http://www.orbitals.com/orb/ov.htm

study, we used Microsoft Word 2010 to create pdf files with embedded

fonts. For the other four case studies, we obtained test suites on the Internet

from a random sample of benign files of an appropriate format. Table 4.1

highlights the test suite composition with numbers of benign files and their

variation in size. We enabled forking in a subset of modules indicated by

the crash reports as shown in Table 4.1.

The toolset was configured for a timeout after twelve hours of

exploration and run without parallelization of the execution process. For

Hercules, we have fixed a loop bound of three iterations and state timeout

of 30 seconds to prevent the exploration from “drifting” (Section 4.3).

Table 4.1 shows execution times for the CFG construction (Step 1),

concolic (Step 2) and the targeted (Step 3) exploration by Hercules as

per Figure 4-1 (correspondingly marked 1 , 2 , 3 in the table). For Step 1,

our automated scripts construct CFG from the output of IDA Pro within

few minutes. We used a practical time limit of two hours for exploration

in Step 2. For the five case studies (except CVE-2011-0502), Hercules

(Step 2) explored, resolved dynamic information and reached a crashing

module within two hours, while the case study on MAM (CVE-2011-0502)

did not require exploration phase to reach the crashing module. Finally, for

all the case studies targeted search (Step 3) reproduced the crashes within

an hour.

4.7.2 Reproducing Crashes

Our approach reached and reproduced crashes CVE-2014-2671 and

CVE-2010-0718 in Windows Media Player (Quartz library).

CVE-2014-2671 is a vulnerability in Windows Media Player version 9.

Attackers can exploit this vulnerability to cause a denial of service via a

crafted .wav file. CVE-2010-0718 is a buffer overflow vulnerability in

65

Windows Media Player version 9. It allows attackers to cause a denial of

service via a crafted .mpg or .mid file that triggers a system crash due to

a divide-by-zero exception. Hercules successfully reproduced the two

crashes using the targeted search. In both cases, Hercules avoided state

explosion by bounding loop iterations, while no string function analysis

was required. Hercules reproduced CVE-2010-0718 using as little as 1%

of input data in symbolic form.

CVE-2010-0688 is a crucial stack-based overflow in Orbital Viewer, a

tool for visualization of atomic and molecular orbitals. By using a crafted

.orb or .ov file, attackers can trigger a system crash in Memory Access

Violation exception or execute arbitrary code. The vulnerability comes

from the code for reading data from input file using a known vulnerable

function fscanf. OV does not correctly check the data size before writing

it into stack buffers. The crash happens when the overwritten data section

is accessed by OV after a series of function calls, including calls to string

manipulation functions. Hercules successfully bridged the distance between

the location where crashing data is introduced and the crashing location

by leveraging our heuristic for exploring string functions (Section 4.5.2),

and reproduced the crash.

CVE-2011-0502 is a vulnerability in MAM MIDI Player that allows

attackers to easily cause a denial of service via a crafted .mid file that

crashes the program with a null pointer dereference. This is the most

“simple” case study in our experiments that Hercules reproduced within

30 seconds. Furthermore, Hercules does not require loop bounding nor

string function analysis to reproduce the crash.

CVE-2010-2204 is an vulnerability in Adobe Reader 9.0–9.3 that

allows attackers to cause a denial of service or execute arbitrary code.

CVE-2010-3000 is an integer overflow vulnerability in RealPlayer SP 1.0

66

that allows attackers to execute arbitrary code. For both cases Hercules

can reach crash instructions by symbolically executing the programs with

benign inputs, however, the programs do not crash, because the crash

instructions are loop-controlled. With the loop-controlled crash condition

analysis (Section 4.5.1) Hercules can identify the loop and infer a

relationship between crash instructions and the controlling loops. As a

result, Hercules can successfully synthesize symbolic crash conditions on

the number of loop iterations and use them to reproduce both crashes.

4.7.3 Comparing with the Baseline

We demonstrate the effectiveness of Hercules by comparing it with the

baseline S2E and black-box fuzzing tool PeachFuzzer on the same six

case studies. We have run S2E with the input files that Hercules used to

successfully reproduce the crashes, while PeachFuzzer used all the files in

each test suite.

The results shown in Table 4.1 demonstrate that S2E can reproduce

the “simple” crash (CVE-2011-0502) and fails to reproduce the other ones.

Non-directed search of the baseline S2E prevents it from reaching relevant

program locations in a given time and state space constraints. When run

with a depth first search (DFS) exploration, S2E digs itself in a single

path, while for the OV case study (CVE-2010-0688) it gets path explosion

in string manipulation functions before reaching the crash location.

We run PeachFuzzer in a fully automatic setting with infinite

iterations of random mutation strategy and without user-provided data

model (input grammar specification) for up to 24 hours. PeachFuzzer

took substantially more time than Hercules to generate crashing inputs

for two case studies. Effectiveness of the fuzzing tool critically depends on

the results of manual analysis to provide it with a correct input grammar

67

specification and indicate input portions that can and must be mutated,

and portions that need to be preserved.

4.8 Chapter Summary

In this chapter, we have presented the design and evaluation of our

Hercules approach for finding test inputs which can reproduce a given

crash. Our approach is based on symbolic execution and its distinctive

features include (i) working on binaries without source code and

encompassing techniques to construct the control-flow graph directly from

binaries in the presence of register-indirect jump instructions, (ii)

combining taint tracking and symbolic execution to find which parts of

the input file must be kept symbolic, and (iii) search strategies to direct a

path towards the crashing location by analyzing why the current path

being traversed by the search cannot reach the crash. Experiments on

real-world application binaries such as Windows Media Player and Adobe

Reader, show the efficacy of our approach in finding test inputs to

reproduce a crash.

68

Chapter 5

Closed-loop Model-based

Black-box and White-box

Fuzzing for Program Binaries

Many real-world programs take highly structured and complex files as

inputs. The automated testing of such programs is non-trivial. If the test

does not adhere to a specific file format, the program returns a parser

error. For symbolic execution-based whitebox fuzzing the corresponding

error handling code becomes a significant time sink. Too much time is

spent in the parser exploring too many paths leading to trivial parser

errors. Naturally, the time is better spent exploring the functional part of

the program where failure with valid input exposes deep and real bugs in

the program.

In this chapter, we suggest to leverage information about the file

format and data chunks of existing, valid files to swiftly carry the

exploration beyond the parser code. We call our approach Model-based

Blackbox and Whitebox Fuzzing (MoBWF) because the file format input

model of blackbox fuzzers can be exploited as a constraint on the vast

69

input space to rule out most invalid inputs during path exploration in

symbolic execution.

5.1 Introduction

Testing file-processing programs can be challenging. Even though a

structured file is stored as a vector of input bytes, it is often parsed as a

tree where data chunks contain fields and other data chunks.

Our key insight is that certain branches in a file-processing program are

exercised only depending on i) the presence of a specific data chunk, ii) a

specific value of a data field in a data chunk, or iii) the integrity of the data

chunks. Hence, an efficient test generation technique not only sets specific

values of the fields but also adds/removes complete chunks and establishes

their integrity (e.g., checksum or size).

Fuzzers help to test such file-processing programs. Model-based

blackbox fuzzers (MoBF) [9, 11] utilize input models to generate valid

random files. The input model specifies the format of the data chunks

and integrity constraints. However, while valid, the modification is still

inherently random. Whitebox fuzzers (WF) employ symbolic execution to

explore program paths more systematically. Given a valid file, they can

generate the specific values for the data fields quite comfortably.

However, when it comes to adding or deleting data chunks or enforcing

integrity constraints, they are bogged down by the large search space of

invalid inputs [102].

Grammar-based whitebox fuzzers (GWF) can generate files that are

valid w.r.t. a context-free grammar [49]. Like WF, GWF computes path

constraints: logical formulas that are satisfied only by new files exercising

alternative paths. Unlike WF, these constraints are converted into regular

70

expressions such that a context-free constraint solver can generate an input

that is accepted by both, the grammar and the expression. However, the

expression is much weaker than the path constraint. Suppose, symbolic

execution yields the path constraint ϕ ∧ (x < y). After conversion, the

regular expression cannot capture that arithmetic constraint. Moreover,

GWF cannot encode integrity constraints such as size-of, offset-of, length-

of and checksums. These integrity checks are very common in several highly

structured file formats like PNG, PDF and WAV.

In this work, we present Closed-loop Model-based Blackbox and

Whitebox Fuzzing (MoBWF), an automated testing technique for

industrial-size program binaries that process structured inputs. MoBWF

is a marriage of model-based blackbox fuzzing and whitebox fuzzing that

generates valid files efficiently and exercises critical target locations

effectively. It is a directed path exploration technique that prunes from the

search space those paths that are exercised by invalid, malformed inputs:

(i) MoBWF uses information about the file format to explore those

branches that are exercised depending on the presence of specific chunks.

To this end, MoBWF removes the referenced chunk or adds a new valid

chunk by instantiation from the input model or a process we call data

chunk transplantation — MoBWF identifies the set of input bytes

corresponding to the required chunk in a donor file and transplants them

into the appropriate location of the receiving file. (ii) MoBWF employs

selective symbolic execution [35] to explore those branches that are

exercised depending on specific values of the data fields. (iii) Lastly,

MoBWF establishes the integrity of the generated files, repairing

checksums and offsets.

Unlike MoBF, MoBWF is directed and enumerates the specific values of

data fields more systematically. Unlike WF, MoBWF does not get bogged

71

89504E470D0A1A0A 0000000D 49484452 7FFFFFFF 00000001 0103000000 BA1BD884 XX
width

IHDR

height others

PLTE tRNS IDAT IEND
PNG DataSignature

...
OTHERS

Figure 5-1: The structure and the hex code of a PNG file. A data chunk
is a section in the hex code embedding one piece of information about the
image. The hex code above the light-grey boxes identifies the data chunk
type while the hex code above the dark-grey boxes protects the correctness
of the data chunk (via checksum).

down by the large search space of invalid inputs or require any seed inputs

(cf. [46, 53]). Unlike GWF, MoBWF maintains full path constraints so

it has no impact on the soundness and completeness of WF. Moreover,

MoBWF leverages a more expressive yet simple input model to handle

integrity constraints.

The input model is used to generate valid files efficiently, enforce

integrity constraints, and facilitate the transplantation of data chunks.

Since it only prunes search space, the input model does not need to be

complete. On one hand, whitebox fuzzing eventually constructs all

relevant (semi-) valid files by exploring paths that are not pruned by the

input model. On the other hand, transplanting data chunks from donors

maintains underspecified integrity constraints, such as the concrete

compression algorithm with which the image data in a PNG file must be

encoded. An input model is constructed once and can be used across all

future testing sessions. It has been shown that input models can also be

derived in an automated fashion [70, 61, 60]. Each of our input models

was constructed manually in less than a day.

The two main challenges of Traditional Whitebox Fuzzing (TWF) that

we address are:

• Path Explosion. Parser code is often a complex part of a program.

In practice, TWF gets bogged down by an exponential number of

paths in the parser that are exercised by invalid inputs [102].

72

• Seed Dependendence. Most TWF approaches assume the

existence of a seed file that features all necessary data chunks – it is

only a matter of setting the correct values for the data fields to

expose an error. In practice, however, this may not be the case.

Data chunks may be missing or in the wrong order. In other cases

no seed files may be available at all.

The main contributions of MoBWF are as follows.

• Pruning Invalid Paths. The input model allows to prune most

paths that are exercised by invalid inputs. As opposed to TWF,

MoBWF is capable of negating those crucial branches that are

exercised only in the presence of certain data chunks without having

to iteratively construct the data chunk by exploring the parser code.

All generated test inputs are valid in that they adhere to the input

model. Integrity constraints are enforced. Given a 24h time budget,

our MoBWF tool exposed all of thirteen vulnerabilities in our

experimental subjects while the TWF tool exposed only six.

• Reduced Seed Dependence. The instantiation from the input

model allows to construct seed inputs from scratch. Moreover, given

a seed input that is missing a data chunk to reach a target location,

MoBWF allows to utilize other seed files as donors, transplant the

missing data chunk, and construct a new seed input that is closer

to the target location. In the absence of a donor, the missing data

chunk can be directly instantiated from the input model. Out of the

thirteen vulnerabilities in our experimental subjects our MoBWF tool

exposed nine without any seed inputs.

• Fuzzing tool. We implement our MoBWF tool as an extension of

the TWF tool, Hercules [88]. We compare our MoBWF tool not

only to the Hercules TWF but also to the Peach model-based

73

Fragment

Program

 v ah,0
int 1ah
mov ax,dx
mov dx,cx
mov cl,4
shl dx,cl
mov bx,ax
mov cl,12

*
File Stitcher

Seed Files

Initial File

Pool
Potentially

Invalid Files

File Repair

÷
Fragment

✓

Condition tainted
by enum. type?

✘Program

 v ah,0
int 1ah
mov ax,dx
mov dx,cx
mov cl,4
shl dx,cl
mov bx,ax
mov cl,12

Hercules++

SMT Solver

?

*
File Stitcher File Cracker ExistingInitial Symbolic

Input File Pool

Potentially
Invalid File

Valid Symbolic
Input File

Input Files

File Repair

÷
File Cracker

Identify
Stitched Files

Selectiveexecuted
crucial IFs Symb. Exec.

✓

✓

✘

Valid Files

✓

1. Add/Remove Chunks 2. Explore Data Fields

3. Use as next seeds

Crash Files

Figure 5-2: Closed-loop Model-based Blackbox and Whitebox Fuzzing.
Elements marked in grey are informed by the data model.

blackbox fuzzer [9]. Given a 24h time budget, our MoBWF tool

exposed all of 13 vulnerabilities in our experimental subjects while

the both Hercules and Peach tool exposed only six.

Insights. Through our experiments we also gain insights about the

relative strengths of our technique MoBWF, symbolic execution based

traditional whitebox fuzzing (TWF), and model-based blackbox fuzzing

(MoBF) as in fuzzers like Peach/Spike [9, 11]. TWF performs well only if

there exists a seed input that features all necessary data chunks and only

certain values for data fields need to be set. MoBF performs well if the

vulnerability is exposed by putting boundary values for certain data

fields, or by removing/adding empty data chunks. Deep vulnerabilities

that require specific values are best exposed by a symbolic

execution-based approach. MoBWF performs well even in the absence of

seed inputs and swiftly generates the specific values needed to expose

even deep vulnerabilities, while also gaining the capability to add and

remove complete data chunks as in MoBF.

74

5.2 Motivating Example

We motivate MoBWF based on a real, serious vulnerability in a library

that is shipped with several browsers and media players. LibPNG [97] is

the official PNG reference library; it supports almost all PNG features, and

has been extensively tested for over 20 years. The library is integrated into

popular programs such as VLC media player, Google Chrome web brower

and Apple TV.

PNGs consist of four mandatory and fourteen optional types of data

chunks. For easy parsing and error detection the file format requires to

specify the size, type, and checksum of each data chunk besides the actual

data. The particular PNG file in Figure 5-1 happens to expose a memory

access violation vulnerability (OSVDB-95632) in VLC 2.0.7 [99] which uses

LibPNG 1.5.14. To trigger the bug, the image width defined in the IHDR

chunk must take a specific value (from 0x7FFFFFF2 to 0x7FFFFFFF) and the

optional tRNS chunk must exist. The tRNS chunk specifies alpha values

to control the transparency of pixels in the image.

Figure 5-1 partially shows structure of a file that exposes the bug. The

first eight bytes identify the file as PNG. The next four bytes specify the

size of the next data chunk (0xD = hex(13) bytes), followed by four bytes

identifying the type of the chunk as IHDR (light-grey box). The next 13

bytes are data fields specifying image width and height. This is followed

by four bytes of checksum protecting the correctness of the IHDR chunk

(dark-grey box). The remaining chunks are structured similarly. The image

data in the IDAT chunk is compressed using the DEFLATE compression

algorithm [3] and the end of the PNG file is indicated by IEND chunk.

Listing 5.1 shows the pertinent code in LibPNG. In each iteration,

png read info (lines 2-27) parses information about the current chunk,

75

like its size and type. Depending on the type it calls the corresponding

function to handle the current chunk and validate the checksum.

� �
1 // read chunks ’ info before first IDAT chunk

2 void png_read_info(png_structp ptr)

3 {

4 // read and check the PNG file signature

5 read_sig(f);

6 for (;;)

7 {

8 // get current chunk’s information

9 uint_32 length = read_chunk_header(ptr);

10 uint_32 chunk_name = ptr ->chunk_name;

11 // mandatory chunks

12 if (chunk_name == png_IHDR)

13 handle_IHDR(ptr , length);

14 else if (chunk_name == png_IEND)

15 handle_IEND(ptr , length);

16 else if (chunk_name == png_PLTE)

17 handle_PLTE(ptr , length);

18 else if (chunk_name == png_IDAT)

19 {

20 ptr ->idat_size = length;

21 break;

22 }

23 // optional chunks

24 else if ...

25 else if (chunk_name == png_tRNS)

26 handle_tRNS(ptr , length);

27 else if ...

28 }

29 }

30

31 // initialize row buffer for reading data from file

32 void png_read_start_row(png_structp ptr)

33 {

34 size_t buf_size;

35 ...

36 buf_size = calculateBufSize(ptr);

37 ptr ->row_buf = png_malloc(ptr , buf_size);

38 png_memset(ptr ->row_buf , 0, ptr ->rowbytes);

39 }� �
Listing 5.1: Simplified parser code for data chunks. The code is shown to
ease the explanation; MoBWF works directly with program binaries.

These handler functions parse a chunk’s data fields and store their values

76

for further image transformation and processing steps. The chunks are

parsed until the first IDAT chunk is reached (lines 18-22). The file shown

in Figure 5-1 passes all checks in the parser and chunk-handling code and

is therefore valid.

When all other chunks have been parsed, LibPNG starts reading pixel

data from IDAT chunks. For each image row, LibPNG allocates and

initializes a buffer (lines 31-38 in png read start row). This is the faulty

function. Specifically, the existence of tRNS chunk and the improper

validation of large image width leads to an integer overflow while LibPNG

is calculating buffer size for each row (as simplified in calculateBufSize at

line 35). Because of that the allocated buffer is much smaller than

required (line 36). As a consequence, a buffer overflow occurs in

png memset causing the program to crash. Notice that the third

argument for the function call memset (ptr→rowbytes) is much larger

than the size of the buffer.

5.2.1 Exposing Vulnerabilities

Traditional Whitebox Fuzzing

Given a benign PNG file having the required data chunks in Figure 5-1 and

the dangerous location in png memset, a Whitebox Fuzzing (TWF) tool can

automatically generate an input that exposes the vulnerability. However,

suppose the benign file is missing the tRNS chunk, it will be an obstacle

for TWF because it is very unlikely that TWF can correctly synthesize the

missing chunk and keep the file valid. In fact, if there is no tRNS chunk,

the true branch of the if-statement in line 25 of Listing 5.1 is not taken.

Although TWF can negate the branch and get a chunk with the name

“tRNS”, its size and content still adheres to specification of another chunk.

77

Where LibPNG expects the size, data, and checksum of the new tRNS

chunk, it only finds “random noise”. So, TWF overrides perfectly encoded

image data only to spend substantial time constructing a valid tRNS chunk

in its place. Since IDAT chunk is compulsory, TWF spends even more time

navigating the space of invalid inputs to construct another IDAT chunk

until it finally constructed a valid file that contains a valid tRNS chunk

and all compulsory chunks where all integrity constraints are satisfied.

Model-based Blackbox and Whitebox Fuzzing

We propose MoBWF as a marriage of model-based backbox fuzzing and

whitebox fuzzing. The model-based approach allows MoBWF to cover the

search space of valid test inputs efficiently while the whitebox approach

in detail covers each subdomain more effectively. Both approaches are

integrated in a feedback loop that is described in Figure 5-2.

Setup. In this example, the user provides the buggy VLC binary, a

crash report, a set of existing benign PNG files (if available) and a PNG

model as shown in Listing 5.2. To implement MoBWF, we leverage a

model-based blackbox fuzzer. The Peach framework allows to specify a file

format as Peach Pit [10]. It describes the types of and relationships (size,

count, offsets) between data chunks and fields. It also supports fixups and

transformers. Fixups allow to repair related data fields, such as checksums.

Transformers are used for encoding, decoding and compression.

