
POST-MORTEM DYNAMIC ANALYSIS FOR

SOFTWARE DEBUGGING

WANG TAO

(B.Science, Fudan University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2007

ACKNOWLEDGEMENTS

There are lots of people whom I would like to thank for a variety of reasons. I sincerely

acknowledge all those whom I mention, and apology to anybody whom I might have

forgotten.

First of all, I am deeply grateful to my supervisor, Dr. Abhik Roychoudhury, for

his valuable advice and guidance. I sincerely thank him for introducing me to the

exciting area of automated software debugging. During the five years of my graduate

study, Dr. Abhik Roychoudhury has given me immense support both in academics

and life, and has helped me stay on the track of doing research.

I express my sincere thanks to Dr. Chin Wei Ngan and Dr. Dong Jin Song for

their valuable suggestions and comments on my research works. I would also like to

thank Dr. Satish Chandra for taking time out of his schedule and agreeing to be my

external examiner.

I have special thanks to my parents and family for their love and encouragement.

They have been very supportive and encouraging throughout my graduate studies.

I really appreciate the support and friendship from my fiends inside and outside the

university. I thank my friends Jing Cui, Liang Guo, Lei Ju, Yu Pan, Andrew Santosa,

Mihail Asavoae, Xianfeng Li, Shanshan Liu, Xiaoyan Yang, Dan Lin, Yunyan Wang

and Zhi Zhou to name a few.

I would like to thank the National University of Singapore for funding me with

research scholarship. My thanks also go to administrative staffs in School of Comput-

ing, National University of Singapore for their supports during my study. This work

presented in this thesis was partially supported by a research grant from the Agency

of Science, Technology and Research (A*STAR) under Public Sector Funding.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

SUMMARY . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Problem Definition . 1

1.2 Methods Developed . 2

1.3 Summary of Contributions . 7

1.4 Organization of the Thesis . 9

2 OVERVIEW . 10

2.1 Background . 10

2.1.1 Background on Dynamic Slicing 12

2.1.2 Background on Test Based Fault Localization 15

2.2 Dynamic Slicing . 16

2.2.1 Compact Trace Representation for Dynamic Slicing 19

2.2.2 From Dynamic Slicing to Relevant Slicing 20

2.2.3 Hierarchical Exploration of the Dynamic Slice 22

2.3 Test Based Fault Localization . 26

2.4 Remarks . 27

3 DYNAMIC SLICING ON JAVA BYTECODE TRACES 28

3.1 Compressed Bytecode Trace . 28

3.1.1 Overall representation . 29

3.1.2 Overview of SEQUITUR . 34

3.1.3 Capturing Contiguous Repeated Symbols in SEQUITUR . . 35

3.2 Techniques for Dynamic Slicing . 38

3.2.1 Core Algorithm . 39

iii

3.2.2 Backward Traversal of Trace without decompression 43

3.2.3 Computing Data Dependencies 47

3.2.4 Example . 50

3.2.5 Proof of Correctness and Complexity Analysis 53

3.3 Experimental evaluation . 55

3.3.1 Subject Programs . 56

3.3.2 Time and Space Efficiency of Trace Collection 57

3.3.3 Summary and Threats to Validity 61

3.4 Summary . 61

4 RELEVANT SLICING . 62

4.1 Background . 63

4.2 The Relevant Slice . 65

4.3 The Relevant Slicing Algorithm . 69

4.4 Experimental evaluation . 76

4.4.1 Sizes of Dynamic Slices and Relevant Slices 77

4.4.2 Time overheads . 79

4.4.3 Effect of points-to analysis 81

4.4.4 Summary and Threats to Validity 82

4.5 Summary . 82

5 HIERARCHICAL EXPLORATION OF THE DYNAMIC SLICE 83

5.1 Phases in an Execution Trace . 84

5.1.1 Phase Detection for Improving Performance 85

5.1.2 Program Phases for Debugging 89

5.2 Hierarchical Dynamic Slicing Algorithm 94

5.3 Experimental evaluation . 99

5.4 Summary . 104

6 TEST BASED FAULT LOCALIZATION 105

6.1 An Example . 106

iv

6.2 Measuring Difference between Execution Runs 108

6.3 Obtain the Successful Run . 113

6.3.1 Path Generation Algorithm 114

6.4 Experimental Setup . 123

6.4.1 Subject programs . 124

6.4.2 Evaluation framework . 125

6.4.3 Feasibility check . 127

6.4.4 The nearest neighbor method 128

6.5 Experimental Evaluation . 128

6.5.1 Locating the Bug . 129

6.5.2 Size of Bug Report . 131

6.5.3 Size of Successful Run Pool 132

6.5.4 Time Overheads . 134

6.5.5 Threats to Validity . 135

6.6 Summary . 136

7 RELATED WORK . 137

7.1 Program Slicing . 138

7.1.1 Efficient Tracing Schemes . 141

7.1.2 Relevant Slicing . 143

7.1.3 Hierarchical Exploration . 145

7.2 Test Based Fault Localization . 148

8 CONCLUSION . 152

8.1 Summary of the Thesis . 152

8.2 Future Work . 155

8.2.1 Future Extensions of our Slicing Tool 155

8.2.2 Other Research Directions 160

APPENDIX A — PROOFS AND ANALYSIS FOR DYNAMIC SLIC-
ING ALRITHM . 177

v

SUMMARY

With the development of computer hardware, modern software becomes more

and more complex, and it becomes more and more difficult to debug software. One

reason for this is that debugging usually involves too much programmers’ labor and

wisdom. Consequently, it is important to develop debugging approaches and tools

which can help programmers locate errors in software. In this thesis, we study the

state-of-art debugging techniques, and address the challenge to make these techniques

applicable for debugging realistic applications.

First, we study dynamic slicing, a well-known technique for program analysis, de-

bugging and understanding. Given a program P and input I, dynamic slicing finds

all program statements which directly/indirectly affect the values of some variables’

occurrences when P is executed with I. In this thesis, we develop a dynamic slicing

method for Java programs, and implement a slicing tool which has been publicly

released. Our technique proceeds by backwards traversal of the bytecode trace pro-

duced by an input I in a given program P . Since such traces can be huge, we use

results from data compression to compactly represent bytecode traces. We show how

dynamic slicing algorithms can directly traverse our compact bytecode traces without

resorting to costly decompression. We also extend our dynamic slicing algorithm to

perform “relevant slicing”. The resultant slices can be used to explain omission errors

that is, why some events did not happen during program execution.

Dynamic slicing reports the slice to the programmer. However, the reported slice

is often too large to be inspected by the programmer. We address this deficiency

by hierarchically applying dynamic slicing at various levels of granularity. The basic

observation is to divide a program execution trace into “phases”, with data/control

vi

dependencies inside each phase being suppressed. Only the inter-phase dependencies

are presented to the programmer. The programmer then zooms into one of these

phases which is further divided into sub-phases and analyzed.

Apart from dynamic slicing, we also study test based fault localization techniques,

which proceed by comparing a “failing” execution run (i.e. a run which exhibits an

unexpected behavior) with a “successful” run (i.e. a run which does not exhibit the

unexpected behavior). An issue here is how to generate or choose a “suitable” suc-

cessful run; this task is often left to the programmer. In this thesis, we propose a

control flow based difference metric for automating this step. The difference met-

ric takes into account the sequence of statement instances (and not just the set of

these instances) executed in the two runs, by locating branch instances with similar

contexts but different outcomes in the failing and the successful runs. Our method

automatically returns a successful program run which is close to the failing run in

terms of the difference metric, by either (a) constructing a feasible successful run, or

(b) choosing a successful run from a pool of available successful runs.

vii

LIST OF TABLES

3.1 Example: Trace tables for (a) method main() and (b) method foo()

of Figure 3.1 . 33

3.2 Example: Illustrate each stage of the dynamic slicing algorithm in
Figure 3.2. The column β shows bytecode occurrences in the trace
being analyzed. 51

3.3 Descriptions and input sizes of subject programs. 56

3.4 Execution characteristics of subject programs. 56

3.5 Compression efficiency of our bytecode traces. All sizes are in bytes. . 57

3.6 Comparing compression ratio of RLESe and SEQUITUR. 59

3.7 The number of times to check digram uniqueness property by RLESe
and SEQUITUR. 60

5.1 Descriptions of subject programs used to evaluate the effectiveness of
our hierarchical dynamic slicing approach for debugging. 100

5.2 Number of Programmer Interventions & Hierarchy Levels in Hierarchi-
cal Dynamic Slicing. 102

6.1 Order in which candidate execution runs are tried out for the failing
run 〈1, 3, 5, 6, 7, 10〉 in Figure 6.2. 115

6.2 Description of the Siemens suite. 125

6.3 Distribution of scores. 130

A.1 Operations in the RLESe algorithm 181

viii

LIST OF FIGURES

2.1 Example: A fragment from the Apache JMeter utility to explain dy-
namic slicing. 13

2.2 The Dynamic Dependence Graph (DDG) for the program in Figure
2.1 with input runningV ersion = false. 15

2.3 An example program fragment to explain test based fault localization. 16

2.4 An infrastructure for dynamic slicing of Java programs. 17

2.5 A fragment from the NanoXML utility to explain relevant slicing. . . 21

2.6 Example: A program with a long dynamic dependence chain. 24

2.7 Example: A program with inherent parallelism (several dynamic de-
pendence chains). 25

3.1 Example: A simple Java program, and its corresponding bytecodes. . 32

3.2 The dynamic slicing algorithm . 41

3.3 The algorithm to get the previous executed bytecode during backward
traversal of the execution trace. 43

3.4 Example: Extract operand sequence over RLESe representation with-
out decompression . 45

3.5 One step in the backward traversal of a RLESe sequence (represented
as DAG) without decompressing the sequence. 46

3.6 The algorithm to maintain the simulation stack op stack. 48

3.7 The algorithm to detect dynamic data dependencies for dynamic slicing 49

3.8 Example: Illustrate the op stack after each bytecode occurrence en-
countered during backward traversal 50

3.9 Time overheads of RLESe and SEQUITUR. The time unit is second. 58

4.1 Example: A “buggy” program fragment. 66

4.2 The EDDG for the program in Figure 4.1 with input a=2. 66

4.3 Example: compare our relevant slicing algorithm with Agrawal’s algo-
rithm. 67

4.4 The EDDG and SEDDG for the program in Figure 4.3. 68

4.5 Example: compare our relevant slicing algorithm with Gyimóthy’s al-
gorithm. 68

ix

4.6 The EDDG and AEDDG for the program in Figure 4.5. 69

4.7 The relevant slicing algorithm. 72

4.8 Detect potential dependencies for relevant slicing. 73

4.9 Detect dynamic data dependencies for relevant slicing. 74

4.10 Compare sizes of relevant slices with those of dynamic slices. 77

4.11 Compare sizes of relevant slices with those of dynamic slices. 78

4.12 Compare time overheads of relevant slicing with those of dynamic slicing. 79

4.13 Compare time overheads of relevant slicing with those of dynamic slicing. 80

5.1 (a) Manhattan distances. (b) Phase boundaries w.r.t. manhattan dis-
tances. (c) Phase boundaries generated by hierarchical dynamic slicing 86

5.2 (a) Manhattan distances. (b) Phase boundaries w.r.t. manhattan dis-
tances. (c) Phase boundaries generated by hierarchical dynamic slicing 87

5.3 Example: a program which simulates a database system. 90

5.4 Phases for the running example in Figure 5.3. Rectangles represent
phases. Dashed arrows represent inter-phase dynamic dependencies. . 91

5.5 Divide an execution H into phases for debugging. ∆loop (∆stmt) is a cer-
tain percentage of the number of loop iterations (statement instances). 92

5.6 The Hierarchical Dynamic Slicing algorithm. 95

5.7 The number of statement instances that a programmer has to examine
using the hierarchical dynamic slicing approach and the conventional
dynamic slicing approach. The figure is in log scale showing that our
hierarchical approach is often orders of magnitude better. 102

6.1 A program segment from the TCAS program. 106

6.2 A program segment. 109

6.3 Example to illustrate alignments and difference metrics. 110

6.4 Algorithm to generate a successful run from the failing run. 117

6.5 Explanation of algorithm in Figure 6.4. 119

6.6 Example: illustrate the score computation 126

6.7 Size of bug reports. 132

6.8 Impact of successful run pool-size. 134

6.9 Time overheads for our path generation method. 134

x

8.1 The algorithm to find the bytecodes which may be executed after each
finally block. 158

A.1 The RLESe compression algorithm 180

xi

CHAPTER 1

INTRODUCTION

In the last decades, computer software become more and more complex, and soft-

ware development becomes increasingly difficult. Many innovative concepts and tech-

niques, such as Object Oriented Programming (OOP), the Integrated Development

Environment (IDE), design pattern [35], have been proposed and used to ease the

tasks of software design and implementation. Unfortunately, almost any software

module of moderate size will contain bugs. This is not because programmers are

careless or irresponsible, but because humans have only limited ability to manage the

complexity of modern software.

1.1 Problem Definition

The task of software debugging is an extremely time-consuming and laborious phase

of software development. An introspective survey [41] on this topic mentions the fol-

lowing: “Even today, debugging remains very much of an art. Much of the computer

science community has largely ignored the debugging problem.. over 50 percent of

the problems resulted from the time and space chasm between symptom and root

cause or inadequate debugging tools.” So, we need automated tools to detect the

root cause from the observable error! Currently such tools are missing for real-life

programming languages like C, C++, Java.

In this thesis, we have tried to address both of these issues - (i) bridging the

chasm between software error cause and observable errors, and (ii) building automated

debugging tools to do so.

1

1.2 Methods Developed

Traditionally, when a programmer tries to locate the error in a program, he/she

typically repeats the following two steps until the error is found:

1. get clues and hypothesize a location in the program as the error.

2. confirm that the location is indeed the error.

Traditionally, the programmer has to manually perform both steps based on

his/her experience and understanding of the program, with little help from existing

debugging tools. This makes debugging difficult and time consuming. As a result, it

is important to develop new tools which can increase the degree of automation in the

task of debugging.

Over the last few decades, the research community has proposed many program

analysis techniques such as type systems, model checking and program slicing [59,

33, 43, 18, 107, 106, 49, 32, 60, 81] for the purpose of debugging. These techniques

automatically analyze the program behaviors and identify some potentially erroneous

statements. Instead of blindly searching through the program or the execution run,

the programmer can start debugging from these reported statements, which are likely

to be related to the real error. In other words, we could develop novel tools to

help programmers in the first step of debugging, i.e. identifying potential erroneous

locations in the program.

The second step of debugging, confirming the error, is typically left as a manual

step to the programmer. This is because, an important challenge in automating the

second step is to characterize the desired program behaviors. The typical approach

for describing correct program behaviors requires programmers to write specifications.

Unfortunately, many programmers are reluctant to provide such specifications.

Consequently, the core of (semi-) automatic debugging is to apply program anal-

ysis techniques to automatically identify potential erroneous statements of a buggy

2

program, so that we can Program analysis techniques are divided into two categories:

static and dynamic. Static analysis is usually performed on the source code without

actually executing programs; dynamic analysis is performed on the execution runs by

executing programs. In general, dynamic analysis is more useful for software debug-

ging than static analysis, because of the following three reasons:

• Static analysis considers all inputs of the program, but dynamic analysis only

considers one or a few inputs. Clearly, dynamic analysis naturally supports the

task of debugging via running the program with selected inputs.

• Due to the conservative nature of the auxiliary program analysis methods used

for debugging (such as points-to analysis), the bug-reports constructed by static

analysis based debugging methods are often very large. Most importantly, these

results often contain false positives, i.e. wrongly identify some program state-

ments as faulty.

• Some static analysis methods (such as model checking) proceed by constructing

the evidence (such as an execution run) which violates some given properties.

However, this contrasts with the typical debugging process, where the program-

mer has an execution run and tries to find the properties which the execution

violates.

In recent years, a number of dynamic analysis approaches [6, 57, 86, 20, 68, 42,

112, 105, 114, 118, 113, 16] have been proposed in order to ease the task of software

debugging. Among existing techniques, dynamic slicing [6, 57] is a well-known one

for software debugging and comprehension.

Dynamic slicing analyzes the execution run with unexpected behaviors, and re-

turns a dynamic slice. The dynamic slice includes the closure of dynamic control and

data dependencies from an “observable error”. Such a slice may capture the faulty

3

statements, with the explanation of the cause-effect relations between the faulty state-

ments and the “observable error” through dependencies. Roughly speaking, dynamic

slicing works as follows. Given a program P , an input I and an “observable error”,

dynamic slicing can be used to find out statements of P executed under input I which

can potentially be responsible for the error (via control or data flow). Typically, the

“observable error” is specified as a slicing criterion (l, v) — a variable v and the lo-

cation l of a statement instance in the execution. Thus, if the value of variable v at

location l is “unexpected”, we perform slicing w.r.t. the criterion (l, v). The resultant

slice can be inspected to explain the reason for the unexpected value.

Dynamic slicing has been studied for about two decades, and a lot of research

has been conducted in this area [4, 6, 7, 57, 58, 71, 51, 98, 102, 105, 104, 109]. In

this thesis, we present an infrastructure for dynamic slicing of Java programs. Our

method operates on bytecode traces. First, the bytecode stream corresponding to an

execution trace of a Java program for a given input is collected. We then perform

a backward traversal of the bytecode trace to compute dynamic data and control

dependencies on-the-fly. The slice is the closure of the dynamic control and data

dependencies detected.

Our dynamic slicing method/tool operates at the Java bytecode level, since the

slice computation may involve looking inside library methods and the source code of

libraries may not always be available. In addition, dynamic slicing always requires

run-time information of the execution run. It is easy to collect such information

by modifying a Java Virtual Machine, which operates at the bytecode level. The

resultant slice at the bytecode level can be easily translated back to the source code

level with the help of information available in Java class files.

The dynamic slicing technique is presented w.r.t. bytecodes for Java in this the-

sis. However, the general principles and methodology can also be applied to the

4

Common Language Infrastructure (CLI) for the Microsoft .NET Framework. Dur-

ing compilation of .NET programming languages, the source code is translated into

Common Intermediate Language(CIL) code, and the CIL is then executed by a vir-

tual machine. Because of the similarity between the bytecode for Java and the CIL

for .NET, the approaches in this thesis can be implemented in the CLI, and support

debugging multiple .NET programming languages, such as C#, Visual Basic .NET

and C++/CLI.

Based on the dynamic slicing infrastructure, we conduct research on dynamic

slicing. In particular, we find that previous research mainly focuses on the accuracy

of the slicing algorithm and the application of dynamic slicing. However, there remain

the following problems which have not been thoroughly studied.

• Trace Representation. Dynamic slicing methods typically involve traversal

of the execution trace. This traversal may be used to pre-compute a dynamic

dependence graph or the dynamic dependencies can be computed on demand

during trace traversal. The trace traversal can be performed either forwards or

backwards. Forward traversal based dynamic slicing method does not involve

storage of the trace, but it is not goal-directed (w.r.t. the slicing criterion).

On the other hand, backward traversal based dynamic slicing method is goal-

directed. However, the traces tend to be huge in practice; [116] reports experi-

ences in dynamic slicing programs like gcc and perl where the execution trace

runs into several hundred million instructions. It might be inefficient to perform

post-mortem analysis over such huge traces. Consequently, the representation

of execution traces is important for dynamic slicing. It is useful to develop a

compact representation for execution traces which capture both control flow

and memory reference information. This compact trace should be generated

on-the-fly during program execution. Other researchers have also conducted

research on the topic of lossless trace compression [27, 114]. We compare our

5

approach with these works in Chapter 7.

• Execution Omission Errors. Dynamic slicing tries to capture the faulty

statements by analyzing actual control/data dependencies between executed

statements. However, it does not consider “Execution Omission” errors, where

the execution of certain statements is wrongly omitted. Consequently, the dy-

namic slice may not include all statements which are responsible for the error,

and the slice may mislead the programmer. To fill this caveat, relevant slic-

ing was introduced in [7, 40]. However, previous relevant slicing algorithms

may either wrongly ignore some useful statements or include some unnecessary

statements, and they were not experimentally evaluated for real programs.

• Slice Comprehension. Traditionally, the dynamic slice, i.e. the result of

dynamic slicing, is reported as a flat set of statements to a programmer for

debugging and comprehension. Unfortunately, for most real programs, the dy-

namic slice is often too large for humans to inspect and comprehend. So, it is

important to either prune the dynamic slice or develop innovative tools to help

a programmer understand a large dynamic slice.

Dynamic slicing is a powerful debugging technique, by guiding a programmer to

systematically explore important dependencies to locate the error. However, dynamic

slicing is believed to be an expensive technique, because it requires collecting the entire

control flow and data flow of an execution. This has been validated in several research

reports [27, 104, 114, 115].

Recently, researchers have proposed test based fault localization techniques [22, 38,

51, 83, 86, 87, 39, 103, 110] for software debugging. These techniques often provide

cheap ways to analyze the program execution runs, and discover potentially erroneous

statements. Such heuristics sometimes work very well for debugging, by pinpointing

the error. When the heuristics are not useful, we can then turn to the general purpose

6

methods like dynamic slicing.

Test based fault localization techniques consider certain execution traces of the

buggy program itself as representative correct behaviors. These techniques proceed

by comparing the failing execution run with some successful run (a run which does not

demonstrate the error). The difference between the failing and successful execution

runs is likely to be related to the error. This is because, if we change all the differences

from the failing run, the failing run will become a successful run, and the observable

error will disappear.

A lot of research has been conducted in this topic. However, the following problem

has not been thoroughly studied.

• Availability of the Successful Run. Most of the research in this line of

work has focused on how to compare the successful and failing execution runs.

They exploit the successful run to find out points in the failing run which may

be responsible for the error and for each of those points which variables may be

responsible for the error. However, an issue here is the generation or selection of

a “suitable” successful run. This task is often left to the programmer. Clearly,

this will increase the programmer’s burden, and should be automated.

1.3 Summary of Contributions

In this thesis, we study dynamic analysis techniques for software debugging. Our goal

is to improve debugging tools with a higher degree of usability and automation. The

contributions of this thesis can be summarized as follows:

• In this thesis, we present an infrastructure for dynamic slicing of Java programs.

We have built a dynamic slicing tool JSlice based on this infrastructure, and

released this tool as open source software at http://jslice.sourceforge.

net/. To the best of our knowledge, ours is the first dynamic slicing tool for

7

Java programs. It supports Java program debugging via testing. Test cases

which fail can be further analyzed via dynamic slicing in JSlice, thereby aiding

the programmer to locate the error cause. Since October 2006, more than 80

users from more than 20 different countries have registered and used our tool.

Note that our software is open-source and not locked to a particular machine.

So, typically only one person from an organization might be registering with

us to obtain the open-source software. Our user-base includes (1) university

researchers (e.g. from CMU, King’s College, NTU), and (2) developers (e.g.

from Nokia, Agitar Software), and (3) industrial researchers (e.g. from IBM

Watson, NEC Research).

• This thesis presents a space efficient representation of the trace for a Java pro-

gram execution. This compressed trace is constructed on-the-fly during program

execution. The dynamic slicer then performs backward traversal of this com-

pressed trace directly to retrieve data/control dependencies. That is, slicing

does not involve costly trace decompression. In addition, the compressed trace

representation can be used to represent program traces for other post-mortem

analysis.

• We enhance our dynamic slicing algorithm to capture “Execution Omission”

errors via “relevant slicing” [7, 40], so that the resultant slice has less chance to

mislead the programmer for debugging. We show that our definition of relevant

slice is more accurate that previous ones [7, 40]. Our relevant slicing algorithm

also operates directly on the compressed bytecode traces, as our dynamic slicing

algorithm.

• We propose hierarchical dynamic slicing to help a programmer understand a

large dynamic slice. The human programmer is gradually exposed to a slice in

a hierarchical fashion, rather than having to inspect the large slice after it is

8

computed. The basic observation is to divide a program execution trace into

“phases”, with data/control dependencies inside each phase being suppressed.

Only the inter-phase dependencies are presented to the programmer. The pro-

grammer examines these inter-phase dependencies to find out the phase which

is responsible for the error. This phase is then further divided into sub-phases

and analyzed.

• We propose a control-flow based difference metric to compare execution runs

(i.e. data flow in the runs is not taken into account). We take the view that the

difference between two runs can be summarized by the sequence of comparable

branch statement instances which are evaluated differently in the two runs. This

difference metric is used to (a) generate a feasible successful run, or (b) choose

a suitable successful run from a pool of successful runs. The generated/chosen

successful run is close to, that is, has little difference with, the failing run. We

return the sequence of branch instances evaluated differently in the failing run

and the successful run as bug report.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. The next chapter presents an overview of

the approach taken in this thesis. Chapter 3 presents a dynamic slicing infrastructure

which works on a compact trace representation. Chapter 4 discusses the relevant

slicing, which extends dynamic slicing to capture execution omission errors. Chapter

5 explains how to guide a programmer hierarchically explore and understand a large

slice. Chapter 6 presents our test based fault localization technique which detects

the bug by comparing execution runs. Chapter 7 discusses the related works. The

conclusion and future work appear in Chapter 8.

9

CHAPTER 2

OVERVIEW

In this chapter, we provide the background in the area of software debugging, and

present an overview of the approaches taken in this thesis. First, we describe the

typical steps in the task of debugging, and show how these steps can be automated

by using dynamic slicing and test based fault localization techniques. Next, we present

an infrastructure for dynamic slicing of Java programs. Then we describe an overview

of the approaches which address existing challenges of dynamic slicing, and show how

these approaches are incorporated in the slicing infrastructure. Finally, we briefly

introduce the test based fault localization technique proposed in this thesis.

2.1 Background

Debugging is a difficult and time consuming task, because the erroneous statements

are usually far away from the location where some unexpected behavior is exhibited

and observed. That is, the erroneous statements often indirectly affect the observable

error. Now, let us assume that a program P is executed with a test input I, and

the program does not behave as it is supposed to. How does a developer identify the

erroneous statements in the program code?

Traditionally, the developer debugs a program by examining a series of program

states, where these states are generated by executing program P with input I. The

examination process continues until the developer finds a location l of the execution,

where the program state before l is correct but the program state after l is wrong.

The statements at the location l are indeed the buggy statements which should be

fixed.

10

However, the program execution typically generates a large number of states, and

each state consists of a lot of variables. It is impossible to manually examine all the

states for debugging. In practice, developers hypothesize some locations which are

likely to be the error, and only examine program states around these locations. In

general, the debugging process can be summarized as:

1. hypothesize a location l which is likely to be the error, according the developer’s

understanding of the program,

2. examine the states before/after l to determine whether the location l is indeed

the error.

During the debugging process, the two steps are repeated until the developer de-

tects the erroneous statements. The standard debugging tools (such as GDB) provide

breakpoints, traces and other facilities, so that the developer can easily examine the

program state (i.e. the second step in debugging). However, the developer has to

manually perform the first step.

Automated debugging techniques are proposed to increase the degree of automa-

tion in the first step of debugging, by automatically providing suspicious locations

to the developer. In this thesis, we discuss dynamic slicing and test based fault

localization techniques in this area.

Dynamic slicing detects the suspicious locations by analyzing the dependency

chains between the erroneous statements and the observable error. This is because,

the erroneous statements affect the observable error via control flow and/or data

flow. This is captured by dynamic control and/or data dependencies. In fact, when

a developer manually debugs, he/she will (manually) analyze the dependencies to

understand how the observable error is produced, thereby locating the real error.

Dynamic slicing automates this analysis, by computing the closure of the dynamic

control/data dependencies from the observable error. Statements which do not appear

11

in the dependency chains do not (transitively) affect the observable error. These

statements are unlikely to be responsible for the observable error, and the dynamic

slicing technique ignores these statements for inspection.

Static slicing can also be used for software debugging, by analyzing static con-

trol/data dependencies inside the program. However, we believe that dynamic slicing

is more suitable for the purpose of debugging. This is because, static slicing considers

all possible program inputs, and relies on auxiliary program analysis methods (such

as points-to analysis). Thus, static slices often contains more false positives than dy-

namic slices. Additionally, dynamic slicing focuses on a particular execution run (the

one in which an error is observed). This naturally supports the task of debugging via

running the program with selected inputs.

Test based fault localization techniques take another approach to detect the suspi-

cious locations. That is, these techniques compare the behaviors between failing runs

(i.e. execution runs with unexpected behaviors) and successful runs (i.e. execution

runs without unexpected behaviors). The difference diff is reported to the developer

as suspicious. This is because, through the comparison, we can deduce that the ap-

pearance of the behavior diff is correlated with the observable error, i.e. the behavior

diff appears/disappears at the same time with the observable error. Because of this

correlation, the difference diff might be helpful to locate the error.

Now, we use some real examples to explain how dynamic slicing and test based

fault localization techniques work.

2.1.1 Background on Dynamic Slicing

We first use an example to explain how dynamic slicing works for debugging. Figure

2.1 shows a simplified program fragment from the Apache JMeter utility [1]. There

is an error at line 7 of Figure 2.1, which should be savedV alue = "null". With

the input runningV ersion = false, the execution trace of the program fragment is

12

11, 22, 33, 74, 95. The trace is given as a sequence of line numbers. The superscript

here is used to differentiate multiple executions of the same line, although it is not

meaningful in this example.

1. void setRunningVersion (boolean runningV ersion) {
2. this.runningV ersion = runningV ersion;
3. if (runningV ersion) {
4. savedV alue = value;
5. }
6. else {
7. savedV alue = “”;
8. }
9. System.out.println(savedV alue);
10. }

Figure 2.1: Example: A fragment from the Apache JMeter utility to explain dynamic
slicing.

When the execution finishes, the programmer finds that the output of this pro-

gram is the empty string, and deems this as an error. He/She can then specify

< 95, savedV alue > as the slicing criterion, and perform dynamic slicing for debug-

ging. The resultant dynamic slice includes lines 1, 3, 7 and 9. Line 7 is included in

the dynamic slice, because its occurrence 74 defines the variable savedV alue, and di-

rectly affects the slicing criterion. Additionally, line 3 is included in the dynamic slice,

because its occurrence 33 decides whether 74 will be executed, and indirectly affects

the slicing criterion. Line 1 is also be included, since 33 is both dynamically control

and data dependent on 11. 33 is dynamically control dependent on 11 because line 1

represents the method head, and 33 is dynamically data dependent on 11 because of

the variable runningV ersion.

The statements in the dynamic slice explain how the incorrect value of variable

savedV alue is produced. Other statements, such as lines 2 and 4 in Figure 2.1, are

irrelevant to the computation of the observable error. So, the programmer can focus

on the dynamic slice to locate the error, instead of inspecting the code of the whole

program.

13

In general, the dynamic slice includes the closure of dynamic control and data

dependencies from the slicing criterion. The dynamic control and data dependencies

are defined as follows, where β represents an occurrence of the statement stmt(β).

Definition 2.1. Dynamic Control Dependency The statement occurrence β is

dynamically control dependent on an earlier statement occurrence β′ iff.

1. stmt(β) is statically control dependent1 on stmt(β′), and

2. @β′′ between β and β′ where stmt(β) is statically control dependent on stmt(β′′).

Definition 2.2. Dynamic Data Dependency The statement occurrence β is dy-

namically data dependent on an earlier statement occurrence β′ iff.

1. β uses a variable v, and

2. β′ defines the same variable v, and

3. the variable v is not defined by any statement occurrence between β and β′.

Formally, a dynamic slice can be defined using the Dynamic Dependence Graph

(DDG) [6]. The DDG captures dynamic control and data dependencies between

statement occurrences during program execution. Each node of the DDG represents

one particular occurrence of a statement; edges represent dynamic data and control

dependencies. As an example, Figure 2.2 shows the Dynamic Dependence Graph

(DDG) for the program in Figure 2.1 with input runningV ersion = false.

The dynamic slice is then defined as follows.

Definition 2.3. Dynamic Slice for a slicing criterion consists of all statements

whose occurrence nodes can be reached from the node(s) representing the slicing cri-

terion in the DDG.

1The static control dependence is defined in [31] according to the post-dominators over the control
flow graph.

14

Figure 2.2: The Dynamic Dependence Graph (DDG) for the program in Figure 2.1
with input runningV ersion = false.

The Dynamic Dependence Graph and the Dynamic Slice here are defined at the

level of statement. These definitions can be easily generalized to other forms of

program representation, such as Java bytecode.

2.1.2 Background on Test Based Fault Localization

We now use an example to explain how test based fault localization technique works

for debugging. The literature has proposed many approaches to compare different

characteristics of failing runs against successful runs.

In this thesis, we have proposed a difference metric to measure the “similarity”

between execution runs of a program for the purpose of debugging. The metric con-

siders branch instances with similar contexts but different outcomes in two execution

runs, because these branch instances may be related to the cause of error. When

these branch instances are evaluated differently from the failing run, certain faulty

statements may not be executed — leading to disappearance of the observable error

in the successful run.

Figure 2.3 shows a program fragment from a faulty version of replace program in

the Siemens benchmark suite [47, 89] — simplified here for illustration. There is a bug

15

in this program fragment, where the bug fix lies in strengthening the condition in line

3 to if ((m >= 0) && (lastm != m)). This piece of code changes all substrings s1

in string lin matching a pattern to another substring s2, where variable i represents

the index to the first un-processed character in string lin, variable m represents the

index to the end of a matched substring s1 in string lin, and variable lastm records

variable m in last loop iterations. At the ith iteration, if variable m is not changed

at line 2, line 3 is wrongly evaluated to true, and substring s2 is wrongly returned

as output, deemed by programmer as an observable “error”. The execution of the

ith iteration of this failing run πf could follow path 11, 22, 33, 44, 55, 76, 87, 98. In this

case, a successful run πs whose ith iteration follows path 11, 22, 33, 74, 85, 96 can be

useful for error localization. By comparing πf with πs, we see that only the branch at

line 3 is evaluated differently. Indeed this is the erroneous statement in this example,

and was pinpointed by our method in the experiment. For programs whose erroneous

statement is not a branch, we will report the nearest branch for locating the error.

1. while (lin[i] != ENDSTR) {
2. m =
3. if (m >= 0) {
4.
5. lastm = m;
6. }
7. if ((m == -1) || (m == i)) {
8.
9. i = i + 1;
10. }
11. else
12. i = m;
13. }
14.

Figure 2.3: An example program fragment to explain test based fault localization.

2.2 Dynamic Slicing

Dynamic slicing helps the developer systematically explore the dynamic dependencies

which are related to the observable error. In this section, we discuss a dynamic slicing

16

framework for Java programs, and briefly present the approaches taken in this thesis

to address three deficiencies of dynamic slicing.

Figure 2.4 presents our infrastructure for dynamic slicing of Java programs. The

infrastructure consists of two parts:

• a front end, which is the user interface,

• a back end, which collects traces and performs dynamic slicing.

GUI

Execute The Program Select

Java Virtual Machine

Instrument

Bytecode Trace Slicing Criterion

Dynamic Slicing

 Dynamic Slice (bytecode)

 Dynamic Slice

(source code level)

Transform

Java Class Files

Front End

Back End

Figure 2.4: An infrastructure for dynamic slicing of Java programs.