The PNG Peach Pit in Listing 5.2 first specifies the generic data chunk

(lines 1-14). PNG chunks all contain at least three data fields, specifying

the length, type, and checksum of the data chunk. The other data chunks

inherit these attributes (lines 15-31), fix the chunk type as enumerable

(IHDR, PLTE, tRNS, ..), and add further data fields. The whole PNG

file is specified last (lines 32-42). It starts with a specific magic number

78

(Signature for PNG files), followed by a header chunk (IHDR) and upto

30,000 chunks (in flexible order) before ending up with an IEND chunk.

� �
1 <DataModel name="Chunk">

2 <Number name="Length" size="32" >

3 <Relation type="size" of="Data" />

4 </Number >

5 <Block name="TypeData">

6 <Blob name="Type" length="4" />

7 <Blob name="Data" />

8 </Block >

9 <Number name="crc" size="32" >

10 <Fixup class="Crc32Fixup">

11 <Param name="ref" value="TypeData"/>

12 </Fixup >

13 </Number >

14 </DataModel >

15 <DataModel name="Chunk_IHDR" ref="Chunk">

16 <Block name="TypeData">

17 <String name="Type" value="IHDR" />

18 <Block name="Data">

19 <Number name="width" size="32" />

20 <Number name="height" size="32" />

21 ...

22 </Block >

23 </Block >

24 </DataModel >

25 ...

26 <DataModel name="Chunk_tRNS" ref="Chunk">

27 <Block name="TypeData">

28 <String name="Type" value="tRNS" />

29 <Blob name="Data" />

30 </Block >

31 </DataModel >

32 <DataModel name="PNG">

33 <Number name="Sig" value="89504e..." />

34 <Block name="IHDR" ref="Chunk_IHDR"/>

35 <Choice name="Chunks" maxOccurs="30000">

36 <Block name="PLTE" ref="Chunk_PLTE"/>

37 ...

38 <Block name="tRNS" ref="Chunk_tRNS"/>

39 <Block name="IDAT" ref="Chunk_IDAT"/>

40 </Choice >

41 <Block name="IEND" ref="Chunk_IEND"/>

42 </DataModel >� �
Listing 5.2: PNG input model as Peach Pit

79

Given the setup, to generate the crashing input in the motivating

example, MoBWF manages to (i) insert a tRNS chunk into proper

position in a benign PNG file, (ii) explore the paths affected by the

existence of tRNS towards crash location, and (iii) generate specific value

for the image width data field in IHDR chunk. This is achieved in four

steps.

Step 1. Seed selection and file cracking. As shown in Figure 5-2,

MoBWF first selects as initial input that file which is closest to a

potential crash location. All other PNG files are considered donors,

disassembled by the file cracker and added to the fragment pool. File

fragments can be transplanted into input files as needed. If no initial files

are provided, MoBWF instantiates the initial input from the input model.

Then, MoBWF marks as symbolic all data fields which the user specified

as “modifiable”. Only modifieable data fields are considered for the

fuzzing. In this example, all data fields (e.g., image width) are marked as

modifiable except for the chunk’s checksum and size. The resulting hybrid

symbolic PNG file (i.e., some parts are symbolic where others are

concrete) is then executed concolically by a traditional whitebox fuzzer.

Step 2. Adding and removing data chunks. Certain branches in a

file-processing program are exercised only if a certain data chunk is

absent or present. To exercise these branches during path exploration,

MoBWF removes the specific chunk or adds a new one. First, in the

execution of a given file f , MoBWF identifies those crucial if-statements

(ifs) by their dependence on a data field in f of enumerable type. In

Listing 5.1, the ifs in lines 11–26 can be considered crucial while none of

the those inside the handle **** functions are. In our experiments, we

observe that such enumerables do often uniquely identify a data chunk’s

type. First, MoBWF identifies the input bytes in f that influence the

80

outcome of executed branch predicates using classical taint analysis. In

our example, MoBWF determines the relationship between the input

bytes above the grey boxes in Figure 5-1 and the ifs in Listing 5.1. Then,

MoBWF learns the type of the referenced data field using the input

model. Finally, if the data field is of enumerable type and the if is not

already executed in both directions, then the if is considered crucial and

MoBWF removes the corresponding data chunk or adds a new one

through transplantation or instantiation from the input model.

Once MoBWF identifies the type corresponding to the data chunk

being removed or added, the file stitcher coordinates the data chunk

transplantation. First, the stitcher searches the fragment pool for

candidate data chunks that are allowed (according to the input model) to

be put at the same level as the chosen chunk in the current seed file f .

Finally, the file sticher uses the input model to identify the set of input

bytes corresponding to each candidate data chunk in the pool and

transplants them into the appropriate location of the receiving file f to

generate a number of new seed files, one for each chunk. For our example,

in what follows we assume that the candidate containing the tRNS chunk

is chosen next.

Step 3. Changing data fields in inserted data chunk. Other

branches in a file-processing program are exercised only if specific values

are set in the chunks’ data fields. In our example, the vulnerability is

exposed only when the image width is in a range of certain values. To

exercise these branches by finding the specific values is the strength of

whitebox fuzzing. Selective symbolic execution explores the local search

space of semi-valid inputs starting from the negated crucial branch. This

local search is very efficient when compared to classical TWF. During

exploration, any integrity check is identified and ignored. The potentially

81

invalid files are later fixed during the file repair. Once the target location

is reached, the whitebox fuzzer checks the satisfiability of the conjunction

of path constraint and crash condition (inferred from the given crash

report or provided as output of static analysis tool). If the conjunction is

satisfiable, the whitebox fuzzer generates a crashing input. Otherwise, it

uses the unsatisfiable core to guide the path exploration towards the

crash location and does the check again.

Step 4. Repeat. Data chunks can be nested in certain file formats

(such as WAV). Thus, MoBWF uses the generated files as new seeds to

continue the next iteration starting from Step 1. From the augmented

seeds (initial seeds + new seeds), MoBWF selects a file which is closest to

the crash location and moves to next steps. MoBWF executes selected file,

identifies crucial if-statements, transplants data chunks and continues path

explorations.

Summary. In this motivating example, MoBWF follows these four steps.

During concolic execution, it identifies line 25 (Listing 5.1) as crucial if-

statement. From the input model, the file stitcher infers that a tRNS

chunk is a candidate for transplantation and it is allowed after PLTE and

before the IDAT chunk. So, file stitcher transplants a tRNS chunk from

the fragment pool or directly instantiates a minimal tRNS chunk from

the input model and places it right before IDAT chunk. As a result, the

true branch of the if-statement in line 25 is taken and the tRNS chunk is

parsed before doing further processing. Once the crash location is reached,

the image-width dependent crash condition is checked and a PNG file is

produced. The resulting file is still invalid because the new value of image

width invalidates the checksum of IHDR chunk. So, the file repair tool fixes

the checksum and the vulnerability is exposed.

82

5.3 Model-based Black-box and White-box

Fuzz Testing

Algorithm 2 gives an overview of the procedure of MoBWF. It takes a

program P , an input model M, a set of target locations L in P , and seed

inputs T . The objective of Algorithm 2 is to generate valid (crashing) files

that exercise L. If no target is provided, MoBWF uses static analysis to

identify dangerous locations in the program, such as locations for

potential null pointer dereferences or divisions by zero (line 1-2). The

algorithm uses the provided test cases T as seed inputs for the test

generation. However, if no seed file is provided, MoBWF leverages the

input model M to instantiate a seed file (lines 3-5).

Algorithm 2 Model-based Blackbox and Whitebox Fuzzing

Input: Program P , Input Model M
Input: Initial Test Suite T , Targets L
Output: Augmented Test Suite T ′

1: if L = ∅ then
2: L← identifyCriticalLocations(P)

3: if T = ∅ then
4: t← instantiateAsValidInput(M)
5: T ← {t}
6: while timeout not exceeded do
7: Target location l← chooseTarget(L)
8: Input file t← chooseBest(T, l)
9: Fragment Pool Φ← fileCracker(T,M)

10: Crucial ifs Λ← detectCrucialIFS(t, l,P ,M)
11: for all λ ∈ Λ do
12: Valid files Tλ ← fileStitcher(t, λ,Φ,M)
13: for all tλ ∈ Tλ that negate λ do
14: Hybrid file t̂λ ←markSymbolicVars(tλ,M)
15: Files F ← pathExploration(t̂λ, λ, l, L,P)
16: for all f ∈ F do
17: Valid file f ′ ← fileRepair(f,M)
18: T ← T ∪ f ′

19: T ′ ← T

The main loop of Algorithm 2 is shown in lines 6-18. First, MoBWF

83

chooses the next target location l. If MoBWF works in crash reproduction

mode, l is the known crash location extracted from the given crash report.

Otherwise, l is picked if its average distance to all seed inputs in T is

smallest. The distance between an input t and a program location l is

specified in Definition 1. Second, MoBWF chooses the next seed file t

according to a search strategy that seeks to generate the next input with

a reduced distance to l (line 8). The remaining seed files are sent to the

file cracker to construct the fragment pool Φ in line 9. The fragment pool

takes a central role during data chunk transplantation.

Definition 1 (Input Distance to Location). Given an input t, a program

P and a program location l in P. Let Ω(t) be the set of nodes in the Control

Flow Graph (CFG) of P that are exercised by t. The distance δ(t, l) from

t to l is the number of nodes on the shortest path from any b ∈ Ω(t) to l.

Next, Algorithm 2 executes t on P to determine crucial ifs Λ

(line 10). As specified in Definition 2, a crucial if is evaluated in different

directions only depending on the type of the data chunks present in t.

Our implementation leverages M to identify crucial ifs by their

dependence on a data field in t of enumerable type. We observed that

such enumerables do often uniquely identify a data chunk’s type. Note

that we ignore executed ifs negating which does not reduce the distance

to the target location l.

Definition 2 (Crucial IF-statement). Given input t for program P and a

target location l in P, an if-statement b in P is crucial if

1) the statement b is executed by t in P,

2) only one direction of b has been taken,

3) the negation of the branch condition at b reduces the distance to l, and

4) let ϕ(b) be the branch condition at b; the outcome of ϕ(b) depends on a

84

field in t that specifies the chunk’s type.

For each crucial if λ thus identified, Algorithm 2 employs the file

stitcher to negate λ’s branch condition (lines 11-12). For each stitched file

tλ that successfully negates λ, the algorithm executes selective symbolic

execution followed by file repair to fine-tune the specific values of the data

chunks and reduce the distance to l (lines 13-18). More specifically, it

marks all modifiable data fields in tλ as symbolic and starts the directed

path exploration (lines 14-15). During path exploration, MoBWF does

not collect integrity checks as branch constraints. For instance, a

checksum check might not allow to change a data field which would

otherwise lead to reducing the distance to L (cf. TaintScope [101]). Such

integrity constraints are repaired in line 17. Whenever a potential

dangerous location in L is reached, MoBWF checks if the crash condition

is satisfied and generates a crashing test case accordingly.

5.3.1 Directed Model-based Search

In order to generate inputs that expose vulnerabilities, MoBWF uses the

initial seed inputs T to reduce the distance to the provided or identified

critical location l until it is reached and the crash condition is satisfied.

Critical Locations. If no targets L are provided to the algorithm,

MoBWF identifies critical locations in the program P . A critical location

is a program location that may expose a vulnerability if exercised by an

appropriate input. There are several methods to identify such critical

locations [45, 101]. In our implementation, we use IDAPro [7] to

dissamble the program binary P and perform some lightweight analysis to

identify instructions that conform to the patterns shown in Listing 5.3.

These patterns partially cover program instructions that may trigger

divide-by-zero and null-pointer dereference vulnerabilities. Specifically, we

85

focus on division and memory move instructions taking registers or stack

arguments as operands. For those instructions, the crash condition is

obvious. Once a critical location is reached during concolic exploration,

we just check whether the value of register/stack argument is zero (in

case it is concrete) or can be zero (in case it is symbolic).� �
div register

div [ebp + argument_offset]

mov operand , [register]

mov operand , [ebp + argument_offset]

mov [register], operand

mov [ebp + argument_offset], operand� �
Listing 5.3: Crash instruction templates

Model-based Search. To generate input that reduces the distance

to l, MoBWF first chooses the seed input t with the least distance to l

and then identifies the executed crucial ifs Λ (lines 8, 10 in Alg. 2). The

task of the subsequent data chunk transplantation and instantiation will

be to generate valid inputs that negate the branch conditions of Λ. While

other implementations are possible, we decided to implement a hill climbing

algorithm. Our implementation of chooseBest selects the input file t ∈ T

such that for selected location l ∈ L we have that the distance from t to l

is minimal. To detect crucial branches Λ, MoBWF first determines, using

taint analysis, those input bytes in t that may impact the outcome of some

b ∈ Ω(t). We recall that Ω(t) is the set of nodes in the CFG of program P

which are exercised by t. In our implementation of detectCrucialIFS,

we leverage those capabilities in a symbolic execution tool, Hercules. Next,

MoBWF uses the CFG to compute the number of nodes on the shortest

path between b and location l ∈ L. The negation of ϕ(b) may reduce the

distance to l only if b is in static backward slice of l and the branch b′

86

immediately following b does not have a smaller number of nodes on the

shortest path between b′ and l. Lastly, MoBWF uses M to determine the

data field corresponding to the identified input bytes and whether the data

field specifies the chunk’s type. If all conditions specified in Definition 2

are met, then b is marked as a crucial if and added to Λ.

5.3.2 Transplantation, Instantiation, and Repair

File Cracker. “File cracking” refers to the process of interpreting valid

files according to a provided input model (i.e., the Peach Pit file). Given

the input model M and a valid file t ∈ T , the fileCracker identifies all

data chunks and their data fields in t. In model-based blackbox fuzzers like

Peach Fuzzer [9], the valid input files are cracked and fuzzed independently.

However, in MoBWF we crack all files and place their data components

inside a fragment pool. As a result, we can consider all files (and even the

input model) as donors for data transplantation. By doing that, MoBWF

can generate more (semi) valid files and improve coverage.

File Stitcher. Given a valid file t and the crucial if λ, the objective

of fileStitcher is to negate ϕ(λ) and reduce the distance to l by

adding or removing chunks from t. First, the stitcher has to determine

the chunk c in t that should be removed or before which a different chunk

should be added in order to negate ϕ(λ). Chunk c was memorized

previously when determining that the outcome of λ depends on the data

field specifying c’s type. Second, the stitcher generates a new file by

removing c from t if allowed according to M. Third, for each chunk type

C that is allowed before c in t:

i) Transplantation. If there exists a chunk c′ of type C in the pool Φ, copy

the input bytes corresponding to c′ from the donor file to the position

before c in the receiving file t.

87

ii) Instantiation. Otherwise, use the specification of C in M as a template

to generate the bytes for c′ before c in t. All files thus generated that

actually negate λ will be used for the subsequent selective symbolic

execution stage.

File Repair. Given a file f and the input model M, the file repair

tool re-establishes the integrity of the file. Our implementation utilizes the

fixup and transformers that can be specified inM in the Peach framework.

5.3.3 Selective and Targeted Symbolic Execution

We reuse the targeted search strategy for symbolic exploration implemented

in Hercules [88]. Basically, to mitigate the path explosion problem, it

enables fully symbolic reasoning only in some selected modules of interest

(i.e., executable binaries like .exe and .dll files). The list of selected modules

can be inferred from the target module TM, which contains the selected

target location, and a so-called Module Dependency Graph (MDG). The

MDG is constructed by running the program under test with benign inputs

and collecting the control transfer between program modules. Using the

constructed MDG, TM and all modules on paths from entry module (main

program) to TM are selected to explore in fully symbolic execution mode.

The search strategy of Hercules is targeted in the sense that it

explores program paths towards a target location (critical locations like

crashing one) by pruning irrelevant paths. Moreover, Hercules leverages

the unsatisfiable core produced by a theory prover like Z3 [40] to guide

the exploration.

88

5.3.4 Handling Incomplete Memory Modeling

The memory models of symbolic execution engines, like Hercules, KLEE

or S2E [88, 28, 35], do not support memory allocation with symbolic size.

If a symbolic size is given, it is concretized before allocating heap memory.

The concretization mechanism could prevent us from exposing heap buffer

overflow vulnerabilities. Suppose in the motivating example the image

width of the benign PNG file is very small, say 1, and it is marked as

symbolic. In the processing code, LibPNG needs to allocate a heap buffer

having symbolic size that depends on width (and other symbolic variables).

When the buffer is allocated, width is bound in PC by the constraint on

concretized value for allocated buffer size.

Once the crash location (e.g., the instruction accessing the allocated

heap buffer) is reached, Hercules checks the satisfiablity of the

conjunction between the current path constraint PC and the crash

condition CC. Suppose that to satisfy the crash condition, the image

width must be large enough. For the current file with the small image

width, the crash condition CC could contradict the path constraint PC;

PC ∧ CC is unsatisfiable. Usually, based on the unsatisfiable core1 of

PC ∧ CC, Hercules find a set of branches that can be negated to explore

neighboring paths along which the crash condition CC may be satisfiable.

However, since width is already bound, there exists no alternative path

along which the crash condition CC can be satisfied.

In our extension of Hercules, we leverage recent advances in maximal

satisfication with Z3 (MaxSMT)[19, 40]. MaxSMT allows us to select a

subset of constraints which is not required to be satisfied as “soft

constraints” while the remaining constrains (which need to be satisfied)

1Given an unsatisfiable Boolean propositional formula in conjunctive normal form, a
minimal subset of clauses whose conjunction is still unsatisfiable is called an unsatisfiable
core of the original formula.

89

are implicitly marked as “hard constraints”. Specifically, in our case we

set all constraints in CC as hard constraints while specifying e.g.,

constraints due to memory allocation in PC as soft constraints. To

identify which constraints in PC can be soft, first we check whether the

conjunction PC ∧ CC is unsatisfiable. If so, we extract all symbolic

variables in CC. Thereafter, we iterate through all constraints in PC and

consider them as soft constraints accordingly if they contain any symbolic

variable from CC. After all these steps, we get PC ′, the updated PC,

and we send another query to MaxSMT solver to check the maximum

satisfiability of PC ′ ∧ CC. If PC ′ ∧ CC is satisfiable (by possibly making

one or more soft constraints in PC ′ as false) – we generate a input file as

the solution to the constraints. As an additional confirmation, we validate

the generated file by feeding it to the program binary and checking

whether it crashes the program.

5.4 Implementation

*

÷ File Cracker

File Stitcher

File Repair
Hercules

Crucial IFS
Detector

MaxSMT
Interface

Pin tools
(Profiling)

Static Analysis
(Finding critical

locations)

Input Model Manipulation Enhanced Whitebox Fuzzing

Figure 5-3: Components of our MoBWF tool

Our MoBWF tool is based on several third-party tools and libraries.

We implemented our technique into the Hercules [88] directed symbolic

execution engine which itself leverages S2E [35] and the Z3 [40] satisfiability

modulo theory constraint solver. We also improved the accuracy of the

90

taint analysis that is implemented in Hercules. IDAPro [7] and the Intel

Dynamic Binary Instrumentation Tool [79] (or PIN tool) were used for

static analysis to find dangerous locations in the program code executing

The PIN tools were also used i) for instruction profiling to generate the

execution trace and compute the distance of the current seed input to

the dangerous locations, and ii) for branch profiling to determine which

crucial branches are explored. The framework around the Peach model-

based blackbox fuzzer [9] allowed us to implement the input model-based

components such as File cracker, File Stitcher and File Repair. In fact, the

first was modified for our purposes and the latter two were implemented

from scratch, for instance, to support data chunk transplantation.

5.5 Experimental Evaluation

We evaluated our MoBWF technique experimentally to answer the

following research questions.

• RQ.1 How many vulnerabilities are exposed by MoBWF compared

to Traditional Whitebox Fuzzing (TWF)?

• RQ.2 How many vulnerabilities are exposed by MoBWF compared

to Model-based Blackbox Fuzzing (MoBF)?

• RQ.3 How many vulnerabilities are exposed by MoBWF if no initial

seed inputs are available?

Each technique was evaluated with a 24 hour time budget.