The programmer specifies the program input via the front end, and executes the

program on a Java Virtual Machine (JVM). The JVM instruments the execution of

the program, and collects the bytecode stream corresponding to the execution trace.

The programmer also specifies the observable error as the slicing criterion via the

front end. The criterion, together with the bytecode trace, is fed to the dynamic

slicing algorithm. The slicing algorithm then returns a dynamic slice at the level of

17

bytecode. Finally, the resultant slice is transformed to the source code level with the

help of information available in Java class files, and is reported to the programmer

via the GUI for comprehension and debugging.

Traditionally, dynamic slicing is performed w.r.t. a slicing criterion (l, v), where

l represents the location of a bytecode instance in the execution trace, and v is a

program variable. A dynamic slicing algorithm can proceed by forward or backward

exploration of an execution trace. Here we summarize a backwards slicing algorithm.

This algorithm is goal-directed (w.r.t. the slicing criterion), and relies on efficient

storage/traversal of the trace. During the trace traversal which starts from the byte-

code occurrence in the slicing criterion, a dynamic slicing algorithm maintains the

following quantities: (a) the dynamic slice ϕ, (b) a set of variables δ whose dynamic

data dependencies need to be explained, and (c) a set of bytecode instances γ whose

dynamic control dependencies need to be explained. Initially, we set the following ϕ

= γ = the bytecode instance at location l in trace, and δ = {v}.

Since a dynamic slice includes the closure of dynamic control and data depen-

dencies from the criterion, the algorithm performs the following two checks, for each

bytecode instance β encountered during the backward traversal. The algorithm ter-

minates when we reach the beginning of the trace.

check dynamic control dependencies. If any bytecode instance in γ is dynam-

ically control dependent on β, all statement instances which are dynamically control

dependent on β are removed from γ. Variables used by β are inserted into δ, and β

is inserted into ϕ and γ.

check dynamic data dependencies. Let vβ
def be the variable defined by β. If

vβ
def ∈ δ, it means that we have found the definition of vβ

def which the slicing algorithm

was looking for. So, vβ
def is removed from δ, and variables used by β are inserted into

δ. In addition, β is inserted into ϕ and γ.

Computing the dynamic data dependencies on bytecode traces is complicated due

18

to Java’s stack based architecture. The main problem is that partial results of a

computation are often stored in the Java Virtual Machine’s operand stack. This

results in implicit data dependencies between bytecodes involving data transfer via

the operand stack. For this reason, our backwards dynamic slicing algorithm performs

a “reverse” stack simulation while traversing the bytecode trace from the end.

When the dynamic slicing algorithm terminates, the resultant dynamic slice, i.e.

statements whose bytecode occurrences are included in the set ϕ, is reported back to

the programmer for inspection.

Dynamic slicing has been studied for about two decades, and it has been shown

that dynamic slicing is quite useful in debugging. However, there are still three

challenges which have not been thoroughly studied. They are:

1. Space efficient trace representation.

2. Enhance dynamic slicing to capture execution omission errors.

3. Guide the developer to effectively explore the dynamic slice.

In this thesis, we have proposed three approaches to address the above challenges,

as briefly discussed in the following.

2.2.1 Compact Trace Representation for Dynamic Slicing

In the dynamic slicing infrastructure presented in Figure 2.4, the bytecode trace is

very important, since it is the foundation of the dynamic slicing algorithm. However,

the bytecode trace tends to be huge for real programs. So, it is important to develop

space efficient representation of the trace.

Our method proceeds by on-the-fly construction of a compact bytecode trace

during program execution. The compactness of our trace representation is due to

several factors. First, bytecodes which do not correspond to memory access (i.e.

data transfer to and from the heap) or control transfer are not stored in the trace.

19

Operands used by these bytecodes are fixed and can be discovered from Java class

files. Secondly, the sequence of addresses used by each memory reference bytecode or

control transfer bytecode is stored separately. Since these sequences typically have

high repetition of patterns, we exploit such repetition to save space. We modify a well-

known lossless data compression algorithm called SEQUITUR [78] for this purpose.

This algorithm identifies repeated patterns in the sequence on-the-fly and stores them

hierarchically.

Generating compact bytecode traces during program execution constitutes the

first phase of our dynamic slicer. Furthermore, we want to traverse the compact

execution trace to retrieve control and data dependencies for slicing. This traversal

should be done without decompressing the trace. In other words, the program trace

should be collected, stored and analyzed for slicing – all in its compressed form.

This is achieved in our dynamic slicer which traverses the compact bytecode trace

and computes the data/control dependencies in compression domain. Since we store

the sequence of addresses used by each memory-reference/control-transfer bytecode

in compressed format, this involves marking the “visited” part of such an address

sequence without decompressing its representation.

2.2.2 From Dynamic Slicing to Relevant Slicing

The dynamic slicing algorithm is the core in the slicing infrastructure presented in

Figure 2.4. The slicing algorithm analyzes the bytecode trace, and returns a dynamic

slice. The dynamic slice may help debugging by focusing the programmer’s attention

on a part of the program. However, due to the limitation of the dynamic slicing

algorithm, there are certain difficulties in using dynamic slices for program debugging.

Traditionally, a dynamic slice only includes statements which have actual dynamic

control/data dependencies w.r.t. the observable error. Unfortunately, the erroneous

statement is not always included in the dynamic slice. Let us look at the example in

20

Figure 2.5 which is taken from the NanoXML utility [92]. There is an error at line 3,

which should be if (ch == ′&′).

1. ch = reader.read();
2. buf .append(ch);
3. if (ch == ′ ′) {
4. while (ch ! = ′;′) {
5. ch = reader.read();
6. buf .append(ch);
7. }
8. }
9. return buf ;

Figure 2.5: A fragment from the NanoXML utility to explain relevant slicing.

When the input reader is the string “&abc;”, the trace of the program fragment

follows lines 11, 22, 33, 94, where 11 means statement 1 is executed as the first statement

and so on. The resultant buf is “&”, which is deemed as error by the programmer.

If the programmer wants to use dynamic slicing to explain the error, the dynamic

slice only contains lines 1, 2 and 9, by considering the dynamic control and data

dependencies. Unfortunately, line 3, the actual bug, is excluded from the dynamic

slice.

In this example, the observable error arises from the execution of lines 4-6 being

wrongly omitted, which is caused by the incorrect condition at line 3. In fact, if we

change line 3, this may cause the predicate at line 3 to be evaluated differently; then

lines 4-6 will be executed and the value of buf at line 9 might be different. In other

words, dynamic slicing does not consider the effect of the unexecuted statements at

lines 4-6.

The notion of relevant slicing, an extension of dynamic slicing, fills this caveat.

Relevant slicing was introduced in [7, 40]. Besides dynamic control and data depen-

dencies, relevant slicing considers potential dependencies which capture the potential

effects of unexecuted paths of branch and method invocation statements. The relevant

slice includes more statements which, if changed, may change the “wrong” behaviors

21

w.r.t. the slicing criterion. In the example of Figure 2.5 with input reader =“&abc;”,

statement instance 94 is potentially dependent on execution of the branch at line 3

(33), because if the predicate at 33 is evaluated differently, the variable buf may be

re-defined and then used by 94. Thus, line 3 is included into the resultant relevant

slice.

Like dynamic slices, the relevant slices are also computed w.r.t. a particular

program execution (i.e. it only includes executed statements). In general, Dynamic

Slice ⊆ Relevant Slice ⊆ Static Slice.

In this thesis, we propose a relevant slicing algorithm, which operates on our com-

pact bytecode traces without the costly decompression. We compare our definition

of relevant slice against previous ones [7, 40], and show that ours is more accurate.

Additionally, we experimentally evaluate the performance of relevant slicing with re-

alistic programs. In our experiments, we show that the sizes of the relevant slices are

close to the sizes of the corresponding dynamic slices.

2.2.3 Hierarchical Exploration of the Dynamic Slice

Traditionally, the dynamic slice is reported to a programmer as a flat set of statements,

as shown in Figure 2.4. According to the experimental evaluation in literature [100,

118] and our own experience, the dynamic slices of real programs are often too large

for humans to inspect and comprehend. So, we either need to prune dynamic slices,

or need tools to help a programmer understand a large dynamic slice.

In this thesis, we take the second route. However, our method can be combined

with techniques for pruning a dynamic slice (such as [113]). We build a dynamic

slicing method where the human programmer is gradually exposed to a slice in a

hierarchical fashion, rather than having to inspect a very large slice after it is com-

puted. The key idea is simple — we systematically interleave the slice computation

and comprehension steps. Conventional works on slicing have only concentrated on

22

the computation of the slice, comprehension of the slice being left as a post-mortem

activity. In this thesis, we integrate the two activities in a synergistic fashion:

• Computation of the slice is guided (to a limited extent) by the human pro-

grammer so that very few control/data dependencies in a large slice need to be

explored and inspected.

• The programmer’s comprehension of the slice is greatly enhanced by the nature

of our slice computation which proceeds hierarchically. Thus, for programs with

long dependence chains, this allows the programmer to gradually zoom in to

selected dynamic dependencies.

To understand the potential benefits one can gain from our method, let us examine

the reasons which make the comprehension of dynamic slices difficult.

• Many programs have long dependence chains spanning across loops and func-

tion boundaries. These dependence chains are captured in the slice. How-

ever, the slice being a (flat) set of statements, much of the program structure

(loops/functions) is lost. This makes the slice hard to comprehend.

• Programs often also have a lot of inherent parallelism. So, a slice may capture

many different dependence chains.

We now discuss how hierarchical computation/exploration of slices can help pro-

grammers to comprehend large slices containing these two features — (a) long de-

pendence chains, and (b) many different dependence chains. Figure 2.6(a) shows an

example program with a long dependence chain. Consider an execution trace of the

program ...31, 42, 53, 64 — where lines 3,4,5,6 of Figure 2.6(a) are executed. Slicing

this execution trace w.r.t. the criterion (64, y) (i.e., the value of y at the occurrence

of line 6) yields a slice which contains lines 3, 4, 5, 6 as well as lines inside the body of

the functions f1, f2, f3. In other words, since the slice is a (flat) set of statements,

23

the program structure is lost in the slice. This structure is explicitly manifested

in Figure 2.6(b), where we show the dependence chain in a hierarchical fashion as

dashed arrows. In other words, the dependencies inside the functions f1, f2, f3 are

not shown. Here, a hierarchical exploration of the dependence chains will clearly

be less burdensome to the programmer. Thus, in Figure 2.6(b), by inspecting the

dependencies hierarchically, the programmer may find it necessary to inspect the de-

pendencies inside a specific function (say f2). As a result, we can avoid inspecting

the dependence chain(s) inside the other functions (in this case f1, f3).

Now, let us consider programs with many different dependence chains. Figure

2.7(a) shows a schematic program with several dependence chains, and hence sub-

stantial inherent parallelism. If the slicing criterion involves the value of y in line 6 —

we need to consider the dependencies between y and x3, y and x2, as well as, y and

x1. These three dependencies are shown via broken arrows in Figure 2.7(b). Again,

with the programmer’s intervention, we can rule out some of these dependencies for

exploration and inspection.

y

Main()

y

Line 6

x1

f1()

1 public static void main(String[] args) {

2 …

3 x1 = f1();

4 x2 = f2(x1);

5 x3 = f3(x2);

6 y = x3;

}

x2

f2()

x3

f3()

(a)

(b)

Figure 2.6: Example: A program with a long dynamic dependence chain.

In summary, our method works as follows. Given an execution trace (correspond-

ing to a program input) containing an observable behavior which is deemed as an

24

y

Main()

y

Line 6

x1

f1()

1 public static void main(String[] args) {

2 …

3 x1 = f1();

4 x2 = f2();

5 x3 = f3();

6 y = x1+x2+x3;

}

x2

f2()

x3

f3()

(a)

(b)

Figure 2.7: Example: A program with inherent parallelism (several dynamic depen-
dence chains).

“error” by the programmer, we divide the trace into phases. This division is typi-

cally done along loop/procedure/loop-iteration boundaries so that each phase corre-

sponds to a logical unit of program behavior. Only the inter-phase data and control

dependencies are presented to the programmer; the intra-phase dependencies are com-

pletely suppressed. The programmer then identifies a likely suspicious phase which

is then subjected to further investigation in a similar manner (dividing the phase

into sub-phases, computing dependencies across these sub-phases and so on). This

process continues until the error is identified. Of course, an underlying assumption

here is that the programmer will be able to identify the erroneous statement once this

statement is pinpointed to him/her.2

One may comment that such a hierarchical exploration of dynamic dependencies

involves programmer’s intervention, whereas conventional dynamic slicing is fully

automatic. Here we should note that, the process of error detection by using/exploring

a dynamic slice involves a huge manual effort; the manual effort in exploring the slice

simply happens after the computation of the slice. In our hierarchical method, we

2This assumption is rather standard in existing works on debugging (e.g., see the score computa-
tion by Renieris and Reiss [86], which forms the basis of experimentation in many fault localization
techniques [22, 39, 86]).

25

are interleaving the computation and comprehension of dynamic dependencies. As

in dynamic slicing, the computation of the dynamic dependencies is automatic in

our method; only the comprehension involves the programmer. Moreover, we are

gradually exposing the programmer to the complex chain(s) of program dependencies,

rather than all at once — thereby allowing better program comprehension.

2.3 Test Based Fault Localization

Dynamic slicing is believed to be a useful but heavy technique. In the past few years,

substantial research has been conducted on novel debugging techniques [22, 51, 83,

86, 87, 110]. These approaches compare the failing execution run (i.e. an execution

run with observable errors) with the successful execution run (i.e. an execution run

without observable errors). The difference may be related with the error, and is

reported to the programmer for inspecting. These fault localization techniques do

not require the entire control and data dependence information of the execution, and

are often cheaper than slicing.

Most of the research in this topic has focused on how to compare the successful

and failing execution runs. In this thesis, we present a control flow based difference

metric, and we show how to use this difference metric to (a) generate a successful

run, or (b) choose a successful run from a pool of successful runs.

Our approach for automatically generating a feasible successful run3 is based on

the notion of the difference metric. Given a failing run πf of program P , our approach

attempts to find a feasible successful run of P which is “similar” to πf . We feel

that, the successful executions which are “similar” to the failing execution run can

be more useful for fault localization, since the programmer may locate the error by

investigating the “small” difference between the failing run and the successful run.

3A feasible successful run is an execution run which is exercised by some program input and does
not exhibit the bug being localized.

26

The successful run is constructed from the failing run by toggling the outcomes of

some of the conditional branch instances in the failing run.

Another way to get the successful run is to choose a successful run from a given

pool for the comparison. Given a failing run πf and a pool of successful runs S, we

select the most similar successful run πs ∈ S in terms of the difference metric, and

generate a bug report by returning the difference between πf and πs. Because our

difference metric is based on the control flow, we only need to collect the path of

every execution run. This kind of tracing often incurs little overheads. For example,

[11] reports that the time overhead of their path collection approach is only 31% on

average for the SPEC95 benchmarks; while our experiments show that it often takes

200%-1000% of the execution time to trace both the control flow and the data flow

information.

2.4 Remarks

In this chapter, we describe the basic principles and approaches of software debugging,

and introduce existing techniques to automate the debugging process, i.e. dynamic

slicing and test based fault localization. We then illustrate the problems of existing

approaches and present our proposals to improve dynamic slicing and test based fault

localization.

27

CHAPTER 3

DYNAMIC SLICING ON JAVA BYTECODE

TRACES

In this chapter, we describe a dynamic slicing technique for Java programs. Our tech-

nique operates on compact bytecode traces. First, the bytecode trace corresponding

to an execution is collected. Since such traces can be huge, we use results from data

compression to compress the bytecode traces on-the-fly during the program execu-

tion. The major space savings in our method come from the optimized representation

of (a) data addresses used as operands by memory reference bytecodes, and (b) in-

struction addresses used as operands by control transfer bytecodes. We then present

a dynamic slicing algorithm. The slicing algorithm performs a backwards traversal

of the compressed program trace to compute data/control dependencies on-the-fly,

without resorting to costly decompression. The dynamic slice is updated as these

dependencies are encountered during trace traversal.

The rest of this chapter is organized as follows. The next section describes our

compressed representation of a Java bytecode stream. Section 3.2 presents our slicing

algorithm which proceeds by traversing the compact bytecode traces. Section 3.3

reports the space efficiency and time overheads of our compressed trace representation.

Section 3.4 concludes this chapter.

3.1 Compressed Bytecode Trace

We now discuss how to collect compact bytecode traces of Java programs on the

fly. This involves a discussion of the compaction scheme as well as the necessary

instrumentation. The compaction scheme used by us is exact, lossless and on-the-fly.

28

3.1.1 Overall representation

The simplest way to define a program trace is to treat it as a sequence of “instruc-

tions”. For Java programs, we view the trace as the sequence of executed bytecodes,

instead of program statements. This is because only bytecodes are available for Java

libraries, which are used by Java programs. Furthermore, collecting traces at the level

of bytecode has the flexibility in tracing/not tracing certain bytecodes. For example,

the getstatic bytecode loads the value of a static field. This bytecode does not need

tracing, because which static field to access is decided at compile-time, and can be

discovered from class files during post-mortem analysis.

However, representing a Java program trace as a bytecode sequence has its own

share of problems. In particular, it does not allow us to capture many of the rep-

etitions in the trace. Representation of the program trace as a single string loses

structure in several ways.

• The individual methods executed are not separated in the trace representation.

• Sequences of target addresses accessed by individual control transfer bytecodes

are not separated out. These sequences capture control flow and exhibit high

regularity (e.g. a loop branch repeats the same target many times).

• Similarly, sequences of addresses accessed by individual memory load/store

bytecodes are not separated out. Again these sequences show fair amount of

repetition (e.g. a read bytecode sweeping through an array).

In our representation, the compact trace of the whole program consists of trace

tables; one trace table is stored for each method. Method invocations are captured

by tracing bytecodes which invoke methods. The last executed bytecode w.r.t. the

entire execution is clearly marked. Within the trace table for a method, each row

maintains traces of a specific bytecode or of the exit of the method. Monitoring and

29

tracing every bytecode may incur too much time and space overheads. We monitor

only the following five kinds of bytecodes to collect the trace, where the first two are

necessary to capture data flow of the execution, and the last three are necessary to

capture control flow of the execution.

• Memory allocation bytecodes. Memory allocation bytecodes record the identities

of created objects.

• Memory access bytecodes. The bytecodes to access local variables and static

fields are not traced since the addresses accessed by these bytecodes can be ob-

tained from the class file. For bytecodes accessing object fields / array elements,

we trace the addresses (or identities since an address may be used by different

variables in the lifetime of a program execution) corresponding to the bytecode

operands.

• Method invocation bytecodes. Java programs use four kinds of bytecodes to

invoke methods. Two of them, invokevirtual and invokeinterface, may in-

voke different methods on different execution instances. These invoked methods

have the same method name and parameter descriptor (which can be discovered

in class files), but they belong to different classes. So, for every invokevirtual

and invokeinterface bytecode, we record the classes which the invoked meth-

ods belong to.

• Bytecodes with multiple predecessors. Some bytecodes have multiple predeces-

sors in the control flow graph. For such a bytecode, we record which bytecodes

are executed immediately before itself.

• Method return bytecodes. If a method has multiple return bytecodes, the trace

of the method-exit records which return bytecodes are executed.

30

Monitoring the last two kinds of bytecodes (bytecodes with multiple predecessors

and method return bytecodes) and marking the last executed bytecode are required

due to backward traversal of the trace during post-mortem analysis. On the other

hand, if slicing proceeds by forward traversal of the trace, it is not necessary to

monitor bytecodes with multiple predecessors and method return bytecodes. Instead,

for each conditional branch bytecode we can record which bytecodes are executed

immediately after the branch bytecode (i.e., the target addresses).

As mentioned earlier, our trace representation captures each method’s execution

in the trace as a trace table. Each row of the trace table for a method m represents

the execution of one of the bytecodes of m (in fact it has to be a bytecode which

we trace). A row of a trace table thus captures all execution instances of a specific

bytecode. The row corresponding to a bytecode b in method m stores the sequence

of values taken by each operand of b during execution; if b has multiple predecessors,

we also maintain a sequence of the predecessor bytecode of b. Thus, in each row

of a trace table we store several sequences in general; these sequences are stored in

a compressed format. Separating the sequence of values for each bytecode operand

allows a compression algorithm to capture and exploit regularity and repetition in

the values taken by an operand. This can be due to regularity of control or data flow

(e.g., a read bytecode sweeping through an array or a loop iterating many times).

Before presenting how to compress trace sequences, let us look at an example to

understand the trace table representation. Note that sequences are not compressed

in this example for ease of understanding.

Example The left part of Figure 3.1 presents a simple Java program, and the right

part shows the corresponding bytecode stream. Table 3.1 shows the trace tables for

methods main and foo, respectively. The constructor method Demo has no trace table,

because no bytecode of this method is traced. Each row in the trace table consists of:

31

1: class Demo{

2:

3: public int foo(int j){

4: int ret;

5: if (j % 2 == 1)

6: ret= 2;

7: else

8: ret= 5;

9: return ret;

10: }

11:

12: static public void main (String argvs[]){

13: int i, k, a, b;

14: Demo obj= new Demo();

15: int arr[]= new int[4];

16:

17: a=2;

18: b=1;

19: k=1;

20: if (a>1){

21: if (b>1){

22: k=2;

23: }

24: }

25

26: for (i=0; i < 4; i++){

27: arr[i]=k;

28: k= k + obj.foo(i);

29: }

30:

31: System.out.println(k);

32: }

33: }

public static void main(String[]);

 1: new Class Demo

 2: dup

 3: invokespecial Demo()

 4: astore 5

 5: iconst_4

 6: newarray int

 7: astore 6

 8: iconst_2

 9: istore_3

 10: iconst_1

 11: istore 4

 12: iconst_1

 13: istore_2

 14: iload_3

 15: iconst_1

 16: if_icmple 22

 17: iload 4

 18: iconst_1

 19: if_icmple 22

 20: iconst_2

 21: istore_2

 22: iconst_0

 23: istore_1

 24: iload_1

 25: iconst_4

 26: if_icmpge 39

 27: aload 6

 28: iload_1

 29: iload_2

 30: iastore

 31: iload_2

 32: aload 5

 33: iload_1

 34: invokevirtual foo:(int)

 35: iadd

 36: istore_2

 37: iinc 1, 1

 38: goto 24

 39: getstatic

 40: iload_2

 41: invokevirtual println:(int)

 42: return

Demo();

 43: aload_0

 44: invokespecial Object()

 45: return

public int foo(int);

 46: iload_1

 47: iconst_2

 48: irem

 49: iconst_1

 50: if_icmpne 54

 51: iconst_2

 52: istore_2

 53: goto 56

 54: iconst_5

 55: istore_2

 56: iload_2

 57: ireturn

Figure 3.1: Example: A simple Java program, and its corresponding bytecodes.

(a) the id/address for a bytecode (in the Bytecode column), and (b) collected traces

for that bytecode (in the Sequences column).

For our example Java program, there are 57 bytecodes altogether, and only 8 of

them are traced, as shown in Table 3.1. Bytecodes 1 and 6 (i.e. two new statements

at lines 14 and 15 of the source program) allocate memory for objects, and their

traces include o1 and o2, which represent identities of the objects allocated by these

bytecodes. Bytecode 30 defines an element of an array (i.e. define arr[i] at line 27 of

the source program). Note that for this iastore bytecode, two sequences are stored.

These sequences correspond to the two operands of the bytecode, namely: identities

of accessed array objects (i.e. 〈o2, o2, o2, o2〉) and indices of accessed array element

(i.e. 〈0, 1, 2, 3〉). Both sequences consist of four elements, because bytecode 30 is

executed four times and accesses o2[0], o2[1], o2[2], o2[3] respectively; each element in a

sequence records one operand for one execution of bytecode 30. Bytecodes 34 and 41

32

Bytecode Sequences
1 〈o1〉
6 〈o2〉
22 〈19〉
24 〈23, 38, 38, 38, 38〉
30 〈o2, o2, o2, o2〉

〈0, 1, 2, 3〉
34 〈CDemo, CDemo, CDemo, CDemo〉
41 〈Cout〉

Bytecode Sequences
56 〈55, 53, 55, 53〉

(a) (b)

Table 3.1: Example: Trace tables for (a) method main() and (b) method foo() of
Figure 3.1

invoke virtual methods; the operand sequences record classes which invoked methods

belong to, where CDemo represents class Demo and Cout represents the standard output

stream class. Bytecodes 22, 24 and 56 have multiple predecessors in the control flow

graph. For example, bytecode 56 (i.e. return ret at line 9 of the source program)

has two predecessors: bytecode 53 (i.e. after ret=2 at line 6 of the source program)

and bytecode 55 (i.e. ret=5 at line 8 of the source program). The sequence recorded

for bytecode 56 (see Table 3.1(b)) captures bytecodes executed immediately before

bytecode 56, which consists of bytecodes 55 and 53 in this example. Note that every

method in our example program has only one return bytecode, so no return bytecode

is monitored and no trace of the method-exit is collected.

Clearly, different invocations of a method within a program execution can result

in different traces. The difference in two executions of a method results from different

operands of bytecodes within the method. These different traces are all stored im-

plicitly via the sequences of operands used by the traced bytecodes. As an example,

consider the trace table of method foo shown in Table 3.1(b). The different traces of

foo result from the different outcomes of its only conditional branch, which is cap-

tured by the trace sequence for predecessors of bytecode 56 in Figure 3.1, as shown

in Table 3.1(b).

33

3.1.2 Overview of SEQUITUR

So far, we have described how the bytecode operand sequences representing control

flow, data flow, or dynamic call graph are separated in an execution trace. We

now employ a lossless compression scheme to exploit the regularity and repetition of

these sequences. Our technique is an extension of the SEQUITUR, a lossless data

compression algorithm [78] which has been used to represent control flow information

in program traces [63]. First we briefly describe SEQUITUR.

The SEQUITUR algorithm represents a finite sequence σ as a context free gram-

mar whose language is the singleton set {σ}. It reads symbols one-by-one from the

input sequence and restructures the rules of the grammar to maintain the following

invariants: (A) no pair of adjacent symbols appear more than once in the grammar,

and (B) every rule (except the rule defining the start symbol) is used more than

once. To intuitively understand the algorithm, we briefly describe how it works on a

sequence 123123. As usual, we use capital letters to denote non-terminal symbols.

After reading the first four symbols of the sequence 123123, the grammar consists

of the single production rule

S → 1, 2, 3, 1

where S is the start symbol. On reading the fifth symbol, it becomes

S → 1, 2, 3, 1, 2

Since the adjacent symbols 1, 2 appear twice in this rule (violating the first invariant),

SEQUITUR introduces a non-terminal A to get

S → A, 3, A A → 1, 2

Note that here the rule defining non-terminal A is used twice. Finally, on reading the

last symbol of the sequence 123123 the above grammar becomes

S → A, 3, A, 3 A → 1, 2

34

This grammar needs to be restructured since the symbols A, 3 appear twice. SE-

QUITUR introduces another non-terminal to solve the problem. We get the rules

S → B, B B → A, 3 A → 1, 2

However, now the rule defining non-terminal A is used only once. So, this rule is

eliminated to produce the final result.

S → B, B B → 1, 2, 3

Note that the above grammar accepts only the sequence 123123.

3.1.3 Capturing Contiguous Repeated Symbols in SEQUITUR

One drawback of SEQUITUR is that it cannot efficiently represent contiguous re-

peated symbols, including both terminal and non-terminal symbols. However, con-

tiguous repeated symbols are not uncommon in program traces. Consider the example

in Figure 3.1. Bytecode 24 (i.e. i<4 at line 26 of the source program in Figure 3.1)

has two predecessors: bytecode 23 (i.e. i=0 at line 26 of the source program in Figure

3.1) and bytecode 38 (after i++ at line 26 of the source program in Figure 3.1). The

for loop is iterated four times, so the predecessor sequence for bytecode 24 is: 〈 23,

38, 38, 38, 38 〉 as shown in Table 3.1(a). To represent this sequence, SEQUITUR

will produce the following rules:

S → 23, A,A A → 38, 38

In general, if the for loop is iterated k times, SEQUITUR needs O(lgk) rules in this

fashion. To exploit such contiguous occurrences in the sequence representation, we

propose the Run-Length Encoded SEQUITUR (RLESe).

RLESe constructs a context free grammar to represent a sequence on the fly;

this contrasts with the work of [85] which modifies the SEQUITUR grammar post-

mortem. The right side of each rule is a sequence of “nodes”. Each node 〈sym : n〉

35

consists of a symbol sym and a counter n (i.e. run length), representing n contiguous

occurrences of sym. RLESe can exploit contiguous repeated symbols, and represent

the above trace sequence 〈 23, 38, 38, 38, 38 〉 of bytecode 24 using the following one

rule:

S → 23 : 1, 38 : 4

The RLESe algorithm constructs a context free grammar by reading from the input

sequence symbol by symbol. On reading a symbol sym, a node 〈sym : 1〉 is appended

to the end of the start rule, and grammar rules are re-structured by preserving fol-

lowing three properties. The first property is unique to RLESe, resulting from its

maintenance of contiguous occurrences of grammar nodes. The second and third

properties are taken (and modified) from SEQUITUR.

1. No contiguous repeated symbols property. This property states that each pair

of adjacent nodes contains different symbols. Continuous repeated symbols will

be encoded within the run-length.

2. Digram uniqueness property. This property means that no similar digrams

appear in resulting grammar rules. Here a digram refers to two consecutive

nodes on the right side of a grammar rule. Two digrams are similar if their nodes

contain the same pair of symbols e.g. 〈a : 2, X : 2〉 is similar to 〈a : 3, X : 4〉,

but 〈a : 3, X : 2〉 is not similar to 〈X : 2, a : 3〉.

3. Rule utility property. This rule states that every rule (except the start rule S)

is referenced more than once. When a rule is referenced by only one node and

the run length n of that node equals 1, the reference will be replaced with the

right hand side of this rule.

To maintain the digram uniqueness property in RLESe, we might need to split

nodes during grammar construction. This split operation allows the algorithm to

36

obtain duplicated identical digrams, and represent them by one grammar rule for

potential space saving. Two digrams are identical if they have the same pairs of

symbols and counters. For example, digram 〈a : 2, X : 2〉 is identical to 〈a : 2, X : 2〉,

but digram 〈a : 2, X : 2〉 is not identical to 〈a : 3, X : 4〉.

Given two similar digrams 〈sym1 : n1, sym2 : n2〉, and 〈sym1 : n′
1, sym2 : n′

2〉, we

can split at most two nodes to obtain two occurrences of 〈sym1 : min(n1, n
′
1), sym2 :

min(n2, n
′
2)〉, where min(n1, n

′
1) denotes the minimum of n1 and n′

1. Consider byte-

code 24 of Figure 3.1, which corresponds to the termination condition i<4 of loop

at line 26 of the source program. Assume that in some execution, such a loop is

executed twice, one time with 6 iterations, and another time with 8 iteration. Recall

that bytecode 24 has two predecessors: bytecode 23 (corresponding to i=0 of the

source program in Figure 3.1) and bytecode 38 (after i++ of the source program in

Figure 3.1). The predecessor sequence for bytecode 24 is:

S → 23 : 1, 38 : 6, 23 : 1, 38 : 8

To ensure digram uniqueness property, we will split the node 〈38 : 8〉 to a digram

〈38 : 6, 38 : 2〉. This is to remove duplicate occurrences of similar digrams as:

S → A : 2, 38 : 2 A → 23 : 1, 38 : 6

The split operation introduces more nodes (at most two) into the grammar, but may

save space when the identical digram appears frequently in the sequence.

In addition to the run-length encoding performed in RLESe, we also need to

modify the terminal symbols fed into RLESe algorithm. In particular, we need to

employ “difference representations” in memory reference sequences. For example, the

sequence 〈0, 1, 2, 3〉 in Table 3.1(a), which represents the indices of the array elements

defined by bytecode 30 in Figure 3.1, cannot be compressed. By converting it into its

difference representation as 〈0, 1, 1, 1〉, we can can represent the sequence as

S → 0 : 1, 1 : 3

37

As with SEQUITUR [78], the RLESe compression algorithm is linear in both space

and time, assuming that it takes constant time to find similar digrams. Detailed

space/time complexity analysis of the RLESe compression scheme is presented in

Appendix A.1. Experiments comparing RLESe with SEQUITUR (refer Section 3.3)

show that RLESe can often achieve competitive compression ratio in less time. This

is because RLESe can postpone re-constructing the grammar so the grammar rules

are re-constructed less frequently. That is, on reading a symbol sym from input,

instead of appending node 〈sym : 1〉 and re-constructing the grammar immediately,

the RLESe algorithm first compares sym against the last node 〈sym′ : n〉 of the start

rule. If sym is the same as sym′, the node 〈sym′ : n〉 is updated to 〈sym′ : n + 1〉

and the grammar is not further re-constructed. If not, node 〈sym : 1〉 is appended

to the end of the start rule, and the grammar is re-structured so as to preserve the

three properties of RLESe.

3.2 Techniques for Dynamic Slicing

In this section, we focus on how to perform dynamic slicing of Java programs. Our

dynamic slicing algorithm operates on the compact bytecode traces described in the

last section. Dynamic slicing is performed w.r.t. a slicing criterion (H, α, V), where

H is an execution trace, α represents some bytecodes the programmer is interested

in, and V is a set of variables referenced at these bytecodes. The dynamic slice

contains all bytecodes which have affected values of variables in V referenced at last

occurrences of α in the execution trace H.

Often, the user understands a Java program at the statement level. Thus, the

user-defined criterion is often of the form (I, l, V), where I is an input, and l is a

line number of the source program; the user is interested in statements (instead of

bytecodes) which have affected values of variables in V referenced at last occurrences

of statements at l during the execution with input I. This form is a little different

38

from our bytecode based slicing criterion (H, α, V). In this case, program execution

with input I produces the trace H, and α represents the bytecodes corresponding

to statements at l. The user is interested in statements corresponding to bytecodes

included in the dynamic slice. In order to map bytecodes to a line number of the

source file and vice versa, we use the LineNumberTable attribute in a Java’s class file

[70] which describes such a map.

The dynamic slice includes the closure of dynamic control and data dependencies

from the slicing criterion. A dynamic slice can be defined over Dynamic Dependence

Graph (DDG) [6], and dynamic slice consists of all bytecodes whose occurrence nodes

can be reached from the node(s) representing the slicing criterion in the DDG, as

defined in Definition 2.3. We can construct the DDG as well as the dynamic slice

during a backwards traversal of the execution trace.

3.2.1 Core Algorithm

Figure 3.2 presents an inter-procedural dynamic slicing algorithm, which returns the

dynamic slice defined in Definition 2.3. Before slicing, we pre-compute the static

control flow graph for the program. In addition, we pre-compute the control depen-

dence graph [31], where each node in the graph represents one bytecode, and an edge

from node υ to υ′ represents that bytecode of υ′ decides whether bytecode of υ will

be executed. This static control dependence graph is used at lines 22 and 23 of the

algorithm in Figure 3.2 to detect dynamic control dependencies.

Lines 1-5 of Figure 3.2 introduce five global variables for the slicing algorithm,

including the slicing criterion. During dynamic slicing, we maintain δ, a list of vari-

ables whose values need to be explained, ϕ, the set of bytecode occurrences which

have affected the slicing criterion, op stack, a operand stack for simulation (see Sec-

tion 3.2.3), and fram, a stack of frames for method invocations. The dynamic slice

includes all bytecodes whose occurrences appear in ϕ at the end of the algorithm. For

39

every method invocation during trace collection, we create a frame for this invocation

during slicing. Each frame contains the method name and a γ set; the γ set includes

bytecode occurrences β, where (a) β belongs to this method invocation, and (2) the

dynamic control dependencies w.r.t. β need to be explained.

Initially we will set δ, ϕ, op stack, and fram to empty. However, if the program

had been aborted in the middle of an execution, the call stack fram is initialized

differently. In this case, our tracing will record the call stack at the point of abort,

call it stkabort. Our dynamic slicing algorithm then initializes fram to stkabort and

proceeds by backward traversal of the execution trace.

Our slicing algorithm traverses the program’s execution trace backwards, starting

from the last executed bytecode recorded in the trace H. For each occurrence β of

bytecode bβ (i.e. β represents one execution of the bytecode bβ) encountered during

the backward traversal for slicing, a frame is created and pushed to fram whenever bβ

is a return bytecode (lines 9-12 of Figure 3.2). The γ set of the new frame is initialized

to empty (line 11 of Figure 3.2), since no bytecode occurrence for this method invo-

cation has been traversed. If bβ is a method invocation bytecode, a frame is popped

from fram (lines 13-16 of Figure 3.2). The dynamic slicing algorithm checks whether

the encountered bytecode occurrence β has affected the slicing criterion during trace

collection, at lines 19-31 of Figure 3.2. In particular, line 19 of Figure 3.2 checks if

β is the slicing criterion. Line 22 of Figure 3.2 checks dynamic control dependencies

when bβ is a control transfer bytecode. The method computeControlDependence(bβ,

curr fram, last fram) returns true iff. any bytecode occurrence included in the dy-

namic slice is dynamically control dependent on β, where curr fram is the top of

the stack fram, and last fram captures the frame popped from fram (whenever bβ is

a method invocation bytecode). More specifically, the computeControlDependence

method returns true iff.

40

1 (H,α, V)= the slicing criterion
2 δ= ∅, a set of variables whose values need to be explained
3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion
4 op stack= empty, the operand stack for simulation
5 fram= empty, the frames of the program execution

6 dynamicSlicing()
7 bβ = get last executed bytecode from H;
8 while (bβ is defined)
9 if (bβ is a return bytecode)
10 new fram= createFrame();
11 new fram.γ= ∅;
12 push(fram, new fram);
13 if (bβ is a method invocation bytecode)
14 last fram = pop(fram);
15 else
16 last fram = null ;
17 β = current occurrence of bytecode bβ ;
18 curr fram = the top of fram;
19 if (β is the last occurrence of bβ in H, and bβ ∈ α)
20 use vars = V ∩ variables used at β;
21 ϕ = ϕ ∪ {β};
22 if (computeControlDependence(bβ , curr fram, last fram))
23 BC= {β′ | β′ ∈ curr fram.γ and β′ is dynamically control dependent on β};
24 curr fram.γ = curr fram.γ − BC ;
25 use vars = variables used at β;
26 ϕ = ϕ ∪ {β};
27 if (computeDataDependence(β, bβ))
28 def vars = variables defined at β;
29 δ = δ − def vars;
30 use vars = variables used at β;
31 ϕ = ϕ ∪ {β};
32 if (β ∈ ϕ)
33 curr fram.γ = curr fram.γ ∪ {β};
34 δ = δ ∪ use vars;
35 updateOpStack(β, bβ);
36 bβ = getPrevBytecode(β, bβ);
37 return bytecodes whose occurrences appear in ϕ;

Figure 3.2: The dynamic slicing algorithm

41

• bβ is a conditional branch bytecode, and some bytecode whose occurrence ap-

pears in curr fram.γ is statically control dependent on bβ (intra-procedural

control dependence check), or

• bβ is method invocation bytecode, and the last fram.γ set is not empty, that is

some of the bytecode occurrences in the method body are included in the slice

(inter-procedural control dependence check).

Bytecode occurrences which are dynamically control dependent on β are then

removed from curr fram.γ at line 24 of Figure 3.2, because their dynamic control

dependencies have just been explained. Line 27 of Figure 3.2 checks dynamic data

dependencies. When the algorithm finds that the bytecode occurrence β has affected

the slicing criterion (i.e. any of the three checks in lines 19, 22 and 27 of the algorithm

in Figure 3.2 succeeds), β is included into curr fram.γ and used variables are included

into δ (at lines 32-34 of Figure 3.2), in order to find bytecode occurrences which have

affected β and hence the slicing criterion. The simulation operand stack op stack

is also properly updated at line 35 for further check of data dependencies (this is

explained in Section 3.2.3). The dynamic control and data dependencies checks (lines

22 and 27 of Figure 3.2) can be reordered, since they are independent of each other.

In the rest of this section, we elaborate on the underlying subtle issues in using the

slicing framework of Figure 3.2. Section 3.2.2 presents how to traverse the execution

backwards without decompressing the compact bytecode trace. Section 3.2.3 explains

the intricacies of our dynamic data dependence computation in presence of Java’s

stack based execution. Section 3.2.4 illustrates the dynamic slicing algorithm with

an example and Section 3.2.5 shows the correctness and cost of our dynamic slicing

algorithm.

42

1 getPrevBytecode (β: bytecode occurrence, bβ : bytecode)

2 if (bβ has exactly one predecessor in the control flow graph)
3 blast= the predecessor bytecode;
4 else
5 G= compressed control flow operand sequence for bβ in the compact bytecode trace H
6 π= a root-to-leaf path for G;
7 blast= getLast(G, π);
8 if (blast is a method invocation bytecode)
9 meth= the method invoked by β;
10 if (meth has exactly one return bytecode)
11 return the return bytecode;
12 else
13 G′= compressed operand sequence for exit of meth in trace H
14 π′= a root-to-leaf path for G′;
15 return getLast(G′, π′);
16 if (blast represents the start of a method)
17 return the bytecode which invokes current method;
18 return blast;

Figure 3.3: The algorithm to get the previous executed bytecode during backward
traversal of the execution trace.

3.2.2 Backward Traversal of Trace without decompression

The dynamic slicing algorithm in Figure 3.2 traverses the program execution back-

wards, starting from the last executed bytecode recorded in the trace H (line 7 of

Figure 3.2). The algorithm proceeds by iteratively invoking the getPrevBytecode

method to obtain the bytecode executed prior to current occurrence β of bytecode

bβ during trace collection. Figure 3.3 presents the getPrevBytecode method. The

algorithm first retrieves the last executed bytecode within the same method invoca-

tion of bβ into blast. It returns blast if blast does not cross method boundaries (lines

2-7 of Figure 3.3). If blast invokes a method meth, the last executed return bytecode

of method meth is returned (lines 8-15 of Figure 3.3). If blast represents the start

of a method, the bytecode which invokes current method is returned (lines 16-17 of

Figure 3.3).

The getPrevBytecode method has to retrieve last executed bytecode from the

compact bytecode trace H. For this purpose, it needs to traverse the predecessor se-

quence of a bytecode with multiple predecessors. Since such sequences are compactly

43

stored as RLESe grammars, we need to efficiently traverse RLESe grammars; this is

accomplished by the method getLast. The getLast method gets the last executed

predecessor from a RLESe grammar G without decompression, using a root-to-leaf

path π in G. The slicing algorithm maintains such a path π for each compressed

RLESe sequence G, where the path π clearly marks which portion of G has been

already visited. We now explain in details the mechanics of efficient traversal over

RLESe representation.

In our trace compression scheme, all operand sequences are compressed using

RLESe. The dynamic slicing algorithm traverses these sequences from the end to ex-

tract predecessors for computation of control flow, and to extract identifies of accessed

variables for computation of data flow. For example, consider the operand sequence

of array indices for bytecode 56 in Table 3.1(b), which is 〈55, 53, 55, 53〉. During

dynamic slicing on the program of Figure 3.1, we traverse this sequence backwards,

that is, from the end. At any point during the traversal, we mark the last visited

operand (say 〈55, 53, 55, 53〉) during slicing. The sequence beginning with the marked

operand (i.e. 〈53〉) has been visited. When the slicing algorithm tries to extract next

operand from the operand sequence, we use this mark to find last unvisited element

(i.e. value 55 in this example). We now describe how such markers can be maintained

and updated in the RLESe grammar representation.

The RLESe grammar of a sequence σ can simply be represented as a directed

acyclic graph (DAG). The RLESe grammar consists of run-length annotated symbols

of the form 〈sym : n〉, where sym is a terminal or non-terminal symbol and n denotes

a run-length. The grammar node 〈sym : n〉 represents n contiguous occurrences of

symbol sym. Let us consider an example where the operand sequence is 〈abbabbcabb〉.

The RLESe compression algorithm will produce the following rules to represent this

operand sequence.

S → A : 2, c : 1, A : 1 A → a : 1, b : 2

44

S

(a) (b) (c)

non-terminal symbol terminal symbol grammar node the root-to-leaf path

A c

a b

2 1 1

1 2

S

A c

a b

2 1 1,1

1 2,1

S

A c

a b

2 1 1,1

1 2,2

S

A c

a b

2 1 1,1

1,1 2

S

A c

a b

2 1,1 1

1 2

S

A c

a b

2,1 1 1

1 2,1

(d) (e) (f)

Sequence: abbabbcabb

RLESe grammar: S -> A:2, c:1, A:1

A -> a:1, b:2

S

A c

a b

2 1 1,1

1 2,0

(g)

Figure 3.4: Example: Extract operand sequence over RLESe representation without
decompression

Small letters denote terminal symbols in the operand sequence, and capital letters

denote non-terminal symbols. Figure 3.4(a) shows corresponding DAG representa-

tion, where dashed circles represent non-terminal symbols, circles represent terminal

symbols, and edges are annotated by run-lengths. For example, the run-length an-

notated symbol 〈A : 1〉 at the end of the start rule is captured by the node A and

the incoming edge S
1→ A for node A. We then use a root-to-leaf path π over the

DAG representation to mark the symbol in σ that was last visited during backward

traversal. For every edge of the path π, we maintain both the run length n of cor-

responding grammar node X = 〈sym : n〉, and a visitation counter k ≤ n, where k

denotes the number of times that node X has been visited so far. For example, in

the edge A
2,1→ b in Figure 3.4(c), 2 represents the run length of grammar node 〈b : 2〉,

and 1 represents that this node has been visited once.

The dynamic slicing algorithm maintains one root-to-leaf path π for every com-

pressed operand sequence. The path π is initialized from the root to the rightmost

leaf node in the DAG, and the visitation counter annotated for the last edge in π is

set to 0, since no symbol has been visited. The slicing algorithm then uses the path

π to find the last unvisited terminal symbol of the RLESe grammar by invoking the

getLast method of Figure 3.5. In the getLast method, G is the DAG representation

of the RLESe grammar for a sequence σ and π is the root-to-leaf path for the symbol

45

1 getLast(G: Grammar, π: path in G)

2 e = the last edge of π;
3 while (e is defined)

4 let e = sym1
n1,k1−→ sym′

1;
5 if (k1 < n1)
6 break;
7 else
8 remove edge e from π;
9 change the annotation of edge e from (n1, k1) to (n1);
10 Sibe= immediate left sibling of e in G;
11 if (such a sibling Sibe exists)
12 e = Sibe;
13 break;
14 else
15 e = last edge of π;

16 let e = sym2
n2,k2−→ sym′

2;
17 change the annotation of edge e from (n2, k2) to (n2, k2 + 1);
18 GX = DAG rooted at node sym′

2 within G;
19 for (each edge e′ from node sym′

2 to rightmost leaf node of GX)
20 insert edge e′ into π;
21 let e′ = sym3

n3→ sym′
3;

22 change the annotation of edge e′ from (n3) to (n3, 1);
23 return symbol in rightmost leaf node of GX ;

Figure 3.5: One step in the backward traversal of a RLESe sequence (represented as
DAG) without decompressing the sequence.

in σ that was last visited. The getLast method returns the last unvisited symbol

and updates the path π. Note that the “immediate left sibling” of an edge e = x → y

is the edge e′ = x → z where node z is the immediate left sibling of node y in the

graph; this notion is used in lines 10 and 11 of Figure 3.5.

For the example operand sequence 〈abbabbcabb〉, Figure 3.4(b) shows the initialized

root-to-leaf path π for the RLESe grammar. Figure 3.4(c-g) present the resultant path

π by calling the getLast method of Figure 3.5 each time, and the symbol of the leaf

node pointed by the path π is returned as the last unvisited symbol. For example,

Figure 3.4(c) shows the path π after the first calling the getLast method. The path

π includes two edges (i.e. S
1,1→ A and A

2,1→ b), representing both edges have been

visited once. The leaf node b is referenced by π. Thus, b is returned by the getLast

method, which represents the last symbol b in the original sequence 〈abbabbcabb〉.

46

With the getLast algorithm in Figure 3.5, we can extract an operand sequence

efficiently. Given the grammar for a sequence with length N , the getLast method

will be invoked N times to extract the entire sequence. The overall space overhead

is O(N), and the overall time overhead is O(N). The space overhead is caused by

maintaining the root-to-leaf path π, which is used by all invocations of the getLast

method to extract a sequence. The length of path π is linear in the number of

grammar rules (the grammar has no recursive rules). There are fewer grammar rules

than grammar nodes, and the number of grammar nodes is bounded by the length

of the original sequence. Thus, the space overhead to extract the entire sequence is

O(N).

The time overhead to extract the entire sequence comes from the time to access

edges and nodes in the DAG. Whenever a node with terminal symbol is accessed, the

getLast method immediately returns the terminal symbol. So, the total number of

times to access node with terminal symbol is O(N) in order to extract a sequence

with length N . The total number of accesses to non-terminal nodes is O(
∑

i
N
2i)=

O(N). Consequently, the time overhead to extract the entire sequence from a RLESe

grammar (by repeatedly invoking getLast to get the last symbol which has not been

visited) is O(N).

3.2.3 Computing Data Dependencies

The typical way to detect dynamic data dependencies is to compare addresses of

variables defined/used by bytecode occurrences (line 27 of Figure 3.2). However, this

is complicated by Java’s stack based architecture. During execution, the Java virtual

machine uses an operand stack to hold partial results of execution. Thus, dynamic

data dependence exists between bytecode occurrences β and β′, when a value is pushed

into the operand stack by β and is popped by β′. Consider the program in Figure 3.1

as an example. Assume that statement 27 of the source program is executed, and the

47

1 updateOpStack (β: bytecode occurrence, bβ : bytecode)

2 for (i = 0; i < def op(bβ); i = i + 1)
3 pop(op stack);
4 for (i = 0; i < use op(bβ); i = i + 1)
5 push(op stack, β);

Figure 3.6: The algorithm to maintain the simulation stack op stack.

corresponding trace at the level of bytecode is 〈271, 282, 293, 304〉 where 271 means

that the first element of the trace is bytecode 27 and so on. Bytecode occurrence

304 (which defines the array element arr[i] at line 27 of the source program) is

dynamically data dependent on bytecode occurrences 271, 282 and 293 (which load

local variables k and i, array object reference arr at line 27 of the source program,

respectively). The three bytecode occurrences push three values into the operand

stack, all of which are popped and used by bytecode occurrence 304.

Clearly, dynamic data dependencies w.r.t. local variables and fields can be easily

detected by comparing the addresses (or identities) of accessed variables. However,

detecting data dependencies w.r.t. the operand stack requires reverse simulating the

operand stack (since we traverse the trace backwards). Figure 3.6 presents how to

maintain the stack op stack for simulation, which is used by the dynamic slicing algo-

rithm at line 35 of Figure 3.2. We pop the simulation stack for defined operands, and

push used operands into the simulation stack. The function def op(bβ) (use op(bβ))

at line 2 (4) of Figure 3.6 returns the number of operands defined (used) by bytecode

bβ. Note that the stack simulated during slicing does not contain actual values of

computation. Instead, each entry of the stack stores the bytecode occurrence which

pushed the entry into the stack.

Figure 3.7 shows the method to determine whether a bytecode occurrence has

affected the slicing criterion via dynamic data dependencies. This method is used by

the dynamic slicing algorithm at line 27 of Figure 3.2. If a bytecode occurrence β

defines a variable which needs explanation (lines 2-10 of Figure 3.7), or β defines a

48

1 computeDataDependence (β: bytecode occurrence, bβ : bytecode)

2 if (β defines a variable)
3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;
5 if (β defines an object field or an array element)
6 G= compressed operand sequence for bβ in the compact bytecode trace H
7 π= a root-to-leaf path for G;
8 def loc= getLast(G, π);
9 if (def loc ∈ δ)
10 return true;
11 ω= the set of bytecode occurrences in top def op(bβ) entries of op stack;
12 if (ω ∩ ϕ 6= ∅)
13 return true;
14 return false;

Figure 3.7: The algorithm to detect dynamic data dependencies for dynamic slicing

partial result which needs explanation (lines 11-13 of Figure 3.7), the method returns

true to indicate that β has affected the slicing criterion. A partial result needs expla-

nation if the bytecode occurrence which pushes corresponding entry into the stack has

already been included in ϕ. The function def op(bβ) at line 11 of Figure 3.7 returns

the number of operands defined by bytecode bβ. Our dynamic slicing algorithm needs

the addresses of variables accessed by each bytecode occurrence for detecting data

dependencies (lines 20, 25, 28 and 30 of Figure 3.2 and lines 3-8 of Figure 3.7). If

a local variable or a static field is accessed, the address can be found from the class

files. If an object field or an array element is accessed, the address can be found from

operand sequences of corresponding bytecode in the compact bytecode trace.

When the algorithm detects data dependencies via reverse stack simulation, it

requires analyzing some bytecodes whose operands are not traced. Consider the

program in Figure 3.1 as an example. The statement if (j%2==1) at line 5 of the

source program corresponds to bytecode sequence 〈461, 472, 483, 494, 505〉. Figure

3.8 shows the op stack after processing each bytecode occurrence during backward

traversal. Note that the operands of bytecode 48 (i.e. bytecode irem which stands for

the mathematical computation “%”) are not traced. When bytecode occurrence 483

is encountered, computeDataDependence method in Figure 3.7 can detect that 505

49

50
5

50
5

50
5

48
3

48
3

48
3

Empty

op_stack

after 50
5

after 49
4

after 48
3

after 47
2

after 46
1

Figure 3.8: Example: Illustrate the op stack after each bytecode occurrence encoun-
tered during backward traversal

is dynamically data dependent on 483. In addition, the bytecode 48 will also update

the op stack, as shown in Figure 3.8. As we can see from the example, in order

to detect implicit data dependencies involving data transfer via the operand stack,

it is important to know which bytecode occurrence pushes/pops an entry from the

op stack. The actual values computed by the bytecode execution are not important.

This highlights difference between our method and the work on Abstract Execution

[64]. In Abstract Execution, a small set of events are recorded and these are used as

guide to execute a modified program. In our work, we record some of the executed

bytecodes in our compressed trace representation. However, the untraced bytecodes

are not re-executed during the analysis of the compressed trace.

3.2.4 Example

Consider the example program in Figure 3.1, and corresponding compressed trace in

Table 3.1. Assume that the programmer wants to find which bytecodes have affected

the value of k at line 31 of the source program. Table 3.2 shows each stage using

the dynamic slicing algorithm in Figure 3.2 w.r.t. the k. For simplicity, we do not

illustrate slicing over the entire execution, but over last executed eight statements

– 〈26, 27, 28, 5, 6, 9, 26, 31〉. The corresponding bytecode sequence is a sequence

of thirty-one bytecode occurrences shown in the first column of Table 3.2. For each

bytecode occurrence, the position number 1, . . . , 31 of the bytecode occurrence in the

sequence is marked as superscript for the sake of clarity.

50

β δ fram op stack ∈ ϕ
method γ

4131 {} main {} 〈4131, 4131〉
4030 {k} main {4030} 〈4131〉 ?
3929 {k} main {4030} 〈〉
2628 {k} main {4030} 〈2628, 2628〉
2527 {k} main {4030} 〈2628〉
2426 {k} main {4030} 〈〉
3825 {k} main {4030} 〈〉
3724 {k} main {4030} 〈〉
3623 {} main {4030, 3623} 〈3623〉 ?
3522 {} main {4030, 3623} 〈3522, 3522〉 ?
5721 {} foo {5721} 〈3522, 5721〉 ?

main {4030, 3623}
5620 {ret} foo {5721, 5620} 〈3522〉 ?

main {4030, 3623}
5319 {ret} foo {5721, 5620} 〈3522〉

main {4030, 3623}
5218 {} foo {5721, 5620, 5218} 〈3522, 5218〉 ?

main {4030, 3623}
5117 {} foo {5721, 5620, 5218, 5117} 〈3522〉 ?

main {4030, 3623}
5016 {} foo {5721, 5620, 5016} 〈3522, 5016, 5016〉 ?

main {4030, 3623}
4915 {} foo {5721, 5620, 5016, 4915} 〈3522, 5016〉 ?

main {4030, 3623}
4814 {} foo {5721, 5620, 5016, 4915, 4814} 〈3522, 4814, 4814〉 ?

main {4030, 3623}
4713 {} foo {5721, 5620, 5016, 4915, 4814, 4713} 〈3522, 4814〉 ?

main {4030, 3623}
4612 {j} foo {5721, 5620, 5016, 4915, 4814, 4713, 4612} 〈3522〉 ?

main {4030, 3623}
3411 {} main {4030, 3623, 3411} 〈3522, 3411, 3411〉 ?
3310 {i} main {4030, 3623, 3411, 3310} 〈3522, 3411〉 ?
329 {i, obj} main {4030, 3623, 3411, 3310, 329} 〈3522〉 ?
318 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉 ?
307 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307, 307〉
296 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307, 307〉
285 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈307〉
274 {i, obj, k} main {4030, 3623, 3411, 3310, 329, 318} 〈〉
263 {i, obj, k} main {4030, 263} 〈263, 263〉 ?
252 {i, obj, k} main {4030, 263, 252} 〈263〉 ?
241 {i, obj, k} main {4030, 263, 252, 241} 〈〉 ?

Table 3.2: Example: Illustrate each stage of the dynamic slicing algorithm in Figure
3.2. The column β shows bytecode occurrences in the trace being analyzed.

51

For each bytecode occurrence β encountered during backward traversal, one row

of Table 3.2 shows resultant δ, fram, op stack and ϕ after analyzing β by our dynamic

slicing algorithm. The ? in the last column indicates that the corresponding bytecode

occurrence has affected the slicing criterion and is included into ϕ.

When bytecode occurrence 4030 is encountered, it is found to be the slicing crite-

rion. The used variable k is inserted to δ to find which bytecode occurrence defines

k; the bytecode occurrence 4030 is inserted to γ for control dependency check; we pop

4131 from the operand stack op stack because 4030 loads one value to the operand

stack during trace collection. It should be noted that in this simple example, we

refer to a variable with its name (e.g. k), since both methods are invoked once, and

every variable has a distinct name in this example. This is for simplicity of illustra-

tion. In the implementation, we use identifiers to distinguish between variables from

same/different method invocation.

After 4030, bytecode occurrence 3929 is encountered during backward traversal and

so on. We omit the details of the entire traversal but highlight some representative

bytecode occurrences.

• After analyzing bytecode occurrence 5620, the slicing algorithm finds that byte-

code 56 has two predecessors, and retrieves last unvisited value from operand

sequence of bytecode 56 in Table 3.1(b). Therefore, bytecode occurrence 5319

is next analyzed.

• When bytecode occurrence 307 is encountered, o2 and 3 are retrieved from

operand sequences of bytecode 30 in Table 3.1(a), representing an assignment

to array element o2[3]. However, o2[3] is irrelevant to the slicing criterion, so

neither δ nor γ is updated.

52

3.2.5 Proof of Correctness and Complexity Analysis

In this section we discuss the correctness proof and complexity analysis of our dynamic

slicing algorithm.

Theorem 3.1. Given a slicing criterion, the dynamic slicing algorithm in Figure 3.2

returns dynamic slice defined in Definition 2.3.

Proof Sketch: We only present the proof sketch here. The full proof appears in

Appendix A.2.

Let ϕi be the ϕ set after i loop iterations of the dynamic slicing algorithm in Figure

3.2, ϕ∗ be the resultant ϕ set when the algorithm finishes, and β be the bytecode

occurrence encountered at the ith loop iteration.

We prove the soundness of the algorithm by induction on loop iterations of the

slicing algorithm, i.e. for any β′ ∈ ϕ∗ we show that β′ is reachable from the slicing

criterion in the dynamic dependence graph (DDG).

We prove the completeness of the slicing algorithm, i.e. ∀β′ reachable from slicing

criterion in the Dynamic Dependence Graph (DDG) ⇒ β′ ∈ ϕ∗. Note that there is

no cycle in the DDG, so we prove the completeness by induction on structure of the

DDG. �

Now we analyze the cost of the dynamic slicing algorithm in Figure 3.2. Given the

compressed trace for an execution which executes N bytecodes, the space overhead

of the slicing algorithm is O(N), and the time overhead is O(N2).

The space overhead of the algorithm is caused by the maintenance of δ, ϕ,

op stack, fram, compressed operand sequences and root-to-leaf paths for every com-

pressed sequence. The sizes of δ, ϕ, op stack and fram are all O(N). For δ, this

is because one execution of a bytecode can use a constant number of variables; for

op stack, this is because the number of operands popped from and pushed to the

operand stack by one bytecode is bound by a constant; for fram, this is because the

53

γ set of each method invocation in fram only contains bytecode occurrences for this

invocation, and does not overlap with each other. Assume that each bytecode bi has

executed η(bi) times, so
∑

bi
η(bi)= N . The size of all compressed operand sequences

is
∑

bi
O(η(bi))= O(N), because every bytecode has a fixed number of operand se-

quences, and the size of the compact representation is linear in the length of original

operand sequence; proof of this claim appears in Appendix A.1. The size of each

root-to-leaf path is bound by the size of corresponding compressed operand sequence.

Consequently, the overall space cost of the slicing algorithm is O(N).

During dynamic slicing, the algorithm performs the following four actions for each

occurrence β of bytecode bβ encountered during backward traversal of the execution

trace.

1. extract operand sequences of bytecode bβ from the compressed trace for back-

ward traversal,

2. perform slicing criterion, dynamic control/data dependency checks,

3. update δ, ϕ, op stack, and fram,

4. get previous executed bytecode.

According to the complexity analysis of the getLast method which is presented

in Section 3.2.2, it needs O(η(bi)) time to extract an operand sequence of bytecode

bi which is executed η(bi) times during trace collection. Note that
∑

i η(bi)= N .

Consequently, the overall time overhead to perform action (1) to extract all operand

sequences is
∑

i O(η(bi))= O(N), that is, linear in the length of the original execution.

After extracting operand sequences, the overall time to perform action (2) and (3)

is clearly O(N2), since they may update/enquire sets δ, ϕ, op stack and fram whose

sizes are bound by N . This complexity can be improved further by using efficient

data structures for set representation.

54

To get previous executed bytecode (action (4) in the preceding), the method

getPrevBytecode of Figure 3.3 may perform two actions: (a) get the predecessor

bytecode from class files, or (b) extract last executed bytecode from compressed

operand sequences. The overall time to perform get predecessor bytecode from class

files is O(N), since it needs constant time to get the predecessor bytecode from Java

class files every time. The overall time to extract operand sequences is O(N) as

discussed earlier.

Consequently, the overall time cost of the dynamic slicing algorithm is O(N2).

3.3 Experimental evaluation

We have implemented a prototype slicing tool and applied it to several subject pro-

grams. The experiments report time and space efficiency of our trace collection

technique. We compress traces using both SEQUITUR and RLESe, and compare

the time overheads and effectiveness of the improved compression algorithm against

the previous one, in order to investigate the cost effectiveness of the proposed com-

pression algorithm. In addition, the experiments to perform dynamic slicing over our

compact trace representation are reported in Chapter 4, in order to compare dynamic

and relevant slicing.

To collect execution traces, we have modified the Kaffe virtual machine [3] to

monitor interpreted bytecodes. In our traces, we use object identities instead of ad-

dresses to represent objects. Creation of structures such as multi-dimensional arrays,

constant strings etc. may implicitly create objects. We trace and allocate identities

to these objects as well. The virtual machine may invoke some methods automati-

cally when “special” events occur (e.g. it may invoke the static initializer of a class

automatically when a static field of the class is first accessed). These event are also

stored, and used for backward traversal of the execution trace.

55

Subject Description Input
Crypt IDEA encryption and decryption 200,000 bytes
SOR Successive over-relaxation on a grid 100 × 100 grid
FFT 1-D fast Fourier transform 215 complex numbers

HeapSort Integer sorting 10000 integers
LUFact LU factorisation 200 × 200 matrix
Series Fourier coefficient analysis 200 Fourier coefficients

201 compress Modified Lempel-Ziv method (LZW) 228.tar in the SPECjvm suite
202 jess Java Expert Shell System fullmab.clp in the SPECjvm suite
209 db Performs multiple database functions db2 & scr2 in the SPECjvm suite
JLex A Lexical Analyzer Generator for Java sample.lex from the tool’s web site

Table 3.3: Descriptions and input sizes of subject programs.

Subject Total # of Executed # Bytecode # Branch # Method
Bytecodes Bytecodes Instances Instances invocations

Crypt 2,939 1,828 103,708,780 1,700,544 48
SOR 1,656 740 59,283,663 1,990,324 26
FFT 2,327 1,216 72,602,818 2,097,204 37

HeapSort 1,682 679 11,627,522 743,677 15,025
LUFact 2,885 1,520 98,273,627 6,146,024 41,236
Series 1,800 795 16,367,637 1,196,656 399,425

201 compress 8,797 5,764 166,537,472 7,474,589 1,999,317
202 jess 34,019 14,845 5,162,548 375,128 171,251
209 db 8,794 4,948 38,122,955 3,624,673 19,432
Jlex 22,077 14,737 13,083,864 1,343,372 180,317

Table 3.4: Execution characteristics of subject programs.

Most Java programs use libraries. Dynamic dependencies introduced by the ex-

ecution of library methods are often necessary to compute correct slices. Our im-

plementation does not distinguish between library methods and non-library methods

during tracing and slicing. However, after the slicing finishes, we will filter statements

inside the libraries from the slice. This is because libraries are often provided by other

vendors, and programmers will not look into them.

3.3.1 Subject Programs

The subjects used in our experiments include six subjects from the Java Grande

Forum benchmark suite [50], three subjects from the SPECjvm suite [96], and one

medium sized Java utility program [15]. Descriptions and inputs of these subjects are

56

Subject Orig. Trace RLESe All All/Orig.
Trace Table Sequences (%)

Crypt 64.0M 8.9k 8.8k 17.8k 0.03
SOR 73.4M 7.6k 10.8k 18.5k 0.02
FFT 75.2M 8.2k 87.3k 95.5k 0.12

HeapSort 23.6M 7.7k 1.7M 1.7M 7.20
LUFact 113.1M 9.1k 179.7k 188.9k 0.16
Series 24.4M 7.7k 444.4k 452.2k 1.81

201 compress 288.6M 23.7k 8.8M 8.8M 3.05
202 jess 25.7M 79.2k 3.4M 3.4M 13.23
209 db 194.5M 29.0k 39.2M 39.2M 20.15
Jlex 49.9M 62.6k 1.5M 1.5M 3.01

Table 3.5: Compression efficiency of our bytecode traces. All sizes are in bytes.

shown in Table 3.3. We ran and collected execution traces of each program with inputs

shown in the third column in Table 3.3. Corresponding execution characteristics are

shown in Table 3.4. The second column in Table 3.4 shows the number of bytecodes

of these subjects. The column Executed bytecodes in Table 3.4 presents the number of

distinct bytecodes executed during one execution, and the fourth column in Table 3.4

shows corresponding total number of bytecode occurrences executed. The last two

columns present the number of branch bytecode occurrences and method invocations,

respectively. Bytecodes from Java libraries are not counted in the table. However,

bytecodes of user methods called from library methods are included in the counts

shown.

3.3.2 Time and Space Efficiency of Trace Collection

We first study the efficiency of our compact trace representation. Table 3.5 shows the

compression efficiency of our compact trace representation. The column Orig. Trace

represents the space overheads of storing uncompressed execution traces on disk. To

accurately measure the compression achieved by our RLESe grammars, we leave out

the untraced bytecodes from the Orig. Trace as well as the compressed trace. Next

two columns Trace Table and RLESe Sequences show the space overheads to maintain

the trace tables and to store the compressed operand sequences of bytecodes on disk.

57

0

10

20

30

40

50

60

70

80

90

Crypt SOR FFT HeapSort LUFact Series _201_compress _202_jess _209_db Jlex

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
) Original

RLESe

SEQUITUR

Figure 3.9: Time overheads of RLESe and SEQUITUR. The time unit is second.

The column All represents the overall space costs of our compact bytecode traces,

i.e. sum of space overheads of Trace Table and RLESe Sequences. The % column

indicates All as a percentage of Orig. Trace. For all our subject programs, we can

achieve at least 5 times compression. Indeed for some programs we get more than

two orders of magnitude (i.e 100 times) compression.

Comparison with Conventional Compression Schemes We also compare the

space efficiency of our compact bytecode trace representation with a general purpose

data compression scheme such as the gzip utility [122]. We found that the compression

ratio obtained by RLESe is comparable or even significantly better than gzip. Again,

for benchmarks with more regular data accesses (like Crypt, SOR) our compression

scheme outperforms gzip by several orders of magnitude (in terms of compression

ratio). For example, the compression ratios for the Crypt subject program are 0.03%

and 5.74%, by using our secheme and gzip respectively. For subject programs with

random data accesses (like HeapSort) the compression ratios of RLESe and gzip are

comparable. For example, the compression ratios for the HeapSort subject program

are 7.20% and 8.72%, by using our secheme and gzip respectively. Of course, the major

benefit of our compressed trace representation comes from the ability to traverse it

without decompression – which is not possible for gzipped traces.

58

Figure 3.9 presents the absolute running time of the subject programs without

instrumentation, tracing with RLESe and tracing with SEQUITUR. All experiments

were performed on a Pentium 4 3.0 GHz machine with 1 GB of memory. From this

figure we can see that the slowdown for collecting traces using RLESe compared to

the original program execution is 2 − 10 times for most subject programs, and the

slowdown is near 20 times for 209 db which randomly accesses a database. This

shows that our method is suitable for program executions with many repetitions, but

the time overhead may be not scalable to program executions with too many ran-

dom accesses. Note that these additional time overheads are caused by compression

using RLESe/SEQUITUR. The results reflect one limitation of RLESe (as well as

SEQUITUR) — the time efficiency of the compression algorithm heavily depends on

the efficiency of checking the digram uniqueness property. To speed up this check,

a sophisticated index of digrams should be used. However, the choice of the index

has to trade-off between time and space efficiency, since the index will introduce ad-

ditional space overheads during trace collection. In our implementation, we use the

B+ tree (instead of sparse hash) to index digrams during compressing, and the index

is no longer needed after compression is completed.