91

Program Version Buggymodule Size Errors

Video Lan Client 2.0.7 libpng.dll 184 KB 1
Video Lan Client 2.0.3 libpng.dll 182 KB 1
Libpng Test Program 1.5.4 libpng.dll 176 KB 1
XnView 1.98 XnView.exe 4.46 MB 0 + 3
Adobe Reader 9.2 cooltype.dll 2.32 MB 1
Windows Media Player 9.0 quartz.dll 1.22 MB 2 + 1
Real Player SP 1.0 realplay.exe 60 KB 1
MIDI Player 0.35 mamplayer.exe 336 KB 1
Orbital Viewer 1.04 ov.exe 538 KB 1

Total: 9 + 4

Table 5.1: Subject Programs

5.5.1 Experimental Setup

Subjects

We selected our subjects from a pool of well-known program binaries of

video players, document readers, music players, and image editors – which

take a variety of complex file formats. Since Hercules serves as a base line

technique, we also added all five subjects on which Hercules was

evaluated originally [88] (shown with grey background). We also took the

categories of vulnerabilities into consideration. As shown in Table 5.1, we

chose eight distinct real-world applications (some with different versions):

Adobe Reader (AR)2, Video Lan Client (VLC)3, Windows Media Player

(WMP), Real Player (RP)4 and Music Animation Machine MIDI Player

(MP)5, XnView (XNV)6, LibPNG (LTP)7 and Orbital Viewer (OV)8.

Table 5.1 shows not only the subjects and their versions but also the

target buggy modules and their respective sizes. In addition, it features

the number of known vulnerabilities that we sought to reproduce. In one

2https://get.adobe.com/reader/
3http://www.videolan.org/index.html
4http://www.real.com/sg
5http://www.musanim.com/player/
6http://www.xnview.com/en/
7http://www.libpng.org/pub/png/libpng.html
8http://www.orbitals.com/orb/ov.htm

92

case (XnView), we started without any known vulnerabilities and looked

for unknown ones. In other cases, although we targeted the known

vulnerabilities, we managed to discover new ones. Indeed, our MoBWF

tool reproduced successfully all 9 known errors and discovered 4 unknown

errors – 3 in XnView and 1 in Windows Media Player (See Section 5.5.2).

Input Modeling

To define input models of five file formats (PDF, PNG, MIDI, FLV and

ORB) from scratch, we utilized the modeling language of the Peach model-

based blackbox fuzzer. We augmented the input model for WAV files which

is provided freely by Peach Fuzzer. In particular, we modeled one common

image file (PNG), three audio and video files (MIDI, WAV and FLV), one

portable document file (PDF) and one geometry file (ORB). In Table 5.2,

we report the size of the input models which are relatively small – ranging

from 4 KB to 14 KB. It took us less than a day to write each model for a

file format.

Format Size Time spent #Files Average size

PDF 4.5 KB 12 hours 10 200 KB
PNG 8.3 KB 4 hours 10 55 KB
MIDI 13.9 KB 4 hours 10 20 KB
FLV 6.0 KB 4 hours 10 300 KB
ORB 6.0 KB 8 hours 10 4 KB
WAV∗ 7.5 KB 2 hours 10 260 KB

Table 5.2: Information on the Input Models

Initial seed files selection

To select the initial seed files, we randomly downloaded 10 files of the

corresponding format from the Internet, except ORB and PNG initial seed

files. The ORB files were downloaded from software vendor’s website9 while

9http://www.orbitals.com/orb/ov.htm

93

PNG files were downloaded from the Schaik online test suite.10 The average

size of seed files in each test suite is shown in the fifth column of Table 5.2.

Infrastructure

We evaluated three tools, our MoBWF tool, the Hercules Traditional

Whitebox Fuzzer (TWF) and the Peach Model-based Blackbox Fuzzer

(MoBF). For the experiments, we used the community version of Peach

Fuzzer which is provided with its source code.11 Both model-based

techniques used the same input models. All subject programs were run on

Windows XP 32-bit SP 3. For each program, each tool was configured for

a timeout after 24 hours of execution. We conducted all experiments on a

computer with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of RAM.

5.5.2 Results and Analysis

Program Advisory ID Model Files MoBWF MoBF TWF

VLC 2.0.7 OSVDB-95632 PNG 10 4 8 8

VLC 2.0.3 CVE-2012-5470 PNG 10 4 8 8

LTP 1.5.4 CVE-2011-3328 PNG 10 4 8 8

XNV 1.98 Unknown-1 PNG 10 4 4 8

XNV 1.98 Unknown-2 PNG 10 4 4 8

XNV 1.98 Unknown-3 PNG 10 4 4 8

WMP 9.0 Unknown-4 WAV 10 4 4 8

WMP 9.0 CVE-2014-2671 WAV 10 4 8 4

WMP 9.0 CVE-2010-0718 MIDI 10 4 8 4

AR 9.2 CVE-2010-2204 PDF 10 4 8 4

RP 1.0 CVE-2010-3000 FLV 10 4 8 4

MP 0.35 CVE-2011-0502 MIDI 10 4 4 4

OV 1.04 CVE-2010-0688 ORB 10 4 4 4

Table 5.3: The vulnerabilities exposed by our MoBWF tool, the Hercules

TWF, and the Peach MoBF. Vulnerabilities from the Hercules benchmark
are marked as grey.

Table 5.3 shows the results in reproducing known vulnerabilities and

10http://www.schaik.com/pngsuite
11http://community.peachfuzzer.com to download.

94

finding unknown ones of the three compared techniques. Overall, in the

experiments our MoBWF tool outperforms both Hercules and Peach.

While our MoBWF tool successfully generated 13 crash-inducing inputs,

neither Hercules nor Peach can produce half of them . Furthermore, our

MoBWF tool also found potential unknown vulnerabilities in Windows

Media Player and XnView. Indeed, these vulnerabilities have previously

not been reported at MITRE12, OSVDB13 or Exploit-DB.14. In addition,

the power of our MoBWF tool is also demonstrated by its ability to

expose different types of vulnerabilities including integer and buffer

overflows, null pointer dereference and divide-by-zero. In the following

sections, we have an in-depth analysis to answer the three research

questions about the effectiveness and sensitivity of our approach.

RQ.1 Versus Traditional Whitebox Fuzzing

Our experiments confirm the observations that TWF is unlikely to

synthesize missing composite data chunks. As in OSVDB-95632,

CVE-2012-5470, CVE-2011-3328 and Unknown 1-4, Hercules cannot

produce crash inputs to expose the vulnerabilities because they require

the existence of optional composite data chunks. In our experiments,

Hercules gets stuck in synthesizing such required data chunks. In

particular, the following requirments must be met to expose the 7

vulnerabilities that are not in the Hercules benchmark:

OSVDB-95632 (Buffer Overflow): It requires a PNG file with a

tRNS optional data chunk specifing either alpha values that are associated

with palette entries (for indexed-colour images) or a single transparent

colour (for greyscale and truecolour images). Moreover, the value of a data

12http://cve.mitre.org/
13http://osvdb.org/
14https://www.exploit-db.com/

95

field (image width) in IHDR chunk (the header chunk of PNG) must be

able to trigger an integer overflow in the LibPNG plugin in VLC 2.0.7.

CVE-2012-5470 (Buffer Overflow): It requires a PNG file with a

tEXt optional data chunk which stores text strings associated with the

image, such as an image description or copyright notice. Furthermore,

the length of the data chunk must be big enough to exceed the size of

a heap buffer allocated for the image. However, it cannot be so huge

that it prevents LibPNG from successfully allocating a heap buffer that is

supposed to store the data in tEXt chunk.

CVE-2011-3328 (Divide-by-Zero): They require a PNG file with a

cHRM optional data chunk. The cHRM specifies chromaticities of the red,

green, and blue display primaries used in the image, and the referenced

white point. Second, some data fields in cHRM chunk must have specific

values to trigger a divide-by-zero bug in the LibPNG library.

Unknown 1-3 (Memory Read Access Violation): They require

PNG files having optional data chunks (iTXt, zTXt or iCCP accordingly)

which have no content. That is, the chunks that specify a size of zero

followed by chunk name and checksum.

Unknown 4 (Divide-by-Zero): It requires a WAV file in which the

format chunk contains an optional extra composite data field and one

specific byte in the field is zero.

Unlike Hercules, our MoBWF tool leverages the input models to

transplant required data chunks from other files in the initial test suite or

generate the chunks automatically from the input model. Hence, our

MoBWF tool can successfully produce crash inputs as witnesses for the

seven vulnerabilites mentioned above.

Since our MoBWF tool is an extension of Hercules, it can successfully

reproduce all six vulnerabilites in the Hercules benchmark. As we will see

96

for RQ.3, our MoBWF tool does not require seed inputs to reproduce three

out of the six vulnerabilites in the Hercules benchmark (CVE-2010-0718,

CVE-2011-0502 and CVE-2010-0688) because of its capability to generate

(semi-) valid files directly from input models.

RQ2. Versus Model-based Blackbox Fuzzing

The Peach model-based blackbox fuzzer cannot expose half of the

vulnerabilities that our MoBWF tool can expose (see Table 5.3). We note

that we conservatively assume that data chunk transplanation and

instantiation is available in Peach – even though it is not. It is worth

mentioning that supporting transplanation and instantiation in Peach

could be challenging. In fact, finding the correct chunk to transplant and

transplanting it to the correct location in the seed input is subject to

combinatorial explosion in an undirected fuzzing technique like Peach. In

constrast, MoBWF uses information about crucial IFs to direct the

transplantation.

In the experiments, we simulated Peach’s capability to do data chunk

transplanation and instantiation by augmenting the set of all 10 seed inputs

where none contains the missing data chunk with at least one seed input

where we manually transplanted the missing data chunk. In Table 5.3,

we indicate that Peach (with the simulated capability) can expose three

vulnerabilities Unknown 1-3 since these only require the existence of empty-

data optional chunks.

However, for the remaining 10 vulnerabilities, the MoBF tool Peach

cannot successfully expose 7 of 10 vulnerabilities even though we provide

inputs with the required optional data chunks. It is because of its limitation

on generating specific values. The reason lies with the inability of blackbox

fuzzing to generate the specific values for data fields that would expose

97

deep vulnerabilities. For example, given a 4-byte integer data field, the

chance for a blackbox fuzzer to randomly mutate and get a specific value X

is extremely small, just only 1/232. In contrast, symbolic execution-based

whitebox fuzzing is very good at finding such values.

Meanwhile, our MoBWF tool is an enhancement of TWF (by

leveraging input models) and can tackle both the missing data chunk

problem and the limitation on generating specific input values. As a

result, it can successfully produce test cases to expose all of the 13

vulnerabilities.

RQ3. Sensitivity to the initial test suite

Program Advisory ID Model #Files MoBWF

VLC 2.0.7 OSVDB-95632 PNG 0 4

VLC 2.0.3 CVE-2012-5470 PNG 0 4

LTP 1.5.4 CVE-2011-3328 PNG 0 4

XNV 1.98 Unknown-1 PNG 0 4

XNV 1.98 Unknown-2 PNG 0 4

XNV 1.98 Unknown-3 PNG 0 4

WMP 9.0 Unknown-4 WAV 0 8

WMP 9.0 CVE-2014-2671 WAV 0 8

WMP 9.0 CVE-2010-0718 MIDI 0 4

AR 9.2 CVE-2010-2204 PDF 0 8

RP 1.0 CVE-2010-3000 FLV 0 8

MP 0.35 CVE-2011-0502 MIDI 0 4

OV 1.04 CVE-2010-0688 ORB 0 4

Table 5.4: Vulnerabilities exposed by our MoBWF tool if no initial seed
files are provided.

For this experiment, we run our MoBWF tool with no initial seed inputs

as shown in Table 5.4. By leveraging input models of PNG, MIDI and

ORB, for each file format our MoBWF automatically generates one minimal

seed file. In particular, a minimal PNG file is an 1x1 image having four

mandatory chunks – IHDR, PLTE, IDAT and IEND. In case of MIDI, it

is a single track audio file with one header chunk (MThd) and one audio

track chunk (MTrk). The minimal ORB file contains all required properties

98

for rendering an orbital object. Once the files are generated, we run our

MoBWF tool on all subjects listed in Table 5.4.

The experiments show that with the minimal files, our MoBWF tool can

expose 9 of 13 vulnerabilities (which can be revealed by PNG, MIDI and

ORB files) as reported in Table 5.3. It means that our MoBWF tool exposes

70% vulnerabilites without any provided seed inputs providing evidence

that MoBWF technique reduces the dependence of TWF on selected seed

inputs.

MoBWF does not succeed in exposing the vulnerabilities in 4 of 13

vulnerabilities because they require WAV, FLV and PDF files as inputs.

However, our models for these file formats are still coarse. Although they

are enough to allow MoBWF to work with given test suites, they need to

be more complete to support directly generating (semi-) valid files. Since

these file formats are complex, on one hand we can spend more time to read

and fully understand their specifications in order to augment the input

models. On the other hand, we can reuse exhaustive models written by

software vendors or the owners of file formats. For instance, according to a

post at the official Adobe Blog,15 developers at Adobe System wrote their

model for PDF file (which was a proprietary format controlled by Adobe

until 2008) and used Peach Fuzzer to fuzz their most popular software –

Adobe Reader. Given such (partially) complete input models, our MoBWF

approach would complement MoBF tool like Peach Fuzzer to maximize the

utility of these models and hence expose more vulnerabilities.

15https://blogs.adobe.com/security/tag/fuzzing

99

5.6 Threats to Validity

The main threat to external validity is the generality of our results.

MoBWF has been developed for real-world program binaries that take

complex program inputs. We choose a variety of well-known programs

from different domains where specifications of the input models are

available. While for proprietary applications such format specifications

might not be available, we believe that grammar inference techniques can

be a powerful tool to automatically derive the input model. Half of the

vulnerabilities have already been picked in earlier work [88]. To showcase

the effectiveness of MoBWF, the other half has been chosen such that an

optional data chunk is required to expose the vulnerability.16

The main threat to internal validity is selection bias during the seed

selection (see Table 5.2). We chose the seed inputs either randomly from

a benchmark or from the internet. Moreover, our experiments confirm the

reduced dependence on the available seed inputs.

The main threat to construct validity is the correctness of our

implementation. However, our tool is an extension of both Hercules and

Peach, the two baselines for our evaluation. So, our tool inherits the

incorrectness of the baseline.

5.7 Chapter Summary

In this chapter, we introduced MoBWF as an automated testing

technique for program binaries that process highly structured inputs. We

have observed that certain branches in a file-processing program are

exercised only depending on i) the presence of a specific data chunk, ii) a

specific value of a data field in a data chunk, or iii) the integrity of the

16See RQ.1. in Section 5.5.2.

100

data chunks. Hence, we extend Hercules an existing traditional

whitebox fuzzing technique not only to set specific values of the fields but

also to add/remove complete chunks and re-establish their integrity

during fuzzing.

MoBWF is a promising fuzzing technique for program binaries that

process highly structured input. It is particularly helpful when no initial

seed files are available that contain the required optional data chunks.

Given the same time budget, MoBWF can generate more valid test inputs

which aids in exposing vulnerabilities that could not be exposed

otherwise.

101

Chapter 6

Directed Coverage-based

Grey-box Fuzz Testing

Coverage-based Greybox Fuzzing (CGF) has shown its effectiveness in

discovering numerous vulnerabilities reported today. However, given a

specific set of target locations, say the methods in a stacktrace of an

in-field crash that an in-house developer wishes to reproduce or updated

functions in a new code commit which should be thoroughly tested to

prevent regression bugs, CGF cannot be directed towards quickly

generating seeds that can reach these targets. In this chapter, we present

our approach to integrating the capability to be directed by a set of

targets into CGF.

6.1 Introduction

Coverage-based Greybox Fuzzing (CGF) is a random testing approach

where new program inputs are generated by slightly mutating a seed

input: If the input exercises a new branch (which is not covered by the

existing seeds), it is added to the set of seeds. Light-weight

instrumentation allows to check for an increase in coverage with close to

102

no overhead. CGF (as implemented in several popular fuzzing tools like

AFL and LibFuzzer [4, 8]) is a powerful automated vulnerability detection

technique, perhaps because it is both scalable as well as highly

parallelizable. It is scalable because the time to generate a test does not

increase with the program size and highly parallelizable because the

retained seeds represent the only internal state. Several CGF instances

can be run in parallel with a shared queue. A shared queue allows one

instance to access all the seeds that have been discovered by any other

instance. However, given a specific set of target locations, say the

methods in a stack trace of an in-field crash that an in-house developer

wishes to reproduce or updated functions in a new code commit which

should be thoroughly tested to prevent regression bugs, CGF cannot be

used to progressively reach these targets.

In this work, we augment CGF and make it directed towards a given

set of targets by integrating into it a global search algorithm. We leverage

the observation that CGF can be modeled as a Markov chain which

specifies the probability pij that fuzzing the seed which exercises path i

generates an input that exercises path j. In the case of AFL, j might be a

path that would exercise branch that has not been covered. Böhme et al.

[22] introduce so-called power schedules to effectively navigate the

Markov chain. A power schedule assigns energy to each seed according to

some function. The energy of a seed determines how many inputs are

generated from that seed the next time it is chosen for fuzzing. Böhme et

al. developed several power schedules that help to gravitate the fuzzer

towards low-frequency paths rather than “wasting” energy on

high-frequency ones. The fuzzer discovers more interesting paths per unit

time.

This inspired us to integrate a well-known Markov Chain Monte Carlo

103

(MCMC) meta-heuristic into CGF by developing a suitable power

schedule. This so-called temperature-based power schedule assigns energy

depending on the seed’s distance to the set of target locations.

Specifically, we integrate Simulated Annealing (SA) as global search

algorithm where a short distance to the set of targets becomes

increasingly more important as time progresses. Intuitively, in the

beginning almost every seed is assigned the same energy to allow initially

for sufficient freedom to explore possibly less progressive paths. At a

given point of time, which we call time-to-exploitation, the search enters

the exploitation phase where seeds that are “closer” to the targets are

assigned significantly more energy than those further away. Directed CGF

is effectively a novel single-objective, multi-target search-based software

testing technique.

We implemented the technique into AFL, which is the state-of-the-art

of CGF, and call our tool AFLgo. We evaluated AFLgo as a crash

reproduction tool on the stack traces of ten vulnerabilities in LibPNG

and Binutils. Moreover, we also evaluated AFLgo as a patch testing tool

for vulnerability detection on the changes in the commit that introduced

the famous Heartbleed vulnerability [103] and on the changes in the 1600

most recent revisions of Binutils. Results are encouraging. AFLgo

reproduced the vulnerabilities in LibPNG between three (3) and five (5)

times faster than AFL and for those in Binutils usually about twice as

fast. In patch testing mode, AFLgo exposed Heartbleed in less than six

(6) hours while AFL took more than 20 hours. Notably, AFLgo

discovered 14 zero-day vulnerabilities in Binutils of which three (3)

vulnerabilities exist because of previous incomplete fixes. We filed bug

reports for the discovered vulnerabilities and all of them have been

confirmed and fixed by Binutils’ maintainers. We also got five (5) CVEs

104

assigned to the most critical vulnerabilities.

This work makes the following contributions:

Path Distance. We develop a novel measure of path distance to a given

set of targets. Path distance accounts for outlier targets that are far even

from other targets. Moreover, it prefers paths that are closer to exercising

one target but further from another over paths that are equi-distant from

both targets.

Directed Fuzzing. We develop a Temperature-based Power Schedule

(TPS) that integrates the efficiency of CGF and the directedness of

Simulated Annealing global search algorithm. In our implementation,

we take care that all program analysis that is required would be

completed at compile time such that the overhead of our extension is

negligible at runtime.

Multi-Target SBST. To the best of our knowledge, we develop the first

multiple-target search-based software testing technique where the single

objective is to generate an input that exercises as many of the given

targets as possible. Previous work on Directed SBST is either on guidance

towards a single target [104, 54, 82] or on the coverage of a maximal

number of branches [43, 14].

AFLgo and Evaluation. We implemented directed CGF into AFL and

evaluated AFLgo for the applications to crash reproduction and patch

testing for vulnerability detection. In crash reproduction application,

AFLgo normally exposes known vulnerabilities from two (2) to ten

(10) times faster than AFL. AFLgo also shows its effectiveness in

patch testing by discovering 14 zero-day vulnerabilities.

105

6.2 Motivating Example

We use the Heartbleed vulnerability to explain the pertinent properties of

directed coverage-based greybox fuzzing—a light-weight system-level

search-based testing generation technique. In this case, we direct the

fuzzer towards the program locations that were changed in the commit

that introduced the vulnerability. Our tool AFLgo implements the

technique into the popular coverage-based greybox fuzzer AFL [4].