Subject RLESe % SEQUITUR %
Crypt 0.03 0.07
SOR 0.02 0.04
FFT 0.12 0.34

HeapSort 7.20 7.20
LUFact 0.16 0.40
Series 1.81 2.50

201 compress 3.05 3.12
202 jess 13.23 13.62
209 db 20.15 18.35
Jlex 3.01 4.01

Table 3.6: Comparing compression ratio of RLESe and SEQUITUR.

We now compare the space efficiency of RLESe against SEQUITUR. Both algo-

rithms were performed on operand sequences of bytecodes. For a fair comparison, we

59

Subject RLESe SEQUITUR
Crypt 800,605 20,499,488
SOR 393,202 25,563,918
FFT 2,020,976 25,722,054

HeapSort 2,262,916 7,066,784
LUFact 561,233 42,586,136
Series 2,501,001 9,507,982

201 compress 10,240,652 80,923,387
202 jess 2,090,153 6,666,460
209 db 24,386,746 54,033,314
Jlex 4,555,338 15,497,211

Table 3.7: The number of times to check digram uniqueness property by RLESe and
SEQUITUR.

use the same index to search for identical/similar digrams in the implementation of

both algorithms. Table 3.6 compares the space costs of both algorithms by presenting

their compression ratio (in percentage). From the tables, we can see that the space

consumption of compressed traces produced by both algorithms are somewhat compa-

rable. RLESe outperforms SEQUITUR for eight subject programs, and SEQUITUR

outperforms for one (where the 209 db program randomly accesses a database and

does not have many contiguous repeated symbols in operand traces). Since RLESe

employs run-length encoding of terminal and non-terminal symbols over and above

the SEQUITUR algorithm, nodes in grammars produced by RLESe are usually less

than those produced by SEQUITUR.

Figure 3.9 compares the time overheads of RLESe and SEQUITUR. Clearly RLESe

outperforms SEQUITUR in time on studied programs. The time overheads of both

algorithms are mainly caused by checking digram uniqueness property. RLESe usu-

ally produces less nodes in grammars, so that similar digrams can be found more

efficiently. In addition, RLESe checks this property after contiguous repeated sym-

bols have finished, whereas SEQUITUR does this on reading every symbol. Table

3.7 shows this by representing the frequency of checking the digram uniqueness prop-

erty. When there are many contiguous repeated symbols in the execution traces (e.g.

60

the LUFact, SOR subjects), RLESe checks the property much less frequently than

SEQUITUR. Consequently the tracing overheads of RLESe are also much less than

those of SEQUITUR.

3.3.3 Summary and Threats to Validity

In summary, the RLESe compaction scheme achieves comparable or better compres-

sion ratio than SEQUITUR. The time overheads for the online compaction in RLESe

is found to be less than the compaction time in SEQUITUR. Our compact trace

representation can be used to perform dynamic slicing efficiently, both in time and

space.

We note that there are various threats to validity of the conclusion from our

experiments. Our conclusions on less time overheads of RLESe (as compared to SE-

QUITUR) can be invalidated if the execution trace has very few contiguous repeated

symbols. In this case, RLESe checks the diagram uniqueness property almost as fre-

quently as SEQUITUR. This can happen in a program with random data accesses

(e.g., the 209 db subject program used in our experiments).

3.4 Summary

In this chapter, we have presented a space efficient scheme for compactly representing

bytecode traces of Java programs. The time overheads and compression efficiency of

our representation are studied empirically. We use our compact traces for efficient

dynamic slicing. Our method has been implemented on top of the open source Kaffe

Virtual Machine. The traces are collected by monitoring Java bytecodes. The byte-

code stream is compressed online and slicing is performed post-mortem by traversing

the compressed trace without decompression.

61

CHAPTER 4

RELEVANT SLICING

Dynamic slicing has long been studied for software debugging and comprehension.

Unfortunately, there are certain difficulties in using dynamic slicing for debugging,

because dynamic slicing may miss some important statements which are responsible

for the error. In particular, dynamic slicing does not consider ‘Execution Omission”

errors, i.e. the execution of certain statements is wrongly omitted. Consequently, all

statements responsible for the error may not be included into the dynamic slice, and

the slice may mislead the programmer.

In this chapter, we study relevant slices [7, 40]. These slices extend dynamic slices

to include certain statements stmt, which if altered due to debugging, can alter the

execution flow of P w.r.t. input I and affect the criterion. Such statements stmt

can be used to explain that the execution of statements guarded by stmt is wrongly

omitted.

Since the existing works on relevant slicing present a slice as a set of program

statements, we first define a relevant slice as a set of statements. However, like

our dynamic slicing algorithm presented in Chapter 3, our relevant slicing algorithm

works at the level of bytecodes. Most importantly, the relevant slicing algorithm also

operates directly on the compressed bytecode trace, without involving costly trace

decompression.

The rest of this chapter is organized as follows. In Section 4.1, we recall past work

on potential dependencies, a notion which is crucial for computing the relevant slice.

Section 4.2 then presents our definition of relevant slice, and compares our definition

with existing works. Section 4.3 presents our relevant slicing algorithm which operates

62

on the compressed bytecode trace. Section 4.4 reports our experimental studies and

Section 4.5 concludes the chapter.

4.1 Background

In this section, we recapitulate the definition of potential dependence. The material

in this subsection was mostly studied in [7, 40].

Relevant slicing extends dynamic slicing by considering statements which may

affect the slicing criterion. These statements are executed and do not affect the

criterion. However, if these statements are changed, branches may be evaluated

differently, or alternative methods may be invoked. We consider the following two

situations for the execution of alternative code fragment due to program changes.

1. Branch: If the value of a variable used by the predicate of a branch statement

is changed, the predicate may be evaluated differently.

2. Method invocation: If the programmer changes the assignment w.r.t. the object

which invokes a method, or the declaration of parameters, an alternative method

may be called.

In relevant slicing, we use the notion of potential dependence to capture the effects

of these branch and method invocation statements. If these statements are evaluated

differently, variables may be re-defined and affect the slicing criterion. We define

potential dependence as follows; for any statement occurrence β, the corresponding

statement is written as Sβ.

Definition 4.1. Potential Dependence Given an execution trace H of a program

P , for any statement instances β and β′ appearing in H, β is potentially dependent

on an earlier branch or method invocation statement instance β′ if and only if all of

the following conditions hold.

63

1. β is not (transitively) dynamically control/data dependent on β′ in H.

2. there exists a variable v used by β s.t. v is not defined between β′ and β in H

and v may be defined along an outgoing edge l of statement Sβ′ where Sβ′ is

the statement at statement occurrence β′. That is, there exists a statement X

satisfying the following.

• (a) X is (transitively) control dependent on Sβ′ along the edge l, and

• (b) X is an assignment statement which assigns to variable v or a variable

u which may be aliased to v.

3. the edge l is not taken at β′ in H.

The purpose of potential dependence is to find those statements which will be

missed by dynamic slicing. If a branch or method invocation statement has affected

the slicing criterion, we do not consider that it has potential influence, since the dy-

namic slice will always include such a statement. We use condition (1) to exclude

dynamic control and data dependencies from potential dependencies. Conditions (2)

and (3) ensure that β′ has potential influence on β. The statement X in condi-

tion 2(b) appears in program P , but its execution is prohibited by the evaluation of

branch/method invocation in β′. However, if it is executed (possibly due to a change

in the statement Sβ′), the value of variable v used at β will be affected. We cannot

guarantee that v must be re-defined if β′ is evaluated to take edge l. This is because

even if β′ is evaluated differently, execution of the assignment to v may be guarded

by other (nested) conditional control transfer statements. Furthermore, condition (2)

requires computation of static data dependence. In the presence of arrays and dy-

namic memory allocations, we can only obtain conservative static data dependencies

in general. We now proceed to define a relevant slice, and introduce our relevant

slicing algorithm to compute such a slice.

64

4.2 The Relevant Slice

To define relevant slices, first we define the notion of an Extended Dynamic Depen-

dence Graph (EDDG). The EDDG captures dynamic control dependencies, dynamic

data dependencies and potential dependencies w.r.t. a program execution. It is an

extension of the Dynamic Dependence Graph (DDG) described in [6]. Each node of

the DDG represents one particular occurrence of a statement in the program execu-

tion; edges represent dynamic data and control dependencies. The EDDG extends

the DDG with potential dependencies, by introducing a dummy node for each branch

statement occurrence or a method invocation statement occurrence. For each state-

ment occurrence β in the execution trace, a non-dummy node nn(β) appears in the

EDDG to represent this occurrence. In addition, if β is a branch statement or a

method invocation statement, a dummy node dn(β) also appears in the EDDG. As

far as the edges are concerned, the following are the incoming edges of any arbitrary

node nn(β) or dn(β) appearing in the EDDG.

• dynamic control dependence edges from non-dummy node nn(β′) to nn(β), iff.

β′ is dynamically control dependent on β.

• dynamic data dependence edges from both non-dummy node nn(β′) and dummy

node dn(β′) (if there is a dummy node for occurrence β′) to nn(β), iff. β′ is

dynamically data dependent on β.

• potential dependence edges from non-dummy node nn(β′) and dummy node

dn(β′) (if there is a dummy node for β′) to dn(β), iff. β′ is potentially dependent

on β.

These dependencies can be detected during backwards traversal of the execution trace.

What is a Relevant Slice The relevant slice is then defined based on the extended

dynamic dependence graph (EDDG) as follows.

65

1 b = 1;
2 k = 1;
3 if (a > 1) {
4 if (b > 1){
5 k = 2

}
}

6 . . . = k

Figure 4.1: Example: A “buggy” program fragment.

Figure 4.2: The EDDG for the program in Figure 4.1 with input a=2.

Definition 4.2. Relevant slice for a slicing criterion consists of all statements

whose occurrence nodes can be reached from the node(s) for the slicing criterion in

the Extended Dynamic Dependence Graph (EDDG).

In order to accurately capture the effects w.r.t. potential dependencies, we have

introduced a dummy node into the EDDG for each occurrence of a branch or method

invocation statement. The EDDG can then represent dynamic control dependence

edges and potential dependence edges separately. This representation allows the

reachability analysis for relevant slicing not to consider dynamic control dependence

edges which are immediately after potential dependence edges, because such dynamic

control dependencies cannot affect behaviors w.r.t. the slicing criterion. The following

example shows how to compute a relevant slice, and the effect to introduce the dummy

node.

66

1 x = 2;
2 y = 2;
3 if (x > 1)
4 y = 1;
5 if (y! = 1)
6 z = 3;
7 . . . = z;

Figure 4.3: Example: compare our relevant slicing algorithm with Agrawal’s algo-
rithm.

Example Figure 4.1 shows an example program fragment, and Figure 4.2 shows

the EDDG for the example program with input a = 2. The execution trace is

〈11, 22, 33, 44, 65〉. The resultant relevant slice w.r.t. variable k at line 6 consists

of lines {1, 2, 4, 6}, because nodes 11, 22, 44 and 65 can be reached from the criterion

65. Note that statement occurrence 65 is potentially dependent on 44, and 44 is dy-

namically control dependent on statement occurrence 33. However, changes related

to line 3 will not affect the value of k at 65, nor will it decide whether line 6 will

be executed. Therefore, line 3 should not be included into the slice. By using the

dummy node to separate dynamic control dependencies and potential dependencies

w.r.t. statement occurrence 44, we can easily exclude line 3 of Figure 4.1 from our

relevant slice. Of course, if line 5 is executed when the program is executed with

another input, both lines 3 and 4 will be included in the slice, because of dynamic

control dependencies.

Comparison with previously proposed notions of relevant slices The notion

of relevant slicing presented above is not completely new. Relevant slicing techniques

(or other variants of it which try to extend dynamic slicing) have been studied [7,

40]. We now compare our notion of relevant slices against existing works, thereby

pinpointing some salient features of our relevant slices.

Agrawal et al. first introduced relevant slicing, and applied it for regression test-

ing [7]. Their relevant slice includes all nodes reachable from the slicing criterion in

67

EDDG

Data Dependence
Potential Dependence

Control Dependence

Dummy Node

3

5

7

2 1 3

5

 Entry

4

3

5

7

2 1 3

5

 Entry

4

SEDDG

Figure 4.4: The EDDG and SEDDG for the program in Figure 4.3.

1 x = 1;
2 for (i = 0; i < 3; i + +)
3 if (x % 2 == 0)
4 z = 4;
5 x = i;
6 . . . = z;

Figure 4.5: Example: compare our relevant slicing algorithm with Gyimóthy’s algo-
rithm.

a Simplified Extended Dynamic Dependence Graph (SEDDG). The SEDDG is con-

structed from the EDDG by removing dynamic control dependence edge w.r.t. a node

β, if every path from the slicing criterion to β contains potential dependence edges.

Because of the removed control dependence edges, some important statements may be

excluded from the slice. Let us take the program in Figure 4.3 as an example. Figure

4.4 shows the corresponding EDDG and SEDDG. The relevant slice of [7] w.r.t. the

criterion involving the value of z at line 7, will ignore line 1. However, if line 1 is

changed to x = 1, the value of z at line 7 is affected.

Gyimóthy et al. [40] proposed a forward relevant slicing method for program

debugging. Their relevant slice includes all nodes reachable from the slicing criterion

in a Accumulated Extended Dynamic Dependence Graph (AEDDG). The AEDDG is

constructed from the EDDG by adding an accumulated potential dependence edge

68

2

2

3

1

33

2

3

1 1

4

1

3

3

1

3

1

2

2

1

2

1

3

1

4

11

1

44

1

2 2

3

3

2 2

1

1

1

2

2

2

3

3

 Entry

2331

5

3 2

5

23

2

5

6

2

2

2

2

3

3

4

1

EDDG AEDDG

Data Dependence
Potential Dependence

Control Dependence

Accumulated Potential Dependence

Dummy Node

 Entry

233

5

3 2

54

23

2

5

6

2

Figure 4.6: The EDDG and AEDDG for the program in Figure 4.5.

between two dummy nodes β and β′ if and only if β and β′ represent two contiguous

execution instances of the same statement. The accumulated dependence edges in

AEDDG may cause superfluous statements to be included into the relevant slice.

Consider the example in Figure 4.5; figure 4.6 shows the corresponding EDDG and

AEDDG. Line 1 will never affect z at line 6 of the program in Figure 4.5. However,

this statement will be included into Gyimóthy’s relevant slice.

4.3 The Relevant Slicing Algorithm

We now discuss how our dynamic slicing algorithm described in Section 3.2 (operating

on compact Java bytecode traces) can be augmented to compute relevant slices. Thus,

like the dynamic slicing algorithm, our relevant slicing algorithm operates on the

compact bytecode traces described in Section 3.1.

As in dynamic slicing, relevant slicing is performed w.r.t. a slicing criterion

69

(H, α, V), where H is the execution history for a certain program input, α repre-

sents some bytecodes the programmer is interested in, and V is a set of variables

referenced at these bytecodes. Again, the user-defined criterion is often of the form

(I, l, V) where I is the input, and l is a line number of the source program. In this

case, H represents execution history of the program P with input I, and α represents

the bytecodes corresponding to statements at l.

Figure 4.7 presents a relevant slicing algorithm, which returns the relevant slice

as defined in Definition 4.2. This algorithm is based on backward traversal of the

compressed execution trace H (described in Section 3.1). The trace H contains

execution flow and identities of accessed variables, so that we can detect various

dependencies during the traversal. Although the slice can also be computed after

constructing the whole EDDG, this approach is impractical because the entire EDDG

may be too huge in practice. Before slicing, we compute the control flow graph, which

is used to detect potential dependencies and to get last executed bytecode. We also

pre-compute the static control dependence graph [31] which will be used at lines 21,

22 and 46 of Figure 4.7, and at line 9 of the computePotentialDependence method

in Figure 4.8. Prior to running our relevant slicing algorithm we run static points-to

analysis [9, 97]; the analysis results are used for determining potential dependencies.

In the relevant slicing algorithm, we introduce a global variable θ, to keep track

of variables used by bytecode occurrences β, iff. β is included into the slice because

of potential dependencies. In particular, each element in θ is of the form 〈β, prop〉,

where β is an bytecode occurrence, and prop is a set of variables. Every variable in

prop is used by a bytecode occurrence β′, where

• β′ is included into ϕ (the relevant slice) because of potential dependencies, and

• β′ = β, or β′ is (transitively) dynamically control dependent on β.

The purpose of the δ set (set of unexplained variables) is the same as in the

70

dynamic slicing algorithm. That is, the δ set includes variables used by bytecode

occurrence β for explanation, where β is included into the slice ϕ because β belongs

to the slicing criterion, or there is any bytecode occurrence in ϕ which is dynamically

control/data dependent on β.

For each bytecode occurrence β of bytecode bβ encountered during the backward

traversal for slicing, we first check if β has affected the slicing criterion via dynamic

control/data dependencies as the in dynamic slicing algorithm of Figure 3.2. In

particular, line 18 checks whether β belongs to the slicing criterion. Line 21 checks

dynamic control dependencies if bβ is a conditional control transfer bytecode. Line

26 checks dynamic data dependencies. With the introduction of θ, variables in both

δ and θ need explanation. Consequently, the computeDataDependence method has

been slightly changed, as re-defined in Figure 4.9. If all the three checks fail, the

algorithm proceeds to check the potential dependencies at line 37, by invoking the

computePotentialDependence method in Figure 4.8.

For the computation of potential dependencies, we need to pre-compute the effects

of various outcomes of a control transfer bytecode. Each such outcome triggers a dif-

ferent code fragment whose effect can be summarized by all possible assignment byte-

codes executed. This summarization is used by the computePotentialDependence

method in Figure 4.8. Note that δ is used to check dynamic data dependencies (line

26 of Figure 4.7) as well as potential dependencies (line 6 in Figure 4.8).

The intersect(MDS,δ) method used by the computePotentialDependence

method in Figure 4.8 checks whether the execution of the alternative path of a byte-

code bβ may define some variables which are used by bytecode occurrences in the slice.

Here MDS includes variables which may be defined if bβ is evaluated differently, and

δ includes variables which have affected the slicing criterion and need explanation.

This check is non-trivial because MDS contains static information, while δ contains

dynamic information. Let meth be the method that the bytecode bβ belongs to, and

71

1 (H,α, V)= the slicing criterion
2 δ= ∅, a set of variables whose values need to be explained
3 ϕ= ∅, the set of bytecode occurrences which have affected the slicing criterion
4 op stack= empty, the operand stack for simulation
5 fram= empty, the frames of the program execution
6 θ= ∅, (bytecode occurrences, used variables) included in slice due to potential dependencies
7 relevantSlicing()
8 bβ = get last executed bytecode from H;
9 while (bβ is defined)
10 if (bβ is a return bytecode)
11 new fram= createFrame();new fram.γ=∅;
12 push(fram, new fram);
13 last fram=null;
14 if (bβ is a method invocation bytecode)
15 last fram=pop(fram);
16 β = current occurrence of bytecode bβ ;
17 curr fram = the top of fram;
18 if (β is the last occurrence of bβ and bβ ∈ α)
19 use vars = V ∩ variables used at β;
20 ϕ = ϕ ∪ {β};
21 if (computeControlDependence(bβ , curr fram, last fram))
22 BC= {β′ | β′ ∈ curr fram.γ and β′ is dynamically control dependent on β};
23 curr fram.γ = curr fram.γ − BC ;
24 use vars = variables used at β;
25 ϕ = ϕ ∪ {β};
26 if (computeDataDependence(β, bβ))
27 def vars = variables defined at β;
28 δ = δ − def vars;
29 use vars = variables used at β;
30 ϕ = ϕ ∪ {β};
31 for (each 〈β′, prop′〉 in θ)
32 prop′ = prop′ − def vars;
33 if (β ∈ ϕ)
34 curr fram.γ = curr fram.γ ∪ {β};
35 δ = δ ∪ use vars;
36 else
37 if (computePotentialDependence(β, bβ))
38 ϕ = ϕ ∪ {β};
39 if (bβ is a branch bytecode)
40 use vars = variables used at β; θ = θ ∪ {〈β, use vars〉};
41 if (bβ is a method invocation bytecode)
42 o = the variable to invoke a method; θ = θ ∪ {〈β, {o}〉};
43 if (bβ is a branch bytecode or method invocation bytecode)
44 prop=∅;
45 for (each 〈β′, prop′〉 in θ)
46 if (β′ = β or β′ is control dependent on β)
47 prop = prop ∪ prop′; θ = θ − {〈β′, prop′〉};
48 θ = θ ∪ {〈β, prop〉};
49 updateOpStack(β, bβ);
50 β = getPrevBytecode(β, bβ);
51 return bytecodes whose occurrences appear in ϕ;

Figure 4.7: The relevant slicing algorithm.

72

1 computePotentialDependence (β: bytecode occurrence, bβ : bytecode)

2 if (bβ is a branch or method invocation bytecode)
3 for (each possible outcome x of bβ)
4 if (outcome x of bβ did not occur at β)
5 MDS = the set of variables which may be defined

when outcome x occurs;
6 if (intersect(MDS, δ))
7 return true;
8 for (each 〈β′, prop′〉 in θ)
9 if (β′ is not control dependent on β and intersect(MDS, prop′))
10 return true;
11 return false;

Figure 4.8: Detect potential dependencies for relevant slicing.

curr invo be the current invocation of meth. Note that both MDS and δ include

local variables and fields. Every local variable in MDS is also a local variable of

method meth, and is represented by its identity 〈var〉. Every local variable in δ for

explanation is represented as 〈invo, var〉, where invo refers to the method invocation

which uses the local variable var. Many points-to analysis algorithms [9, 97] represent

abstract memory locations of objects using their possible allocation sites. Thus, we

represent an object field in MDS as 〈site, name〉, where site refers to a possible allo-

cation site of the object, and name refers to the name of the field. We also represent

an object field in δ as 〈site, timestamp, name〉, where site refers to the allocation

site of the object, timestamp distinguishes between objects created at the same al-

location site, and name refers to the name of the field. Note that timestamp is

only important for detecting dynamic data dependencies. The intersect(MDS,δ)

method returns true iff:

• there is a local variable where 〈var〉 ∈ MDS and 〈curr invo, var〉 ∈ δ, or

• there is a field where 〈site, name〉 ∈ MDS and 〈site, timestamp, name〉 ∈ δ.

We do not consider partial results (i.e. operands in the operand stack) for potential

dependencies because partial results will not be transferred between bytecodes of

different statements.

73

1 computeDataDependence (β: bytecode occurrence, bβ : bytecode)

2 if (β defines a variable)
3 if (β defines a static field or local variable)
4 def loc= get address of the defined static field or local variable from class files;
5 if (β defines an object field or an array element)
6 G= compressed operand sequence for bβ in the compact bytecode trace H
7 π= a root-to-leaf path for G;
8 def loc= getLast(G, π);
9 if (def loc ∈ δ)
10 return true;
11 for (each 〈β′, prop′〉 in θ)
12 if (def loc ∈ prop′)
13 return true;
14 ω= the set of bytecode occurrences in top def op(bβ) entries of op stack;
15 if (ω ∩ ϕ 6= ∅)
16 return true;
17 return false;

Figure 4.9: Detect dynamic data dependencies for relevant slicing.

The proof of correctness of the relevant slicing algorithm in Figure 4.7 is similar to

that of the dynamic slicing algorithm in Figure 3.2. The detailed proof of correctness

can be found in Appendix A.3.

Now we analyze the cost of the relevant slicing algorithm in Figure 4.7. The

space overheads of the slicing algorithm are O(N2 + m3), and the time overheads

are O(m2 · N3), where N is the length of the execution, and m is the number of

bytecodes of the program. Since the relevant slicing algorithm is similar with the

dynamic slicing algorithm in Figure 3.2, the cost analysis is also similar except costs

w.r.t. the θ and MDS.

The θ set contains at most N elements of the form 〈β, prop〉, because every byte-

code occurrence β has at most one element 〈β, prop〉 in θ. The size of each prop is

O(N), because at most N bytecode occurrences are (transitively) dynamically control

dependent on β and every bytecode occurrence uses a constant number of variables.

Consequently, the space overheads of θ are O(N2).

Each MDS includes the set of variables which may be defined when a specific

outcome of a branch bytecode occurs. If m is the number of bytecodes in the program,

74

clearly there are at most m MDSs. How do we bound the size of each MDS? Each

MDS may have at most m assignments and each of these assignments may affect

at most m locations (provided we distinguish locations based on allocation sites as

is common in points-to analysis methods). Thus, the size of each MDS is O(m2).

Since there are at most m MDSs, the space overheads of maintaining the MDSs are

O(m3). The other portions of the relevant slicing algorithm are taken from dynamic

slicing; the space overheads of these portions of the relevant slicing algorithm are

O(N), as explained in Section 3.2. So, the overall space overheads of our relevant

slicing algorithm are O(N2 + m3).

We now calculate the time overheads of relevant slicing. First we estimate the

time overheads for maintaining the θ set in the relevant slicing algorithm. Note that

the θ set contains O(N) elements of the form 〈β, prop〉. The set difference operation

at line 32 of Figure 4.7 is executed O(N2) times. Since each prop set contains O(N)

variables, the overall time overheads to perform the set difference operation at line

32 of Figure 4.7 are O(N3). The total time overheads to perform the set union

operation at lines 40, 42 and 48 of Figure 4.7 are O(N2), because lines 40, 42 and

48 are executed O(N) times and the size of the θ set is O(N). Given a bytecode

occurrence β and the θ set, there are a constant number of elements 〈β′, prop′〉 ∈ θ,

where β′ is (directly) dynamically control dependent on β. This is because there

is no explicit goto statement in Java programs. Different occurrences of the same

bytecode are dynamically control dependent on different bytecode occurrences. Note

that there are a constant number of bytecodes which are statically control dependent

on the bytecode bβ of occurrence β. Thus, there are a constant number of bytecode

occurrences which are directly dynamically control dependent on β. In addition,

every bytecode occurrence β′ has at most one 〈β′, prop′〉 in θ. Consequently, line 47

is executed O(N) times, and the overall time overheads to execute line 47 are O(N3).

The total time overheads to perform check at line 12 of Figure 4.9 are O(N3), which

75

is similar to perform set difference operation at line 32 of Figure 4.7.

Now, we analyze the overall time overheads to perform the intersect operation by

the computePotentialDependence method in Figure 4.8. The intersect operation

at line 6 of Figure 4.8 can be executed at most N times. In each execution of the

intersect operation we compare the contents of MDS and δ. Since the size of MDS

is O(m2) and the size of the set δ is O(N), therefore the time overheads of a single

intersect operation are O(N · m2). Thus, the total time overheads to execute all

the intersect operations at line 6 of Figure 4.8 are O(N · N · m2). Similarly, the

total time overheads to execute all the intersect operations at line 9 of Figure 4.8

are O(N3 ·m2), since this intersect operation is executed O(N2) times.

The other portions of the relevant slicing algorithm are taken from dynamic slicing;

the time complexity of these portions of the relevant slicing algorithm is O(N2), as

discussed in Section 3.2. This leads to a time complexity of O(N3 ·m2) for our relevant

slicing algorithm.

4.4 Experimental evaluation

In order to evaluate the performance of our relevant slicing algorithm, we implemented

a prototype based on the infrastructure which we presented in Chapter 3. We applied

the prototype to the subject programs described in Section 3.3.1, i.e. the same subject

programs for studying the compact trace representation in Chapter 3.

In the experiments, we measured the sizes of dynamic and relevant slices and

the time overheads to compute these slices. Thus, apart from studying the absolute

time/space overheads of dynamic and relevant slicing, these experiments also serve

as comparison between dynamic and relevant slicing,

We did not evaluate the effectiveness of dynamic and relevant slicing for debugging,

since this has been thoroughly studied in [100, 118]. For each subject from the

Java Grande Forum benchmark suite, we randomly chose five distinct slicing criteria

76

because of their relatively simple program structures; for other bigger subjects, we

randomly chose fifteen distinct slicing criteria.

Note that static points-to analysis results are required in our relevant slicing al-

gorithm (for computing potential dependencies). To compute points-to sets, we used

the spark toolkit [66] which is integrated in the compiler optimization framework soot

[99].

0

200

400

600

800

1,000

1,200

1,400

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

100

200

300

400

500

600

700

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %
2,939 862 868 0.70

Pgm. DS RS %
1,656 130 131 0.77

Pgm. DS RS %
2,327 199 199 0.00

Crypt SOR FFT

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

200

400

600

800

1,000

1,200

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

0

50

100

150

200

250

300

1 2 3 4 5

Slicing Criterion

S
l
i
c
e

S
i
z
e

(
n
u
m
b
e
r

o
f

b
y
t
e
c
o
d
e
s
)

DS

RS

Pgm. DS RS %
1,682 195 195 0.00

Pgm. DS RS %
2,885 420 420 0.00

Pgm. DS RS %
1,800 149 149 0.00

HeapSort LUFact Series

Figure 4.10: Compare sizes of relevant slices with those of dynamic slices.

4.4.1 Sizes of Dynamic Slices and Relevant Slices

Figure 4.10 and 4.11 present the slice sizes. Pgm. represents sizes of the subject

programs. DS and RS represent average sizes of dynamic slices and relevant slices,

respectively. All sizes are reported as the number of bytecodes. The last % column

represents the increased sizes of relevant slices (i.e. RS−DS
DS

) in percentage. As we

can see, most dynamic slices and relevant slices were relatively small, less than 30%

of corresponding source programs on average in our experiments. This is because

77

0
200
400
600
800
1000
1200
1400
1600
1800
2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic

e
Si
ze

(n
um
be

r
of
 b

yt
ec

od
es
)

DS

RS

Pgm. DS RS %
8,797 1,054 1,082 2.66

Pgm. DS RS %
34,019 7,023 9,440 34.42

201 compress 202 jess

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Sl
ic
e

Si
ze

(n
um
be

r
of
 b

yt
ec
od

es
)

DS

RS

Pgm. DS RS %
8,794 2,448 2,988 22.06

Pgm. DS RS %
22,077 3,283 3,784 15.26

209 db JLex

Figure 4.11: Compare sizes of relevant slices with those of dynamic slices.

programs often consist of several parts which work (almost) independently. The

irrelevant portions are excluded from both dynamic slices and relevant slices.

In our experiments, control and data structures of subject programs from Java

Grande Forum benchmark suite are quite simple. Furthermore, class hierarchies

of these programs are simple, with only limited use of inheritance. So, there are

not many candidate branches/method invocations for potential dependencies. The

relevant slices are almost the same as corresponding dynamic slices for these programs,

as shown in Figure 4.10.

On the other hand, other subject programs (i.e. 201 compress, 202 jess, 209 db,

and JLex) are more complex. These programs have more sophisticated control struc-

tures. In addition, these programs use inheritance and method overloading and

overriding, so that different methods may be called by the same method invoca-

tion bytecode. Both of the factors lead to potential dependencies between bytecode

78

22.5

23.0

23.5

24.0

24.5

25.0

25.5

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %
23.8 24.7 3.78

DS RS %
17.1 17.6 2.92

DS RS %
20.5 20.9 1.95

Crypt SOR FFT

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

0.0
1.0
2.0
3.0
4.0
5.0

6.0
7.0
8.0
9.0

10.0

1 2 3 4 5

Slicing Criterion

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
)

DS

RS

DS RS %
4.9 5.1 4.08

DS RS %
33.4 35.0 4.79

DS RS %
6.6 8.8 33.33

HeapSort LUFact Series

Figure 4.12: Compare time overheads of relevant slicing with those of dynamic
slicing.

occurrences. More importantly, these subject programs involve substantial use of

Java libraries, such as collection classes and I/O classes. These library classes con-

tribute a lot to relevant slices, because of their complex control structures and usage

of object-oriented features like method overloading (which lead to potential depen-

dencies). In fact, if we do not consider potential dependencies inside such library

classes, the average sizes of relevant slices for 201 compress, 202 jess, 209 db, and

JLex were 1072, 8393, 2523, and 3728, which were 1.71%, 19.51%, 3.06%, 13.55%

bigger than corresponding dynamic slices, respectively.

4.4.2 Time overheads

Figure 4.12 and 4.13 show the time overheads to compute dynamic slices and relevant

slices. DS and RS represent average time to perform dynamic slicing and relevant

79

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Ex
ec
ut
io
n
Ti
me
 (
se
co
nd
)

DS

RS

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Ex
ec
ut
io
n
Ti
me
 (
se
co
nd
)

DS

RS

DS RS %
56.9 65.1 14.41

DS RS %
5.7 7.6 33.33

201 compress 202 jess

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Ex
ec
ut
io
n
Ti
me
 (
se
co
nd
)

Ds

Rs

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Slicing Criterion

Ex
ec
ut
io
n
Ti
me
 (
se
co
nd
)

Ds

Rs

DS RS %
37.7 48.3 28.12

DS RS %
9.5 13.6 43.16

209 db JLex

Figure 4.13: Compare time overheads of relevant slicing with those of dynamic
slicing.

slicing, respectively. All time is reported in second. The last % column represents

the increased time for relevant slicing (i.e. RS−DS
DS

) in percentage. Clearly, the time

overheads to compute dynamic slices and relevant slices are sensitive to choice of pro-

grams and slicing criteria. According to our slicing algorithms in Figure 3.2 and 4.7,

the time overheads mainly come from: (1) extracting operand sequences of bytecodes

and backwards traversal, and (2) updating/comparing various sets to detect depen-

dencies. For a particular execution trace, the first task is common for slicing w.r.t.

every slicing criterion, and the second task is sensitive to the sizes of the slices. For

bigger slices, their sets to detect dependencies are also bigger during slicing, resulting

in larger time overheads.

80

4.4.3 Effect of points-to analysis

As mentioned earlier, results from static points-to analysis are required in our relevant

slicing algorithm for computing potential dependencies. To compute points-to sets, we

used the spark toolkit [66] which is integrated in the compiler optimization framework

soot [99]. Spark is a flexible framework for experimenting with points-to analysis for

Java. It supports various points-to analysis with different trade-offs between precision

and efficiency. One trade-off comes from the way to construct the call graph, where

the call graph is essential for inter-procedural points-to analysis. Spark can either

construct the call graph ahead of time using class hierarchy analysis (CHA), or on the

fly (otf) as the analysis proceeds. Another trade-off comes from the way to represent

the field deference expressions. The field-based (fb) analysis ignores the base objects

in field deference expressions, considering only the fields; while the field sensitive (fs)

analysis parameterizes each field deference expression by its base object for greater

precision.