Heartbleed [103] (CVE-2014-0160,) is a serious vulnerability that

allows adversaries to decipher otherwise encrypted communication, for

instance, during online banking. The vulnerability was accidently

introduced into OpenSSL which implements the https protocol for secure

communication and is used by the majority of servers on the internet.

Heartbleed was introduced on Jan’12 when the “Heartbeats” feature was

added. It was patched two years later in Apr’14. As of April 2016, a

quarter million machines are still vulnerable [75]. One year after the

patch, Böck showed how the fuzzer AFL could have found Heartbleed

[21]. We decided to reuse his setup and see how much faster AFLgo

could have found Heartbleed if it was run for the commit that introduced

the vulnerability – merely directed towards the functions that had been

changed. OpenSSL consists of more than four thousand functions out of

which the commit that was supposed to add the Heartbeats-feature

changed twenty.1 Only after the commit one function contains a buffer

overread which would become known as the Heartbleed vulnerability.

An overview of the AFLgo architecture is shown in Figure 6-1. When

OpenSSL is compiled for AFLgo, the assembly-level instrumentation

takes the targets (here, 20 changed functions) and adds a few assembly

1There are 4439 functions including library functions. We counted the number of
nodes in the call graph lifted from the binary.

106

Open
SSL

Commit

LLVM
opt

Call Graph

Distance
Calculator

AFLgo GO
Open
SSL

Source Code

ExecutableAFLgo GO
Exposed!

Call Graph
w/Distance

Instrumenter

Fuzzer

Figure 6-1: Overview AFLgo architecture.

instructions that indicate how “far” an executed seed input is from

executing these targets. To maintain the fuzzer’s efficiency, we wanted no

compromise at runtime. So, all program analysis is conducted at

compile-time such as a light-weight lifting of the call graph using the

LLVM optimization tool opt. The distance calculator script marks the

target functions and assigns to each node the distance to the targets. The

node distance is computed using a novel distance metric that we

introduce in this work. To the best of our knowledge, our metric seems to

be the first fitness function allowing for single-objective, multi-target

SBST. The AFLgo assembler then injects the computed distance into

the existing trampoline.2 While AFLgo instruments during compile

time, is straight-forward to conduct this instrumentation after

compilation [72].

When OpenSSL is fuzzed, the instrumented program informs AFLgo

about the current distance of the seed to the targets. Instead of

implementing a classical gradient descent and always preferring the seed

with the least distance to the twenty changed functions, we implemented

2The trampoline is a piece of code injected by the AFL assembler that is executed
after each jump instruction to keep track of the covered control-flow edges.

107

a global search that allows some exploration before gradually moving

towards exploitation and finally degenerating to a classical gradient

descent. In the exploration phase, a seed may be chosen even if it

increases the distance to targets. In the exploitation phase, seeds with

less distance are generally more preferred.

CVE Fuzzer Successful runs µTTE Factor

AFLgo 30 5h41m 3.65
AFL 18 20h46m –

Figure 6-2: Improvement of AFLgo over AFL for Heartbleed.

In search-based software testing it is common to process individuals

(i.e., seed inputs) in the order of their fitness, or to select only the fittest

individuals. We take a different approach. We control the number of new

individuals generated from one individual during fuzzing. Formally, we

modify the power schedule of the fuzzer [22] rather than the order in which

the fuzzer selects seeds from the queue. Moreover, unlike in search-based

unit testing [42] where the goal is to generate a minimal sequence of method

invocations to achieve a maximal coverage of a given unit (e.g., the SSL-

object), AFLgo implements search-based system testing where the goal is

to generate system-level inputs (e.g., for the public interface of OpenSSL)

to quickly reach the given targets.

We implemented a so called temperature-based power schedule, which

controls the number of new individuals generated from a seed differently.

Then, we ran AFL and AFLgo with the power schedule on OpenSSL to

measure the mean Time-To-Exposure (TTE) – the average time until the

first seed is generated that exposes Heartbleed. We set a timeout for 24

hours, and repeated the experiment 30 times because fuzzing is essentially

a random process. An unsuccessful run that did not expose Heartbleed

in 24 hours is assigned a 24h TTE (rather than being unaccounted for).

Figure 6-2 shows the number of successful runs, the mean TTE (µTTE)

108

and how much longer the average AFL run takes to expose the error versus

the average AFLgo run (Factor).

The results are promising. If a continuous integration platform like Jenkins
[73] had run AFLgo for merely six hours as soon as the commit was
submitted to the OpenSSL source code repository, then the vulnerability
would have been found as it was introduced. AFL would have taken three
to four times longer, almost a day.

6.3 Background

6.3.1 Simulated Annealing

Simulated Annealing (SA) is a Markov Chain Monte Carlo (MCMC)

method for approximating the global optimum in a very large, often

discrete search space within an acceptable time budget [65]. The main

feature of SA is that during the random walk it always accepts better

solutions but sometimes it may also accept worse solutions. The

temperature is a parameter of the SA algorithm that regulates the

acceptance of worse solutions and is decreasing according to a cooling

schedule. At the beginning, when T = T0, the SA algorithm may accept

worse solutions with high probability. Towards the end, when T is close

to 0, it degenerates to a classical gradient descent algorithm and will

accept only better solutions.

The simulated annealing algorithm converges asymptotically towards

the set of global optimal solutions. This set of global optimal solutions, in

our case, is the set of paths exercising the maximum number of targets. A

cooling schedule controls the rate of convergence and is a function of the

initial temperature T0 ∈ N and the temperature cycle k ∈ N. The initial

temperature T0 is provided and must be high enough so that any new

solution is accepted with a certain probability close to 1. The temperature

109

cycle k = {0, 1, . . .} increases with time, for instance, with the number of

fuzzing executions. The cooling schedule computes the current temperature

Tk for cycle k. In our case, the current temperature determines the energy

assigned to a seed. Intuitively, if the temperature is still high, a seed

s10 that exercises a path with a high path distance is assigned the same

energy as a seed s0 that exercises a path with a low path distance. As

the temperature approaches zero, s0 is assigned most energy while s10 may

not be fuzzed at all. The most commonly used cooling schedule is the

exponential multiplicative:

Texp = T0 · αk (6.1)

where α is a constant smaller than the unit and typically 0.8 ≤ α ≤ 0.99.

Figure 6-3 shows a plot of the exponentia multiplicative cooling schedule

for an arbitrary value α and normalized initial temperature T0.

0.00

0.25

0.50

0.75

1.00

0 10 20 30

Temperature cycle k

Te
m

pe
ra

tu
re

T
k

Cooling
Schedule

exp

Figure 6-3: Rate of convergence for the exponential multiplicative cooling
schedule, Tk = 0.9k where T0 = 1.

6.3.2 Coverage-based Greybox Fuzzing

As explained in Section 2.4, Coverage-based greybox fuzzing (CGF) [22, 4]

uses lightweight instrumentation to gain coverage information. For

110

instance, AFL’s instrumentation captures basic block transitions, along

with coarse branch-taken hit counts. CGF uses the coverage information

to decide which generated inputs to retain for fuzzing, which input to fuzz

next and for how long.

Algorithm 3 Coverage-based Greybox Fuzzing (adapted from [22])

Input: Seed Inputs S
1: repeat
2: s = chooseNext(S)

3: p = assignEnergy(s) // Our Modifications
4: for i from 1 to p do
5: s′ = mutate input(s)
6: if t′ crashes then
7: add s′ to S7

8: else if isInteresting(s′) then
9: add s′ to S

10: until timeout reached or abort-signal
Output: Crashing Inputs S7

Algorithm 3 shows an algorithmic sketch of how CGF works. The fuzzer

is provided with a set of seed inputs S and chooses inputs s from S in a

continuous loop until a timeout is reached or the fuzzing is aborted. The

selection is implemented in chooseNext. For instance, AFL essentially

chooses seeds from a circular queue in the order they are added. For the

selected seed input s, the CGF determines the number p of inputs that are

generated by fuzzing s as implemented in assignEnergy (line 3). This

is also where the (temperature-based) power schedules are implemented.

Then, the fuzzer generates p new inputs by randomly mutating s according

to defined mutation operators as implemented in mutate input (line 5).

AFL uses bit flips, simple arithmetics, boundary values, and block deletion

and insertion strategies to generate new inputs. If the generated input s′

is covers a new branch, it is added to the circular queue (line 9). If the

generated input s′ crashes the program, it is added to the set S7 of crashing

inputs (line 7). A crashing input that is also interesting is marked as unique

111

crash.

CGF as Markov Chain. Böhme et al. [22] showed that coverage-

based greybox fuzzing can be modelled as a Markov chain. A state i is

a specific path in the program. The transition probability pij from state i

to state j is given by the probability that fuzzing the seed which exercises

path i generates a seed which exercises path j. The authors found that

a CGF exercises certain (high-frequency) paths significantly more often

than others. The density of the stationary distribution formally describes

the likelihood that a certain path is exercised by the fuzzer after a certain

number of iterations. Böhme et al. developed a technique to gravitate

the fuzzer towards low-frequency paths by adjusting the number of fuzz

generated from a seed depending on the density of the neighborhood. The

number of fuzz generated for a seed s is also called the energy of s. The

energy of a seed s is controlled by a so-called power schedule. Note that

energy is a property that is local to a state in the Markov chain unlike

temperature which is global in simulated annealing.

Simulated annealing is a Markov Chain Monte Carlo approach. Since

CGF can be modelled as Markov chain, it should be possible to employ

such optimization techniques on top of CGF. In this work, we explore this

possibility and develop a novel power schedule that integrates ideas from

SA to direct the fuzzer towards a given set of targets.

6.4 Directed Greybox Fuzzing

Our main objective is the development of a lightweight, search-based

vulnerability detection technique that works out-of-the-box for

large-scale, file-processing programs and libraries. We pose three

additional requirements: 1) It must be easily parallelizable, such that we

112

can assign computing power as and when needed. 2) It must allow to

specify multiple target locations, like the set of changed statements in a

commit or the set of critical system calls. 3) It must not conduct any

program analysis during runtime so that all heavy-weight analysis should

be conducted at compile-time. We lay the groundwork for the technique

i) by defining measures of distance between program input and targets on

an abstraction of the program (e.g., the control-flow or the call graph),

and ii) by defining a power schedule that integrates the exponential

muliplicative cooling schedule, which is the most commonly used

schedule, from simulated annealing and the original power schedule of the

AFL CGF.

6.4.1 A Measure of Distance Between the Exercised

Path and Multiple Targets

Given a path ξ in a directed graph G where some nodes Γ are marked as

targets, we define the distance d(ξ,Γ) between path ξ and all targets Γ as

follows. Let the node distance d(n, n′) be computed as the number of edges

along the shortest path between nodes n and n′ in the directed graph G.

Let the target distance d(n,Γ) between a node n and all targets Γ in G

be computed as the harmonic mean of the logarithm of the node distance

between n and any reachable target γ ∈ Γ:

d(n,Γ) =


0 if Θ(n,Γ) = ∅[∑

γ∈Θ(n,Γ) log(ε+ d(n, γ))−1
]−1

otherwise

(6.2)

where Θ(n,Γ) is the set of all targets that are reachable from n in G and

ε > 1 is a constant that simply prevents the case where the parameter of

the logarithm or the divisor is zero (e.g. when d(n, γ) = 0 or when

113

2

2+2
2

2

3+1
2

γ1

2

1+3
2

γ2

(a) Arithmetic Mean

1

1
1
2

+ 1
2

3
4

1
1
3

+ 1
1

γ1

3
4

1
1
1

+ 1
3

γ2

(b) Harmonic Mean

Figure 6-4: Difference between node distance defined in terms of arithmetic
mean versus harmonic mean. Node distance is shown in the white circles.
The targets are marked in gray.

∀γ ∈ Θ(n,Γ).d(n, γ) = 1). The harmonic mean allows to distinguish

between a node that is closer to one target and further from another and

a node that is equi-distant from both targets. The arithmetic mean would

assign both nodes the same node distance. Figure 6-4 provides an

example. The logarithm reduces the influence of very distant outlier

targets on the harmonic mean.

Let the path distance d(ξ,Γ) between path ξ and all targets Γ in G be

the arithmetic mean of the target distance between any node n ∈ ξ and Γ,

but ignoring nodes that have no reachable targets.

d(ξ,Γ) =

∑
n∈ξ d(n,Γ)

|{n | n ∈ ξ ∧Θ(n,Γ) 6= ∅}|
(6.3)

Given the set of paths Λ exercised by the current set of seeds, we define

the normalized path distance d̃(ξ,Γ) as the difference between the path

distance of ξ to Γ and the minimum path distance of any path ξ′ ∈ Λ

exercised by the current set of seeds to Γ divided by the difference between

the maximum and the minimum path distance of any path ξ′ ∈ Λ exercised

by the current set of seeds to Γ. Note that the normalized path distance

114

d̃ ∈ [0, 1].3

d̃(ξ,Γ) =
d(ξ,Γ)−minD

maxD−minD
(6.4)

where

minD = min
ξ′∈Λ

(d(ξ′,Γ)) (6.5)

maxD = maxξ′∈Λ (d(ξ′,Γ)) (6.6)

6.4.2 Temperature-based Power Schedule

A Temperature-based Power Schedule (TPS) assigns energy to a seed s

depending on the current temperature Tk of the simulated annealing process

and the distance of the path ξ that is exercised by s to the set of targets Γ

in the call graph G. In simple terms, a seed that exercises a path that is

“closer” to the targets is assigned more energy than a seed that exercises a

path “further away” from the targets, and this energy difference increases

as the temperature decreases. First, we normalize all measures to the range

[0, 1]. We set T0 = 1 such that Tk ∈ [0, 1] and recall that distance d̃ ∈ [0, 1].

Generic TPS. Given the current temperature Tk that is computed

according to the exponential multiplicative cooling schedule, a graph G,

targets Γ in G, and path ξ in G, we define the generic temperature-based

power schedule to assign energy p as

p(Tk, ξ,Γ) = (1− d̃(ξ,Γ)) · (1− Tk) + 0.5Tk (6.7)

3It is worth noting that a definition of normalized path distance as the arithmetic
mean of the “normalized” target distance (w.r.t. min. and max. target distance) – in
our experiments – resulted in the probability density being centered around a value much
less than 0.5 with significant positive kurtosis. This resulted in substantially reduced
energy for every seed. The definition of normalized path distance in Equation (6.4)
reduces the kurtosis and nicely spreads the distribution between zero and one.

115

The behavior of the generic TPS is illustrated in Figure 6-5 for three values

of Tk and d. Notice that energy p ∈ [0, 1]. Moreover, for Tk = 1, the generic

TPS assigns the same energy to a seed exercising a path with a high path

distance as to one exercising a path with a low path distance. A path that

exercises all targets (i.e., d̃ = 0) is assigned more and more energy as the

temperature decreases.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Distance d(ξ, Γ)

E
ne

rg
y

p(
T

k,
 ξ

, Γ
)

Tk = 1 Tk = 0.5 Tk = 0

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00

Temperature Tk

E
ne

rg
y

p(
T

k,
 ξ

, Γ
)

d = 1 d = 0.5 d = 0

Figure 6-5: Impact of path distance d̃(ξ,Γ) and temperature Tk on the
energy p(Tk, ξ,Γ) of the seed exercising path ξ.

In testing, we usually have only a limited time budget. Hence, we

would like to specify a time tx when the temperature-based power schedule

should enter exploitation after sufficient time of exploration. We let the

cooling schedule enter exploitation when Tk ≤ 0.05. The adjustment of

the generic TPS for values other than 0.05 is straightforward. Intuitively,

at time tx, the simulated annealing process is comparable to a classical

gradient descent algorithm that “rejects” almost all seeds that are too far

away from the targets. Given the exponential cooling schedule Texp = αk, a

time bound tx when Texp = 0.05, we compute the current temperature Texp

116

at the current time t as follows

0.05 = αkx for Texp = 0.05; k = kx in Eq. (6.1) (6.8)

kx = log(0.05)/ log(α) solving for kx in Eq. (6.8) (6.9)

Texp = α
t
tx

log(0.05)
log(α) for k =

t

tx
kx in Eq. (6.1) (6.10)

= 20−
t
tx simplifying Eq. (6.10) (6.11)

Integrated TPS. AFL already has a power schedule to decide how

many fuzz iterations it will conduct for a specific seed. This decision is made

based on the execution time and input size of s, when s has been found, and

how many ancestors s has. We would like to integrate AFL’s pre-existing

power schedule with our generic temperature-based power schedule and

define the final integrated temperature-based power schedule. Let pafl be

the energy that AFL normally assigns to a seed. We compute the integrated

TPS p̂ as

p̂ = pafl · 210·(p(Tk,ξ,Γ)−5) (6.12)

where we call f = 210(p−0.5) the temperature-based factor which controls

the increase or reduction of energy assigned by AFL’s power schedule.

Plots for the factor f for the Temperature-based Power Schedule (TPS)

and two seeds with minimal and maximal path distance, respectively, are

shown in Figure 6-6. When normalized path distance is minimal (d̃ = 0),

TPS approaches a factor of 25 = 32 as the time t increases. When the

normalized path distance is maximal (d̃ = 1), TPS approaches a factor of

1
25

= 1/32.

117

0.00

0.25

0.50

0.75

1.00

0 20 40 60 80

Current time t (in min)

T
P

S
 F

ac
to

r
f

exp (a)
Distance d̃(ξ,Γ) = 1

0

10

20

30

0 20 40 60 80

Current time t (in min)

T
P

S
 F

ac
to

r
f

exp (b)
Distance d̃(ξ,Γ) = 0

Figure 6-6: Temperature-based power factor which controls the energy
that was originally assigned by AFL’s power schedule (tx = 40), (a) for
seed with minimal path distance to all targets (d̃ = 0) and (b) for a seed
with maximal distance to all targets (d̃ = 1). Notice the different scales on
the y-axis.

6.5 Implementation

AFLgo implements directed coverage-based greybox fuzzing and takes

program methods as targets. It is based on the AFL fuzzer (v2.35b).

AFL represents the state-of-the-art of coverage-based greybox fuzzing, is

behind hundreds of high-impact vulnerability discoveries [4], and has been

shown to generate valid image files (JPEGs) from an initial seed that is

virtually empty [71]. We modified the instrumentation at compile-time

and the fuzzing component working at runtime, specifically

assignEnergy in Algorithm 3.

6.5.1 All Program Analysis at Compile Time

During compile time, AFLgo extracts the call graph, marks the target

functions, and computes the node distance values for all functions to the

target functions. Given the names of the target methods, a python script

computes the distances for all methods that can directly or indirectly call

at least one target method. The names of the target methods can be

118

extracted automatically depending on the application, for instance, from

the commit if the application is regression test generation. The call graph

is constructed both, statically and dynamically. First, LLVM opt extracts

the call graph using static analysis; opt is the LLVM optimizer which is

capable of sophisticated program analysis during compile time. However,

the extracted call graph may be incomplete, for instance, due to register-

indirect jumps. Hence, the performance profiler gprof is used to track

the method calls executed by the test suite which is provided in every

subject. This information is then used to increase the completeness of the

call graph. The nodes corresponding to the names of the target methods

are marked in the call graph. Distance values are computed for each node

in the call graph using the graph-tool package in python and according

to the formula provided in Equation (6.2).

8 bytes 8 bytes 8 bytes

... Cumulative
Distance

Number of
Additions Method ID

Figure 6-7: AFL shared memory – extended layout (x86-64)

In order to make AFLgo aware of distance to targets, we extended

the standard assembler-based instrumentation of AFL in afl-as. The

assembler reads the file containing the method names and the

corresponding distance values. During instrumentation, the assembler

knows which method it is currently instrumenting and passes the current

method identifier and the corresponding distance value to the injected

“trampoline”.4 The trampoline that is injected by AFLgo’s assembler

assumes that the shared memory that is passed by AFLgo during

execution is extended by 24 bytes (Fig. 6-7). Let D be the set of distance

values corresponding to each method that is executed by the seed. The

4The trampoline is a piece of code injected by the AFL assembler that is executed
after each jump instruction to keep track of the covered control-flow edges.

119

first eight additional bytes are used to accumulate the cumulative node

distance values (i.e.,
∑

d∈D d) as and when the seed is executed. These are

followed by eight bytes that contain the count of accumulated distance

values (i.e., |D|). Thus, the first eight bytes allow us to compute the

arithmetic mean of the distances of the exercised nodes as in

Equation (6.3) (i.e.,
(∑

d∈D d
)
/|D|). The last eight bytes contain the

identifier for the current method. The trampoline is injected at each

branching point in a function. Hence, we would accumulate more distance

values for longer functions, unnecessarily biasing the search. We use the

current method identifier in the trampoline and the previous method

identifier in the shared memory, to accumulate distance values only when

the current method actually changes.

6.5.2 Efficient Search at Runtime

In order to implement our the Temperature-based Power Schedule (TPS)

into AFLgo, we extended the AFL coverage-based greybox fuzzer. For

each execution of a generated test case (called fuzz), we pass an extended

shared memory to the program under test (Fig. 6-7) and store the

computed path distance (not yet normalized)5 together with the fuzz if it

is found interesting and added to the queue as new seed. We implemented

the TPS shown in equation (6.11) by modifying the function

calculate score in afl-fuzz. This function normalizes the path

distance and computes the time t since the fuzzer was started, before

computing the temperature and required energy according to the

exponential multiplicative cooling schedule. This function effectively

implements the method assignEnergy in Algorithm 3 which decides

how many fuzzing iterations should be executed for a seed. A more

5Recall that path distance is normalized w.r.t. the minimum and maximum path
distance for the seeds currently in the queue (see Sec. 6.4.2).

120

common way to implement a meta-heuristic for search-based software

testing is to base the decision of which seed to choose next on the

distance of all seeds in the queue. However, we decided against modifying

the method chooseNext in Algorithm 3 on empirical grounds. For most

subjects in our experiments, the complete queue was fully processed in a

matter of minutes which did not warrant the required computations

needed for the re-ording of the queue.

We note that TPS can be implemented with only a few bit shifts,

division, addition, and multiplication operations. In other words, the

computation of the energy that is assigned to a seed is extremely efficient

and there is no program analysis at runtime.

6.6 Experimental Evaluation

The main objective of our empirical investigations is to determine whether

the directedness that is implemented into a coverage-based greybox fuzzer

is effective in directing the search towards inputs that can reach the target

functions. To this end, we conducted two main experiments to evaluate

the effectiveness of AFLgo in reproducing crashes and patch testing to

discover vulnerabilities. In crash reproduction experiment, AFLgo is

guided by functions in crashing stack trace while in patch testing AFLgo

is directed by the changes in a source code commit (a.k.a a patch).

AFLgo would require users to choose a specific time-to-exploitation. So,

we also investigate the sensitivity of our technique on the user-provided

parameter and to identify a superior setting. The experiments help us to

answer the following research questions.

RQ.1 Improvement of AFLgo over AFL. Is the extended power

schedule effective in guiding the fuzzer towards a specified set of

121

targets? More specifically, does AFLgo reproduce crashes faster

than AFL?

RQ.2 Sensitivity to Time-to-Exploitation Setting. How does the

choice of time-to-exploitation tx impact the efficiency of directed

fuzzing? More specifically, does a particular choice of tx make

AFLgo generally faster in generating the crashing input than any

other choice?

RQ.3 Patch testing for vulnerability detection. How does directed

fuzzing perform when the objective is to reach the changed

statements in a source code commit and expose program errors?

More specifically, can AFLgo discover vulnerabilities in code

patches?

6.6.1 Experimental Setup

6.1.1. Subjects

For the crash reproduction experiment, we selected a total of 18

vulnerabilities. We chose all eight (8) vulnerabilities in Binutils that were

found by AFLfast [22] and the Top-10 most recent vulnerabilities

reported for LibPNG [97]. Binutils is a binary analysis tool and has

almost one million Lines of Code (LoC) while LibPNG is an image library

and has almost half a million LoC. Both are widely used open-source C

projects. The vulnerabilities are identified by the CVE-ID and are

discussed in more detail in the US National Vulnerability Database.

First, we needed to generate the Proof of Vulnerability (PoV) for each

CVE using undirected AFL in order to collect a test case that actually

produces the required stack trace. Notice that in practice an in-house

122

developer collects the stack trace from bug reports sent from users’

machines. In order to check, whether a specific CVE has been exposed,

we executed the crashing test case on the version where that CVE is

patched. However, in several cases AFL was not able to generate a

crashing input for a vulnerability in 20 runs of eight hours.6 The

remaining CVEs for which we could collect the stack trace are shown in

Figure 6-8.

Program CVE-ID Type of Vulnerability
LibPNG [97] CVE-2011-2501 Invalid Read
LibPNG [97] CVE-2011-3328 Division by Zero
LibPNG [97] CVE-2015-8540 Invalid Read
Binutils [22] CVE-2016-4487 Invalid Write
Binutils [22] CVE-2016-4488 Invalid Write
Binutils [22] CVE-2016-4489 Invalid Write
Binutils [22] CVE-2016-4490 Write Access Violation
Binutils [22] CVE-2016-4491 Stack Corruption
Binutils [22] CVE-2016-4492 Write Access Violation
Binutils [22] CVE-2016-6131 Write Access Violation

Figure 6-8: Subjects for Crash Reproduction.

For the patch testing for vulnerability detection experiment, we used

AFLGo to test 1600 most recent revisions of Binutils7, from the one which

incoporated the fixes for eight (8) vulnerabilities found by AFLfast8 [22]

to the newest version on trunk. In this experiment, AFLGo was guided by

code changes in each revision. We first ran a script to filter out all commits

that have no code change. Afterwards, we ran one instance of AFLgo

for each program in a Binutils revision - no shared queue was used. It

is worth noting that in this experiment, we wanted to test not only how

a program handles input file but also how it parses and processes input

arguments. To this end, we used a tool named afl-argv developed by our

6Eight hours of fuzzing might not be enough for many vulnerabilities that are
notoriously hard to discover. Running 20 instances of AFL for 8 hours, we could not
generate a PoV for LibPNG CVEs: 2011-3026, 2011-3048, 2011-3464, 2012-3386, 2013-
6954, 2014-0333, 2014-9495, 2015-8126, or for Binutils CVE 2016-2226.

7Git repository at git://sourceware.org/git/binutils-gdb.git
8Its commit hash is fa3fcee7b8c73070306ec358e730d1dfcac246bf

123

team. Essentially, afl-argv defines a simple file structure to keep data for

both input arguments and input file(s). Once AFLgo produces a test case,

afl-argv interpretes the test case and decomposes it into arguments and

files based on the defined structure and send them to the program under

test.

6.1.2. Settings

Almost all vulnerabilities in Binutils are exposed in less than eight hours

[22]. So, we set a timeout for eight (8) hours and the default time to

exploitation tx to seven (7) hours. We ran a single instance of AFLgo

along with a single instance of AFL (i.e. no shared queue) and measured

the time to exposure (TTE). We repeated this experiment 20 times to gain

statistical power.

The fuzzer instances for Binutils are seeded with an empty input. Thus,

the fuzzer constructs the required binaries completely on its own. The

fuzzer instances for LibPNG are seeded with all (4) valid PNG files from

the corresponding AFL test suite.9

Recall that Time-To-Exploitation (tx) is an independent variable that

defines the time when the schedule should enter exploitation (i.e., Tk =

0.05). In the crash reproduction experiment, we investigate the impact

of the choice of tx on the efficiency of the technique. Specifically, we ran

the experiment using the default value (seven (7) hours) and five (5) other

values of tx which are 1 minute, 10 minutes, 100 minutes, 1000 minutes

and 1000 minutes.

9Test suite folder: afl/testcases/images/png/*.png.

124

6.1.3. Measures

In the crash reproduction experiment we used the following measures to

evaluate the improvement of AFLGo over AFL.

Time-to-Exposure (TTE) is a dependent variable that measures the

time taken from the start of the fuzzer until generating the first test case

that exposes a given error. We determine which error a test case exposes

by executing the failing test case on the set of fixed versions, where each

version fixes just one error. If the test case passes on a fixed version, it is

said to witness the corresponding error. If it is the first such test case, it

is said to expose the error. We repeat each experimental setting 20 times

and only report the mean time to exposure (µTTE) as the average over all

measured TTE values for a specific setting.

Factor Improvement (Factor) is a measure of effect size and is

defined as the µTTE of AFL divided by the µTTE of AFLgo for a given

error. For instance, a Factor of 2 means that the average fuzzing

campaign of AFL takes twice as long to expose a given error as the

average fuzzing campaign of AFLgo. Values of Factor > 1 indicate that

AFLgo outperforms AFL.

Vargha-Delaney statistic (Â12) is a non-parametric measure of effect

size [100]. It is also the recommended standard measure for the evaluation

of randomized algorithms in software engineering [15]. Given a performance

measure M (such as TTE) seen in m measures of X (such as AFLgo) and

n measures of Y (such as AFL), the Â12 statistic measures the probability

that running algorithm X yields higher M values than running algorithm

Y . We use the VD.A function from the effsize package in R to compute

the Â12 statistic. Values of Â12 > 0.5 indicate that AFLgo outperforms

AFL.

125

6.1.4. Infrastructure

We executed all experiments on machines with an Intel Xeon CPU E5-

2620v3 processor that has 24 logical cores running at 2.4GhZ with access

to 64GB of main memory and Ubuntu 14.04 (64 bit) as operating system.

We always utilized exactly 22 cores to keep the workload compareable and

to retain two cores for other processes. Running our experiments on 20

machines with this equipment allowed us to run our experiments in four

days that would normally take more than one year even on a recent PC

with four logical cores.

6.6.2 Results and Analysis

CVE Fuzzer Successful runs µTTE Factor Â12

2011-2501 (LibPNG)
AFLgo 20 0h06m 2.81 0.79
AFL 20 0h18m – –

2011-3328 (LibPNG)
AFLgo 20 0h40m 4.48 0.94
AFL 18 3h00m – –

2015-8540 (LibPNG)
AFLgo 20 0m26s 10.66 0.87
AFL 20 4m34s – –

2016-4487 (Binutils)
AFLgo 20 0h02m 1.64 0.59
AFL 20 0h04m – –

2016-4488 (Binutils)
AFLgo 20 0h11m 1.53 0.72
AFL 20 0h17m – –

2016-4489 (Binutils)
AFLgo 20 0h03m 2.25 0.68
AFL 20 0h07m – –

2016-4490 (Binutils)
AFLgo 20 1m33s 0.64 0.31
AFL 20 0m59s – –

2016-4491 (Binutils)
AFLgo 5 6h38m 0.85 0.44
AFL 7 5h46m – –

2016-4492 (Binutils)
AFLgo 20 0h09m 1.92 0.81
AFL 20 0h16m – –

2016-6131 (Binutils)
AFLgo 6 5h53m 1.24 0.61
AFL 2 7h19m – –

Figure 6-9: Improvement of AFLgo over AFL in crash reproduction
application. We run this experiment 20 times and highlight statistically
significant values of Â12 in bold. A run that does not reproduce the vuln.
within 8 hours receives a TTE of 8 hours. CVEs 2016-4491 and 2016-6131
are difficult to find even in 24 hours [22].

126

RQ.1 Improvement of AFLgo over AFL

To reproduce the CVEs in LibPNG, AFLgo is three (3) to 18 times faster

than AFL. More details are shown in Figure 6-9. For CVE-2015-8540,

AFLgo needs only a few seconds to reproduce the vulnerability while

AFL requires almost five minutes. For CVE-2011-3328, AFLgo spends

merely half an hour while AFL requires three hours. For the remaining

CVE (2011-2501), AFLgo can reproduce the crash in only six minutes

while AFL takes more than three times as long.

To reproduce the CVEs in Binutils, AFLgo is usually between 1.5 and

2 times faster than AFL. There are two CVEs that are difficult to expose

(2016-4491 and 2016-6131). In fact, both AFLgo and AFL took several

hours in average to discover the CVEs. In case of CVE-2016-6131, AFLgo

shows a clear improvement: AFLgo reproduces the crash for three times

more runs and requires about one hour less time. AFL seems to exhibit

better performance in only two CVEs (2016-4490 and 2016-4491). For

CVE-2016-4490 it is exposed in a few seconds and at this scale the external

impact is not negligible. For CVE-2016-4491, AFLgo and AFL are almost

on par. However, it is worth noting that the results shown in Figure 6-9

are for a single time-to-exploitation setting (7 hours or 420 minutes). The

sensitivity analysis in Figure 6-10 shows that there exist two settings (10

minutes and 100 minutes) which make AFLgo superior in case of CVE-

2016-4491.

RQ.2 Sensitivity to Time-to-Exploitation Setting

On the average, AFLgo is not particularly sensitive to the choice of

time-to-exploitation tx. However, for each vulnerability there seems to be

an optimal value for time-to-exploitation. In Figure 6-10-a, we show the

time-to-exploitation tx on a logarithmical scale. On the average, the

127

(a) Average effect size for LibPNG and Binutils (exp. and log. TPS)

● ●

●

● ●
●

0.4

0.6

0.8

1.0

1 10 100 420 1000 10000

Time until Exploitation tx (in min)

V
ar

gh
a

D
el

an
ey

 Â
12

Exponential Multiplicative ●● Binutils LibPNG

(b) Effect size for each vulnerability

0.4

0.6

0.8

1.0

1 10 100 420 1000 10000

Time until Exploitation tx (in min)

V
ar

gh
a

D
el

an
ey

 Â
12

2501

3328

4487

4488

4489

4490

4491

4492

6131

8540

Figure 6-10: Sensitivity to the time to exploitation tx. We show the
individual improvement for each vulnerability.

improvement of AFLgo over AFL is not much different if tx = 1 minute

versus tx = 10000 min ≈ 1 week. For Binutils, the best choice should be

around tx = 100 minutes. In fact, the improvement of AFLgo is 10

percentage points at tx = 100 min than in our default experimental

setting (tx = 420 min = 7 hours) that is discussed in RQ.1. However,

Figure 6-10-b, depicts clearly that each vulnerability has a superior value

for tx. For the LibPNG vulnerability CVE-2011-3328, the optimal

time-to-exploitation seems to be beyond 16 hours. For the Binutils

vulnerability CVE-2016-4491, instead, the optimal time-to-exploitation

seems to be between 1 and 2 hours. After the optimum the

Vargha-Delaney measure drops by 20 percentage points. We investigated

128

whether hard-to-discover errors require a longer time-to-exploitation but

found no obvious relationship.

Interpretation. Without further knowledge about the difficulty of

reaching the targets, all choices tx would be similarly effective. A priori,

any choice is reasonable. However, there is clearly a sensitivity on these

parameters for each error in particular. We believe that a suitable

hyper-heuristic could adjust the choices of tx during search process itself

[56, 57]. Moreover, AFLgo allows to run several instances in parallel,

where each instance can share the seeds found with the other instances

via a shared queue. If sufficient computing resources are available, we

suggest to run the several AFLgo instances with different choices for tx

to increase the chance that one is more efficient than the others.

RQ.3 Patch testing for Vulnerability Detection

In the motivating example, we have shown that AFLgo guided by the

code changes in the commit rather than the stack trace (as used in crash

reproduction application) successfuly exposes the famous Heartbleed

vulnerability more than three times faster than AFL. In fact, AFLgo

takes less than six (6) hours while AFL takes more than 20 hours.

Moreover, AFLgo is much more deterministic than AFL; while AFLgo

can expose Heartbleed in all of 30 runs, AFL succeeds in only 18 runs.

AFLgo not only exposes well-known vulnerablities like Heartbleed.

By doing patch testing on 1600 revisions of Bintuils AFLgo discovers 14

zero-day vulnerabilities in three different utilities in Binutils; all these

utilities (Readelf, Nm and Objdump) are widely used by security

practitioners and software engineers to analyze program binaries. We

have received (5) CVEs assigned to the most critical vulnerabilities

among 14 discovered bugs. Moreover, several bugs are deeply hidden in

129

shared libraries (e.g. BFD and DWARF) which are part of several

real-world applications such as Valgrind and GDB. Figure 6-11 lists all

the 14 vulnerabilities10 covering a variety types of bugs including

heap-based buffer over-read, heap-based buffer over-write, use-after-free

and NULL pointer dereference. While invalid write, use-after-free and

NULL pointer dereference vulnerabilities are more likely to be

exploitable, invalid read ones could lead to serious information leaks like

Heartbleed or cause denial of service.

Program Bug-ID CVE-ID Type of Vulnerability
Readelf PR-21135 CVE-2017-7209 NULL pointer dereference
Readelf PR-21137 CVE-2017-6965 Heap-based buffer over-write
Readelf PR-21139 CVE-2017-6966 Use-after-free
Readelf PR-21147 - Heap-based buffer over-read
Readelf PR-21148 - Heap-based buffer over-read
Readelf PR-21149 - Heap-based buffer over-read

Nm PR-21150 - Heap-based buffer over-read
Objdump PR-21151 - Heap-based buffer over-read
Readelf PR-21155 - Memory Access violation
Readelf PR-21156 CVE-2017-6969 Heap-based buffer over-read

Objdump PR-21157 CVE-2017-7210 Heap-based buffer over-read
Objdump PR-21158 - Heap-based buffer over-read
Readelf PR-21159 - Heap-based buffer over-read

Objdump - - Heap-based buffer over-read

Figure 6-11: Discovered zero-day vulnerabilities.

More interestingly, 12 out of 14 zero-day vulnerabilities can be

attributed to the directedness of AFLgo. By manually investigating the

code commits, the stack traces traversing by crashing inputs and the bug

fixes written by Binutils’s maintainers we found interesting statistics:

three (3) out of 14 bugs are in target functions of AFLgo, nine (9) bugs

are in so-called “critical” paths from entry functions (i.e. main functions

of the test programs) to target functions. The remaining two (2) bugs are

in functions which are invoked directly by some functions in the

corresponding critical paths – their distances to critical paths are only

10The last bug in Objdump does not have Bug-ID because it is relevant to the critical
zlib library so we sent email directly to Binutils’ and zlib’s maintainers to follow
responsible disclosure policy.

130

one.

The experiment on patch testing also indicates that AFLgo can

effectively detect bugs caused by incomplete bug fixes. Specifically, three

bugs (PR-21155, PR-21156 and PR-21159) exist because Binutils’

maintainers fixed incompletely our earlier reported bugs (PR-21137,

PR-21156 and PR-21135 respectively. Notice that we reported two bugs

in PR-21156, both the initial one and the one due to incomplete fix, so we

got only one bug ID). Especially, for PR-21137 the maintainer had to

submit three different bug fixes to fully resolve the problem.

The encouraging results in patch testing for vulnerability detection suggests
that directed CGF technique (as implemented in AFLgo) can be integrated
into continuous integration/testing platforms like Jenkins [73] or Google
OSS-Fuzz [74] to prevent bugs introduced by code changes in the evolution
of software systems.

6.7 Threats to Validity

The choice of subjects constitutes a threat to external validity. We select

three real-world open-source programs (OpenSSL, LibPNG and Binutils)

which are widely used and deployed. The choosen vulnerabilities represent

a large variety of exploitable types of bugs. However, results may vary for

different vulnerabilities, closed-source programs, programming languages,

or architectures. We choose two applications of directed fuzzing to crash

reproduction and regression test generation. Results may vary for other

applications.

A common threat to internal validity for fuzzer experiments is the

selection of initial seeds. However, since AFL and AFLgo are started

with the same set of initial seeds (the empty seed or from the official AFL

test suite), both fuzzers gain the same (dis-)advantage. Moreover,

131

AFLgo may not faithfully implement directed coverage-based greybox

fuzzing as presented in this article, introducing a threat to construct

validity. However, we make the source code and documentation of

AFLgo available to the artifact evaluation committee and later to the

general public for their scrutiny.

6.8 Chapter Summary

In this chapter, we have presented directed coverage based grey-box

fuzzing (CGF) which allows us to direct the search to specific functions in

the program, such as critical system calls, changed functions in a commit,

or the methods in the stack trace of an unknown input. We demonstrate

this directedness ability empirically by generating inputs which follow a

given stack-trace, thereby also providing an efficient and effective solution

for crash reproduction and by discovering zero-day vulnerabilities in

patch testing which focuses on functions in code commits. The

directedness is achieved by integrating an effective meta-heuristic search

with the power schedule of a coverage-based greybox fuzzer where the

power schedule decides how many inputs are generated from a seed that

is a certain distance from the target functions.