In our experiment, we used spark to generate points-to sets with different precision,

and evaluated the impact of points-to analysis on relevant slicing. In particular, we

used otf & fs setting to produce precise points-to sets, and CHA & fb setting to

produce less precise sets, since [67] suggests that otf (fs) analysis is more precise than

CHA (fb) analysis respectively. We computed the relevant slices (for each of the

eight programs with three different criteria) twice: once using the less precise points-

to information and once using the more precise information. In our experiments, the

relevant slice sizes and time overheads for computing them did not change due to this

variation of points-to information .

81

4.4.4 Summary and Threats to Validity

In our experiments, relevant slices were often bigger than dynamic slices (since they

consider potential dependencies), but relevant slices were still relatively small com-

pared against the entire program. Of course, relevant slicing for a given criterion takes

more time than dynamic slicing for the same criterion. However, the increased time

overheads, which depend on the choice of slicing criterion, the control structures and

data flow structures of the program, were moderate (between 1.95% and 43.16%)in

our experiments .

It is also possible to encounter a situation where the dynamic slice is quite small

compared to the program, but the relevant slice is much bigger than the dynamic

slice. Since relevant slice computation involves detecting potential dependencies and

potential dependencies involve computing static data dependencies, a lot depends on

the result of the points-to analysis used to detect static data dependencies. If the

points-to analysis is very conservative, it may lead to a large relevant slice.

4.5 Summary

This chapter has studied relevant slices. Over and above dynamic slices, relevant

slices capture those executed statements which if changed can change the execution

flow and affect the slicing criterion. This chapter has presented a relevant slicing

algorithm which proceeds by backwards traversal of the execution trace. We have

compared the precision of our relevant slices to existing works [4, 12]. We have also

conducted an experimental study to compare sizes/time overheads of relevant slicing

and dynamic slicing.

82

CHAPTER 5

HIERARCHICAL EXPLORATION OF THE

DYNAMIC SLICE

Traditionally, a dynamic slicing algorithm returns a flat set of statements as the

dynamic slice to the programmer for inspection. However, the dynamic slice tends to

be huge. Our experience shows that, the dynamic slices often contain more than 400

statements for realistic programs. It is difficult for the programmer to understand

and employ such big slices for debugging and comprehension.

In this chapter, we present hierarchical dynamic slicing to help the programmer

understand/explore large dynamic slices. Hierarchical dynamic slicing proceeds by

systematically interleaving computation and comprehension of dynamic dependencies

for program debugging. During this process, a program execution trace is divided into

phases at various levels of granularity. We then perform dynamic slicing w.r.t. the

execution of the whole program and the observable error. However, we only report

dynamic data/control dependencies which (1) are reachable from the slicing crite-

rion, and (2) span across phases. Detailed data and control dependence computation

inside each phase is not exposed to the programmer, thereby reducing program un-

derstanding effort (as compared to inspecting the dynamic slice). The programmer

then examines these inter-phase dependencies and identifies a likely suspicious phase.

The suspicious phase is then subjected to further investigation in a similar manner,

i.e. dividing the phase into sub-phases, performing dynamic slicing w.r.t. the execu-

tion of this suspicious phase and the suspicious inter-phase dependency, and reporting

83

dynamic data/control dependencies which are (1) reachable from the suspicious inter-

phase dependency, and (2) across sub-phases. This process continues until the error

is identified.

During hierarchical dynamic slicing, the generation of “program phases” is critical.

In the next section, we present our notion of phases, which is then used in Section

5.2 to develop our slicing algorithm. We also present an algorithm for dividing an

execution trace into phases in a hierarchical fashion; this hierarchy corresponds to the

levels of hierarchy we will explore for uncovering the dynamic dependencies gradually.

The phase division algorithm divides a trace along control structure boundaries such

as procedure calls and loop boundaries. We compare our notion of program phases

with previous works on phase detection (e.g., see [28]). These works have defined

phases based on aggregate performance metrics (e.g., which basic blocks are executed

may define a phase).

The remainder of this chapter is organized as follows. Section 5.1 introduces our

notion of program phases, and compares our phase computation with previous phase

detection algorithms which were proposed for program optimization. In Section 5.2,

we present our hierarchical dynamic slicing algorithm. Section 5.3 summarizes the

experimental results of our slicing algorithm, and Section 5.4 concludes the chapter.

5.1 Phases in an Execution Trace

Before giving our phase division method, we discuss past work on phase detec-

tion in the programming languages community (Section 5.1.1). These works detect

phases based on program performance characteristics. The phases detected can be

used/exploited for dynamically re-configuring the hardware on which the program

runs, that is, the hardware is re-configured when the program enters a new phase.

In Section 5.1.2, we present our phase division algorithm and compare it with these

past works on phase detection.

84

5.1.1 Phase Detection for Improving Performance

Phase detection for program optimization has been a rich area of research [28, 77, 94].

Given an execution trace H, these techniques typically divide the trace H into fixed-

length intervals. Program performance related information for each interval (such

as basic block vectors, which, roughly speaking, capture the relative occurrences of

various basic blocks in an interval) are collected. Finally, consecutive intervals with

similar information are clustered into a single phase.

In order to study whether such a definition of phase is useful program under-

standing/debugging, we implemented a prototype which detects phases of an exe-

cution trace using basic block vectors (BBVs) [94]. The prototype is based on the

open source Kaffe virtual machine.1 It divides an execution trace into fixed length

intervals; we set the length of these intervals to 100,000 bytecode instances in our

experiments. For every fixed-length interval, we maintain a basic block vector (BBV)

to collect the frequencies of basic blocks executed in this interval. Given an interval

ρ, its basic block vector BBVρ is a vector of length n where n is the number of basic

blocks in the program. For any basic block b s.t. 1 ≤ b ≤ n

BBVρ[b] = Occurb,ρ ∗Num bytecodeb

where Occurb,ρ is the number of occurrences of basic block b in the interval ρ and

Num bytecodeb is the number of bytecodes in basic block b. Thus, the basic block

vector estimates the (relative) execution times spent in each basic block. Once the

BBV for a fixed length interval is computed, we normalize it by dividing each element

of the BBV by the sum of all the elements in the vector. The similarity between

two consecutive intervals is measured by the Manhattan distance of their normalized

BBVs. In particular, given normalized BBVs u and v of length n, their Manhattan

distance can be computed as the sum of absolute differences between the elements of

1Available from http://www.kaffe.org

85

vectors u, v. Thus,

ManhattanDis(u, v) = Σn
i=1|u[i]− v[i]|

The Manhattan distance of two normalized BBVs lies between 0 and 2, where 0

indicates that the two BBVs are identical and 2 indicates that the two BBVs are

completely different. If the Manhattan distance of two consecutive execution intervals

is less than a certain threshold (say 1), existing methods for phase detection (such as

[94]) cluster these intervals into a single phase.

0 10 20 30 40 50 60 70 80 90 100 110

0

0 10 20 30 40 50 60 70 80 90 100 110

0

Execution

M
a
n
h
a
tt
a
n

D
is
ta
n
ce

(a)

0 10 20 30 40 50 60 70 80 90 100 110

0

0.5

1

1.5

2

Execution

(c)

Execution

(b)

Figure 5.1: (a) Manhattan distances. (b) Phase boundaries w.r.t. manhattan dis-
tances. (c) Phase boundaries generated by hierarchical dynamic slicing

In Figure 5.1(a) and 5.2(a), we plot the Manhattan distances for consecutive in-

tervals in the execution trace for jess and db programs drawn from the SPEC JVM

benchmark suite [96]. The solid line represents Manhattan distances between con-

secutive execution intervals. Dashed lines represent phases with threshold=1.0. The

program inputs used to generate the execution traces are taken from the standard

inputs that come with these benchmarks in the SPEC JVM suite. jess is a Java

86

0 100 200 300 400 500 600 700 800

0

0 100 200 300 400 500 600 700 800

0

Execution

M
a
n
h
a
tt
a
n

D
is
ta
n
ce

0 100 200 300 400 500 600 700 800

0

0.5

1

1.5

2

(a)

Execution

(b)

Execution

(c)

Figure 5.2: (a) Manhattan distances. (b) Phase boundaries w.r.t. manhattan dis-
tances. (c) Phase boundaries generated by hierarchical dynamic slicing

Expert Shell System based on NASA’s CLIPS expert shell system. The system it-

eratively reads declarative rules and commands from the input; when the command

“run” is read, the system tries to “reason” using the knowledge from those declarative

rules. The db program performs certain operations on a database, such as insertion,

deletion, and sorting. We set a threshold of 1 for the Manhattan distances, that is,

consecutive intervals with a Manhattan distance greater than 1 are considered to be

in different phases. Figure 5.1(a) and 5.2(a) show the phases which are thus detected,

using dashed vertical lines. These phase boundaries are clarified for easy visualization

in Figure 5.1(b) and 5.2(b), with threshold = 1.0.

From the phases calculated for the jess and db programs, we observe the fol-

lowing about existing phase detection techniques (which essentially aim to improve

program performance on dynamically adaptable hardware). We note that existing

phase detection methods chop an execution trace into fixed length intervals, and

these interval boundaries may not closely correspond to the end of different logical

87

operations performed in a program execution trace. This is clearly the main diffi-

culty in using the phases produced by existing phase detection methods for program

understanding. However, this difficulty manifests itself in interesting and subtle ways

as mentioned in the following. Even though the following observations are made for

phase detection using Basic Block Vectors, they generally apply to any existing phase

detection method which calculates phases based on aggregate execution metrics (such

as cache miss, branch frequency [28, 94]).

• Existing phase detection methods start by dividing a trace into fixed-length

intervals, and then combine some of these intervals into phases. Thus, they

cannot identify very short “phases” of program behavior whose trace may be

shorter than the length of an interval. As an example, consider interval number

521 in the db program in Figure 5.2(a). In this interval, the program performs

nine different operations on a database. The execution trace for these operations

fits into a single interval, thus it will be reported as a single phase (instead of

nine phases). As we will see later, our phase detection method does not set an

a-priori lower bound on the length of a phase and thus this problem is easily

rectified.

• The manner of combining consecutive intervals into a single phase in existing

methods may also be problematic.

(a) First of all, intervals which are detected to be in the same phase by existing

methods may correspond to very different logical operations. The reasoning

is simple — even though the trace for two logical operations are different, the

Basic Block Vectors (BBV is an aggregate quantity) may be similar.

(b) Secondly, consecutive intervals within an execution trace may have very

different execution traces as well as Basic Block Vectors. Such intervals will be

placed in different phases by existing phase detection methods. However, the

88

intervals taken together may constitute a procedure which is accomplishing a

specific task in the program. Thus, from a logical point of view, they should be

treated as one single phase.

The difficulties mentioned in the preceding will be overcome by our phase division

method, which we now elaborate.

5.1.2 Program Phases for Debugging

Our definition of phase is based on the syntax structure of a program. The intuition

is that programmers often use loops and methods to implement specific tasks within a

program. Furthermore, programs are constructed hierarchically. Thus, a task which is

implemented by a procedure may contain sub-tasks which are implemented by other

procedures and/or loops. Our phase division algorithm is based on (and exploits)

these observations regarding program development.

We now present our notion of phases using an example. The example program

appears in Figure 5.3; it simulates a database system, where a user can perform

various operations such as insertion, deletion and sorting. The example is similar

to the db program in the SPEC JVM benchmark suite. The main() method of

the program initializes a database (lines 3-5), and then presents the user with seven

options (lines 7-35). Based on the user’s choice, the database system invokes one of

six methods, defined in the Database class. Finally, the main() method writes the

database to a file before the system terminates (lines 36-37).

Consider any execution trace of the database program (given as a sequence of line

numbers).

3, 4, 5, 7− 13, 7− 9, 14− 17, 7− 9, 30− 32, 36, 37

Using our phase division algorithm, we compute three phases at the top-level: (1) lines

3-5 of Figure 5.3, (2) lines 7-35 of Figure 5.3, and (3) lines 36-37 of Figure 5.3. These

phases exactly correspond to the tasks of database initialization, data processing,

89

1 public class Main {

2 public static void main(String[] args) {

3 Database db = new Database();

4 db.read_db(args[1]);

5 boolean exit = false;

6 String s;

7 while (!exit) {

8 char command = readCommand();

9 switch (command) {

10 case 'r': // read records from a file

11 s = readFromInput();

12 db.read_db(s);

13 break;

14 case 'i': // insert a record

15 s = readFromInput();

16 db.insert(s);

17 break;

18 case 'd': // delete the current record

19 db.delete();

20 break;

21 case 'n': // points to the next record in the database

22 db.next();

23 break;

24 case 'p': // points to the previous record in the database

25 db.prev();

26 break;

27 case 's': // sort the database

28 db.sort();

29 break;

30 case 'e': // exit the database

31 exit = true;

32 break;

33 default:

34 System.out.println("Command not support");

35 break;

}

}

36 db.write_db(args[2]);

37 return;

 }

……..

}

38 public class Database {

39 private Vector entries;

40 private int current_record;

41 Database() {

42 entries = new Vector();

43 current_record = 0;

}

44 public void read_db(String filename) {

45 BufferedReader dbReader = new BufferedReader(new FileReader(filename));

46 String s;

47 while ((s = dbReader.readLine()) != null) {

48 Record rec = new Record(s);

49 entries.addElement(rec);

}

50 dbReader.close();

51 current_record = entries.size() -1;

}

52 public void insert(String s) {

53 Record rec = new Record(s);

54 entries.add(current_record, rec);

55 current_record++;

}

56 public void write_db(String filename) {

57 PrintWriter dbWriter = new PrintWriter(new BufferedWriter(new FileWriter(filename)));

58 for (int i = 0; i < entries.size() - 1; i++) {

59 Record rec = (Record) entries.elementAt(i);

60 dbWriter.println(rec.toString());

}

61 dbWriter.close();

}

…...

}

Figure 5.3: Example: a program which simulates a database system.

and finalization. These phases are detected by our method (see the three phases

at the top level in Figure 5.4). Since our phase division is employed hierarchically,

each of these three phases can be further divided into sub-phases. Let us consider

the second phase – the execution of lines 7-35. The sub-phases of this phase will be

the different iterations of the loop in lines 7-35. The three sub-phases perform three

different operations on the database — read, insert and exit. These sub-phases are

also (hierarchically) shown in Figure 5.4.

The preceding example captures the two main features of our approach. First of

all, instead of using aggregate flow metrics (such as total number of times a basic block

is visited which is captured by Basic Block Vectors), we use the sequence of statements

90

entries[2]

Lines 3-37

entries[2]

Lines 7-35

db

Lines 3-5

entries

Lines 36-37

entries[2]

Lines 7-9, 14-17

2nd Loop Iteration

current_record

Lines 7-13

1st Loop Iteration

s

Line 11

current_record

read_db() Line 13

exit

Lines 7-9, 30-32

3rd Loop Iteration

!exit

Line 7

return value

readCommand()

command==’r’

Line 8-9

return value

readFromInput()

Level 1

Level 2

Level 3

Figure 5.4: Phases for the running example in Figure 5.3. Rectangles represent
phases. Dashed arrows represent inter-phase dynamic dependencies.

visited in an execution trace and chop off the phases based on some distinguished

statements (such as loop/procedure boundaries). Secondly, the phase division is done

hierarchically, that is, the execution trace is divided into some phases at the top-level

and each of these phases can be further sub divided and so on.

Our algorithm for dividing an execution trace H into phases appears in Figure 5.5.

We can understand the mechanics of the algorithm as follows. Suppose we visualize

all loops as calls/return to dummy methods; thus, for each loop execution instance

l contained in H suppose we insert a marker “call to ml” (“return from ml”) at the

beginning (end) of the loop. Here ml is a dummy method name introduced by us

(it does not appear in the program execution trace). Then, we first find the set of

all method invocations appearing in H which are not enclosed by any other method

invocation. We then use the entry and exit of such outermost method invocations to

determine the phase boundaries. Clearly, these “outermost” method invocations may

91

 1. dividePhase(H: an execution trace)

 2. begin

 3. LOOPS = the set of loop entries which are not enclosed by any other loop or method in H;

 4. CALLS = the set of method calls which are not enclosed by any loop or method in H;

 5. if (LOOPS != Ø)

 6. for (each loop in LOOPS)

 7. mark entry of loop as phase boundary; mark exit of loop (if it exists in H) as phase boundary;

 8. if (LOOPS = = Ø && CALLS != Ø)

 9. for (each method invocation call in CALLS)

 10. mark the entry of call as phase boundary; mark return from call (if it exists in H) as phase boundary;

 11. if (LOOPS = = Ø && CALLS == Ø)

 12. if (H consists of only iterations of one loop)

 13. for (iter = every ∆loop iterations of this loop)

 14. mark the beginning of iter as a phase boundary;

 15. else

 16. for (stmt = every ∆stmt statement instances in H)

 17. mark the control location after stmt as a phase boundary;

 18. mark the beginning and end of H as phase boundaries;

 19. for (each marked phase boundary)

 20. ph[i] = the execution trace of H between the i-th and the (i+1)-th phases boundaries;

 21. return ph;

 22. end

Figure 5.5: Divide an execution H into phases for debugging. ∆loop (∆stmt) is a
certain percentage of the number of loop iterations (statement instances).

correspond to either a call to a procedure in the program or the entry to a loop in the

program (recall that we converted the loop entries to dummy method invocations).

If H contains outermost procedure calls as well as outermost loops, we give priority

to the loops for defining the phase boundaries of H, and use the procedure calls for

defining the sub-phases of these phases. We feel that programmers use loops as a

higher-level structuring mechanism whereas sub-tasks appearing as initialization or

activities within a loop are often written up as procedures.

If no procedure call or loop exists in H, we check whether H contains iterations

of a loop and if so we set phase boundaries after a certain number of iterations (given

by the constant ∆loop). If H does not even contain any loop iterations (i.e., an

acyclic fragment of a procedure body) we set phase boundaries after certain number

of statement instances (given by the constant ∆stmt) in Figure 5.5. The reason for

92

allowing phase division even in the absence of loops/procedures is to eventually focus

at the level of statements, if the programmer chooses to do so for debugging.

The dividePhase method shown in Figure 5.5 itself is not hierarchical — given an

execution trace it simply divides the trace into a finite number of phases. However, we

will use it to achieve hierarchical division of a program execution trace H by invoking

dividePhase on H, the phases of H returned by dividePhase(H), and so on.

The phase boundaries generated by our phase detection method on the jess and

db programs are shown in Figure 5.1(c) and Figure 5.2(c) respectively. The reader

may wish to compare it with the output of the conventional phase detection methods

shown in Figure 5.1(b) and 5.2(b) respectively. In Figure 5.1(c) and Figure 5.2(c),

we have divided the execution traces of jess and db program up to the level of loop

iterations (i.e., one iteration of a loop is not fragmented further into smaller phases).

From our experiments, we notice that contrary to conventional phase detection

methods, our algorithm can generate very short phases. In other words, our phase

detection method is much more closely tied to the program behavior, rather than

depending on artificial parameters (such as the minimum length of a phase). For

example, the trace corresponding to the 521st interval of the db program which cor-

responds to nine different operations on a database will be divided by our algorithm

to nine different phases as opposed to one phase produced by conventional phase

detection methods (see Figure 5.2(b),(c)).

Furthermore, consecutive intervals which correspond to different logical operations

and have very different execution traces will be identified to be in different phases

by our method. Examples of such a situation are the intervals 42,43 in the jess

program. These intervals are placed in the same phase by the BBV method (Figure

5.1(b)), but in different phases by our method (Figure 5.1(c)). The BBV method

places these intervals in the same phase since the relative execution frequencies of

basic blocks are similar in the two intervals (though the traces are different).

93

Finally, consecutive intervals which are part of one single logical operation but

have very different execution traces will be identified to be in the same phase by our

method (as long as the code executed in these intervals have been modularly placed

in a loop or procedure by the programmer). Examples of such a situation can be seen

for intervals 23,24 in the jess program, corresponding to the processing of a single

rule by the expert shell represented by jess. They are placed in different phases

by the BBV method (Figure 5.1(b)), but in the same phase by our method (Figure

5.1(c)).

5.2 Hierarchical Dynamic Slicing Algorithm

In this section, we present our slicing algorithm. Like dynamic slicing, hierarchical

dynamic slicing explores dynamic data/control dependencies related to the observable

error (also called the slicing criterion). The only difference lies in the manner in which

these dependencies are presented and/or explored by the user. Section 2.2 summarizes

a standard dynamic slicing algorithm, and Section 3.2.1 shows the details of such an

algorithm.

As discussed earlier, a standard dynamic slice includes the closure of dynamic

control and data dependencies from the slicing criterion. However, such a dynamic

slice is often too big for human comprehension. Hierarchical dynamic slicing helps a

human programmer explore and understand this large dynamic slice. Figure 5.6 shows

our hierarchical dynamic slicing algorithm. The algorithm proceeds by employing a

recursive procedure hdslice(). This procedure is invoked at the top level with

the slicing criterion (H, l, v), where H represents an execution trace, l represents a

location in H, and v is a program variable. The hdslice() procedure first divides

the trace H into phases (line 3 of Figure 5.6) by employing dividePhase, our phase

division algorithm presented in the last section. Inter-phase dependencies (dynamic

data and control dependencies across phases) are then detected and collected in the

94

1. hdslice(H: an execution trace, l: a location in H, v: a variable)

2. begin
3. ph = dividePhase(H); /* See Figure 5.5 for dividePhase algorithm */
4. for (each ph[i] of ph)
5. ph[i].δ = ∅;
6. ph[i].γ = ∅;
7. ph[i].ipd = ∅;
8. stmte = the statement instance at location l in trace H;
9. let ph[e] = the phase which stmte belongs to;
10. ph[e].δ = {v};
11. ph[e].γ = {stmte};
12 stmt= stmte;
13. while(stmt is defined)
14. inInterPhaseDependence = false;
15. let ph[s] = the phase which stmt belongs to;
16. vdef = variable defined at stmt;
17. Vuse = the set of variables used at stmt;
18. for (each ph[i] of ph)
19. if (vdef ∈ ph[i].δ)
20. ph[i].δ = ph[i].δ - {vdef};
21. ph[s].δ = ph[s].δ ∪ Vuse;
22. ph[s].γ = ph[s].γ ∪ {stmt};
23. if (i != s) /* ph[i] and ph[s] are not the same phase */
24. inInterPhaseDependence = true;
25. if (∃stmt′ ∈ ph[i].γ where stmt′ is dynamically control dependent on stmt)
26. CDs = {stmt′ | stmt′ ∈ ph[i].γ and stmt′ is dynamically control dependent on stmt};
27. ph[i].γ = ph[i].γ - CDs;
28. ph[s].δ = ph[s].δ ∪ Vuse;
29. ph[s].γ = ph[s].γ ∪ {stmt};
30. if (i != s) /* ph[i] and ph[s] are not the same phase */
31. inInterPhaseDependence = true;
32. if (inInterPhaseDependence)
33. ph[s].ipd = ph[s].ipd ∪ {〈stmt, vdef 〉};
34. stmt = the statement instance before stmt;

35. for (each ph[i] of ph)
36. report inter-phase dependencies ph[i].ipd to the programmer;
37. 〈stmterr, verr〉= ProgrammerIntervention();
38. lerr = the location of stmterr in H;
39. err ph = the phase which stmterr belongs to, i.e. the suspicious phase;
40. Herr = the execution trace for the suspicious phase err ph;
41. hdslice(Herr, lerr, verr);
42. end

Figure 5.6: The Hierarchical Dynamic Slicing algorithm.

ipd set for each phase. Finally, these dependencies are reported to a programmer.

The programmer needs to identify “suspicious” ones and return the first (in order of

occurrence) suspicious inter-phase dependency (at line 37). Note that the programmer

95

here is inspecting only dependencies across phases, not dependencies within a phase.

Each invocation of the hdslice() procedure detects inter-phase dependencies

which are related to the observable error. This involves the following two steps.

1. determine which dynamic dependencies are (directly or indirectly) related to

the observable error, and then

2. determine which of the dynamic dependencies identified in step 1 are inter-phase

dependencies.

The first step is drawn from dynamic slicing, while the second step is novel to

hierarchical dynamic slicing. Dynamic slicing algorithms (see Section 2.2 and 3.2.1)

maintain sets δ (γ) to capture the variables (statements) whose data (control) depen-

dencies are yet to be explained. In hierarchical dynamic slicing, we maintain several

δ and γ sets, one for each phase. The splitting of δ and γ sets is to ease the task

of determining which dynamic dependencies are inter-phase dependencies. For every

statement instance stmt encountered during the backward traversal for slicing, let

ph[s] be the phase which stmt belongs to. If stmt defines an variable vdef which

is included in ph[i].δ for some value of i, this means that vdef is used by statement

instance in the ith phase ph[i], and stmt is involved in a dynamic data dependence

which is related to the observable error. We can then easily determine whether this

data dependence spans phase boundaries by determining whether ph[s] and ph[i] are

the same phase. Similarly, we could use the γ sets of the individual phases to de-

termine whether a dynamic control dependence spans phase boundaries. The data

and control dependencies which are thus identified to be inter-phase dependencies are

captured in the ipd sets (Line 33 of Figure 5.6).

The programmer can use the values of the variables involved in inter-phase dy-

namic dependencies2 to identify the “first” (in terms of order of occurrence in the

2The programmer may need to re-execute the program to obtain these values if the values are

96

trace) suspicious inter-phase dependency. We would now like to employ slicing to

explain this suspicious dependency. However, slicing requires the slicing criterion to

be set as a triple 〈trace, location of a statement instance, variable〉. Thus, we need

to extract these parameters from an inter-phase dependency if it is deemed “suspi-

cious” by the programmer. For an inter-phase dependency from phase p to phase p′,

we set the execution trace for phase p as the trace to be explored for further slicing.

Thus, the phase p is marked as the error phase err ph and its trace is the execution

trace Herr to be further explored (see Lines 37-40 of Figure 5.6). Also, given any

suspicious inter-phase dependency, we can associate a variable verr with it. For data

dependencies, verr is the variable which is defined/used; for control dependencies, we

can consider an auxiliary boolean variable corresponding to the guard involved in

the control dependency. Finally, the location of the statement instance where verr is

defined in the error phase err ph is marked as the suspected erroneous location lerr.

We now recursively invoke the hierarchical dynamic slicing procedure hdslice (see

Line 41 of Figure 5.6) with the new slicing criterion (Herr, lerr, verr).

Example We use the program of Figure 5.3 as the example. This program simulates

a database system where the variable current record should always point to the last

database record operated on. In this program, we introduced a bug in Line 51, which

should be

current record = entries.size()

instead of

current record = entries.size() - 1

Let us consider the following execution trace — the program first reads one record

into entries by executing lines 3-5, reads two additional records into entries by

not captured in the execution trace.

97

executing lines 7-13, and inserts one record into the database by executing line 7-

9,14-17. Finally, the program exits the database by executing 7-9, 30-32, and writes

the resultant database into a file by executing 36-37. Let us suppose the records

read/inserted were “Africa”, “America”, “Antarctica” and “Asia” (in this order).

Then, because of the faulty statement in line 51 of the program, the content of the

database at the end of execution will be: “Africa”, “America”, “Asia”, “Antarctica”.

In other words, the last and second last elements of the program array entries (i.e.,

entries[2] and entries[3]) are reversed. This error can be observed from the file

to which the database is written.

Figure 5.4 partially illustrates how the hierarchical dynamic slicing algorithm

works to locate the faulty statement. Rectangles at the same horizontal level in

Figure 5.4 are the phases generated in the same invocation of hdslice() procedure

(our slicing algorithm). Dashed arrows in Figure 5.4 represent inter-phase dependen-

cies. Variables involved in inter-phase dependencies for each phase appear in italics

in Figure 5.4. We do not show the statement instances which define these variables,

since they are clear from the program in Figure 5.3. As discussed earlier, the variable

for an inter-phase control dependency may be captured by an auxiliary boolean vari-

able representing the guard corresponding to the control dependency (see the guard

command == ‘r’ for the phase representing lines 8-9 in Figure 5.4). Note that the vari-

able(s) mentioned for each phase in Figure 5.4 effectively serve as the “outputs” of

the phase which are passed to the succeeding phases as “inputs”. This input-output

relationship constitutes the inter-phase dependencies which are shown using dashed

arrows in Figure 5.4. Thus, given an invocation of hdslice on an execution trace

H, the programmer can inspect these “outputs” of the phases corresponding to given

“inputs” and check whether this matches his/her expectation of the input-output

relationship supposed to be captured by the corresponding phase. The programmer

can avoid thinking about the computation inside any phase.

98

For the example program given in Figure 5.3, the hdslice() procedure is first

invoked with the execution of lines 3-37 of Figure 5.3, and the “incorrect” variable

entries[2] (deemed incorrect since it is involved in the observable error in this

example). This execution is divided into three phases, as shown in Figure 5.4. The

second phase (execution of lines 7-35) defines the variable entries[2]. Although the

first phase (execution of lines 3-5) defines several variables (including entries/exit)

which are involved in inter-phase dependencies, the programmer in this case deems

the initialization code in the first phase as “correct”. Typically, the programmer

will do this by inspecting the “outputs”, that is the values of variables produced by

execution of first phase. In this case, the programmer observes that at the end of the

first phase entries[2] is not initialized (in fact, only entries[0] is initialized). So,

the first phase is clearly unrelated to the error in entries[2], and the programmer

zooms into the second phase for further investigation. This results in a recursive

invocation of the hdslice procedure on the second phase. The second phase is

then further divided into three sub-phases. Again, the programmer observes from the

inter-phase dependencies that the first sub-phase produces current record as output

which is fed as input to the second sub-phase (shown via dashed arrows in Figure

5.4). Furthermore, the value of the current record variable is “unexpected”; this is

based on the programmer’s expectation that current record should be an index to

the current last record of the database. Consequently the programmer focuses on the

value of current record in the first sub-phase (lines 7-13 of Figure 5.3) via another

invocation of hdslice.

5.3 Experimental evaluation

We have implemented hierarchical dynamic slicing on top of our JSlice dynamic slicing

tool (see Chapter 3). The tool performs backwards dynamic slicing of sequential Java

programs. Since backwards slicing requires storing of the execution trace, the tool

99

performs online compression during trace collection. The compressed trace represen-

tation is traversed without decompression during slicing. Our prototype implemen-

tation of hierarchical dynamic slicing also uses this compressed trace representation.

In particular, the phase detection/representation/traversal in the execution trace are

all done in compression domain.

Subject Description Size
NanoXML a XML parser 7646 LOC

for Java 24 classes
JTopas a Java library 5400 LOC,

for parsing text 50 classes
Apache JMeter a performance 43400 LOC,

testing tool 389 classes

Table 5.1: Descriptions of subject programs used to evaluate the effectiveness of our
hierarchical dynamic slicing approach for debugging.

We applied our prototype implementation to subject programs written in Java

available from the Software-artifact Infrastructure Repository (SIR) [29]. Since our

slicing technique is applicable to sequential programs, we chose the NanoXML, JTopas

and JMeter subjects. Note that JMeter is actually a multi-threaded Java program,

but some test cases from [29] run only one thread of JMeter thereby making our

slicing technique applicable. Descriptions and sizes of these subjects are shown in

Table 5.1.

Each SIR subject comes with a pool of test inputs. SIR [29] also provides several

buggy versions of each subject program, where each buggy version has exactly one

injected bug. Some of the buggy versions are such that none of the given test inputs

(for the corresponding subject program) exposes the bug. We did not include them in

our experiments, since the failing input (i.e., the input corresponding to the execution

trace to slice on) did not come with the subject programs. Furthermore, some other

buggy versions are such that the faulty statement is not included in the dynamic

100

slice3; we left out these buggy versions as well. Finally, we got three buggy versions

for each of our three subject programs — resulting in a total of nine buggy programs.

Statement Instances Examined We first tried to evaluate the utility of hierar-

chical dynamic slicing for program debugging. Figure 5.7 compares (in a log scale) the

number of statement instances which a programmer has to examine using the hierar-

chical dynamic slicing approach and the conventional dynamic slicing approach. For

the hierarchical approach, a programmer has to examine only statement instances

involved in inter-phase dependencies. We compare this against the size of the dy-

namic slice. In practice, a developer may prune some statements from the dynamic

slice according to his understanding of the program. However, it is very difficult to

quantitatively measure such human factors. In our experiments, we use the size of

the dynamic slice to estimate what the programmer might examine in the conven-

tional dynamic slicing approach. As we can see from Figure 5.7, our approach can

significantly reduce (often by orders of magnitude) the number of statement instances

which the programmer needs to examine for debugging. The improvement comes from

the usage of phases in slicing. By dividing an execution into phases and reporting

inter-phase dependencies, a programmer can quickly identify suspicious dependence

chains. The inter-phase dependencies effectively expose the “inputs” and “outputs”

of each phase. This allows the programmer to think of each phase in terms of the ex-

pected input-output relationship rather than worrying about the computations within

each phase. Consequently, the number of statement instances to be investigated is

significantly reduced.

3This is because dynamic slicing can only locate errors where the faulty statement is present in
the program as well as in the execution trace (e.g., it cannot capture “missing code” errors).

101

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Nanoxml-1 Nanoxml-2 Nanoxml-3 Jtopas-1 Jtopas-2 Jtopas-3 Jmeter-1 Jmeter-2 Jmeter-3

Buggy Programs

S
ta

te
m

e
n
t
In

s
ta

n
c
e
s
 (
1
0
 y
)

Hierarchical Dynamic Slicing

Dynamic Slicing

Figure 5.7: The number of statement instances that a programmer has to examine
using the hierarchical dynamic slicing approach and the conventional dynamic slicing
approach. The figure is in log scale showing that our hierarchical approach is often
orders of magnitude better.

Subjects # Interventions # Hierarchy Levels
Nanoxml-1 17 29
Nanoxml-2 22 26
Nanoxml-3 2 7
Jtopas-1 4 5
Jtopas-2 10 10
Jtopas-3 7 8
Jmeter-1 3 3
Jmeter-2 8 10
Jmeter-3 2 2

Table 5.2: Number of Programmer Interventions & Hierarchy Levels in Hierarchical
Dynamic Slicing.

User Interaction One of the key issues in hierarchical dynamic slicing is the inter-

leaving of slice computation and comprehension steps. The aim is to aid program un-

derstanding by gradually exposing the programmer to complicated dependence chains.

However, if the number of intervention steps required from the programmer is over-

whelming, this can undermine the method’s utility. For this reason, we experimentally

evaluated the number of manual interventions required in the hierarchical dynamic

slicing of our subject programs. The results appear in the column # Interventions of

Table 5.2. In the experiments, we chose “simple” test cases which result in shorter

length execution traces. We feel that this is natural, since programmers also favor a

shorter execution trace demonstrating an error (over longer execution traces showing

102

the same error) for debugging purposes. In practice, the programmer can generate

such “simple” test cases (which produce shorter execution traces) based on his/her

intuition about the program, or (s)he can use automatic methods for simplifying test

inputs [75, 111].

From our slicing algorithm (Figure 5.6) it seems that the number of programmer

interventions is exactly equal to the number of hierarchy levels we explore (i.e., the

number of times we invoke the phase division algorithm). We were pleasantly sur-

prised to find that the number of manual interventions is often less than the number

of hierarchies explored (see the last two columns in Table 5.2). After dividing an ex-

ecution trace into phases, we may find that dependence chains which are relevant to

the observable error all lie in one phase, and dependence chains in other phases have

no effect on the observable error. In other words, there is no inter-phase dependence

which is relevant to the observable error. Then, our approach could proceed to the

phase which is relevant to the observable error, without any user intervention.