132

Chapter 7

Bucketing Failing Tests via

Symbolic Analysis

A common problem encountered while debugging programs is the

overwhelming number of test cases generated by automated test

generation tools like fuzzing, where many of the tests are likely to fail due

to same bug. Some coarse-grained clustering techniques based on point of

failure (PFB) and stack hash (CSB) have been proposed to address the

problem. In this chapter, we present a new symbolic analysis-based

clustering algorithm that uses the semantic reason behind failures to

group failing tests into more “meaningful” clusters.

7.1 Introduction

Software debugging is a time consuming activity. Several studies [28],

[39], [47], [51], [85] have proposed clustering techniques for failing tests

and proven their effectiveness in large-scale real-world software products.

The Windows Error Reporting System (WER) [47] and its improvements

such as ReBucket [39] try to arrange error reports into various “buckets”

133

or clusters. WER employs a host of heuristics involving module names,

function offset and other attributes. The Rebucket approach (proposed as

an improvement to WER) uses specific attributes such as the call stack in

an error report.

Although the techniques have been applied widely in industry, there

are three common problems that they can suffer from (as mentioned

in [47]). The first problem is “over-condensing” in which the failing tests

caused by multiple bugs are placed into a single bucket. The second

problem is “second bucket” in which failing tests caused by one bug are

clustered into different buckets. The third one, “long tail” problem,

happens if there are many small size buckets with just one or a few tests.

For example, using failure type and location (as used in KLEE [28]) for

clustering tests are more likely to suffer from both over-condensing and

second bucket problems as they would group all tests that fail at the same

location, completely insensitive to the branch sequence and the call-chain

leading to the error. Call stack similarity for clustering tests also suffers

from the “over-condensing” and “second bucket” problems because it is

insensitive to the intraprocedural program paths (i.e. the conditional

statements within functions). One of the main reasons why techniques in

[28], [39], [47], [51], [85] suffer from these problems is that they do not

take program semantics into account.

In this work, we propose a novel technique to cluster failing tests via

symbolic analysis. Unlike previous work that drive bucketing directly from

error reports, we adapt symbolic path exploration techniques (like KLEE

[28]) to cluster (or bucket) the failing tests on-the-fly. We drive bucketing

in a manner such that tests in each group fail due to the same reason.

Since we use symbolic analysis for clustering, our technique leads to more

accurate bucketing; that is (a) tests for two different bugs are less likely

134

to appear in the same bucket, and (b) tests showing the same bug are

less likely to appear in different buckets. We experimentally evaluate our

semantics-based bucketing technique on a set of 21 programs drawn from

five repositories: IntroClass, Coreutils, SIR, BugBench and exploit-db. Our

results demonstrate that our symbolic analysis based bucketing technique

is effective at clustering tests: for instance, the ptx program (in our set

of benchmarks) generated 3095 failing tests which were grouped into 3

clusters by our technique. Similarly, our tool clustered 4510 failing tests of

the paste program into 3 clusters.

In addition to bucketing failures, our tool provides a semantic

characterization of the reason of failure for the failures in each cluster.

This characterization can assist the developers better understand the

nature of the failures and, thus, guide their debugging efforts. The

existing approaches are not capable of defining such an accurate

charaterization of their clusters (other than saying that all tests fail at a

certain location or with a certain stack configuration).

While our algorithm is capable of bucketing tests as they are generated

via a symbolic execution engine, it is also capable of clustering failures in

existing test-suites by a post-mortem analysis on the set of failures.

The contributions of this work are as follows:

• We propose an algorithm to efficiently cluster failing test cases,

both for the tests generated automatically by symbolic execution as

well as tests available in existing test-suites. Our algorithm is based

on deriving a culprit for a failure by comparing the failing path to

the nearest correct path. As we use semantic information from the

program to drive our bucketing, we are also able to derive a

characterization of the reason of failure of the tests grouped in a

cluster. The existing approaches are not capable of defining such

135

characterization for the clusters they produce.

• We implement a prototype of the clustering approach on top of the

symbolic execution engine KLEE [28]. Our experiments on 21

programs show that our approach is effective at producing more

meaningful clusters as compared to existing solutions like the point

of failure and stack hash based clustering.

7.2 Overview

We illustrate our technique using a motivating example in Listing 7.1. In

the main() function, the code at line 27 manages to calculate the value of

(2x +x! +
∑y

i=0 i) in which x and y are non-negative integers. It calls three

functions, power(), factorial() and sum(), to calulate 2x, x! and sum of

all integer numbers from 0 to y. While sum() is a correct implementation,

both power() and factorial() are buggy.

In the power() function, the programmer attempts an optimization

of saving a multiplication: she initializes the result (the integer variable

pow()) to 2 (line 2) and skips the multiplication at line 5 if n equals 1.

However, the optimization does not handle the special case in which n is

zero. When n is zero, the loop is not entered and the function returns 2:

it is a wrong value since 20 must be 1. Meanwhile, in the factorial()

function the programmer uses a wrong condition for executing the loop at

line 13. The correct condition should be i ≤ n instead of i < n. The

incorrect loop condition causes the function to compute factorial of n − 1

so the output of the function will be wrong if n ≥ 2.

We can use a symbolic execution engine (like KLEE) to generate test

cases that expose the bugs. In order to do that, we first mark the variables

x and y as symbolic (line 25) and add an assert statement at line 28. The

136

assertion is used to check whether the calculated value for 2x + x! +
∑y

i=0

(as stored in val) is different from the expected value which is fetched from

golden output().

The specification oracle golden output() can be interpreted in many

ways depending on the debugging task: for example, it can be the previous

version of the implementation when debugging regression errors, or the

expected result of each test when run over a test-suite. For the sake of

simplicity, we add an assume() statements at line 26 to bound values of

symbolic variables x and y.

� �
1 unsigned int power(unsigned int n) {

2 unsigned int i, pow = 2;

3 /* Missing code: if (n == 0) return 1; */

4 for(i=1; i<=n; i++) {

5 if(i==1) continue;

6 pow = 2*pow;

7 }

8 return pow;

9 }

10 unsigned int factorial(unsigned int n) {

11 unsigned int i,result = 1;

12 /* Incorrect operator: < should be <= */

13 for(i=1;i<n;i++)

14 result = result*i;

15 return result;

16 }

17 unsigned int sum(unsigned int n) {

18 unsigned int result = 0, i;

19 for (i=0; i<=n; i++)

20 result += i;

21 return result;

22 }

23 int main() {

24 unsigned int x, y, val , val_golden;

25 make_symbolic(x, y);

26 assume(x<=2 && y<=2);

27 val = power(x)+factorial(x)+sum(y);

28 assert(val == golden_output(x, y));

29 return 0;

30 }� �
Listing 7.1: Motivating example

137

[PC:0≤x≤2;0≤y≤2]
x ≥ 1?

[PC:True]
0≤x≤2; 0≤y≤2

[PC:1≤x≤2;0≤y≤2]
x ≥ 2?

[PC:x==0;0≤y≤2]
y > 0?

[PC:x==0;1≤y≤2]
y > 1?

[PC:x==1;0≤y≤2]
y > 0?

[PC:x==2;0≤y≤2]
y > 0?

[PC:x==1;1≤y≤2]
y > 1?

[PC:x==2;1≤y≤2]
y > 1?

1

2 3 4

5 6

7

8 9

False True

False

False

False

False False

True

True True

True True

True

True

False FalseCluster 1

Cluster 2

Figure 7-1: Symbolic execution tree for motivating example

Figure 7-1 shows the symbolic execution tree that KLEE would explore

when provided with this example. In this work, we use the term failing

path to indicate program paths that terminate in error. The error can be

assertion violation or run-time error detected by symbolic execution engine

such as divide-by-zero or memory access violation (as supported in KLEE).

In contrast, the term passing path indicates paths that successfully reach

the end of the program (or the return statement in the intraprocedural

setting) with no errors.

As shown in Figure 7-1, KLEE explores 9 feasible executions and detects

6 failing paths; the paths are labeled from 1 to 9 in the order tests are

generated while following the Depth-First-Search (DFS) search strategy. If

we apply failure location based or call-stack based bucketing techniques,

both of them will place all 6 failing tests in a single cluster as there is

only one failure location at line 28, and the call stacks are identical when

the failure is triggered. Hence, both the techniques suffer from the “over-

138

condensing” problem as the failures are due to two different bugs (in the

power() and factorial() functions).

Let us now present our approach informally: given a failing test t

encountered during symbolic exploration, our algorithm compares the

path condition of t with the path condition of a successful test t′ that has

the longest common prefix with t. The branch b at which the execution of

t and t′ differ is identified as the culprit branch and the branch condition

at b which leads to the failing path is identified as the culprit

constraint—the “reason” behind the failure of t. Intuitively, the reason

behind blaming this branch for the failure is that the failing path t could

have run into the passing execution t′—only if this branch b had not

misbehaved!

Table 7.1: Clustering result: Symbolic analysis
Path Culprit Clus.

ID Test Case Path Condition Constraint ID

1 x=0, y=0 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y ≤ 0) (x < 1) 1

2 x=0, y=1 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y ≤ 1) (x < 1) 1

3 x=0, y=2 (0 ≤ x, y ≤ 2)∧(x < 1)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x < 1) 1

4 x=1, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y ≤ 0) NA NA

5 x=1, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y > 0)∧(y ≤ 1) NA NA

6 x=1, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x < 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) NA NA

7 x=2, y=0 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y ≤ 0) (x ≥ 2) 2

8 x=2, y=1 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y ≤ 1) (x ≥ 2) 2

9 x=2, y=2 (0 ≤ x, y ≤ 2)∧(x ≥ 1)∧(x ≥ 2)∧(y > 0)∧(y > 1)∧(y ≤ 2) (x ≥ 2) 2

Table 7.1 presents the result produced by our clustering algorithm (refer

to Figure 7-1 for the symbolic execution tree). The failing tests 1-3 fail due

to the bug in the power() function. The culprit constraint or “reason” for

these failures is attributed as x < 1, since it is the condition on the branch

where these failing tests diverge from their nearest passing test (Test 4),

after sharing the longest common prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)).

Hence, we create the first cluster (Cluster 1) and place tests 1-3 in it, with

the characterization of the cluster as (x < 1). Similarly, the failing tests

7-9 (failing due to the bug in factorial()) share the longest common

139

prefix ((0 ≤ x ≤ 2)∧(0 ≤ y ≤ 2)∧(x ≥ 1)) with Test 4; thus, the culprit

constraint for tests 7-9 is inferred as (x ≥ 2). Hence, these tests are placed

in Cluster 2 with the characterization (x ≥ 2). Note that the culprit

constraints (x < 1) and (x ≥ 2) form a neat semantic characterization of

the failures in these two clusters.

Summary. In this example, our semantic-based bucketing approach

correctly places 6 failing tests into 2 different clusters. Unlike the two

compared techniques, it does not suffer from the “over-condensing”

problem, and therefore, yields a more meaningful clustering of failures.

Moreover, we provide a semantic characterization for each cluster that

can assist developers in their debugging efforts. In fact, the

characterization for Cluster1 (x < 1) exactly points out the bug in

power() (as x is non-negative integer, x < 1 essentially implies that x

equals zero). Likewise, the characterization for Cluster2 (x ≥ 2) hints

the developer to the wrong loop condition in the factorial() function

(as the loop is only entered for x ≥ 2). We, however, emphasize that our

primary objective is not to provide root-causes for bugs, but rather to

enable a good bucketing of failures.

7.3 Reasons of Failure

The path condition ψp of a program path p is a logical formula that

captures the set of inputs that exercise the path p; i.e. ψp is true for a

test input t if and only if t exercises p. We say that a path p is feasible if

its path condition ψp is satisfiable; otherwise p is infeasible. We record the

path condition ψp for a path p as a list of conjuncts lp. Hence, the size of

a path condition (|ψp|) is simply the cardinality of the list lp. We also

assume that as symbolic execution progresses, the branch constraints

140

(encountered during the symbolic execution) are recorded in the path

condition in order. This enables us to define prefix(i, ψp) as the prefix of

length i of the list lp that represents the path condition ψp. Hence, when

we say that two paths p and q have a common prefix of length i, it means

that prefix(i, ψp) = prefix(i, ψq).

Inference of suitable reasons behind failures is central to clustering of

failing tests: if the reasons inferred are too strong (i.e., they are not general

enough), tests that fail due to the same reason may form different clusters;

we refer to the same as under-clustering or the second bucket problem. On

the other hand, if constraints in the reason are too weak, then test cases

that correspond to different reasons of failure may get clustered together; we

refer this as over-clustering or over-condensing problem. We attribute the

“reason of failure” of a failing path to a branch condition along the failing

path such that there exists a passing path sharing the longest possible

prefix with the failing path.

Definition 1 (Culprit Constraint). Given a failing path πf with a path

condition ψf (as a conjunct b1 ∧ b2 ∧ · · · ∧ bi ∧ . . . bn) and an exhaustive

set of all feasible passing paths Π, we attribute bi (the i-th constraint where

i ranges from 1 to n) as the culprit constraint if and only if i − 1 is the

maximum value of j (0 ≤ j < n) such that prefix(j, ψf) = prefix(j, ψp)

among all passing paths p ∈ Π.

We use the culprit constraint (as a symbolic expression) as the reason

why the error path “missed” out on following the passing path; in other

words, the failing path could have run into a passing path, only if the

branch corresponding to the culprit constraint had not misbehaved. Our

heuristic of choosing the culprit constraint in the manner described above

is primarily designed to achieve the following objectives:

141

• Minimum change to Symbolic Execution Tree: Our technique

targets well-tested production-quality programs that are “almost”

correct; so, our heuristic of choosing the latest possible branch as

the “culprit” essentially tries to capture the intuition that the

symbolic execution tree of the correct program must be similar to

the symbolic execution tree of the faulty program. Choosing the

latest such branch as the culprit is a greedy attempt at encouraging

the developer to find a fix that makes the minimum change to the

current symbolic execution tree of the program.

• Handle “burst” faults: In Figure 7-1, all paths on one side of the

node with [PC : 1 ≤ x ≤ 2; 0 ≤ y ≤ 2] fail. So, the branching

predicate for this node, x ≥ 2, looks “suspicious”. Our heuristic of

identifying the latest branch as the culprit is directed at handling

such scenarios of “burst” failures on one side of a branch.

7.4 Clustering Framework

7.4.1 Clustering Algorithm

Algorithm 4 shows the core steps in dynamic symbolic execution with

additional statements (highlighted in grey) for driving test clustering.

The algorithm operates on a representative imperative language with

assignments, assertions and conditional jumps (adapted from [16], [66]).

A symbolic executor maintains a state (l, pc, s) where l is the address of

the current instruction, pc is the path condition, and s is a symbolic store

that maps each variable to either a concrete value or an expression over

input variables. At line 3, the algorithm initializes the worklist with an

initial state pointing to the start of the program (l0, true, ∅): the first

instruction is at l0, the path condition is initialized as true and the initial

142

Algorithm 4 Symbolic Exploration with Test Clustering
1: procedure SymbolicExploration(l0, W)

2: C ← {}; passList← []; failList← [] . initialization for bucketing

3: W ← {(l0, true, ∅)} . initial worklist
4: while W 6= ∅ do
5: (l, pc, s)← pickNext(W)

6: S ← ∅
7: switch instrAt(l) do . execute instruction
8: case v := e . assignment instruction
9: S ← {(succ(l), pc, s[v → eval(s, e)])}

10: case if (e) goto l′ . branch instruction
11: e← eval(s, e)
12: if (isSat(pc ∧ e) ∧ isSat(pc ∧ ¬e)) then
13: S ← {(l′, pc ∧ e, s), (succ(l), pc ∧ ¬e, s)}
14: else if (isSat(pc ∧ e) then
15: S ← {(l′, pc ∧ e, s)}
16: else
17: S ← {(succ(l), pc ∧ ¬e, s)}
18: case assert(e) . assertion
19: e← eval(s, e)
20: if (isSat(pc ∧ ¬e)) then
21: testID ← GenerateTest(l, pc ∧ ¬e, s)

22: pc′ ← ConvertPC(pc ∧ ¬e)
23: AddToList(failList,(testID,pc′))

24: continue
25: else
26: S ← {(succ(l), pc ∧ e, s)}
27: case halt . end of path
28: testID ← GenerateTest(l,pc,s)

29: pc′ ← ConvertPC(pc)

30: AddToList(passList,(testID,pc′))

31: if failList 6= [] then

32: ClusterTests(C,passList,failList)

33: failList← [] . empty failing list

34: continue
35: W ←W ∪ S . update worklist

36: if failList 6= [] then

37: ClusterTests(C,passList,failList)

38: end procedure

store map is empty.

The symbolic execution runs in a loop until the worklist W becomes

empty. In each iteration, based on a search heuristic, a state is picked

for execution (line 7). Note that to support failing test bucketing, the

search strategy must be DFS or an instance of our clustering-aware strategy

143

(clustering-aware search strategy discussed in Section 7.4.2). A worklist S

(initialized as empty) keeps all the states created/forked during symbolic

exploration.

Algorithm 5 Clustering failing tests
1: procedure ClusterTests(Clusters,passList,failList)
2: for (failID, failPC) ∈ failList do
3: maxPrefixLength← 0
4: for (passID, passPC) ∈ passList do
5: curPrefixLength← LCP (failPC, passPC)
6: if curPrefixLength > maxPrefixLength then
7: maxPrefixLength← curPrefixLength

8: reason← failPC[maxPrefixLength+1]
9: Update(Clusters,failID,reason)

10: end procedure
11: ———————————————————————–
12: procedure Update(Clusters,failID,reason)
13: for r ∈ Clusters.Reasons do
14: if isValid(reason⇒ r) then
15: Clusters[r].Add(failID)
16: return
17: else if isValid(r⇒ reason) then
18: UpdateReason(Clusters[r], reason)
19: Clusters[reason].Add(failID)
20: return
21: AddCluster(Clusters, reason, failID)

22: end procedure

If the current instruction is an assignment instruction, the symbolic

store s is updated and a new state pointing to the next instruction is

inserted into S (lines 8− 9). A conditional branch instruction is processed

(line 10) via a constraint solver that checks the satisfiability of the branch

condition; if both its branches are satisfiable, two new states are created and

inserted into S. If only one of the branches is satisfiable, the respective state

is added to S. For assert instructions, the symbolic execution checks the

assert condition, and if it holds, a new program state is created and the state

is added to S. If the condition does not hold, it triggers an assertion failure,

thereby, generating a failing test case (we call the respective test case a

“failing test”). Some symbolic execution engines (like KLEE [28]) perform

run-time checks to detect failures like divide-by-zero and memory access

violations; in this algorithm, the assert instruction is used to represent the

144

failures detected by such checks as well. On encountering a halt instruction,

the symbolic execution engine generates a test-case for the path (we refer

to such a test case as a “passing test”). The halt instruction represents

a normal termination of the program.

To support clustering of tests, we define two new variables, passList

and failList, to store information about all explored passing and failing

tests (respectively). For each test, we keep a pair (testID, pathCondition),

where testID is the identifier of the test generated by symbolic execution,

and pathCondition is a list of branch conditions (explained in Section 7.3).

We also introduce a variable C that keeps track of all clusters generated

so far; C is a map from a culprit constraint (cluster reason) to a list of

identifiers of failing tests. The bucketing functionality operates in two

phases:

Phase 1: Searching for failing and passing tests. The selected search

strategy guides the symbolic execution engine through several program

paths, generating test cases when a path is terminated. We handle the

cases where tests are generated, and update the respective list (passList

or failList) accordingly. In particular, when a failing test case is generated,

the path condition (pc) is converted to a list of branch conditions (pc′). The

pair comprising of the list pc′ and the identifier of the failing test case form

a representation of the failing path; the pair is recorded in failList (lines

23–24). The passList is handled in a similar manner (lines 31–32).

Phase 2: Clustering discovered failing tests. Once a passing test is

found (lines 35–37) or the symbolic execution engine completes its

exploration (lines 42–43), the clustering function ClusterTests will be

invoked. The procedure ClusterTests (Algorithm 5) takes three

arguments: 1) all clusters generated so far (Clusters), 2) all explored

passing tests (passList) and 3) all failing tests that have not been

145

clustered (failList). In this function, the culprit constraints of all failing

tests in failList is computed (lines 2–9) and, then, the function Update is

called (line 10) to cluster the failing tests accordingly.

The Update function (Algorithm 5) can place a failing test into an

existing cluster or create a new one depending on the culprit constraint

(reason) of the test. We base our clustering heuristic on the intuition that

the reason of failure of each test within a cluster should be subsumed by

a core reason (rc) represented by the cluster. Hence, for a given failing

test f (with a reason of failure rf) being clustered and a set of all clusters

Clusters, the following three cases can arise:

• There exists c ∈ C such that rc subsumes rf : in this case, we

add the test f to the cluster c (line 18);

• There exists c ∈ C such that rf subsumes rc: in this case, we

generalize the core reason for cluster c by resetting rf as the general

reason for failure for tests in cluster c (lines 21–22);

• No cluster reason subsumes rf , and rf subsumes no cluster

reason: in this case, we create a new cluster c’ with the sole failing

test f and attribute rf as the core reason of failure for tests in this

cluster (line 26).

7.4.2 Clustering-aware Search Strategy

It is easy to see that Algorithm 4 will yield the correct culprit constraints if

the search strategy followed is DFS: once a failing path fi is encountered,

the passing path that shares the maximum common prefix with fi is either

the last passing path encountered before the failure, or is the next passing

path after fi (i.e. ignoring all failures in the interim). Hence, a depth-

first traversal of the symbolic execution tree will always find the culprit

constraints by constructing the largest common prefix of the failing paths

146

p5p1 p2 p3 p4 p6 p7 p8

i1

i2

i4

i3
i5

i6
i7

Figure 7-2: A Branching Tree

with at most two passing paths (the passing executions just before and just

after encountering the failures).

However, DFS has a very poor coverage when used with a time-budget.

Hence, we require search strategies different than DFS (like the Random

and CoverNewCode strategies in KLEE) to achieve a good coverage. In

fact, during our experiments, we could not trigger most of the failures in

our benchmarks with DFS within reasonable timeouts.

We design a new clustering-aware search strategy (CLS) that is capable

of discovering the precise culprit constraint while achieving a high coverage

at the same time. CLS is built on a crucial observation that we only

require DFS on a failing test to guide the search to its nearest passing

test; on a passing test, the next test can be generated as per any search

heuristic. Hence, one can implement any combination of suitable search

strategies (to achieve high code coverage) while maintaining the use of

DFS on encountering a failure (to identify the culprit constraint precisely).

We leverage a so-called branching tree, a data structure maintained

by many symbolic execution engines (like KLEE) to record the symbolic

execution tree traversed in terms of the branching/forking history (KLEE

refers to it as the process tree). Let us illustrate as to how we combine

147

an arbitrary search strategy (SS) with DFS exploration to implement an

instance of CLS using the branching tree in Figure 7-2. In the tree, i1–i7

are internal nodes while p1–p8 are leaf nodes. Note that in the following

paragraphs, we will use the term (leaf) node and path interchangeably.

Basically, CLS works in two phases:

Phase 1: SS searches for a failing test. The search heuristic SS searches

for a failure using its own algorithm. Suppose SS first detects a failing

path p5, it returns control to CLS that now switches to the DFS heuristic

(to locate the “nearest” passing test, i.e. the one that has the longest

common prefix with p5).

Phase 2: DFS looks for “nearest” passing test. Continuing with our

example (Figure 7-2), by the time SS detects the failing path p5, assume

that we have explored three paths p1, p2, p7 and successfully put the failing

path p2 into its correct cluster. So, now only four active paths remain:

p3, p4, p6 and p8. At this point, our CLS seach strategy uses another

crucial observation: since p7 is a passing path and i4 is the closest common

ancestor node of p5 and p7, the nearest passing path for p5 must be p7 or

another passing path spawned from intermediate nodes i5, i6 or i7. Hence,

we can reduce the search space for finding the nearest passing path for p5

from the space represented by outer blue triangle to the inner (smaller)

triangle (as p7 is a passing path, it must be the nearest passing path if no

“nearer” passing path is discovered in the subtree rooted at i4). We omit

the details of how it is acheived for want of space.

If the symbolic execution is run with a timeout setting, the timeout

can potentially fire while CLS is searching for the nearest passing path to

a failing execution. In this case, we simply pick the nearest passing path

to the failing execution among the paths explored so far to compute the

culprit constraint.

148

Our technique is potent enough to cluster an existing test-suite by

running the symbolic execution engine needs to run in a mode that the

exploration of a path that is controlled by the failing test (like the “seed”

mode in KLEE [29]). During path exploration, the first passing test

encountered in a depth-first traversal seeded from the failing test t would

necessarily be the passing test that has the longest common prefix with t.

Thus, we can compute the culprit constraint accordingly, and use it to

form a new cluster or update an existing cluster.

7.4.3 Generalize Reasons for Failure

Consider Listing 7.2: the program checks if the absolute value of each

element in the array is greater than 0. The buggy assertion contains >

comparison instead of ≥), which would cause 10 failing test cases ∀ i ∈

{0..9}. Since each array element is modeled as a different symbolic variable,

all 10 cases are clustered separately.

� �
1 int main() {

2 int arr[10], int i;

3 make_input(arr , sizeof(arr));

4 for (i = 0; i < 10; i++) {

5 if (a[i] < 0) a[i] = -a[i];

6 assert(a[i] > 0); // a[i] >= 0

7 }

8 }� �
Listing 7.2: Generalization for arrays

In such cases, we need to generalize errors that occur on different indices

but due to the same core reason. For example, if the reason is: arr[4] >

0 ∧ arr[4] < 10, we change this formula to ∃x (arr[x] > 0 ∧ arr[x] < 10).

Note that this is only a heuristic, and our implementation allows the user

to disable this feature.

149

7.5 Experimental Evaluation

We evaluated our algorithm on a set of 21 programs: three programs from

IntroClass [52] (a micro benchmark for program repair tools) and the

remaining eighteen real-world programs taken from four

benchmarks-suites: eleven programs from Coreutils[1] version 6.10, three

from SIR[41], one from BugBench[78] and three from exploit-db[2]. The

three subject programs from exploit-db (downloaded them from the

project’s website) were used in [59]. The bugs in IntroClass, Coreutils,

exploit-db and BugBench programs are real bugs, whereas the ones in

SIR are seeded.

We manually inserted assert statements in the programs taken from

the IntroClass benchmark to specify the test oracle, while all remaing 18

real-world programs were kept unchanged. During symbolic execution, the

failing test cases are generated due to the violation of embedded assertions

or triggering of run-time errors (captured by KLEE) like divide-by-zero and

invalid memory accesses.

We compared our symbolic-analysis based (SAB) test clustering method

to two baseline techniques: call-stack based (CSB) and point-of-failure

based (PFB) clustering. While SAB refers to the implementation of our

algorithm within KLEE, we implemented CSB and PFB on top of KLEE

to evaluate our implementation against these techniques. Specifically, our

implementation first post-processes the information of test cases generated

by KLEE to compute the stack hash (on function call stack) and extract

failure locations. Based on the computed and extracted data, they cluster

the failing tests.

We conducted all of the experiments on a virtual machine created on

a host computer with a 3.6 GHz Intel Core i7-4790 CPU and 16 GB of

150

Table 7.2: Test Clustering: number of clusters
Program Repository Size(kLOC) #Fail. Tests #Clus.(PFB) #Clus.(CSB) #Clus.(SAB)

median IntroClass 1 7 1 1 5

smallest IntroClass 1 13 1 1 3

syllables IntroClass 1 870 1 1 5

mkfifo Coreutils 38 2 1 1 1

mkdir Coreutils 40 2 1 1 1

mknod Coreutils 39 2 1 1 1

md5sum Coreutils 43 48 1 1 1

pr Coreutils 54 6 2 2 4

ptx Coreutils 62 3095 16 1 3

seq Coreutils 39 72 1 1 18

paste Coreutils 38 4510 10 1 3

touch Coreutils 18 406 2 3 14

du Coreutils 41 100 2 2 8

cut Coreutils 43 5 1 1 1

grep SIR 61 7122 1 1 11

gzip SIR 44 265 1 1 1

sed SIR 57 31 1 1 1

polymorph
BugBench 25 67 1 1 2

xmail Exploit-db 30 129 1 1 1

exim Exploit-db 253 16 1 1 6

gpg Exploit-db 218 2 1 1 1

RAM. The virtual machine was allocated 4 GB of RAM and its OS is

Ubuntu 12.04 32-bit. For our experiments, we use the clustering-aware

search strategy (CLS), enable array generalization and use a timeout of one

hour for each subject program. KLEE is run with the --emit-all-errors

flag to enumerate all failures.

7.5.1 Results and Analysis

Table 7.2 shows the results from our experiments on selected programs.

Size provides the size of the program in terms of the number of LLVM

bytecode instructions. #Fail Tests provides the number of failing tests.

The rest of the columns provide the number of clusters (#C) for Point-of-

failure (PFB), Stack Hash (CSB) and our Symbolic Analysis (SAB) based

151

Table 7.3: Test clustering: overhead
Program #Pass. paths #Fail. paths Time (sec) Overhead (%)

median 4 7 5 ∼0

smallest 9 13 5 ∼0

syllables 71 870 1800 4.35

mkfifo 291 2 3600 ∼0

mkdir 326 2 3600 ∼0

mknod 72 2 3600 ∼0

md5sum 62449 48 3600 0.42

pr 540 6 3600 ∼0

ptx 9 3095 3600 2.04

seq 445 72 1800 0.73

paste 3501 4510 3600 16.17

touch 210 406 3600 0.84

du 44 100 3600 0.81

cut 38 5 3600 ∼0

grep 169 7122 3600 34.13

gzip 5675 265 3600 0.7

sed 3 31 3600 0.03

polymorph 3 67 3600 14.36

xmail 1 129 3600 0.06

exim 178 16 3600 0.03

gpg 10 2 3600 ∼0

methods. Note that #C(PFB) also records the number of failing locations.

As KLEE symbolically executes the LLVM bitcode, we show the size of the

program in terms of the total lines of the LLVM bitcode instructions.

In several programs (like ptx, paste, grep) SAB places thousands of

failing tests into managable number of clusters. Compared to CSB, in

12 out of 21 subjects (∼57%), our method produces more fine-grained

clustering results. Compared to PFB, our technique expands the number

of clusters to get a more fine-grained set in 10/21 subjects. However, our

method also collapses the clusters in case the program has failures that

are likely to be caused by the same bug but the failures occur at several

different locations (like ptx and paste).

RQ1. Does our technique produce more fine-grained clusters?

In the experiments, we manually debugged and checked the root causes of

failures in all subject programs. Based on that, we confirm that our SAB

152

approach does effectively produce more fine-grained clusters. For instance,

as shown in Figure 7.4, the buggy smallest program, which computes the

smallest number among four integer values, does not adequately handle the

case in which at least two of the smallest integer variables are equal. For

example, if d equals b, none of the four conditional statements (at lines 7,

9, 11 and 13) take the true branch; the result is incorrect as the variable

smallest then takes an arbitrary value.

As shown in Listing 7.4, we instrumented the program to make it work

with KLEE. During path exploration, KLEE generated 13 failing tests for

this program and the CSB technique placed all of them into one cluster as

they share the same call stack. However, our SAB approach created three

clusters with the following reasons: (Cluster 1) d ≥ b, (Cluster 2) d ≥ c

and (Cluster 3) d ≥ a. The reasons indeed show the corner cases that can

trigger the bugs in the program. We observed similar cases in median and

syllables programs (see Table 7.2).

� �
1 case ’e’:

2 if (optarg)

3 getoptarg (optarg , ’e’, ...);

4 //...

5 break;

6 //other cases

7 case ’i’:

8 if (optarg)

9 getoptarg (optarg , ’i’, ...);

10 //...

11 break;

12 //other cases

13 case ’n’:

14 if (optarg)

15 getoptarg (optarg , ’n’, ...);

16 break;� �
Listing 7.3: Code snippet from ‘pr’

In the subject program pr (a Coreutils utility), we found that 6 failing

tests due to two different bugs are placed in two clusters on using stack

153

hash similarity. Meanwhile, our approach placed these 6 failing tests into 4

different clusters: one cluster contained 3 failing tests corresponding to one

bug, and the other three clusters contain three failing tests of the second

bug. Listing 7.3 shows a code snippet from pr that shows three call sites

for the buggy function getoptarg() (at lines 3, 9 and 15). In this case,

because all of the three call sites are in one function, so the stack hash

based technique placed the three different failing paths in the same cluster.

Similar cases exist in the exim and du applications.

� �
1 int a, b, c, d, smallest;

2 make_symbolic(a, b, c, d);

3 assume(a>=-10 && a <=10);

4 assume(b>=-10 && b <=10);

5 assume(c>=-10 && c <=10);

6 assume(d>=-10 && d <=10);

7 if (a < b && a < c && a < d)

8 smallest = a;

9 if (b < a && b < c && b < d)

10 smallest = b;

11 if (c < b && c < a && c < d)

12 smallest = c;

13 if (d < b && d < c && d < a)

14 smallest = d;

15 assert(smallest == golden_smallest(a,b,c,d));� �
Listing 7.4: Code snippet from ‘smallest’

RQ2. Can our clustering reasons (culprit constraints) help users

to look for root causes of failures?

One advantage of our bucketing method compared to CSB and PFB

approaches is its ability to provide a semantic characterization of the

failures that are grouped together (based on the culprit constraint). The

existing techniques are only capable of capturing syntactic information

like the line number in the program or the state of the call-stack when the

failure is triggered.

154

Table 7.4: Sample culprit constraints
Program Culprit constraint

mkfifo (= (select arg0 #x00000001) #x5a)

pr (= (select stdin #x00000009) #x09)

Table 7.4 shows a few examples of the culprit constraints that our

technique used to cluster failing tests for mkfifo and pr. In mkfifo, the

culprit constraint can be interpreted as: the second character in the first

argument is the character ‘Z’. This is, in fact, the correct characterization

of this bug in mkfifo as the tests in this cluster fail for the “-Z” option.

In case of pr, the culprit constraint indicates that: the tenth character of

the standard input is a horizontal tab (TAB). The root cause of this

failure is due to incorrect handling of the backspace and horizontal tab

characters.

RQ3. What is the time overhead introduced by our bucketing

technique over vanilla symbolic execution?

As shown in Table 7.3, in most of the subject programs the time overhead

is negligible (from 0% to 5%), except in some programs where the overhead

is dominated by the constraint solving time.

7.5.2 User Study

A user study was carried out with 18 students enrolled in a Software

Security course (CS4239) in the National University of Singapore (NUS)

to receive feedback on the usability and effectiveness of our bucketing

method. Among the students, there were 14 senior undergraduate and 4

masters students. Before attending the course, they had no experience on

applying bucketing techniques.The students were required to run the

three bucketing techniques (our method and two others based on

155

Table 7.5: Responses from the user study.

Techniques
Level of Difficulty (Q1) Usefulness (Q2)

Easy Moderate Difficult
Very

difficult

Not

useful
Useful

Very

useful

Point of failure (PFB) 8 8 2 0 0 7 11

Stack hash (CSB) 3 13 2 0 3 8 7

Symbolic analysis (SAB) 1 9 7 1 2 4 12

call-stack and point of failure information) to cluster the found failing

tests, and (primarily) answer the following questions:

Q1. Rate the level of difficulty in using the three techniques for bucketing

failing tests.

Q2. To what extent do the bucketing techniques support debugging of program

error?

Q3. Are the numbers of clusters generated by the bucketing techniques

manageable?

The users’ responses for Q1 & Q2 are summarized in Table 7.5; for

example, the first cell of Table 7.5 shows that 8 of the 18 respondents

found the PFB technique “Easy” for bucketing. In response to Q3, 14 out

of the 18 respondents voted that the number of clusters generated by our

technique is manageable.

In terms of usefulness as a debugging aid, our technique is ranked “Very

Useful” by 12 of the 18 respondents. It gains a high rating for its usefulness

as it provides a semantic characterization for each bucket (in terms of the

culprit constraint), that can help users locate the root cause of failure.

At the same time, we found that the main reason that they found our

technique harder to use was that this characterization was shown in the

form of logical formula in the SMT-LIB format—a format to which the

students did not have enough exposure. We list some of the encouraging

feedback we got:

• “I believe it is the most powerful of the three techniques, letting me

156

understand which assert are causing the crash or how it is formed.”

• “It is very fine grain and will allow us to check the path condition to see

variables that causes the error.”

7.6 Chapter Summary

In this chapter, we have presented our symbolic analysis based bucketing

method. We leverage the symbolic execution tree built by a symbolic

execution engine to cluster failing tests found by symbolic path

exploration. Our approach can also be implemented on symbolic

execution engines like S2E [35] for clustering tests for stripped program

binaries (when source code is not available). Unlike many other prior

techniques, our technique should be able to handle changing of addresses

when Address Space Layout Randomization (ASLR) is enabled as

symbolic expressions are unlikely to be sensitive to address changes.

157

Chapter 8

Conclusion

8.1 Thesis summary

Fuzz testing techniques have become prominent for security vulnerability

detection. For instance, SAGE white-box fuzzer [51] was used in testing of

Windows 7 prior to its release, and AFL grey-box fuzzer [4], as shown in its

homepage 1, has been used to discover more than 300 vulnerabilities in 148

large programs and libraries such as OpenSSL, PHP and Mozilla Firefox

browser. However, given an inadequate test suite they are not skillful at

directing the exploration to reach given target locations and expose program

bugs in large program binaries that take highly-structured file inputs. In

this thesis, we propose algorithms to circumvent the limitations. To this

end, we design algorithms to enhance directed search in black-box, grey-

box and white-box fuzzing techniques. Our algorithms take into account

the inadequacy of given test suite, the complex structures of program inputs

(e.g., the presence of optional data chunks, integrity checks like checksum),

the incompleteness of program structure (e.g., control flow graph) lifted

from binaries, and also the complexity of the program under test (e.g.,

1AFL homepage: http://lcamtuf.coredump.cx/afl/

158

multi-module design). Moreover, being aware of the overwhelming number

of failing tests could be generated during fuzzing process, we also develop a

fine-grained bucketing technique to effectively manage and group the tests

to ease the debugging phase.

In particular, we have made the following contributions in this thesis.

• Directed search algorithm in white-box fuzzing. Given a

(potentially) crashing location, our algorithm, which is composed by

several heuristics, systematically directs the search towards the

location and reasons about the crash condition to generate

crash-triggering input(s). The algorithm works with real-world

multi-module (stripped) binary programs like Adobe Reader and

Windows Media Player.

• Combination of model-based black-box and directed white-

box fuzzing. Such novel combination allows to exploit the best

of both worlds – model-based black-box is good at generating whole

chunk(s) of data while white-box fuzzing is skillful at reasoning about

values of data fields – to handle missing data chunk problem in the

presence of inadequate test suite.

• Directed coverage-based grey-box fuzzing. The integration of

Simulated Annealing – a Markov Chain Monte Carlo approach –

into coverage-based grey-box fuzzing (CGF) allows CGF to direct

the exploration towards a given set of target locations without any

expensive program analysis at run-time. Required analysis is done

at compile time. To the best of our knowledge, we develop the first

multiple-target search-based software testing technique where the

single objective is to generate an input that exercises as many of the

given targets as possible.

159

• Fuzzing framework and evaluation. The evaluations on two

applications of directed fuzzing – crash reproduction and patch

testing for vulnerability detection – show the effectiveness and

efficiency of our techniques. Hercules, MoBWF and AFLGo

successfully reproduce crashes in large real-world (binary) programs

(e.g., Adobe Reader, Windows Media Player, OpenSSL, Binutils etc

) taking highly-structured file formats (e.g., PDF, PNG, WAV etc).

Notably, AFLGo can expose the well-known HeartBleed

vulnerability in OpenSSL library almost four (4) times faster than

the state-of-the-art AFL fuzzer. AFLGo has discovered 14 zero-day

vulnerabilities in Binutils’ utilities; five (5) CVEs have been

assigned to the most critical vulnerabilities.

• Fine-grained failing tests bucketing technique. We leverage

symbolic analysis and symbolic execution tree to identify semantic

“reasons” behind failures and group failing tests into “meaningful”

clusters. The semantic reason makes our approach more fine-grained

compared to off-the-shelf point-of-failure and call-stack-based

approaches.

8.2 Future work

Our novel combination of model-based black-box fuzzing and directed

white-box fuzzing has shown its effectiveness in handling

highly-structured inputs. However, input model – the key input of the

technique has been manually written. One possible opportunity is

construct the input model automatically from a set of benign inputs.

There is a rich set of relevant research on automatic grammar inference;

however the research has focused on context-free-grammar which cannot

160

produce structured inputs having complex relationships between data

chunks and data fields (e.g., checksums, size-of, count-of, length-of etc).