Post-mortem pruning of slices We also tried out the following variation of our

experiments on slicing. We first compute the entire dynamic slice, as in conventional

slicing techniques. However, the slice is explored post-mortem along dependence

chains (chains of length 1,2,...), starting from the slicing criterion until the error is

found. Note that such an exploration is also not automatic since the programmer has

to look through the dependence chains to check whether the error is found.

We compared the number of statement instances examined by such post-mortem

exploration of the slice with our hierarchical dynamic slicing method (which performs

exploration/comprehension as the slice is being computed). We found that the num-

ber of statement instances examined by this post-mortem guided exploration of the

slice is still substantially higher than those examined by our hierarchical dynamic

slicing method for most of the buggy programs. To be precise, hierarchical dynamic

103

slicing required substantially less statements to examine (as compared to the pruned

slices) in 6 out of the 9 buggy programs. This is presumably because exploiting

user-guidance during the slice computation (rather then after the slice computation)

makes the exploration/comprehension of the slice more goal-directed.

5.4 Summary

This chapter presents hierarchical dynamic slicing to aid the comprehension of dy-

namic slices. The proposed application is in program debugging, where the program-

mer is gradually guided through complex program dependence chains. This is as

opposed to the arduous task of understanding a full dynamic slice, where all of the

comprehension is left to the programmer.

We have conducted detailed experiments on well-known subject programs writ-

ten in Java drawn from the SIR repository [29] to evaluate the effectiveness of this

approach. Our experiments show a substantial reduction in program understanding

effort for our subject programs.

104

CHAPTER 6

TEST BASED FAULT LOCALIZATION

In the previous chapters, we address deficiencies of dynamic slicing and make it ap-

plicable for realistic programs. Because dynamic slicing requires the entire control

flow and data flow of an execution, this technique can only be used to analyze the

execution of up to a few seconds given the speed and storage capacity of modern work-

stations. This observation is confirmed in other research reports [27, 114, 115]. Zhang

et al. proposed to reduce the execution run so that dynamic slicing can be applied

to long execution runs [119], but their technique can be only used for applications

which have many independent inputs.

Because it is believed that dynamic slicing is an expensive technique, we also

study test based fault localization techniques. These techniques can be light, since

they do not rely on the entire run time information of an execution. Test based fault

localization techniques often proceed by comparing the failing program run with some

“successful” run (a run which does not demonstrate the error). The difference may be

related to the error, and is reported to the programmer as heuristics for debugging.

Sometimes, the difference can pinpoint the error.

An issue of test based fault localization techniques is to generate or choose a

“suitable” successful run; this task is often left to the programmer. In this chapter,

we present a control flow based difference metric to (a) automatically generate a

feasible successful run, or (b) automatically choose a successful run from a pool of

successful runs for automated debugging.

Our difference metric summarizes the sequence of comparable branch statement

instances which are evaluated differently in the two runs. Based on this difference

105

metric, we automatically generate a feasible successful run which is close to, that

is, has little distance with, the failing run. In addition, when there is a pool S

of successful runs available, we can directly use the difference metric to choose an

appropriate successful run from the pool S.

The rest of this chapter is organized as follows. Section 6.1 presents an example.

Our difference metric is presented in Section 6.2. Section 6.3 discuses how to choose

or construct a successful run comparison. Section 6.4 presents the experimental setup.

Section 6.5 discusses our experimental results. Section 6.6 concludes the chapter.

6.1 An Example

In this section, we use a sample segment of the TCAS program from the Siemens

benchmark suite [47, 89], to introduce several important concepts which will be used

throughout this chapter. The TCAS program is an altitude controller program. Fig-

ure 6.1 shows a program segment, with input variables Climb and Up. There is an

bug in the program segment, where lines 2 and 4 are wrongly reversed. That is, line

2 should be separation = Up+100 and line 4 should be separation = Up. Next,

we illustrate the concepts of failing run, successful run, bug report, feasible path and

infeasible path with some examples.

1. if (Climb)
2. separation = Up;
3. else
4. separation = Up + 100;
5. if (separation > 150)
6. upward= 1;
7. else
8. upward= 0;
9. if (upward > 0)
10.
11. printf(“upward”);
12. else
13.
14. printf(“downward”);

Figure 6.1: A program segment from the TCAS program.

106

Failing run: When the program is executed with inputs Climb = 1 and Up = 100,

the output will be “downward”. This execution run will be regarded as failing run

πf , because the developer would expect that the output is “upward”.

Successful run: When the program is executed with inputs Climb = 0 and Up =

20, the output will be “downward”. Although this execution run is not perfect, i.e.

some buggy statements are executed, we still consider this run as a successful run

πs, because the output matches the developer’s expectation. A developer usually

manually determines whether an execution run is a failing run or successful run.

Bug report: If we compare the above failing run πf (along path 〈1, 2, 5, 8, 9, 13, 14〉)

and successful run πs (along path 〈1, 4, 5, 8, 9, 13, 14〉), we will find that branch 1 has

similar context, but is evaluated differently in the two execution runs. According to

our method in Section 6.2, we will generate a bug report which contains only line 1.

The bug report may not always pinpoint the buggy statements, as illustrated

by this example. However, given a bug report with statements stmt, the developer

can inspect those statements stmt′ which have a chain of control/data dependencies

from/to stmt, until the error cause is found. A bug report is considered as high

quality, if the total number of inspected statements (i.e. stmt and stmt′) is small.

Feasible path: When we construct a run π along the path 〈1, 2, 5, 8, 9, 13, 14〉, we

consider π as a feasible run, because there exist inputs Climb = 1 and Up = 100

which lead to this execution path.

Infeasible path: When we construct a run π along the path 〈1, 2, 5, 8, 9, 10, 11〉,

we consider π as an infeasible run. This is because lines 8, 9, 10 conflict with each

other, and there is no input which leads to such an execution path.

107

6.2 Measuring Difference between Execution Runs

We elaborate on the difference metric used for comparing execution runs in this

section. We consider each execution run of a program to be a sequence of events

〈e0, e1, ..., en−1〉 where ei refers to the ith event during execution. Each event ei rep-

resents an execution instance of a line number in the program; the program statement

corresponding to this line number is denoted as stmt(ei). To distinguish events from

different execution runs, we denote the ith event in an execution run π as eπ
i , that is,

the execution run appears as a superscript. We will drop the superscript when it is

obvious from the context.

Our difference metric measures the difference between two execution runs π and π′

of a program, by comparing behaviors of “corresponding” branch statement instances

from π and π′. The branch statement instances with differing outcomes in π, π′ are

captured in diff (π, π′) – the difference between execution run π and execution run π′.

In order to find out “corresponding” branch instances, we have defined a notion of

alignment to relate statement instances of two execution runs. Our alignment is based

on dynamic control dependence. Given an execution run π of a program, an event eπ
i

is dynamically control dependent on another event eπ
j if eπ

j is the last event before eπ
i

in π where stmt(eπ
i) is statically control dependent [31] on stmt(eπ

j). Note that any

method entry event is dynamically control dependent on the corresponding method

invocation event. We use the notation dep(eπ
i , π) to denote the event on which eπ

i

is dynamically control dependent in run π. We now present our definition of event

alignment.

Definition 6.1 (Alignment). For any pair of events: e in run π and event e′ in run

π′, we define align(e, e′) = true (e and e′ are aligned) iff.

1. stmt(e) = stmt(e′), and

2. either e, e′ are the first events appearing in π, π′ or

108

align(dep(e, π), dep(e′, π′)) = true.

When a branch event eπ
i cannot be aligned with any event from the execution π′,

this only affects alignments of events in π which are transitively dynamically control

dependent on eπ
i . According to the alignment, the ith iteration of a loop in the

execution π will be aligned with the ith iteration of the same loop in the execution

π′, in order to properly compare events from different loop iterations.

1. if (a)
2. i = i + 1;
3. if (b)
4. j = j + 1;
5. if (c)
6. if (d)
7. k = k + 1;
8. else
9. k = k + 2;
10. printf(“%d”, k);

Figure 6.2: A program segment.

Figure 6.2 shows an example program fragment, and Figure 6.3 illustrates our

definition of alignment. Here the first three columns show the event sequences of

three execution runs π, π′ and π′′ of the program fragment; the 4th and 5th columns

show alignments of (π, π′) and (π, π′′), where solid lines indicate aligned statement

instances and dashed lines indicate unaligned statement instances. In other words,

events along the same horizontal line are aligned.

According to the notion of alignment presented in Definition 6.1, for any event e in

π, there exists at most one event e′ in π′ such that align(e, e′) = true. The difference

between π and π′ (denoted as diff (π, π′)) captures all branch event occurrences e in

π which (i) e can be aligned to an event e′ in π′ and (ii) events e and e′ have different

outcomes in π and π′. Formally, the difference between two execution runs can be

defined as follows.

Definition 6.2 (Difference Metric). Consider two execution runs π, π′ of a program.

109

Figure 6.3: Example to illustrate alignments and difference metrics.

The difference between π, π′, denoted diff (π, π′), is defined as:

diff (π, π′) = 〈eπ
i1

, . . . , eπ
ik
〉

such that

1. each event e in diff (π, π′) is a branch event occurrence drawn from run π.

2. the events in diff (π, π′) appear in the same order as in π, that is, for all 1 ≤

j < k, ij < ij+1 (event eπ
ij

appears before event eπ
ij+1

in π).

3. for each e in diff (π, π′), there exists another branch occurrence e′ in run π′ such

that align(e, e′)=true (i.e. e and e′ can be aligned). Furthermore, the outcome

of e in π is different from the outcome of e′ in π′ 1.

4. all events in π satisfying criteria (1) and (2) are included in diff (π, π′).

As a special case, if execution runs π and π′ have the same control flow, then we

define diff (π, π′) = 〈eπ
0 〉.

Clearly we can see that in general diff (π, π′) 6= diff (π′, π). The reason for making

a special case for π and π′ having the same control flow will be explained later in the

section when we discuss comparison of differences.

1Since e, e′ can be aligned, they denote occurrences of the same branch statement.

110

Consider the example in Figure 6.3. The difference between execution runs π and

π′ is: diff (π, π′) = 〈3 2 , 6 4 〉, as indicated by the last two columns in Figure 6.3. This

is because branch instances 32, 64 are aligned in runs π and π′ and their outcomes are

different in π, π′. If the branches at lines 32, 64 are evaluated differently, we get π′ from

π. Similarly, the difference between execution runs π and π′′ is: diff (π, π′′) = 〈1 1 , 6 4 〉.

Why do we capture branch event occurrences of π which evaluate differently in π′

in the difference? Recall that we want to choose a successful run for purposes of fault

localization. If π is the failing run and π′ is a successful run, then diff (π, π′) tells us

which branches in the failing run π need to be evaluated differently to produce the

successful run π′. Clearly, if we have a choice of successful runs we would like to make

minimal changes to the failing run to produce a successful run. Thus, given a failing

run π and two successful runs π′, π′′, we choose π′ over π′′ if diff (π, π′) < diff (π, π′′).

This requires us to compare differences, as elaborated in the following.

Definition 6.3 (Comparison of Differences). Let π, π′, π′′ be three execution runs of

a program. Let

diff (π, π′) = 〈eπ
i1

, eπ
i2

, . . . , eπ
in 〉 and diff (π, π′′) = 〈eπ

j1
, eπ

j2
, . . . , eπ

jm 〉

We define diff (π, π′) < diff (π, π′′) iff there exists an integer K ≥ 0 s.t.

1. K ≤ m and K ≤ n

2. the last K events in diff (π, π′) and diff (π, π′′) are the same, that is,

∀0 ≤ x < K in−x = jm−x.

3. one of the following two conditions holds

• either diff (π, π′) is a suffix of diff (π, π′′), that is, K = n < m

• or the (K + 1)th event from the end in diff (π, π′) appears later in π as

compared to the (K+1)th event from the end in diff (π, π′′), that is, in−K >

jm−K.

111

Thus, given a failing run π and two successful runs π′, π′′ we say that diff (π, π′) <

diff (π, π′′) based on a combination of the following criteria.

• Fewer branches of π need to be evaluated differently to get π′ as compared to

the number of branches of π that need to be evaluated differently to get π′′.

This is reflected in the condition K = n < m of Definition 6.3.

• The branches of π that need to be evaluated differently to get π′ appear closer

to the end of π (where the error is observed), as compared to the branches of π

that need to be evaluated differently to get π′′ . This is reflected in the condition

in−K > jm−K of Definition 6.3.

To illustrate our comparison of differences, consider the example in Figure 6.3.

Recall that diff (π, π′) = 〈3 2 , 6 4 〉, and diff (π, π′′) = 〈1 1 , 6 4 〉, as illustrated by the

“•” in the last two columns of Figure 6.3. Comparing 〈32, 64〉 with 〈11, 64〉, we see

that 〈32, 64〉 < 〈11, 64〉 since statement instance 32 occurs after statement instance 11

in execution run π.

According to the comparison of differences in Definition 6.3, we favor late appear-

ance of differing branch instances instead of early ones. This is because the early

branch instances (where the two runs are different) are often not related to the error.

For example, many programs check whether the input is legal in the beginning. If we

favor early branch instances, we may get failing and successful runs which only differ

in whether the input is legal for such programs. Comparing such runs is unlikely to

produce a useful bug report.

Comparing runs with identical control flow Using Definitions 6.2 and 6.3 we

can see that if π is the failing run, π1 is a successful run with same control flow as

that of π (i.e. same sequence of statements executed by a different input) and π2 is a

successful run with control flow different from π we will have diff (π, π2) < diff (π, π1).

112

As a result, our method for choosing a successful run will avoid successful runs with

same control flow as that of the failing run. This choice is deliberate; we want to

find a successful run with minimal difference in control flow from the failing run, but

not with zero difference. Recall here that we construct bug report by comparing the

control-flow of the selected successful run with the failing run. If the two runs have

the same control flow, the bug report is null and hence useless to the programmer.

In our experiments, we encountered few cases where there were some successful runs

with same control flow as the failing run; these were not chosen by our method of

comparing differences between runs.

6.3 Obtain the Successful Run

In this section, we discuss how to generate or choose a “suitable” successful run for

fault localization. The process is guided by the difference metric presented in Section

6.2. The selected successful run πs is then compared against the given failing run πf .

The difference between πf and πs (see Definition 6.2) is constructed as a bug report.

Automatically Choosing Method When there are one failing run πf and a pool

S of successful runs available, we can simply choose a “suitable” successful run from S

for the comparison based fault localization. The selection process is of course guided

by our difference metric. That is, for each successful run πs ∈ S, we compute the

difference between πf and πs, i.e., diff (πf , πs) according to the Definition 6.2. Then

the successful run with the “smallest” difference (as per Definition 6.3) is selected for

debugging. Such a successful run has the minimal difference from the failing run, and

may produce a bug report with high quality.

One question here is how we get the pool S of successful runs. There are two

solutions to this problem. One possibility is to have a pre-defined large set of program

inputs Inp; this set of test-cases might have been generated using some notion of

113

coverage. Now given the program, we find out which of the inputs in Inp produces

successful runs. Another way of constructing the successful run pool is to use the

input for the given failing run. We can slightly perturb this failing input to generate

a set of program inputs; we then classify which of these perturbed inputs produce

successful runs - thereby getting a pool of successful runs.

Automatic Path Generation Method When there is only the failing run πf

available, we can try to generate the closest successful run from the failing run πf ,

according to the difference metric in Definition 6.2. In other words, given a failing run

πf , we seek to generate a successful run πs such that there does not exist any other

successful run π′
s with diff (πf , πs) < diff (πf , π

′
s) (see Definition 6.3). The difference

between πf and πs consists of the branches in the failing run πf which need to be

evaluated differently to get πs. We now elaborate our algorithm for generating a

feasible successful run from a failing run of a program.

6.3.1 Path Generation Algorithm

How do we construct the closest successful run from the failing run? Of course, we

will not generate all the possible runs and then find out the closest. Instead, we

seek to generate the “closest” program run from the failing run by exploiting our

understanding of the difference metric. If this turns out to be a feasible successful

run then our search stops; otherwise we try for the next closest run and so on.

Our notion of proximity (Definition 6.3) ensures that a run π is close to a failing

run πf (that is, difference between πf , π is small) if the branches of πf which need

to be evaluated differently are near the end of πf (where the error is observed).

Furthermore, the number of branches of πf that need to be evaluated differently

should be small.

Thus, given a failing run πf , we will first try to evaluate differently the last branch

occurrence (call it blast) in πf to construct a run π1. Among all the branch occurrences

114

Difference with failing run Execution run

〈6〉 〈1, 3, 5, 6, 9, 10〉
〈3, 6〉 〈1, 3, 4, 5, 6, 9, 10〉
〈1, 3, 6〉 〈1, 2, 3, 4, 5, 6, 9, 10〉
〈1, 6〉 〈1, 2, 3, 5, 6, 9, 10〉
〈5〉 〈1, 3, 5, 10〉
〈3, 5〉 〈1, 3, 4, 5, 10〉
〈1, 3, 5〉 〈1, 2, 3, 4, 5, 10〉
〈1, 5〉 〈1, 2, 3, 5, 10〉
〈3〉 〈1, 3, 4, 5, 6, 7, 10〉
〈1, 3〉 〈1, 2, 3, 4, 5, 6, 7, 10〉
〈1〉 〈1, 2, 3, 5, 6, 7, 10〉

Table 6.1: Order in which candidate execution runs are tried out for the failing run
〈1, 3, 5, 6, 7, 10〉 in Figure 6.2.

in πf , clearly blast is nearest to the end of πf . If π1 is a successful and feasible run,

we return π1 as the closest successful run. Otherwise we successively construct other

runs by evaluating blast as well as other branch occurrences of πf differently. If none

of these runs is a feasible successful run, this indicates that the branch at blast might

have little relationship with the error cause. So, there is no point in evaluating blast

differently. Instead, we evaluate the second last branch occurrence in πf differently

and carry out the above steps again. This process goes on until a feasible successful

run is obtained.

Example Let us take the program segment in Figure 6.2 as an example. Assume

that the failing run πf = 〈1, 3, 5, 6, 7, 10〉. The branch occurrences appearing in this

run are at lines 1, 3, 5, 6. Note that the execution run πf does not contain multiple

occurrences of any program statement; so we do not need to worry about distinguish-

ing between occurrences of the same statement in a path as far as this example is

concerned. Now, our method tries to evaluate some of the branches in lines 1, 3, 5, 6

differently from the failing run πf , thereby constructing new execution runs.

115

Table 6.1 shows the order in which the branches of failing run πf will be evalu-

ated differently leading to new execution runs. Let us assume that none of the new

execution runs is a feasible successful run, so that we can elaborate all possible runs

constructed by our algorithm. We first evaluate differently the branch at line 6, since

this branch is the last one in the failing run. In the next step, the algorithm intends

to evaluate differently a branch before line 6 as well as the branch at line 6. Accord-

ing to the difference metric, we should now choose the branch which is the closest to

line 6. However, the algorithm cannot choose line 5 at this time, although line 5 is

the closest. This is because line 6 is control dependent on line 5. If line 5 is evalu-

ated differently, line 6 cannot be executed. Instead, line 3 is chosen, and the second

run is constructed by evaluating differently branches at line 3 and 6. After this, the

algorithm tries to evaluate differently a branch before line 3 as well as branches at

line 3,6. Thus, line 1 is selected, and branches at line 1,3,6 are evaluated differently.

Now all branches before line 3 and 6 have been considered, and no feasible successful

run can be constructed. This means that line 3 and 6 might not be related to the

error cause at the same time. The algorithm continues trying to evaluate differently

branches before line 6 as well as the branch at line 6. After branches at lines 1, 6 have

been evaluated differently, all branches before line 6 have been evaluated differently

together with the branch at line 6. Corresponding runs have been shown in the first

segment of the Table 6.1 (the segments are separated by horizontal lines). Thus, at

this point the algorithm concludes that the branch at line 6 might have little bearing

with the actual error cause. The algorithm gives up line 6, and evaluates differently

the second last branch at line 5 as well as branches before line 5, as shown in the

second segment of Table 6.1. After this, our algorithm considers the third last branch

at line 3, and so on.

116

Global Variable: sop, the program’s initial event
eop, the program’s event after which

the erroneous state is observable
πf , the program’s failing run to debug

generatePaths (paths: a set of execution runs, last: a branch event,
df :difference between πf and runs in paths)

begin
1. br= branch event just prior to last in πf ;
2. while (br is defined)
3. if (no event in df is dynamically control dependent on br)
4. newpaths= {}; /* empty set */
5. for each π in paths do
6. de = pde(br, π);
7. subpaths = get all(br, de, π);
8. π1 = sub-path of π from sop to br;
9. π2 = sub-path of π from de to eop;
10. for each π′ in subpaths do
11. if (π′ o π2 is infeasible)
12. continue;
13. πw = π1 o π′ o π2;
14. if (πw is feasible and successful)
15. return πw;
16. else
17. insert πw into newpaths;
18. if (newpaths is not empty set)
19. df ′= 〈br〉 ◦ df ;
20. πr = generatePaths(newpaths, br, df ′);
21. if (πr != Null)
22. return πr;
23. else
24. for each π in paths do
25. π3 = sub-path of π from br to eop;
26. if (π3 is infeasible)
27. remove π from paths;
28. if (paths is empty set)
29. return Null;
30. br= branch event just prior to br in πf ;
31.return Null;
end

Figure 6.4: Algorithm to generate a successful run from the failing run.

Incremental Path generation So far, we have clarified the order in which the

execution runs will be generated in our search for the closest successful run. In Table

6.1 we have shown the order of the generated execution runs for a given failing run

and the differences of these runs from the failing run. However, our algorithm will not

generate the differences and then find out the execution run(s) for each difference.

117

This would be inefficient since all execution runs will have to be generated from

scratch by modifying the failing run. Let us consider the first two execution runs

tried out in Table 6.1. They are

π1 = 〈1, 3, 5, 6, 9, 10〉 diff (πf , π1) = 〈6 〉

π2 = 〈1, 3, 4, 5, 6, 9, 10〉 diff (πf , π2) = 〈3 , 6 〉

Recall that the failing run is πf = 〈1, 3, 5, 6, 7, 10〉 and the buggy program is shown in

Figure 6.2. The run π2 shares a common suffix with run π1 (the subpath 〈5, 6, 9, 10〉);

the runs also share a common prefix – the subpath 〈1, 3〉. Run π2 can be obtained by

evaluating the branch at line 3 differently over and above π1. Indeed, our algorithm

generates the execution runs in this incremental fashion. Thus, run π1 is constructed

by modifying failing run πf at line 6 (the last branch occurrence of πf). Run π2 is

then constructed by incrementally modifying run π1 in the branch at line 3, that is,

we do not construct run π2 from scratch by modifying the failing run πf at lines 3

and 6. This incremental path construction is crucial for constructing our bug report

efficiently.

Complications due to nested branch statements Note that when a branch in

the failing run is evaluated differently, several execution runs may be obtained due to

nested branch statements. For example, for the program in Figure 6.2 if the failing

run is 〈1, 2, 3, 4, 5, 10〉, our algorithm will first try to evaluate branch 5 differently

since it is the last branch in the failing run. However, this produces two execution

runs 〈1, 2, 3, 4, 5, 6, 7, 10〉 and 〈1, 2, 3, 4, 5, 6, 9, 10〉 due to the nested branch statement

at line 6. Our algorithm will check whether any of these two runs is feasible and

successful before proceeding to construct any other execution runs. This is part of

our attempt to generate the closest successful run according to the difference metric

of Definition 6.2. We now explain our path generation algorithm in details.

118

Figure 6.5: Explanation of algorithm in Figure 6.4.

Algorithm Description Our path generation algorithm is presented in Figure 6.4.

Some of the variables used in the algorithm are pictorially explained in Figure 6.5,

where solid line refers to subpath of the run πf , and broken line refers to the subpaths

constructed by evaluating the branch br differently from πf . The algorithm proceeds

by employing a recursive procedure generatePaths. This procedure is invoked at the

top level with the parameters {πf}, elast and 〈〉, where πf refers to the failing run,

elast refers to the last event in the πf , and 〈〉 stands for the empty sequence.

As shown in Figure 6.4, the three parameters of generatePaths are paths, last and

df. The generatePaths procedure constructs new execution runs from the runs cap-

tured in paths by evaluating branch events before the event last differently. All runs

in paths have been constructed by evaluating differently events in the difference met-

ric df w.r.t. the failing run πf . These runs have the same difference w.r.t. the failing

run. Let us re-visit the example in Table 6.1 which shows the order of path generation

for the program in Figure 6.2 corresponding to the failing run πf = 〈1, 3, 5, 6, 7, 10〉.

119

The left column shows the df for all invocations of generatePaths procedure except

the first (where df is the empty sequence). The right column shows the value of paths

for each invocation of generatePaths except the first (where paths only contains the

failing run). In this example, for every invocation of generatePaths, paths contains

a single run.

The while loop in the generatePaths procedure iteratively retrieves a branch

event prior to the event last in failing run πf and assigns it to br (at line 30 of the al-

gorithm). If there are no more branch events, br is undefined, and generatePaths re-

turns Null (i.e. we cannot find a successful run). Each loop iteration of generatePaths

tries to evaluate branch br differently along with other branch occurrences prior to

br in failing run πf .

In each iteration of the while loop of generatePaths, we first check whether any

event in df is dynamically control dependent on br. If it is so, the branches in br

as well as the branches in df cannot all be evaluated differently from the failing run

πf . To illustrate this point, let us look at the path generation example presented in

Table 6.1; this table shows the order of path generation for the program in Figure

6.2 corresponding to the failing run πf = 〈1, 3, 5, 6, 7, 10〉. Lines 5 and 6 of Figure 6.2

cannot be evaluated differently together w.r.t. the failing run.

If no event in df is dynamically control dependent on br, the algorithm generates

new runs by evaluating differently the br event over and above the branches captured

by df . Thus, df is updated to df ′ by adding br to df . Recall that the path-set paths

captures the set of paths obtained by evaluating branches in df differently w.r.t.

failing run πf . Thus, to find the set of paths obtained by evaluating branches in df ′

differently w.r.t. failing run πf , we exploit the relationship df ′ = 〈br〉 ◦ df to simply

evaluate br differently for all runs in paths. The resultant set of paths is captured

in newpaths. Thus, our algorithm constructs newpaths by incrementally modifying

paths instead of directly constructing it from the failing run πf .

120

We now explain the functions used in the generatePaths procedure (lines 6 and

7 of Figure 6.4). The function pde(br, π) called at line 6 returns de, the first event

which is not (transitively) dynamically control dependent on br in the execution run

π. The function get all(br, de, π) called at line 7 of Figure 6.4 retrieves all acyclic

paths where

• each acyclic path starts from loc(br) (the control location of the branch event

br) and ends at loc(de) (the control location of the event de)

• br is evaluated differently from πf in each acyclic path.

That is, we want to enumerate the unexecuted paths between loc(br) and loc(de),

and use these paths to construct new execution runs. We choose to consider acyclic

paths to avoid enumerating too many paths. However, this may cause us to miss

the closest successful run since all possible program paths are not constructed by our

algorithm.

In order to improve the performance of our algorithm, we have exploited the

following property: if a path is infeasible, all extensions of the path are also infeasible.

In particular, line 11 of the algorithm checks the feasibility of a subpath π′ o π2. If

it is infeasible, all execution runs with π′ o π2 as suffix are also infeasible, and there

is no need to check them. Similarly, when some event in df is dynamically control

dependent on br, line 26 of the algorithm checks the feasibility of a subpath π3 and

prunes any execution runs with π3 as suffix if π3 is infeasible. Figure 6.5 shows the

relation between various paths (e.g. π′, π2, π3) used in Figure 6.4, the algorithm’s

pseudo-code.

Recall that we want the path generation algorithm in Figure 6.4 to construct

execution runs monotonically w.r.t. the difference metric in Definition 6.2, so that it

can return a successful run which is close to the failing run. This is stated in Theorem

6.1.

121

Lemma 6.1. When the generatePaths method in Figure 6.4 is invoked with param-

eters paths, last and df , for ∀π ∈ paths, diff(πf , π) = df .

Proof. We use induction to prove this lemma.

Base : When the generatePaths method is initially invoked, paths = ∅. So, the

lemma holds.

Induction : When the generatePaths method is recursively called at line 20 in

Figure 6.4, all runs in newpaths are constructed by differently evaluating the branch

br of runs in paths. Note that ∀π ∈ paths, diff(πf , π) = df , and df ′= 〈br〉 ◦ df . So,

∀π ∈ newpaths, diff(πf , π) = df ′. The lemma holds.

Theorem 6.1. [Proximity of Successful Run] Consider the failing execution run πf

for a program. If a run π′ is constructed before another run π′′ by the generatePaths

method in Figure 6.4, then diff (πf , π
′) < diff (πf , π

′′) (as per Definition 6.3) or

diff (πf , π
′) = diff (πf , π

′′).

Proof. Note that execution run can only be constructed by line 13 of the algorithm

in Figure 6.4 . When the run π′ is constructed before another run π′′, there are three

possibilities:

(1) π′ and π′′ are constructed at the same iteration of the while loop (line 2 of

Figure 6.4). Then, π′ and π′′ are constructed by differently evaluating the branch br

of an execution run in paths. Note that ∀π ∈ paths, diff(πf , π) = df , according to

the Lemma 6.1. So, diff (πf , π
′) = diff (πf , π

′′).

(2) π′ and π′′ are constructed at different iterations of the while loop (line 2 of

Figure 6.4). Let π′ is constructed by differently evaluating a branch br of an execution

run in paths, and π′′ is constructed by differently evaluating another branch br′ of

an execution run in paths. Since π′ is constructed before π′′, π′ appears in an early

iteration of the while loop, and br appears after br′ in the πf . Note that ∀π ∈

paths, diff(πf , π) = df , according to the Lemma 6.1. So, diff (πf , π
′) < diff (πf , π

′′),

according to the comparison of differences in Definition 6.3.

122

(3) π′ and π′′ are constructed at different invocation of generatePaths method.

Let π′ is constructed by differently evaluating a branch br of an execution run in paths,

and π′′ is constructed by differently evaluating another branch br′ of an execution run

in paths. Since π′ is constructed before π′′, π′ appears in an early invocation of

the generatePaths method, and br appears after br′ in the πf . Note that ∀π ∈

paths, diff(πf , π) = df , according to the Lemma 6.1. So, diff (πf , π
′) < diff (πf , π

′′),

according to the comparison of differences in Definition 6.3.

Note that the above theorem does not claim that we generate the closest successful

run from the failing run. This reflects the reality, where we can, but choose not to

generate the closest successful run for reasons of efficiency. Our algorithm simply does

not generate certain program paths and one of these can be the closest successful run.

Our path generation algorithm requires checking whether an execution run is fea-

sible and successful (line 14 of Figure 6.4). We have used the automated theorem

prover Simplify [26] to check for feasibility. This feasibility check returns the possi-

ble inputs under which the execution run is executed. We then check whether the

execution run is successful (i.e. absence of the fault being localized) by checking the

execution run for any one of these possible inputs. Clearly, for the same execution

run, some inputs may lead to successful executions, while others lead to failing execu-

tions. Our implementation chooses any one of the feasible inputs and checks whether

the corresponding execution run is successful. Checking whether the execution run

for a specific input is successful, however, requires user intervention.

6.4 Experimental Setup

In order to experimentally validate our method for fault localization, we developed a

prototype implementation of our path generation algorithm, and a prototype imple-

mentation of our algorithm to automatically choose a successful run from a pool of

123

successful runs. We have also implemented the Nearest Neighbor method with per-

mutations spectrum, which performs best in [86], for a comparison with our method.

We employed our prototypes on the Siemens benchmark suite [47, 89] and used the

evaluation framework in [86] to quantitatively measure the quality of bug reports

generated by all methods. The Siemens suite has been used by other recent works on

fault localization [22, 86]. In this section, we introduce the subject programs (Section

6.4.1), the evaluation framework (Section 6.4.2), how our prototype implementation

checks the feasibility of an execution run (Section 6.4.3), and the Nearest Neighbor

method (Section 6.4.4).

6.4.1 Subject programs

Table 6.2 shows the subject programs from the Siemens suite [47, 89] which we used

for our experimentation. There are 132 buggy programs in the Siemens suite, each

of which is created from one of seven programs, by manually injecting defects. The

seven programs range in size from 170 to 560 lines, including comments. The third

column in Table 6.2 shows the number of buggy programs created from each of the

seven programs. Various kinds of defects have been injected, including code omis-

sions, relaxing or tightening conditions of branch statements, and wrong values for

assignment statements.

In the experiments, we found that there was no input whose execution run ob-

served the error, for two out of the 132 programs. Code inspection showed that, these

two programs are syntactically different from, but semantically the same as correct

programs. Actually, these two programs are not buggy programs, so we ruled out

them from our experiments. We slightly changed some subject programs in our ex-

periments. In particular, we rewrote all conditional expressions into if statements.

We also rewrote the schedule and schedule2 programs which read a floating point

number and round it to an integer value to directly read an integer. This is because

124

Subject Pgm. Description # Buggy versions
schedule priority scheduler 9
schedule2 priority scheduler 10
replace pattern replacement 32

print tokens lexical analyzer 7
print tokens2 lexical analyzer 10

tot info information measure 23
tcas altitude separation 41

Table 6.2: Description of the Siemens suite.

our prototype uses the Simplify theorem-prover [26] to check the feasibility of an

execution run, and Simplify does not work well with floating-point variables.

6.4.2 Evaluation framework

Renieris and Reiss have proposed an evaluation framework to evaluate the quality of

a defect localizer [86]. Each error report is assigned a score to show the quality of

this report. The score indicates the amount of code that an ideal programmer can

ignore for debugging. Clearly, higher score indicates better quality bug report. We

now discuss the score computation mechanism.

To compute the score of a bug report, [86] requires a correct version of the buggy

program, where the defect has been fixed. Erroneous statements refer to the differ-

ence between the two programs (i.e. the statements which are fixed in the correct

version). The score computation works on the program dependence graph (PDG) [44]

for the buggy program. Nodes in a PDG represent statements in the program, and

edges represent data or control dependencies between statements. We have used the

Codesurfer [10] to construct the PDG. Erroneous statements are marked as “defect”

in the PDG; statements included in the bug report are marked as “blamed” in the

PDG. Let DS(n) be the set of nodes that can reach or be reached from blamed nodes

by traversing at most n directed edges in the PDG. For example, DS(0) is the set of

blamed nodes, and DS(1) include blamed nodes and all nodes which have directed

125

edges to or from blamed nodes. We define that DS∗ is the DS(n) with the smallest

n, which contains at least one erroneous statement. The score is then computed as:

score = 1− |DS∗|
|PDG|

(6.1)

blamed nodedefect node

Figure 6.6: Example: illustrate the score computation

Figure 6.6 illustrates how the score is computed with an example. Each node

represents a statement, and each edge represents static control or data dependence

between statements. The “defect node” represents the erroneous statement which

the developer wants to find, and the “blamed node” represents the statement in the

bug report. In this example, the developer starts from the blamed node, and has to

examines all the 8 dark nodes until the defect node is visited. That is, DS∗ = DS(2),

where DS(2) consists of the 8 dark nodes.

As a special case, we define the score to be zero for an empty report, since an empty

report is useless to the programmer. This framework assumes that the programmer

can find the error when he/she reads the erroneous statements, and he/she performs

a breadth-first search for defect localization starting from statements in the error

report. Thus, DS∗ reflects the amount of code in the program that the programmer

has to examine for defect localization using the bug report, and the score indicates

the amount of code which can be ignored.

126

Note that the score only measures the utility of the bug report for debugging, it

does not necessarily correlate a good quality bug report with a lean bug report. To

address this weakness, we conducted separate experiments to measure bug report

size. In addition, the edges in the PDG can also be considered as undirected; this

should increase DS∗ and hence decrease the score. When we ran experiments, we

found that this change had little effect on the scores for bug reports generated by our

approaches.

6.4.3 Feasibility check

One important problem in the prototype implementation is how to check the feasi-

bility of an execution run or a subpath, as required by the path generation algorithm

in Figure 6.4. Our prototype traversed the execution run from the beginning till the

end to generate a constraint φ over program input and variables. We then invoked

the Simplify theorem-prover [26] to prove the validity of the formula ¬φ. If Simplify

succeeds, we infer that the path is infeasible; otherwise we deem the path as feasible.

The use of the Simplify theorem prover requires us to consider the power of its

decision procedures for inferencing. Simplify is sound but incomplete, that is, any

formula it proves as valid is valid but it may fail to prove the validity of a valid

formula. Thus, if φπ is the constraint for a path π, ¬φπ is valid (i.e. the path is

actually infeasible) and Simplify fails to prove the validity of ¬φπ, we will actually

treat π as feasible when it is not. However, this situation did not occur in our

experiments with the Siemens suite.

Our prototype implementation models the heap as arrays in the constraint φπ for

a path π. It supports typical usage of the heap, e.g. reference/deference to pointers,

dynamic memory allocation. However, it does not handle arithmetic operations over

the pointers and type conversion.

127

6.4.4 The nearest neighbor method

Renieris and Reiss proposed a Nearest Neighbor (NN) method for fault localization

in [86]. Their method assumes that there exists a failing run and a pool of successful

runs, and then selects according to a difference metric the successful run that most

resembles the failing run. The failing run and the successful run is then compared

to produce a bug report of the program. The NN method is similar to our methods.

However, they have defined and used another difference metric, which is based on the

coverage of the program execution. In addition, the NN method can only be used to

choose a successful run from a pool of successful run, and cannot be used to generate

a successful run. We now elaborate the NN approach in the following.

For every execution run π, the NN method collects the numbers of times that

each basic block is executed, and represents π as a sorted sequence sπ of basic blocks,

where the sorting key is the collected basic block counts. The difference between

two run π and π′ is defined as the Ulam’s distance [46] between sequences sπ and

sπ′ , where the Ulam’s distance measures the minimal number of arbitrary moves to

transform sequence sπ to sπ′ . Given a failing run πf and a pool of successful runs, the

NN method selects the successful run πs with the smallest Ulam’s distance between

sπf
and sπs .

6.5 Experimental Evaluation

We employed the prototypes of our methods and the Nearest Neighbor method with

permutations spectrum (NN method) [86] 2 to 130 buggy programs from the Siemens

suite. The NN method compares code coverage between a failing run and the “near-

est” successful run from a pool of successful runs. Through the experiments, we

2We used the accurate permutations spectrum for NN method and considered all failing runs
which had some successful run with a different spectrum. So, we can study all the 130 programs
compared to the 109 programs studied in [86] where certain programs were ruled out based on a
coarser spectrum (coverage).

128

validate our two methods by answering the following four questions.

• Are our methods effective for fault localization?

• Is the size of generated bug report voluminous and overwhelming?

• How many successful runs are required available to make a “decent” choice,

when we tries to automatically choose a successful run?

• Are our methods heavy in terms of time overheads?

In this section, we present experimental results for these questions.

6.5.1 Locating the Bug

In the Siemens benchmark suite, each buggy program P comes with a large pool of

inputs, some of which result in successful runs, and others result in failing runs. We

use the existing successful runs to evaluate our automatic choosing algorithm and the

NN method.

However, for each failing run πf , there may exist a set of successful runs Closest(πf)

which are closest to πf , in terms of our difference metric or that of the NN method.

For our automatic choosing method and the NN method, the score for a failing run

πf averages scores of comparing πf against each successful run πs in Closest(πf), i.e.

score(πf) =

∑
πs∈Closest(πf) score(πf , πs)

|Closest(πf)|

where the quantity score(πf , πs)) is defined in Equation 6.1 in Section 6.4.2. For our

automatic choosing method and the NN method, the score for a buggy program P

averages scores of all failing run πf of P , i.e.

pgm score(P) =

∑
πf∈Failing(P) score(πf)

|Failing(P)|

129

where Failing(P) refers to the set of failing runs of program P . Our automatic

choosing method differs from the NN method in which successful runs are selected

for comparison, and (hence) which statements are reported in bug report.

Note that the complexity of our path generation algorithm is exponential with the

length of the execution run. So, we always used simple failing runs, when we evaluated

our path generation method. That is, we first chose a failing input which can observe

the error for each buggy program from the Siemens test suite. We then used Zeller

and Hildebrandt’s approach [111] to further simplify the input for producing a failing

run. This was particularly useful for the buggy versions of text-processing programs

in the Siemens test suite (e.g., replace, print tokens). We then used such simplified

failing run πf to construct a successful run πs.

Score AC APG NN
0.9 - 1 30 38 14

0.8 - 0.89 18 9 26
0.7 - 0.79 11 9 27
0.6 - 0.69 14 6 18
0.5 - 0.59 19 5 14
0.4 - 0.49 12 8 13
0.3 - 0.39 8 5 3
0.2 - 0.29 12 10 4
0.1 - 0.19 3 2 1

0 - 0.09 3 38 10

Table 6.3: Distribution of scores.

Table 6.3 shows the distribution of pgm score for three methods. Our automatic

choosing method is shown as AC, and our automatic path generation method is shown

as APG. As we can see, our two methods perform better than the NN method on the

Siemens suite. Bug reports returned by either of our methods achieved a score of 0.9

or better for more than 30 buggy programs, while the NN method achieved a score of

0.9 or more for just 14 buggy programs. Note that a bug report with score of 0.9 or

more indicates that programmer needs to inspect at most 10% of a buggy program

130

for fault localization using this bug report. This shows that our methods can often

generate/choose a suitable successful run for fault localization.

Experience After generating the bug reports, we have studied these reports to

understand what kind of errors can be easily localized by our methods. We found

that both our methods are good at locating Branch Faults, where the error lies in

some conditional branch statements. This is not surprising since the difference metric

returned by our methods contains only branch statements with different outcomes in

failing and successful runs.

For the same reason, our methods can also help effectively locate erroneous assign-

ment statements, if branch statements which guard these assignments are included

in the bug report. In addition, our methods may effectively locate errors due to code

omission from the program text; these errors cannot be localized by conventional

methods like dynamic or relevant slicing (see Chapter 3 and 4). In our methods,

the successful run may differ from the failing run at the branch statement which the

missing code is control dependent on. In the successful run, the missing code is not

intended to be executed and hence we can locate the error.

Our methods cannot effectively locate errors due to wrong initialization of global

variables. These statements are not guarded by any branch statements. In such

cases, our methods often construct/choose a successful run which differs from the

failing run at irrelevant branch statements. For example, several buggy programs

of the tcas program in the Siemens benchmark suite contain such errors. For such

buggy programs, our methods obtain a low score (less than 0.3).

6.5.2 Size of Bug Report

In the above experiments, we used scores to measure the quality of bug report accord-

ing to the evaluation framework in Section 6.4.2. The reader should note that there is

a fundamental difference between the bug report statements and the statements that

131

a programmer should inspect for debugging according to the evaluation framework.

Clearly, measuring the amount of code to be inspected for debugging (captured by

the bug report score) is important. However, we feel that measuring the bug report

size is also important. If the programmer is overwhelmed with a voluminous bug

report (e.g. 50 statements for a 500 line program), he/she may not even get to the

stage of identifying which code to inspect using the bug report.

Figure 6.7 shows sizes of bug reports produced by our two methods and the NN

method. We can see the bug reports produced by our methods are relatively small.

For example, more than 90 bug reports contained less than 10 statements using either

our methods, but the NN method only produced 39 small bug reports (i.e. contain less

than 10 statements). Considering that programs in the Siemens suite are relatively

small, reports with more than 10 statements may be too voluminous.

0
10
20
30
40
50
60
70
80
90

100

1--5 6--10 >10

Size of Bug Reports (Number of Statements)

N
u
m
b
e
r

o
f

P
r
o
g
r
a
m
s

AC

APG

NN

Figure 6.7: Size of bug reports.

6.5.3 Size of Successful Run Pool

In the Siemens suite, each faulty program has a large set of test inputs (1000 –

5000). The successful run pool is constructed out of these inputs. When we tries to

automatically choose a successful run, how many successful runs are required for the

programmer to make a decent choice? We study this in the following.

Given a program P , we selected the failing run πf whose score score(πf) (using

132

both our method and NN method) is closest to the score of the program pgm score(P))

(again using both our and NN methods). The selected failing run πf was used to study

both our choosing method and the NN method. We did not conduct experiments

w.r.t. all failing runs because it was too expensive.

Next, for every successful run πs in the available pool of the Siemens suite, we

computed the difference between πf and πs, generated a bug report by comparing

πf and πs, and computed score(πf , πs) (refer Equation 6.1). After all successful

runs were processed, their differences were sorted in ascending order. Let πi be the

successful run with ith smallest difference w.r.t. πf . The parameterized mean score

of a faulty program P for a successful run pool-size of k is:

par score(P, k) =
n∑

i=1

score(πf , πi) · p(i, k) p(i, k) =
n−iCk−1

nCk

where πf is the failing run chosen in P as mentioned above, n is the number of

available successful runs in Siemens suite, and p(i, k) is defined above. Here nCk

denotes a well-known quantity — the number of ways of choosing k items from n

distinguishable items. Clearly, p(i, k) denotes the probability that the ith-closest

successful run of the failing run is chosen as the nearest successful run of a failing

run from a pool of k different successful runs. Hence par score(P, k) captures the

statistical expectation of the score obtained for failing run πf using any pool of k

successful runs. Calculating the parameterized mean score par score(P, k) allows us

to avoid exhaustively enumerating the score of P for different successful run pools of

size k.

Figure 6.8 presents the parameterized mean scores for different values of k, the

successful run pool size. We see that both our automatic choosing method and the

NN method made a decent choice of successful run from a pool of 5 runs and thereby

achieved a score of at least 0.8 in 32 faulty programs. However, as the pool size

increases to 40, our automatic choosing (AC) method achieved a score of 0.8 or more

133

0

5

10

15

20

25

30

35

40

45

50

1 5 10 20 40

k = Number of Successful Runs

Nu
mb

er
 o

f
Pr

og
ra

ms
 w

it
h

Sc
or

e>
=0

.8
us

in
g

a
Po

ol
 o

f
k

Su
cc

es
sf

ul
 R

un
s

AC

NN

Figure 6.8: Impact of successful run pool-size.

for larger number of faulty programs (for 45 faulty programs). This is not the case

for the NN method, which in fact needed even larger pool sizes.

6.5.4 Time Overheads

Figure 6.9 shows the time overheads for our automatic path generation (APG) ap-

proach. Our method found the successful run within 1 minutes for 80 buggy programs.

Most of the time overheads for our method is due to the feasibility check by the exter-

nal theorem prover Simplify. The feasibility check enables the following check to find

whether a run is successful (since we cannot even observe the behavior of infeasible

runs). Still the overall time overheads are tolerable for most programs in the Siemens

suite.

0

10

20

30

40

50

60

70

80

90

< 1 min 1-5 min > 5 min

Time overheads

Nu
mb

er
 o

f
Pr

og
ra

ms

APG

Figure 6.9: Time overheads for our path generation method.

Due to the limitation our prototype, we did not measure the time overheads of

134

our automatic choosing method. However, we believe that this method can be very

fast. This is because the time overheads of our automatic choosing method is caused

by the following two operations:

1. Collect the paths (i.e. sequences of executed statements) of the failing run and

all successful runs, and

2. Compare successful runs against the failing run.

Note that there exist methods to efficiently collect the execution paths. [11] reports

that the time overhead of their path collection approach is only 31% on average for

the SPEC95 benchmarks. In addition, we only need a small number of successful

runs to make a decent choice, according to our experiments. Consequently, the first

operation can be performed with small time overheads. In our experiments, we found

that the time for comparison (i.e. the second operation) is often very small and can

be almost ignored.

6.5.5 Threats to Validity

In our experiments, we used the evaluation framework of Section 6.4.2 to measure the

quality of bug report. However, the score computed by the framework of Section 6.4.2

may not accurately capture the human efforts for fault localization in practice. First,

the framework assumes that the programmer can find the error when he/she reads

the erroneous statements. This assumption may not hold for non-trivial bugs, where

the programmer has to analyze program states. Secondly, the evaluation framework

requires the programmer to perform pure breadth-first search for fault localization

starting from statements in the bug report. However, the programmer usually has

some understanding of the buggy program, and he/she can prune some irrelevant

statements from bug report.

Our path generation algorithm generates execution runs close to the failing run

and checks whether they are feasible and successful. As mentioned earlier, the check

135

for feasibility is done automatically by the Simplify theorem prover. Checking whether

a run is successful is however done manually in our experiments. The time for this

manual check is not included in the time overheads reported in Figure 6.9. In our

experiments, the first feasible run constructed by the path generation algorithm was a

successful one for most buggy programs. In the worst case, we had to manually exam-

ine 5 feasible failing runs for success before the algorithm found a feasible successful

run. The reader should note that manual intervention in checking whether a run is

successful is in some sense unavoidable. Otherwise the programmer has to precisely

characterize the properties of a successful run, possibly as assertions; this eases our

task of fault localization but places an additional burden on the programmer.

6.6 Summary

In this chapter, we have investigated the problem of test based fault localization, that

is, localizing the error cause by comparing execution runes. We present a control flow

based difference metric for this purpose. This difference metric can be used to:

• choose a successful run from a pool of program inputs, and

• generate a successful run close to the failing run.

The failing run and the successful run are then compared to discover the likely

defects in the buggy program. Through this comparison, we highlight the sequence

of branches in the failing run which are evaluated differently in the successful run.

136

CHAPTER 7

RELATED WORK

Software debugging has been an important topic of study for a long time. Various

bugs may get introduced during software development, causing a program to deviate

from the expected behaviors. The research on software debugging can be traced back

to 1970s [73, 55] or even earlier. The early research focused on examining a program’s

execution states as the main debugging aid. These experiences and practices are still

widely used in today’s Debuggers, such as GDB [2]. However, the entire debugging

process is done manually by the developer using various existing tools. The literature

has investigated various ways to reduce the human intervention, and improve the

state-of-art techniques for debugging. For example, the use of contracts can auto-

mate this process, by automatically checking the pre- and post-conditions of methods

[16, 76]. Demsky et al. describe a tool Archie [24] which accepts specifications for

consistency properties, and periodically checks these properties during execution.

There are also many methods and tools developed for (semi-) automated debug-

ging, such as statistical analysis, model checking, theorem proving, type systems, and

symbolic analysis [108, 33, 25, 43, 32, 18, 49, 59]. Actually, there is a rich body of

work in this area. However, we discuss only those works which are relevant in the

context of this thesis. In this thesis, we have presented an infrastructure for slicing

of Java programs, and have addressed deficiencies in the existing slicing techniques.

In addition, we have discussed test based fault localization technique which is not

as expensive as slicing. In the rest of this section, we review the literature on the

following two topics: program slicing and test based fault localization.

137

7.1 Program Slicing

The concept of program slicing was originally introduced by Weiser in [106]. Weiser’s

approach iteratively solves data-flow equations of a program to compute a program

slice. The program slice consists of statements which could affect the behavior of the

slicing criterion, i.e., a variable referred at some interesting control location. Since

then, various slightly different definitions of program slices have been proposed, as

well as different algorithms to compute these slices. These different program slices

are typically divided into two categories: static and dynamic, where a static slice is

computed without any assumption about the program input, while a dynamic slice

is computed corresponding to a specific program input. A survey of program slicing

techniques developed in the eighties and early nineties appears in [98].

Static Slice Ottenstein was the first to use the Program Dependence Graph (PDG)

to compute the static slice [80], where the nodes of the PDG are simple statements

and the edges represent static data/control dependencies. The static slice is defined

as all reachable nodes from the slicing criterion in the PDG.

Because Ottenstein’s approach can only be applied to single-method programs,

Horwitz et al. introduced the notion of System Dependence Graph (SDG) for static

slicing of multi-method programs [45]. The SDG consists of dependence graphs for

each method, as well as dependence edges to represent (1) control dependencies be-

tween the call statements and the callee methods, and (2) data dependencies caused

by parameters and global variables. The static slicing is then defined as a reachability

problem over the SDG, and the static slice can be computed by traversing the SDG

twice.

Later, Larsen and Harrold extended Horwitz’s algorithm to handle object-oriented

programs [62]. The static slicing algorithm in [62] also operates on the System Depen-

dence Graph (SDG), similar to the one used in [45]. However, Larsen and Harrold’s

138

approach can incrementally construct the SDG, and they have shown how to compute

slices for individual classes, groups of interacting classes and complete programs.

Dynamic Slice When the developer debugs a program, he/she usually focuses on a

particular execution run. However, static slicing does not have any assumption about

the program input. As a result, the static slice often contains many statements which

are irrelevant to the observable error appearing in the selected execution. To solve

this problem, dynamic slicing is proposed and studied.

The first dynamic slicing algorithm was introduced by Korel and Laski [57]. In

particular, they exploited dynamic flow concepts to capture the dependencies be-

tween statement occurrences in the execution trace, and generated executable dy-

namic slices. Unfortunately, because of the conservative nature of their way to repre-

sent dependencies, the dynamic slice returned by [57] may contain some unnecessary

statements.

Later, Agrawal and Horgan proposed to use the dynamic dependence graph (DDG)

to precisely capture the dynamic dependencies between statement instances [6, 4],

where each occurrence of a statement is represented as a distinct node in the DDG,

and each dynamic control/data dependence is represented as an edge. The dynamic

slice is defined as a reachable set over the DDG. The resulting slice is non-executable,

but precise. Later, Xu et al. have shown how to perform dynamic slicing on object-

oriented programs in [109].

Dynamic slicing is more suitable for the purpose of debugging, because dynamic

slices are often much smaller and more precise than corresponding static slices. Ad-

ditionally, dynamic slicing naturally supports the task of software debugging by an-

alyzing a particular execution run. Agrawal et al. presented a systematic way to use

dynamic slicing to (semi-) automate the debugging process.

139

The effectiveness of applying the dynamic slicing techniques for program debug-

ging has been thoroughly evaluated experimentally in [100, 118]. These experiments

show that, dynamic slices are typically much smaller than the original programs, and

the real errors are often contained in these dynamic slices. This means that dynamic

slicing is an effective method for software debugging, where the developer can locate

the error by inspecting a small number of statements in the dynamic slice.

Besides software debugging, dynamic slicing has subsequently also been used for

program comprehension and testing in many other innovative ways. In particular,

dynamic slices (or their variants which also involve computing the closure of depen-

dencies by trace traversal) have been used for studying causes of program performance

degradation [121], identifying isomorphic instructions in terms of their run-time be-

haviors [91], and analyzing spurious counter-example traces produced by software

model checking [72]. Even in the context of debugging, dynamic slices have been

used in unconventional ways e.g. [8] studies reverse execution along a dynamic slice.

Thus, dynamic slicing forms the core of many tasks in program development and it

is useful to develop efficient methods for computing dynamic slices. Agrawal et al.

showed how to use dynamic slicing to support the regression testing [7].

As far as slicing tools are concerned, several dynamic slicing tools have been

developed in the research community [5, 79, 101, 58]. These slicing tools rely on

the existing dynamic slicing algorithms to compute the dynamic slices, and highlight

these dynamic slices in a source code browser. The developer then identifies the

suspicious statement instances for debugging, by inspecting highlighted statements,

that is, the dynamic slice in this case.

In this thesis, we have presented an infrastructure for dynamic slicing of Java

programs, and have investigated the following three problems in the area of dynamic

slicing:

1. Efficient tracing schemes for dynamic slicing,

140

2. Extend dynamic slicing to capture execution omission errors,

3. A better way to explore the dynamic slice.

These topics have been discussed and addressed in Chapters 3, 4, and 5 respectively.

In the following three sub-sections, we discuss related works in the three topics.

7.1.1 Efficient Tracing Schemes

Dynamic slicing requires the entire control flow and data flow of an execution. It

is well known that it is expensive to represent such a complete execution trace for

realistic programs. The literature has proposed many efficient tracing schemes so

that dynamic slicing can be applied to realistic programs. We now discuss them in

the following.

Compact Trace Representations Because the execution trace can be viewed as

a string, several researchers proposed to exploit the repetition among the string to re-

duce the high space overheads of storing and analyzing traces. Various compact trace

representation schemes have been developed in [36, 63, 82, 120, 115] to compactly

represent the execution trace.

Pleszkun presented a two-pass trace scheme, which recorded basic block’s succes-

sors and data reference patterns [82]. The organization of his trace is similar to our

compact trace representation (in Chapter 3). That is, the execution trace consists

of trace tables. Each trace table stores the trace for one method m, and the table

contains the trace sequences of each basic block of method m. However, Pleszkun’s

two-pass tracing technique does not allow traces to be collected on the fly. The

space overhead is not indeed reduced. In addition, the trace is still large, because the

techniques for exploiting repetitions in the trace sequences of basic blocks are limited.

The idea of separating out the data accesses of load/store instructions into a

separate sequence (which is then compressed) is explored in [36] in the context of

141

parallel program executions. However, this work uses the SEQUITUR algorithm

which is not suitable for representing contiguous repeated patterns. In our work,

we have developed RLESe to improve SEQUITUR’s space and time efficiency, by

capturing contiguous repeated symbols and encoding them with their run-length.

RLESe is different from the algorithm proposed by Reiss and Renieris [85], since it

is an on-line compression algorithm, whereas Reiss and Renieris suggested modifying

SEQUITUR grammar rules in a post processing step.

Recently, Larus proposed a compact and analyzable representation of a program’s

dynamic control flow via the on-line compression algorithm SEQUITUR [63]. The

entire trace is treated as a single string during compression, but it becomes costly to

access the trace of a specific method. Zhang and Gupta suggested breaking the traces

into per-method traces [120]. However, it is not clear how to efficiently represent

data flow in their traces. In a later work [115], Zhang and Gupta presented a unified

representation of different types of program traces, including control flow, value,

address, and dependence.

Zhang and Gupta present several heuristics to compactly represent the dynamic

dependence graph, by exploiting repetitions of dependencies [114]. They also give

a dynamic slicing algorithm which operates on the dependence graph. In contrast,

our compression scheme is not related to the slicing criterion and exploits regular-

ity/repetition of control/data flow in the trace. Our slicing algorithm operates di-

rectly on this compressed trace achieving substantial space savings at tolerable time

overheads.

The approach in [117] uses a forward traversal based dynamic slicing algorithm,

and computes the dynamic slice for every statement instance (i.e. regarding every

statement instance as a distinct slicing criterion). Because there are many repetitions

among these dynamic slices, [117] suggested to use reduced ordered binary decision

diagrams (roBDDs) to represent the set of dynamic slices. Thus, the space and time

142

requirements of maintaining dynamic slices are greatly reduced. However, the forward

traversal based dynamic slicing algorithm is not goal-directed w.r.t. the slicing cri-

terion. It will compute many irrelevant dynamic dependencies, and construct useless

dynamic slices.

Incomplete Trace Another approach for efficient tracing avoids tracing all byte-

codes/instructions during trace collection.

The abstract execution technique [64] proposed by Larus falls in this category.

Abstract execution technique executes a program P to record a small number of

“significant events”, thereby deriving a modified program P ′. The program P ′ is then

executed with the “significant events” as the guide; this amounts to re-executing parts

of P for discovering information about instructions in P which were not traced. On

the other hand, our method records certain bytecodes in an execution as a compressed

representation. Although our method does not trace all bytecodes either, the post-

mortem analysis of this compressed representation does not involve re-execution of

the untraced bytecodes. To retrieve information about untraced bytecodes we detect

dynamic dependencies via a lightweight flow analysis. This contrasts our approach

from the abstract execution method.

In [27], Dhamdhere et al. presented an approach for dynamic slicing on compact

execution traces. They do not employ any data compression algorithm on the exe-

cution trace. Instead, their technique classifies execution instances of statements as

critical or non-critical, and store only the latest execution instances for non-critical

statements. However, the classification of statements as critical/non-critical is sensi-

tive to the slicing criterion.

7.1.2 Relevant Slicing

In the past, relevant slicing has been studied as an extension of dynamic slicing for

the purpose of detecting the execution omission errors in a program [7, 40]. Agrawal

143

et al. [7] introduced the notion of potential dependence to capture the potential ef-

fects of some branch statements. If these branch statements are evaluated differently,

some variables may be re-defined and the slicing criterion may be affected. Based on

the notion of potential dependence, Agrawal et al. first presented a relevant slicing

algorithm for software debugging. This algorithm works by backward traversal of the

execution trace. Later, Gyimóthy et al. re-used the definition of potential depen-

dence, and proposed a relevant slicing algorithm which works by forward traversal of

the execution [40]. However, both of the two relevant slicing algorithms have their

inherent limitations, compared with our algorithm presented in Chapter 4. We now

elaborate the limitations as follows.

Space Efficiency Neither of the two relevant slicing algorithm is space efficient,

and hence they may not be used to analyze realistic programs. More specifically,

• The algorithm in [7] relies on the huge dynamic dependence graph, and [116]

has shown that it is not realistic to build the raw dynamic dependence graph

for real programs.

• The forward relevant slicing algorithm in [40] avoids using the dynamic depen-

dence graph. However, such a forward traversal based slicing algorithm will

compute many redundant dependencies since it is not goal directed.

In Chapter 4, we present a relevant slicing algorithm which works directly on our

compact representation of execution traces (as presented in Chapter 3). The costly

decompression is not required during slicing.

Accuracy The two relevant slicing algorithms are less accurate than ours. In par-

ticular,

• The approach in [7] may wrongly ignore some important statements. This is be-

cause, if b is a branch statement with which statements in the slice have potential

144

dependencies, [7] only computes the closure of data and potential dependencies

of b. In other words, control dependencies are ignored w.r.t. statements on

which b is data dependent.

• The algorithm in [40] may include some superfluous statement into the relevant

slice. This is because, while computing the dependencies of a later occurrence

of certain branch statements (those which appear in the slice due to potential

dependencies), the algorithm also includes statements which affect an early

occurrence of the same branch statement.

In this thesis, we define a relevant slice over the Extended Dynamic Dependence

Graph (EDDG), and it is more accurate than previous ones. Detail comparison of

the accuracy appears in Section 4.2.

7.1.3 Hierarchical Exploration

The program analysis literature typically focuses on the analysis algorithms to effi-

ciently produce useful results. Hierarchical exploration is a good way to use these

results. In this approach, a programmer can gradually explore the analysis results in

a hierarchical fashion, according to the program structure. Hierarchical exploration

naturally helps suppress and ignore useless part of the analysis result, so that the

burden of the developer can be reduced. Most importantly, the result is logically

integrated with the program and presented to the developer, and the developer can

understand the result more easily. Several researchers have conducted research on

this topic.

Hierarchical Exploration of the Dependence Graph Balmas [13] proposed hi-

erarchical exploration of static program dependence graphs. This approach was later

extended for hierarchical visualization of dynamic data dependencies [14]. Their

145

approaches first construct the static/dynamic dependence graph. Nodes in the de-

pendence graph are then hierarchically grouped as “super-nodes”, according to the

program structure. The programmer can then explore the dependence graph in a

hierarchical fashion.

In fact, Balmas approaches present a good way to visualize the dependency graph,

whereas we interleave the dependence computation and comprehension steps. Indeed

this is the main contribution of our hierarchical dynamic slicing – we feel that program

comprehension cannot be left as a post-mortem activity, and should be used to guide

dependence computation. This is because such an interleaving may reduce the amount

of human intervention during the exploration. Let us consider the situation where

a programmer wants to explore the details of a “super-node” n. Balmas approaches

will report all nodes and dependencies which are grouped together as this super-node

n. On the other hand, our approach can prune some irrelevant dependencies guided

by the human comprehension, although these dependencies and nodes can be reached

from the slicing criterion.

In addition, we have proposed a phase division method which helps identify and

structure the exact feedback needed from the programmer in general — the pro-

grammer needs to select one from among a given set of inter-phase dependencies.

Last, but certainly not the least, we have conducted detailed experiments to show

that our approach has the potential to make dynamic slicing more useful for software

debugging.

The idea of using the phases of an execution trace for debugging also appears

in earlier works. Miller and Choi [74] proposed to do so by: hierarchically divid-

ing the execution trace into phases and presenting the dynamic dependence graph of

each phase to the user. This is effectively exposing the dynamic dependence chains

inside the phase completely to the programmer, thereby burdening him/her with

146

lot of redundant information! Our hierarchical dynamic slicing is exactly the re-

verse — we seek to hide the dynamic dependence chains inside a phase. Instead we

summarize a phase via its “input” and “output” variables, which is gleaned from

the inputs/outputs of the program as well as those of the preceding and succeeding

phases.

Finally, we note that our hierarchical dynamic slicing is very different from the

recently proposed Hierarchical Delta Debugging method [75]. This work seeks to

simplify the program input that causes a program to fail. In this endeavor, it exploits

the hierarchy present in the program input (e.g., if the program input is an XML or

HTML file). Our hierarchical dynamic slicing approach, on the other hand, seeks to

hierarchically detect and explore the control/data dependence chains in a program.

Algorithmic Debugging and Program Slicing Algorithmic debugging presents

an interactive debugging process [93]. Like our hierarchical dynamic slicing, algorith-

mic debugging also automatically divides the execution into phases in a hierarchical

fashion, and gradually exposes these phases to the developer. The developer then

inspects input/output variables of each phase, in order to determine the correctness

of each phase and find out the suspicious phase. The suspicious phase is then further

divided and examined, until the error is located. However, algorithmic debugging

requires the developer to examine all input/output variables of each phase; while hi-

erarchical dynamic slicing only requires the developer to examine some input/output

variables which are related to the observable error. This means that hierarchical

dynamic slicing requires less human intervention and is more productive than algo-

rithmic debugging.

The works of [34, 54] combine algorithmic debugging and dynamic slicing to alle-

viate this problem, since dynamic slicing can certainly prune some irrelevant variables

for the examination. These works bear some similarity to our work, since they also

147

rely on summarizing the behaviors of execution phases. However, to summarize a

phase (say corresponding to a procedure call), they rely on a static summary of the

procedure itself. In particular, they summarize the variable definitions of a procedure,

which in the context of Java programs will require static points-to analysis. In con-

trast, the hierarchical dynamic slicing method only seeks to identify the inter-phase

dynamic dependencies which can proceed efficiently without any points-to analysis.

7.2 Test Based Fault Localization

Because dynamic slicing techniques are often expensive, there has been a lot of interest

in test based fault localization techniques. These techniques often collect limited

control/data flow information of the execution run, and compare successful and failing

runs of the buggy program. The difference is summarized as a bug report. The

developer can then use the bug report for fault localization, since such a bug report

often contains only a few statements and may pinpoint the error. We now discuss

previous works in this research area.

Compare Execution Runs The literature has proposed many different test based

fault localization techniques [12, 22, 38, 51, 83, 86, 87, 110]. These techniques often

differ in which characteristic of execution runs is used for comparison.

Reps et al. [87] proposed to collect and compare two sets of acyclic paths for

the purpose of debugging. One set contains the acyclic paths of successful runs, and

another set contains the acyclic paths of failing runs. The bug report is defined as

the difference between the sets. This is because, the acyclic paths of successful runs

are considered as representative correct behaviors. If a path appears in the failing

runs, but not the successful runs, this path is certainly suspicious and may be related

to the error.

Pytlik et al. [83] proposed to use sets of potential invariants, instead of acyclic

148

paths, to detect the key difference between successful runs and failing runs. The

potential invariants are dynamically discovered from execution runs, by using the

Daikon [30] tool. The invariants are regarded as informal specifications to describe

the behaviors of execution runs. Later, Brun and Ernst presented another way to use

potential invariants for fault localization [17]. First, potential invariants were discov-

ered from representative execution runs. In this step, machine learning techniques

were used to prune some invariants which are unlikely to represent program proper-

ties. Next, these invariants were applied to the failing execution runs, and violated

invariants were reported for fault localization.

Jones et al. [51] proposed to combine testing and test based fault localization

techniques together for the purpose of software debugging. Their approach assigns

a score to every statement stmt, to indicate the likelihood what the statement stmt

is the error. The score is computed according to relative percentage of successful

runs that execute the statement stmt, to failing runs. A lower score means that the

statement stmt is executed primarily in failing runs, and should be highly suspicious

as being faulty. Recently, [52] conducted empirical evaluation to show that this

approach is quite productive for software debugging. Ruthruff et al. [90] used the

idea of prioritizing statements according to the likelihood that the statement is faulty.

Liblit et al. proposed to use sampling techniques to randomly collect some data

at certain points of the program [68, 69]. Their technique monitors branch coverage,

return values, and invariant information. The collected data are then represented

as predicates. The statistical theory is then applied to analyze and report the rela-

tionship between the predicates and the observable error, thereby help the developer

debug the program.

Software fault localization via model checking has also been studied [19, 37]. These

works seek to explain the counter-example produced by model checking by invoking

149

an optimization problem. The optimization generates a successful run which is “clos-

est” to the counter-example; this is typically accomplished by an external constraint

solver. Note that for these approaches, either the program model needs to closely

reflect the behaviors of the actual program, or the approaches risk generating a spu-

rious successful run (not corresponding to any program execution) which necessitates

further refinement of the optimization problem.

Obtain Successful Runs Previous research along this line focuses on various ways

to characterize program behaviors and compare successful and failing execution runs

to generate accurate bug reports. However, these works do not discuss how a suc-

cessful run is obtained. This is the main topic in Chapter 6. In this thesis, we have

presented a control flow based difference metric, and shown how to use the difference

metric to obtain successful runs.