Another possible avenue of future work is to bring the directed fuzzing

techniques to other application domains apart from file processing

applications. For instance, web applications require higher level of

interaction between application and users as well as application and

external systems. Another domain includes programs running inside OS

kernel (e.g., device drivers, file systems) which have complex dependencies

on the huge kernel code base.

161

Bibliography

[1] Coreutil benchmarks. http://www.gnu.org/software/coreutils/coreutils.html.

[2] Exploit-db benchmarks. https://www.exploit-db.com/.

[3] Specification of the DEFLATE Compression Algorithm.
https://tools.ietf.org/html/rfc1951. Accessed: 2016-02-13.

[4] Tool: American Fuzzy Lop Fuzzer. http://lcamtuf.coredump.cx/
afl/. Accessed: 2016-01-23.

[5] Tool: American Fuzzy Lop Fuzzer. https://github.com/mboehme/
aflfast. Accessed: 2016-01-23.

[6] Tool: Codesonar static analysis. https://www.grammatech.com/

products/codesonar. Accessed: 2016-11-20.

[7] Tool: IDA multi-processor disassembler and debugger. https://

www.hex-rays.com/products/ida/. Accessed: 2016-04-04.

[8] Tool: LLVM LibFuzzer. http://llvm.org/docs/LibFuzzer.html.
Accessed: 2016-01-23.

[9] Tool: Peach Fuzzer Platform. http://www.peachfuzzer.com/

products/peach-platform/. Accessed: 2016-01-23.

[10] Tool: Peach Fuzzer Platform (Input Model). http://community.

peachfuzzer.com/v3/DataModeling.html. Accessed: 2016-01-23.

[11] Tool: SPIKE Fuzzer Platform. http://www.immunitysec.com.
Accessed: 2016-01-23.

[12] Website: Reference.com. https://www.reference.com/

technology/. Accessed: 2016-11-20.

[13] Website: wired.org. https://www.wired.com/2016/03/

inside-cunning-unprecedented-hack-ukraines-power-grid/.
Accessed: 2016-11-20.

[14] A. Arcuri, M. Z. Iqbal, and L. Briand. Random testing: Theoretical
results and practical implications. IEEE Transactions on Software
Engineering, 38(2):258–277, March 2012.

162

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/mboehme/aflfast
https://github.com/mboehme/aflfast
https://www.grammatech.com/products/codesonar
https://www.grammatech.com/products/codesonar
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://llvm.org/docs/LibFuzzer.html
http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
http://community.peachfuzzer.com/v3/DataModeling.html
http://community.peachfuzzer.com/v3/DataModeling.html
http://www.immunitysec.com
https://www.reference.com/technology/
https://www.reference.com/technology/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/

[15] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical
tests for assessing randomized algorithms in software engineering.
Software Testing, Verification and Reliability, 24(3):219–250, 2014.

[16] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David
Brumley. Enhancing symbolic execution with veritesting. In Proc.
36th International Conference on Software Engineering, June 2014.

[17] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn
Song. Statically-directed dynamic automated test generation. In
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 12–22. ACM, 2011.

[18] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. The software model checker blast: Applications to
software engineering. Int. J. Softw. Tools Technol. Transf., 9(5):505–
525, October 2007.

[19] Nikolaj Bjorner and Anh-Dung Phan. vz - maximal satisfaction with
z3. In Temur Kutsia and Andrei Voronkov, editors, SCSS 2014.
6th International Symposium on Symbolic Computation in Software
Science, volume 30 of EPiC Series in Computing, pages 1–9, 2014.

[20] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and Xavier
Rival. The essence of computation. chapter Design and
Implementation of a Special-purpose Static Program Analyzer
for Safety-critical Real-time Embedded Software, pages 85–108.
Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[21] Hanno Böck. Wie man heartbleed hätte finden können.
Golem.de, April 2015. http://www.golem.de/news/fuzzing-wie-
man-heartbleedhaette-finden-koennen-1504-113345.html (DE);
https://blog.hboeck.de/archives/868-How-Heartbleed-couldve-been-
found.html (EN).

[22] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 1032–1043, 2016.

[23] D. Brumley, Hao Wang, S. Jha, and D. Song. Creating vulnerability
signatures using weakest preconditions. In Computer Security
Foundations Symposium, 2007. CSF ’07. 20th IEEE, pages 311–325,
July 2007.

[24] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J.
Schwartz. BAP: A binary analysis platform. In Computer Aided
Verification, July 2011.

163

[25] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng.
Automatic patch-based exploit generation is possible: Techniques
and implications. In Proceedings of the 29th IEEE Symposium on
Security and Privacy, 2008.

[26] David Brumley, Hao Wang, Somesh Jha, and Dawn Song. Creating
vulnerability signatures using weakest preconditions. In Proceedings
of the 20th IEEE Computer Security Foundations Symposium, CSF
’07, pages 311–325, Washington, DC, USA, 2007. IEEE Computer
Society.

[27] Stefan Bucur, Johannes Kinder, and George Candea. Prototyping
Symbolic Execution Engines for Interpreted Languages. In
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2014.

[28] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’08, pages 209–224. USENIX Association, 2008.

[29] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee:
Unassisted and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’08, pages 209–224, 2008.

[30] Cristian Cadar and Dawson Engler. Execution generated test cases:
How to make systems code crash itself. In Proceedings of the
12th International Conference on Model Checking Software, SPIN’05,
pages 2–23, Berlin, Heidelberg, 2005. Springer-Verlag.

[31] Cristian Cadar and Hristina Palikareva. Shadow symbolic execution
for better testing of evolving software. In Companion Proceedings
of the 36th International Conference on Software Engineering, ICSE
Companion 2014, pages 432–435, New York, NY, USA, 2014. ACM.

[32] Dan Caselden, Alex Bazhanyuk, Mathias Payer, Stephen McCamant,
and Dawn Song. Hi-cfg: Construction by binary analysis and
application to attack polymorphism. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, Computer Security – ESORICS
2013, volume 8134 of Lecture Notes in Computer Science, pages 164–
181. Springer Berlin Heidelberg, 2013.

[33] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In Proceedings of

164

the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages
380–394, Washington, DC, USA, 2012. IEEE Computer Society.

[34] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing Mayhem on binary code. In IEEE Symposium
on Security and Privacy, pages 380–394, 2012.

[35] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2E: A platform for in-vivo multi-path analysis of software
systems. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 265–278. ACM, 2011.

[36] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie
Chen, Edward XueJun Wu, and Dawn Song. MACE:
Model-inference-Assisted Concolic Exploration for Protocol and
Vulnerability Discovery. In Proceedings of the 20th USENIX Security
Symposium, Aug 2011.

[37] Chia Yuan Cho, V. D’Silva, and D. Song. Blitz: Compositional
bounded model checking for real-world programs. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 136–146, Nov 2013.

[38] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for
checking ansi-c programs. In In Tools and Algorithms for the
Construction and Analysis of Systems, pages 168–176. Springer, 2004.

[39] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and
Peter Nobel. Rebucket: A method for clustering duplicate crash
reports based on call stack similarity. In Proceedings of the 34th
International Conference on Software Engineering, ICSE ’12, pages
1084–1093, Piscataway, NJ, USA, 2012. IEEE Press.

[40] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’08/ETAPS’08, pages
337–340, 2008.

[41] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel.
Supporting controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical Softw. Engg.,
10(4):405–435, October 2005.

[42] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite
generation for object-oriented software. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, pages 416–
419, 2011.

165

[43] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE
Trans. Softw. Eng., 39(2):276–291, February 2013.

[44] David Freedman. Statistical models : theory and practice. Cambridge
University Press, Cambridge New York, 2009.

[45] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 474–484, 2009.

[46] Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference
on Software Engineering, ICSE ’09, pages 474–484. IEEE Computer
Society, 2009.

[47] Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel
Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle,
and Galen Hunt. Debugging in the (very) large: Ten years of
implementation and experience. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages
103–116, New York, NY, USA, 2009. ACM.

[48] Patrice Godefroid. Compositional dynamic test generation.
In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’07,
pages 47–54. ACM, 2007.

[49] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-
based whitebox fuzzing. In Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’08, pages 206–215. ACM, 2008.

[50] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
Directed automated random testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 213–223, New York, NY, USA,
2005. ACM.

[51] Patrice Godefroid, Michael Y. Levin, and David A. Molnar.
Automated Whitebox Fuzz Testing. In Network and Distributed
System Security Symposium, 2008.

[52] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer. The manybugs and introclass benchmarks
for automated repair of c programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, Dec 2015.

[53] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and
Herbert Bos. Dowsing for overflows: A guided fuzzer to find buffer

166

boundary violations. In Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 13), pages 49–64, 2013.

[54] Mark Harman and Phil McMinn. A theoretical and empirical study
of search-based testing: Local, global, and hybrid search. IEEE
Transactions on Software Engineering, 36(2):226–247, March 2010.

[55] Gerard J. Holzmann. The model checker spin. IEEE Trans. Softw.
Eng., 23(5):279–295, May 1997.

[56] Yue Jia. Hyperheuristic search for sbst. In 2015 IEEE/ACM 8th
International Workshop on Search-Based Software Testing, SBST’15,
pages 15–16, 2015.

[57] Yue Jia, M.B. Cohen, M. Harman, and J. Petke. Learning
combinatorial interaction test generation strategies using
hyperheuristic search. In IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 1 of ICSE’15, pages
540–550, 2015.

[58] Wei Jin and Alessandro Orso. Bugredux: Reproducing field failures
for in-house debugging. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 474–484.
IEEE Press, 2012.

[59] Wei Jin and Alessandro Orso. F3: Fault localization for field failures.
In Proceedings of the 2013 International Symposium on Software
Testing and Analysis, ISSTA 2013, pages 213–223, New York, NY,
USA, 2013. ACM.

[60] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella.
Generating valid grammar-based test inputs by means of genetic
programming and annotated grammars. Empirical Software
Engineering, pages 1–34, 2016.

[61] Su Yong Kim, Sungdeok Cha, and Doo-Hwan Bae. Automatic and
lightweight grammar generation for fuzz testing. Comput. Secur.,
36:1–11, July 2013.

[62] Sunghun Kim, Thomas Zimmermann, and Nachiappan Nagappan.
Crash graphs: An aggregated view of multiple crashes to improve
crash triage. In Proceedings of the 2011 IEEE/IFIP 41st
International Conference on Dependable Systems&Networks, DSN
’11, pages 486–493, Washington, DC, USA, 2011. IEEE Computer
Society.

[63] James C. King. Symbolic execution and program testing. Commun.
ACM, 19(7):385–394, July 1976.

167

[64] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien
Signoles, and Boris Yakobowski. Frama-c: A software analysis
perspective. Form. Asp. Comput., 27(3):573–609, May 2015.

[65] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. SCIENCE, 220(4598):671–680, 1983.

[66] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George
Candea. Efficient state merging in symbolic execution. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 193–204, 2012.

[67] Language. LLVM Compiler Infrastructure. http://llvm.org/.
Accessed: 2016-02-13.

[68] Eric Larson and Todd Austin. High coverage detection of input-
related security faults. In Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12, pages 9–9, 2003.

[69] Wei Le. Segmented symbolic analysis. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages
212–221, Piscataway, NJ, USA, 2013. IEEE Press.

[70] Zhiqiang Lin and Xiangyu Zhang. Deriving input syntactic structure
from execution. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
SIGSOFT ’08/FSE-16, pages 83–93, 2008.

[71] Link. AFL - Pulling Jpegs out of Thin Air, Michael
Zalewski. https://lcamtuf.blogspot.com/2014/11/

pulling-jpegs-out-of-thin-air.html, 2017. Accessed: 2016-03-
26.

[72] Link. AFL binary instrumentation. https://github.com/

vrtadmin/moflow/tree/master/afl-dyninst, 2017. Accessed:
2016-03-26.

[73] Link. Jenkins - Continuous Integration Platform. https://jenkins.
io/, 2017. Accessed: 2017-01-13.

[74] Link. Oss-fuzz - continuous fuzzing for open source software. https:
//github.com/google/oss-fuzz, 2017. Accessed: 2017-01-13.

[75] Link. Search engine for the internet of things – devices still vulnerable
to Heartbleed. https://www.shodan.io/report/89bnfUyJ, 2017.
Accessed: 2016-03-26.

[76] Link. Zzuf: multi-purpose fuzzer. http://caca.zoy.org/wiki/

zzuf, 2017. Accessed: 2017-01-13.

168

https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://jenkins.io/
https://jenkins.io/
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://www.shodan.io/report/89bnfUyJ
http://caca.zoy.org/wiki/zzuf
http://caca.zoy.org/wiki/zzuf

[77] Chao Liu and Jiawei Han. Failure proximity: A fault localization-
based approach. In Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pages 46–56, New York, NY, USA, 2006.
ACM.

[78] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan
Zhou. Bugbench: Benchmarks for evaluating bug detection tools.

[79] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. Pin: Building customized program analysis
tools with dynamic instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’05, pages 190–200, 2005.

[80] Kin-Keung Ma, Khoo Yit Phang, JeffreyS. Foster, and Michael Hicks.
Directed symbolic execution. In Eran Yahav, editor, Static Analysis,
volume 6887 of Lecture Notes in Computer Science, pages 95–111.
Springer Berlin Heidelberg, 2011.

[81] Paul Dan Marinescu and Cristian Cadar. Katch: High-coverage
testing of software patches. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 235–245. ACM, 2013.

[82] Phil McMinn. Search-based software test data generation: A survey:
Research articles. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[83] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical
study of the reliability of unix utilities. Commun. ACM, 33(12):32–
44, December 1990.

[84] Natwar Modani, Rajeev Gupta, Guy Lohman, Tanveer Syeda-
Mahmood, and Laurent Mignet. Automatically identifying known
software problems. In Proceedings of the 2007 IEEE 23rd
International Conference on Data Engineering Workshop, ICDEW
’07, pages 433–441, Washington, DC, USA, 2007. IEEE Computer
Society.

[85] David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th Conference on USENIX Security Symposium,
SSYM’09, pages 67–82, Berkeley, CA, USA, 2009. USENIX
Association.

[86] Brian S Pak. Hybrid fuzz testing: Discovering software bugs
via fuzzing and symbolic execution. PhD thesis, Carnegie Mellon
University Pittsburgh, PA, 2012.

169

[87] Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S.
Pǎsǎreanu. Differential symbolic execution. In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT ’08/FSE-16, pages 226–237, New
York, NY, USA, 2008. ACM.

[88] Van-Thuan Pham, Wei Boon Ng, Konstantin Rubinov, and Abhik
Roychoudhury. Hercules: Reproducing crashes in real-world
application binaries. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE ’15, pages
891–901, 2015.

[89] Andreas Podelski, Martin Schäf, and Thomas Wies. Classifying Bugs
with Interpolants, pages 151–168. Springer International Publishing,
Cham, 2016.

[90] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2013.

[91] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection
of duplicate defect reports using natural language processing.
In Proceedings of the 29th International Conference on Software
Engineering, ICSE ’07, pages 499–510, Washington, DC, USA, 2007.
IEEE Computer Society.

[92] Raimondas Sasnauskas, Olaf Landsiedel, Muhammad Hamad Alizai,
Carsten Weise, Stefan Kowalewski, and Klaus Wehrle. Kleenet:
Discovering insidious interaction bugs in wireless sensor networks
before deployment. In Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in Sensor
Networks, IPSN ’10, pages 186–196, New York, NY, USA, 2010.
ACM.

[93] Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song.
Flax: Systematic discovery of client-side validation vulnerabilities in
rich web applications, 2010.

[94] Prateek Saxena, Pongsin Poosankam, Stephen McCamant, and Dawn
Song. Loop-extended symbolic execution on binary programs. In
Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, pages 225–236, 2009.

[95] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. Bitblaze: A new approach to
computer security via binary analysis. In Proceedings of the 4th
International Conference on Information Systems Security, ICISS
’08, pages 1–25, Berlin, Heidelberg, 2008. Springer-Verlag.

170

[96] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS ’16, pages 1–16, 2016.

[97] Tool. LibPNG Library. http://www.libpng.org/pub/png/libpng.html.
Accessed: 2016-02-13.

[98] Tool. Qemu Emulator. http://wiki.qemu.org. Accessed: 2016-02-13.

[99] Tool. Video Lan Client (VLC). http://www.videolan.org/index.html.
Accessed: 2016-02-13.

[100] Andrs Vargha and Harold D. Delaney. A critique and improvement
of the ”cl” common language effect size statistics of mcgraw and
wong. Journal of Educational and Behavioral Statistics, 25(2):101–
132, 2000.

[101] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope:
A checksum-aware directed fuzzing tool for automatic software
vulnerability detection. In Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP ’10, pages 497–512, 2010.

[102] Xiaoyin Wang, Lingming Zhang, and Philip Tanofsky. Experience
report: How is dynamic symbolic execution different from manual
testing? a study on klee. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, pages
199–210, 2015.

[103] Website. The Heartbleed Bug. http://heartbleed.com/. Accessed:
2016-02-13.

[104] Joachim Wegener, Andre Baresel, and Harmen Sthamer.
Evolutionary test environment for automatic structural testing.
Information and Software Technology, 43(14):841 – 854, 2001.

[105] Xusheng Xiao, Sihan Li, Tao Xie, and N. Tillmann. Characteristic
studies of loop problems for structural test generation via symbolic
execution. In IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), pages 246–256, 2013.

[106] Xiaofei Xie, Bihuan Chen, Yang Liu, Wei Le, and Xiaohong
Li. Proteus: Computing disjunctive loop summary via path
dependency analysis. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
FSE 2016, pages 61–72, New York, NY, USA, 2016. ACM.

[107] Cristian Zamfir and George Candea. Execution synthesis: A
technique for automated software debugging. In Proceedings of the
5th European Conference on Computer Systems, EuroSys ’10, pages
321–334. ACM, 2010.

171

	Introduction
	Thesis Overview
	Thesis Organization

	Background
	Running Example
	Black-box Fuzzing
	White-box Fuzzing
	Symbolic Execution
	Symbolic Execution based White-box Fuzzing

	Coverage-based Grey-box Fuzzing

	Literature Review
	Enhancing Directedness in Fuzz Testing
	Improving Scalability of Symbolic Execution
	Hybrid Fuzz Testing
	Bucketing Failing Tests

	Directed Search in White-box Fuzzing
	Introduction
	Motivating Example
	Preprocessing and Generating Hybrid Symbolic Files
	Recovering Program Structure and Selecting Seed Files
	Generating Hybrid Symbolic Inputs

	Unsat-core Directed Search Strategy
	Replay
	Summarizing Crashing Module Symbolically
	Searching for a Crashing Path

	Tackling Limitations of Concolic Execution
	Synthesizing Crash Conditions for Loop-controlled Crashes
	Path Grouping in String Manipulation Functions

	Implementation
	CFG Refinement and Path Pruning Functionality
	Extensions of the S2E Core
	Analysis and Search Plugins

	Experimental Evaluation
	Experimental Setup
	Reproducing Crashes
	Comparing with the Baseline

	Chapter Summary

	Closed-loop Model-based Black-box and White-box Fuzzing for Program Binaries
	Introduction
	Motivating Example
	Exposing Vulnerabilities

	Model-based Black-box and White-box Fuzz Testing
	Directed Model-based Search
	Transplantation, Instantiation, and Repair
	Selective and Targeted Symbolic Execution
	Handling Incomplete Memory Modeling

	Implementation
	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Threats to Validity
	Chapter Summary

	Directed Coverage-based Grey-box Fuzz Testing
	Introduction
	Motivating Example
	Background
	Simulated Annealing
	Coverage-based Greybox Fuzzing

	Directed Greybox Fuzzing
	A Measure of Distance Between the Exercised Path and Multiple Targets
	Temperature-based Power Schedule

	Implementation
	All Program Analysis at Compile Time
	Efficient Search at Runtime

	Experimental Evaluation
	Experimental Setup
	Results and Analysis

	Threats to Validity
	Chapter Summary

	Bucketing Failing Tests via Symbolic Analysis
	Introduction
	Overview
	Reasons of Failure
	Clustering Framework
	Clustering Algorithm
	Clustering-aware Search Strategy
	Generalize Reasons for Failure

	Experimental Evaluation
	Results and Analysis
	User Study

	Chapter Summary

	Conclusion
	Thesis summary
	Future work