The work of Renieris and Reiss [86] is related to ours. They have demonstrated

through empirical evidence that a successful run which is “closest” to the failing

run can be more helpful for error localization than a randomly selected successful

run. However, [86] measures the proximity of two runs by comparing the set of basic

blocks1 executed in each run. Thus, they cannot distinguish between runs which exe-

cute exactly the same statements but in different order — consider the program for

(....){ if (...) S1 else S2 } and the two execution runs 〈S1, S2〉, 〈S2, S1〉. We

consider the sequence of statements executed in each run for determining proximity

between two runs. Clearly, even if for a faulty run, the programmer has a number

of successful runs at his/her disposal (i.e. automated generation of one successful

run is unnecessary), our sequence based distance metric can be used for accurately

comparing the control flow of two runs. Additionally, the technique in [86] cannot be

used to generate the closest successful run from a failing run.

1Actually a sorted sequence of the basic blocks based on execution counts is used; this is different
from the execution sequence of the basic blocks in the failing run.

150

Our difference metric bears similarities to the notion of proximity between runs

proposed by Zeller et al. in [22, 110]. Their approach compares program states with

similar contexts for fault localization at some control locations. Through a series of

binary search over the program state and re-executing (part of) the program from

“mixed” states, a set of variables which may be responsible for the bug are mined and

reported. However, these “mixed” states may be infeasible. Furthermore, it may be

quite costly to compare program states and to re-execute the program several times.

The delta debugging in [111] automatically simplifies the erroneous input by remov-

ing part of this input. The reduced input usually corresponds to a shorter execution,

which may be easier to debug. This approach may also generate a successful program

input. However, the approach is more suitable for debugging language/text process-

ing programs like compilers or web-browsers where we can get program inputs by

deleting parts of a program input. For programs with integer inputs this approach

may be problematic e.g. consider the situation where the failing input of a program

is i=2 and the only successful input is i=3.

There has also been intense research on the topic of input/test case generation

based on various coverage criteria. The aim of these methods is to expose more

program behaviors for the purpose of testing. This is somewhat different from the

goal of path generation method, since we generate a program input/execution-run for

localizing the error cause in a specific failing run.

151

CHAPTER 8

CONCLUSION

This chapter concludes the thesis. Section 8.1 summarizes the contribution of this

thesis and Section 8.2 discusses some future directions.

8.1 Summary of the Thesis

With the increasing complexity of computer software, it is desirable that the burden of

the debugging can be shifted from programmers to debugging tools. In this thesis, we

investigate start-of-art automatic debugging techniques which may reduce the burden

of programmers.

Dynamic slicing techniques identify parts of the program which are irrelevant to

the observable error, so that programmers can focus on relevant parts of the program

that need debugging, instead of the entire program. This is achieved by analyzing

the dynamic control/data dependencies of the program execution, and capturing the

statements which contribute to the computation of the observable error.

In this thesis, we study in detail the issues related to applying dynamic slicing

for Java programs, and present a slicing infrastructure for Java. We also develop a

dynamic slicing tool JSlice to be used by the research/development community. JSlice

does not simply monitor and collect information about a program execution. Most

importantly, JSlice analyzes the control and data dependencies in an execution for

understanding why a test case failed. Because the JSlice tool supports the entire Java

programming language and can be used for any Java program, more than 80 users

have downloaded it for their research and development. Following are the potential

uses of our tool, almost all of which seem to be exercised by our current user base.

152

1. Usage in software development: Our tool can be used to highlight causes

of an observable error while developing Java programs. Since it is tuned to

a widely used programming language like Java, this gives the tool potential

for wide applicability. In particular, our tool can be integrated with software

testing frameworks to explain failed test cases for a software being developed.

2. Usage in teaching: Our tool can be used for teaching software/system engi-

neering in Singapore and overseas.

3. Usage in software engineering research: Many researchers are currently

using our tool for research in software reliability and comprehension.

4. Using parts of the tool for purposes other than software debugging:

Since JSlice is available as an open-source tool, users can take parts of it and

use them for other problems. In particular, the instrumentation and trace

compression part of the tool can be used for efficient program profiling.

In our research work leading to the JSlice tool, we have made the following general

contributions to the field of dynamic slicing.

First, dynamic slicing often requires the traces of execution runs. Because of

the huge sizes of execution traces, we have developed a space efficient scheme for

compactly representing bytecode traces of Java programs. The major space savings

in our method come from the optimized representation of (a) data addresses used

as operands by memory reference bytecodes, and (b) instruction addresses used as

operands by control transfer bytecodes. We present a dynamic slicing algorithm

which can directly traverse our compact bytecode traces without resorting to costly

decompression. For our subject programs (drawn from standard suites such as the

Java Grande benchmark suite or the SPECjvm suite) we obtain compression in vary-

ing amounts ranging from 5 − 5000 times. We show that the time overheads for

constructing this representation on-the-fly during program execution are tolerable.

153

Second, traditional dynamic slicing algorithms only analyze dynamic control/data

dependencies which actually happen during the execution. However, these algorithms

do not consider potential dependencies, where the execution of some statements may

be wrongly omitted. In this thesis, we extend our dynamic slicing algorithm to

perform “relevant slicing”, by capturing execution omission errors. We show that our

definition of relevant slicing is more accurate and helpful for software debugging than

previously proposed notions of relevant slices. Additionally, our experimental results

indicate that the additional capability of relevant slices comes at the cost of modest

additional overheads in terms of computation time or slice sizes.

Third, the dynamic slice, i.e. the result of dynamic slicing, is often too large

for human comprehension. We have proposed Hierarchical Dynamic Slicing, where a

programmer is gradually guided through complex program dependence chains. This is

as opposed to the arduous task of understanding a full dynamic slice, where all of the

comprehension is left to the programmer. We have conducted detailed experiments

on well-known subject programs written in Java, to evaluate the effectiveness of this

approach. Our experiments show a substantial reduction in program understanding

effort for our subject programs.

Dynamic slicing techniques have been proven useful in the last decades. However,

people have found that the resultant dynamic slices often contain lots of false positives,

i.e. the slice has lots of statements which are correct. This is because dynamic slicing

techniques only analyze the failing execution run to produce the dynamic slices, where

the failing run can only tell what is wrong, and cannot describe what is correct.

Because of this disadvantage of dynamic slicing, researchers have proposed test based

fault localization techniques. The fundamental observation of these techniques is that:

the buggy program often has both the failing run, and some successful runs, and the

successful runs show the expected behaviors of the program. By using failing and

successful runs together, we may produce more meaningful bug reports, which can

154

help the developers.

In this thesis, we focus on the availability of a successful run for comparison. We

have proposed two approaches for this purpose. The first approach is to automatically

generate a successful execution πs close to the failing execution πf , and the second

approach is to choose a suitable successful run πs from a pool of successful runs.

We then compare πf and πs to discover the likely defects from the buggy program.

Through this comparison, we highlight the sequence of branches in the failing run

which are evaluated differently in the successful run. Our approach does not require

the user to provide successful executions for debugging as in previous approaches.

8.2 Future Work

In the future, the research can be continued in the following directions.

8.2.1 Future Extensions of our Slicing Tool

In this thesis, we have made our Java dynamic slicing tool JSlice available for use by

researchers and developers. The dynamic slicing tool JSlice supports most features

of the Java programming languages, such as object, field, inheritance, polymorphism,

etc. In future, we can enhance JSlice to support more features of the Java program-

ming language. In particular, exceptions, reflection and multi-threading are widely

used features of the Java programming language. We can extend our dynamic slicing

tool to handle these features in the following manner.

Exceptions When a program violates any semantic constraint of the Java program-

ming language, the Java virtual machine throws an exception to signal this error [53].

This exception will cause a non-local transfer of control from the point where the

exception occurred to the exception handler which can be specified by the program-

mer. It is necessary to store this non-local transfer of control during trace collection,

so that we can reconstruct such a control transfer during the backward traversal for

155

dynamic slicing.

JSlice maintains traces of each bytecode separately in the trace tables for the

program, as discussed in Section 3.1. Thus, the non-local transfer of control should

be stored in the traces of the first bytecode of the exception handler. Note that

this control transfer will cause the Java virtual machine to change the call stack, in

the process of looking for an appropriate exception handler. In particular, the virtual

machine will pop method invocations from the call stack up to the method invocation

invo excep (which the exception handler belongs to), and then execute the exception

handler. For each invocation invo which is popped from or revised in the call stack,

we need to record the following (assume that invo is an invocation of method meth):

• the class name of meth, and

• the method name of meth, and

• the signature of meth, and

• the id/address of last executed bytecode of invo, and

• the size of the operand stack of invo before invo is popped or revised.

When the first bytecode b of an exception handler is encountered during the backward

traversal for slicing, the dynamic slicing algorithm should retrieve information from

the traces of b, and reconstruct the call stack, so that the backward traversal can

continue.

Exception handling also introduces extra dependencies into the program: the dy-

namic control dependence between (a) the bytecode occurrence which throws the

exception and (b) the exception handler which catches the exception [95]. This

means that, when any bytecode instance in the exception handler is included into

the dynamic slice, the bytecode occurrence which throws the exception should also

be included into the slice.

156

For Java programs, exception handlers often come with a finally block, where

the Java Virtual Machine ensures that the finally block is always executed even if an

unexpected exception occurs. However, the usage of the finally block complicates the

construction of the control flow graph of a Java method, as discussed in the following.

During the execution of a Java method, a finally block is always entered by executing

a JSR bytecode. The semantics of the JSR bytecode is very similar to that of the goto

bytecode. However, when a JSR bytecode b is executed, the address of the bytecode b′

which immediately follows b is stored into the operand stack. When the finally block

finishes execution, the saved address of the bytecode b′ is retrieved and the execution

continues from the bytecode b′. In other words, the bytecode b′, which is executed

after the finally block, is not represented as an operand in the last bytecode of the

finally block. As a result, it is not clear which bytecodes may be executed after a

finally block.

In order to discover this kind of information, the algorithm in Figure 8.1 is used.

Given a method meth, the algorithm in Figure 8.1 returns an array succ, where for

every bytecode exit which is the last bytecode of a finally block, succ[exit] represents

the set of bytecodes which may be executed after the bytecode exit. The algorithm

proceeds by traversing the bytecode sequence of the method meth twice. During the

first traversal, we mark the entry bytecode entry of each finally block, and main-

tain next[entry], the set of bytecodes which may be executed after the finally block.

During the second traversal, for every entry bytecode of a finally block, we detect

the corresponding exit bytecode which exits the finally block. Additional, we set

succ[exit] to next[entry], so that we can get the control flow information w.r.t. these

exit bytecodes and construct the control flow graph as usual. The stack entryStack

is required here because of nested finally blocks.

157

1 findNext (meth: a Java method)

2 initialize each element of the array next and succ to ∅;
3 initialize entryStack to null;
4 for (each bytecode b of the method meth)
5 if (the bytecode b is a JSR bytecode)
6 entry = the operand bytecode of the JSR bytecode b;
7 mark the bytecode entry as an entry of a finally block;
8 b′ = the bytecode which immediately follows the JSR bytecode b;
9 next[entry] = next[entry] ∪ {b′};
10 for (each bytecode b of the method meth)
11 if (the bytecode b is an entry of a finally block)
12 push(entryStack, b);
13 if (the bytecode b is the last bytecode of a finally block)
14 entry = pop(entryStack);
15 exit = b;
16 succ[exit] = next[entry];
17 return succ;

Figure 8.1: The algorithm to find the bytecodes which may be executed after each
finally block.

Reflection Reflection gives the Java code access to internal information of classes

in the Java Virtual Machine, and allows the code to work with classes selected during

execution, not in the source code. The main difficulty to support reflection for slicing

lies in the fact that many reflection methods are implemented as native methods, and

JSlice cannot trace details of native methods. Of all the native reflection methods,

the following two kinds of methods are particularly important for dynamic slicing.

• Methods which invoke a Java method, such as the java.lang.reflect.Method.invoke

method. Clearly, there exists a control transfer from the native method to the

callee Java method. This control transfer is important for dynamic slicing, since

we need to traverse the callee Java method for dynamic data dependence anal-

ysis. Here, we have to explicitly record the control transfer. The class name,

method name, and signature of the callee method should be recorded.

• Methods which read/write fields or arrays, where we can deduce which vari-

ables are accessed according to the parameters and the invoking objects. For

158

example, field access methods in the java.lang.reflect.Field class fall into this

category. These native methods are also essential for dynamic data dependence

analysis. Note that these methods behave similarly with field/array access byte-

codes, we can trace and analyze these methods in a similar way as corresponding

bytecodes. That is, we trace the address (or identity) corresponding to the ob-

ject/array, and the field name or the index of the array element. During dynamic

slicing, such information is retrieved to detect dynamic data dependencies.

Multi-threading We plan to extend JSlice to support multi-threaded Java pro-

grams. The trace representation for a multi-threaded Java program could be similar

to that for a single-threaded Java program. That is, each method has one trace table,

and each row of the table maintains the control and data flow traces of a specific

bytecode (see Section 3.1 for the trace representation). However, Java threads often

communicate with each other through inter-thread events, such as shared variable

access events, wait/notify events. The order of these events is required for dynamic

slicing, because such an order is essential to reason/detect inter-thread dynamic de-

pendencies. Levrouw et al. have proposed an efficient mechanism which can be used

to trace the order of these inter-thread events [65]. We now briefly describe this

approach in the following.

Levrouw’s approach is based on the Lamport Clocks [61]. During the execution,

each thread ti has a scalar clock ci
t, and each object o also maintains a clock co. These

clocks are initialized to 0. Whenever there is an inter-thread event e where the thread

ti accesses the object o, this event is recorded with a time stamp ce = max(ci
t, co)+1.

The function max returns the maximum value of the two inputs. Additionally, ci
t and

co are updated to ce. These recorded time stamps actually impose an partial order on

all inter-thread events. Levrouw et al. show that we can replay the original execution

and re-construct the dynamic dependencies, by enforcing inter-thread events following

159

the partial order.

There is one practical problem in employing the above scheme for tracing multi-

threaded Java programs — all objects can be accessed by different threads, and it is

often non-trivial to know which objects are shared before the execution. As a result,

every access to an object should be considered as an inter-thread event. However, if we

trace the time stamp for every object access, the trace size may explode. Fortunately,

Levrouw et al. show that it is not necessary to trace all time stamps to record the

partial order. In particular, for an inter-thread event e where the thread ti accesses

the object o, let ci
t be the time stamp of ti, and co of be the time stamp of o. We only

need to trace the increment of ci
t before and after the event e, if ci

t < co. The reader

is referred to [88, 65] for details. Note that the tracing scheme given here will work

for multi-threaded Java programs running on multi-processor platforms as well.

The dynamic slicing algorithm for multi-threaded programs is similar to that

for single-threaded programs (see Section 3.2). However, the algorithm should now

maintain several operand stacks and call stacks, each of which corresponds to one

thread. At any specific time, only one operand stack and one call stack are active.

When we encounter an inter-thread event during the backward traversal, we pause the

traversal along this thread until we have traversed all inter-thread events with a bigger

time stamp. In addition, besides dynamic control and data dependencies, the slicing

algorithm should also consider inter-thread dependencies, such as the dependencies

introduced by wait-notify operations.

8.2.2 Other Research Directions

Application of the Compact Trace Besides dynamic slicing, our compact byte-

code traces may also be useful for many other applications in code optimization and

program visualization. First, the trace contains the sequence of target addresses

for each conditional branch bytecode. We can obtain the most likely taken target

160

addresses from these sequences to merge basic blocks into a superblock [48]. Sec-

ondly, the operand sequences of bytecodes to invoke virtual/interface methods de-

scribe which methods are most likely to be invoked; this information is helpful in

inlining methods for optimization [21]. Finally, note that by recording addresses of

objects that each bytecode creates, our trace provides information about memory

allocations. This can be used to understand the memory behavior via visualization,

as discussed in [84].

Application of Hierarchical Exploration In this thesis, we have proposed the

concept of Hierarchical Exploration and successfully applied it to dynamic slicing. It

will be valuable to employ our idea of hierarchical dependence chain exploration to

dynamic analysis methods other than slicing. For example, test based fault localiza-

tion techniques generate a bug report by comparing execution runs. The programmer

can then use the bug report to locate the real bug. However, when the bug report

does not contain the actual error, the programmer can try to look at the control/data

dependencies of the statements in the bug report in an attempt to localize the bug.

The concept of hierarchical exploration can be employed in this context and makes

the test based fault localization techniques more applicable.

Applying program debugging methods to modeling languages In the early

stages of software development, modeling languages are often used to formally de-

scribe the software specifications and requirements. When any error is detected in

the specifications, the error should be fixed before implementing the software. Some

modeling languages, such as Live Sequence Charts (LSCs) [23], are executable and

can be considered as abstract programs. It would be valuable to extend existing meth-

ods proposed for imperative programming languages to locate errors in specifications

described by executable modeling languages.

161

REFERENCES

[1] “Apache JMeter.” website: http://jakarta.apache.org/jmeter/.

[2] “The GNU project debugger.” website: http://www.gnu.org/software/gdb/

gdb.html.

[3] “The Kaffe Java virtual machine.” website: http://www.kaffe.org.

[4] Agrawal, H., Towards Automatic Debugging of Computer Programs. PhD

thesis, Purdue University, 1991.

[5] Agrawal, H., DeMillo, R. A., and Spafford, E. H., “Debugging with

dynamic slicing and backtracking,” Software - Practice and Experience (SPE),

vol. 23, no. 6, pp. 589–616, 1993.

[6] Agrawal, H. and Horgan, J., “Dynamic program slicing,” in ACM SIG-

PLAN Conference on Programming Language Design and Implementation

(PLDI), pp. 246–256, 1990.

[7] Agrawal, H., Horgan, J., Krauser, E., and London, S., “Incremen-

tal regression testing,” in International Conference on Software Maintenance

(ICSM), pp. 348–357, 1993.

[8] Akgul, T., Mooney, V., and Pande, S., “A fast assembly level reverse

execution method via dynamic slicing,” in International Conference on Software

Engineering (ICSE), pp. 522–531, 2004.

[9] Andersen, L. O., Program Analysis and Specialization for the C Programming

Language. PhD thesis, University of Copenhagen, 1994.

162

[10] Anderson, P. and Teitelbaum., T., “Software inspection using

Codesurfer,” in the 1st Workshop on Inspection in Software Engineering, 2001.

[11] Ball, T. and Larus, J. R., “Efficient path profiling,” in IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pp. 46 – 57, 1996.

[12] Ball, T., Naik, M., and Rajamani, S. K., “From symptom to cause: local-

izing errors in counterexample traces,” in ACM SIGPLAN-SIGACT symposium

on Principles of programming languages (POPL), pp. 97–105, 2003.

[13] Balmas, F., “Displaying dependence graphs: a hierarchical approach,” Jour-

nal of Software Maintenance and Evolution: Research and Practice, vol. 16,

no. 3, pp. 151–185, 2004.

[14] Balmas, F., Wertz, H., and Chaabane, R., “DDgraph: a tool to visual-

ize dynamic dependences,” in Workshop on Program Comprehension through

Dynamic Analysis, 2005.

[15] Berk, E. J. and Ananian, C. S., “A lexical analyzer generator for Java.”

website: http://www.cs.princeton.edu/∼appel/modern/java/JLex/.

[16] Briand, L. C., Labiche, Y., and Sun, H., “Investigating the use of analysis

contracts to support fault isolation in object oriented code,” in International

Symposium on Software Testing and Analysis (ISSTA), pp. 70–80, 2002.

[17] Brun, Y. and Ernst, M. D., “Finding latent code errors via machine learning

over program executions,” in ACM/IEEE International Conference on Software

Engineering (ICSE), pp. 480–490, 2004.

[18] Bush, W., Pincus, J., and Sielaff, D., “A static analyzer for finding dy-

namic programming errors,” Software - Practice and Experience (SPE), vol. 30,

no. 7, pp. 775–802, 2000.

163

[19] Chaki, S., Groce, A., and Strichman, O., “Explaining abstract counterex-

amples,” in ACM SIGSOFT Symp. on the Foundations of Software Engineering

(FSE), pp. 73–82, 2004.

[20] Choi, J.-D. and Zeller, A., “Isolating failure-inducing thread schedules,” in

International Symposium on Software Testing and Analysis (ISSTA), pp. 210–

220, 2002.

[21] Cierniak, M., Lueh, G.-Y., and Stichnoth, J. M., “Practicing JUDO:

Java under dynamic optimizations,” in ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), pp. 13–26, 2000.

[22] Cleve, H. and Zeller, A., “Locating causes of program failures,”

in ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 342–351, 2005.

[23] Damm, W. and Harel, D., “LSCs: Breathing life into message sequence

charts,” Formal Methods in System Design, vol. 19, no. 1, pp. 45–80, 2001.

[24] Demsky, B., Cadar, C., Roy, D., and Rinard, M., “Efficient specification-

assisted error localization,” in International Workshop on Dynamic Analysis

(WODA), pp. 60–67, 2004.

[25] Detlefs, D., Leino, R., Nelson, G., and Saxe, J., “Extended static check-

ing,” tech. rep., December 1998.

[26] Detlefs, D., Nelson, G., and Saxe, J., “Simplify: A theorem prover

for program checking,” tech. rep., HP Labs, Palo Alto, CA, 2003. http:

//research.compaq.com/SRC/esc/Simplify.html.

164

[27] Dhamdhere, D., Gururaja, K., and Ganu, P., “A compact execution

history for dynamic slicing,” Information Processing Letters, vol. 85, no. 3,

pp. 145–152, 2003.

[28] Dhodapkar, A. S. and Smith, J. E., “Comparing program phase detec-

tion techniques,” in IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 217– 227, 2003.

[29] Do, H., Elbaum, S. G., and Rothermel, G., “Supporting controlled ex-

perimentation with testing techniques: An infrastructure and its potential

impact.,” Empirical Software Engineering, vol. 10, no. 4, pp. 405–435, 2005.

http://www.cse.unl.edu/∼galileo/sir.

[30] Ernst, M. D., Cockrell, J., Griswold, W. G., and Notkin, D., “Dy-

namically discovering likely program invariants to support program evolution,”

IEEE Transactions on Software Engineering (TSE), vol. 27, no. 2, pp. 99–123,

2001.

[31] Ferrante, J., Ottenstein, K., and Warren, J., “The program depen-

dence graph and its use in optimization,” ACM Transactions on Programming

Languages and Systems, vol. 9, no. 3, pp. 319–349, 1987.

[32] Flanagan, C. and Freund, S. N., “Type-based race detection for Java,” in

Proceedings of ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pp. 219–232, 2000.

[33] Foster, J. S., Terauchi, T., and Aiken, A., “Flow-sensitive type quali-

fiers,” in ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pp. 1–12, 2002.

165

[34] Fritzson, P., Gyimothy, T., Kamkar, M., and Shahmehri, N., “Gener-

alized algorithmic debugging and testing,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pp. 317–326, 1991.

[35] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns:

Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,

1995.

[36] Goel, A., Roychoudhury, A., and Mitra, T., “Compactly representing

parallel program executions,” in ACM Symposium on Principles and Practice

of Parallel Programming (PPoPP), pp. 191–202, 2003.

[37] Groce, A., “Error explanation with distance metrics,” in Tools and Algorithms

for the Construction and Analysis of Systems (TACAS), pp. 108–122, 2004.

[38] Groce, A. and Visser, W., “What went wrong: Explaining counterexam-

ples,” in SPIN Workshop on Model Checking of Software, pp. 121–135, 2003.

[39] Guo, L., Roychoudhury, A., and Wang, T., “Accurately choosing exe-

cution runs for software fault localization,” in Compiler Construction (CC),

pp. 80–95, 2006.

[40] Gyimóthy, T., Beszédes, A., and Forgács, I., “An efficient relevant slicing

method for debugging,” in 7th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pp. 303–321, 1999.

[41] Hailpern, B. and Santhanam, P., “Software debugging, testing, and veri-

fication,” IBM system Journal, vol. 41, no. 1, 2002.

[42] Harrold, M. J., Rothermel, G., Wu, R., and Yi, L., “An empirical

investigation of program spectra,” in ACM SIGPLAN/SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, pp. 83–90, 1998.

166

[43] Henzinger, T. A., Jhala, R., Majumdar, R., and Sutre, G., “Software

verification with Blast,” in SPIN Workshop on Model Checking of Software

(SPIN), pp. 235–239, 2003.

[44] Horwitz, S. and Reps, T., “The use of program dependence graphs in soft-

ware engineering,” in ACM/IEEE International Conference on Software Engi-

neering (ICSE), pp. 392–411, 1992.

[45] Horwitz, S., Reps, T., and Binkley, D., “Interprocedural slicing using de-

pendence graphs,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 12, no. 1, pp. 26–60, 1990.

[46] Hunt, J. W. and Szymanski, T. G., “A fast algorithm for computing longest

common subsequences,” Communications of the ACM, vol. 20, no. 5, pp. 350–

353, 1977.

[47] Hutchins, M., Foster, H., Goradia, T., and Ostrand, T., “Experiments

on the effectiveness of dataflow- and controlflow-based test adequacy crite-

ria,” in ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 191–200, 1994.

[48] Hwu, W. W. and others, “The superblock: An effective structure for VLIW

and superscalar compilation,” The Journal of Supercomputing, vol. 7, no. 1,

pp. 229–248, 1993.

[49] Jackson, D. and Vaziri, M., “Finding bugs with a constraint solver,” in

International Symposium on Software Testing and Analysis (ISSTA), pp. 14–

25, 2000.

[50] JGF, “The Java Grande Forum Benchmark Suite.” website: http://www.

epcc.ed.ac.uk/javagrande/seq/contents.html.

167

[51] Jones, J. A., Harrold, M. J., and Stasko, J., “Visualization of test in-

formation to assist fault localization,” in ACM/IEEE International Conference

on Software Engineering (ICSE), pp. 467–477, 2002.

[52] Jones, J. A. and Harrold., M., “Empirical evaluation of the Tarantula

automatic fault-localization technique,” in IEEE International Conference on

Automated Software Engineering (ASE), pp. 273–282, 2005.

[53] Joy, B., Steele, G., Gosling, J., and Bracha, G., Java(TM) Language

Specification (2nd Edition). Addison-Wesley Pub Co, 2000.

[54] Kamkar, M., “Application of program slicing in algorithmic debugging,” In-

formation and Software Technology, vol. 40, no. 11-12, pp. 637–645, 1998.

[55] Katsoff, H., “Sdb: Symbolic debugger,” Unix Programmer’s Manual, 1979.

[56] Knuth, D. E., The Art of Comuter Programming 4: searching and sorting.

Addison-Wesley Pub Co, 1973.

[57] Korel, B. and Laski, J. W., “Dynamic program slicing,” Information Pro-

cessing Letters, vol. 29, no. 3, pp. 155–163, 1988.

[58] Korel, B. and Rilling, J., “Application of dynamic slicing in program de-

bugging,” in International Workshop on Automatic Debugging, 1997.

[59] Kremenek, T., Ashcraft, K., Yang, J., and Engler, D., “Correlation

exploitation in error ranking,” in ACM SIGSOFT Symposium on the Founda-

tions of Software Engineering (FSE), pp. 83–93, 2004.

[60] Krinke, J., “Static slicing of threaded programs,” in ACM SIG-

PLAN/SIGSOFT Workshop on Program Analysis for Software Tools and En-

gineering (PASTE), pp. 35–42, 1998.

168

[61] Lamport, L., “Time, clocks, and the ordering of events in a distributed sys-

tem,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[62] Larsen, L. and Harrold, M., “Slicing object-oriented software,” in Proceed-

ings of ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 495–505, 1996.

[63] Larus, J. R., “Whole program paths,” in ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pp. 259–269, 1999.

[64] Larus, J., “Abstract execution: A technique for efficiently tracing programs,”

Software - Practice and Experience (SPE), vol. 20, pp. 1241–1258, 1990.

[65] Levrouw, L. J., Audenaert, K. M. R., and Campenhout, J. M., “A new

trace and replay system for shared memory programs based on Lamport clocks,”

in Euromicro Workshop on Parallel and Distributed Processing, pp. 471–478,

1994.

[66] Lhoták, O., “Spark: A flexible points-to analysis framework for Java,” Mas-

ter’s thesis, McGill University, December 2002.

[67] Lhoták, O. and Hendren, L. J., “Scaling Java points-to analysis using

Spark,” in International Conference on Compiler Construction (CC), pp. 153–

169, 2003.

[68] Liblit, B., Aiken, A., Zheng, A., and Jordan, M. I., “Bug isolation via

remote program sampling,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pp. 141–154, 2003.

[69] Liblit, B., Naik, M., Zheng, A., Aiken, A., and Jordan, M., “Scal-

able statistical bug isolation,” in ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pp. 15–26, 2005.

169

[70] Lindholm, T. and Yellin, F., The Java(TM) Virtual Machine Specification

(2nd Edition). Addison-Wesley Pub Co, 1999.

[71] Lucia, A. D., “Program slicing: Methods and applications,” in IEEE Inter-

national Workshop on Source Code Analysis and Manipulation, pp. 142–149,

2001.

[72] Majumdar, R. and Jhala, R., “Path slicing,” in International Conference on

Programming Language Design and Implementation (PLDI), pp. 38–47, 2005.

[73] Maranzano, J. F. and Bourne, S. R., “A tutorial introduction to GDB,”

Unix Programmer’s Manual, 1979.

[74] Miller, B. P. and Choi, J. D., “A mechanism for efficient debugging of

parallel programs,” in ACM SIGPLAN conference on Programming Language

design and Implementation (PLDI), pp. 135–144, 1988.

[75] Misherghi, G. and Su, Z., “HDD: Hierarchical delta debugging,”

in ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 142–151, 2006.

[76] Murray, D. J. and Parson, D. E., “Automated debugging in Java using

OCL and JDI,” in International Symposium on Automated and Analysis-Driven

Debugging (AADEBUG), 2000.

[77] Nagpurkar, P. and Krintz, C., “Visualization and analysis of phased be-

havior in Java programs,” in ACM International Conference on principles and

practice of programming in Java, pp. 27–33, 2004.

[78] Nevill-Manning, C. G. and Witten, I. H., “Linear-time, incremental hi-

erarchy inference for compression,” in Data Commpression Conference (DCC),

pp. 3–11, 1997.

170

[79] Nishimatsu, A., Jihira, M., Kusumoto, S., and Inoue, K., “Call-mark

slicing: An efficient and economical way of reducing slice,” in ACM/IEEE In-

ternational Conference on Software Engineering (ICSE), pp. 422–431, 1999.

[80] Ottenstein, K. J. and Ottenstein, L. M., “The program dependence

graph in a software development environment,” in ACM Software Engineer-

ing Symposium on Practical Software Development Environments, pp. 177–184,

1984.

[81] Park, D. Y. W., Stern, U., Sakkebaek, J. U., and Dill, D. L., “Java

model checking,” in Proceedings of the First International Workshop on Auto-

mated Program Analysis, Testing and Verification, pp. 253–256, 2000.

[82] Pleszkun, A. R., “Techniques for compressing programm address traces,” in

IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 32–

39, 1994.

[83] Pytlik, B., Renieris, M., Krishnamurthi, S., and Reiss, S. P., “Auto-

mated fault localization using potential invariants,” CoRR, vol. cs.SE/0310040,

Oct, 2003.

[84] Reiss, S. P. and Renieris, M., “Generating Java trace data,” in ACM Java

Grande Conference, pp. 71–77, 2000.

[85] Reiss, S. P. and Renieris, M., “Encoding program executions,” in

ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 221–230, 2001.

[86] Renieris, M. and Reiss, S. P., “Fault localization with nearest neighbor

queries,” in Automated Software Engineering (ASE), pp. 30–39, 2003.

171

[87] Reps, T. W., Ball, T., Das, M., and Larus, J. R., “The use of program

profiling for software maintenance with applications to the year 2000 problem,”

in ACM SIGSOFT Symp. on the Foundations of Software Engineering (FSE),

pp. 432–449, 1997.

[88] Ronsse, M. and Bosschere, K. D., “Recplay: a fully integrated practi-

cal record/replay system,” ACM Transactions on Computer Systems (TOCS),

vol. 17, no. 2, pp. 133–152, 1999.

[89] Rothermel, G. and Harrold, M. J., “Empirical studies of a safe regression

test selection technique,” IEEE Transactions on Software Engineering, vol. 24,

no. 6, pp. 401–419, 1998.

[90] Ruthruff, J., Creswick, E., Burnett, M., Cook, C., Prab-

hakararao, S., II, M. F., and Main, M., “End-user software visualizations

for fault localization,” in ACM Symposium on Software Visualization, pp. 123–

132, 2003.

[91] Sazeides, Y., “Instruction-isomorphism in program execution,” in Annual

Value Prediction Workshop (affiliated with ISCA-30), pp. 47–54, 2003.

[92] Scheemaecker, M. D., “NanoXML.” website: http://nanoxml.

sourceforge.net/orig/.

[93] Shapiro, E., Algorithmic program debugging. PhD thesis, MIT Press, 1982.

[94] Sherwood, T., Perelman, E., Hamerly, G., and Calder, B., “Automat-

ically characterizing large scale program behavior,” in International Conference

on Architectural Support for Programming Languages and Operating System,

pp. 45–57, 2002.

172

[95] Sinha, S. and Harrold, M. J., “Analysis and testing of programs with

exception handling constructs,” IEEE Transactions on Software Engineering,

vol. 26, no. 9, pp. 849–871, 2000.

[96] SPECjvm98, “Spec JVM98 benchmarks.” website: http://www.specbench.

org/osg/jvm98/.

[97] Steensgaard, B., “Points-to analysis in almost linear time,” in ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,

pp. 32–41, 1996.

[98] Tip, F., “A survey of program slicing techniques,” Journal of Programming

Languages, vol. 3, no. 3, pp. 121–189, 1995.

[99] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sun-

daresan, V., “Soot - a Java bytecode optimization framework,” in Conference

of the Centre for Advanced Studies on Collaborative research (CASCON), p. 13,

1999.

[100] Venkatesh, G. A., “Experimental results from dynamic slicing of C pro-

grams,” ACM Transactions on Programming Languages and Systems, vol. 17,

no. 2, pp. 197–216, 1995.

[101] Wang, T. and Roychoudhury, A., “Jslice: A dynamic slicing tool for Java

programs.” National University of Singapore, http://jslice.sourceforge.

net.

[102] Wang, T. and Roychoudhury, A., “Using compressed bytecode traces for

slicing Java programs,” in ACM/IEEE International Conference on Software

Engineering (ICSE), pp. 512–521, 2004.

173

[103] Wang, T. and Roychoudhury, A., “Automated path generation for soft-

ware fault localization,” in ACM/IEEE International Conference on Automated

Software Engineering (short paper), pp. 347–351, 2005.

[104] Wang, T. and Roychoudhury, A., “Dynamic slicing on Java byte-

code traces,” ACM Transactions on Programming Languages and Systems

(TOPLAS), to appear, 2007.

[105] Wang, T. and Roychoudhury, A., “Hierarchical dynamic slicing,” in ACM

International Symposium on Software Testing and Analysis (ISSTA), pp. 228–

238, 2007.

[106] Weiser, M., “Program slicing,” IEEE Transactions on Software Engineering,

vol. 10, no. 4, pp. 352–357.

[107] Xie, Y. and Aiken, A., “Scalable error detection using boolean satisfiabil-

ity,” in ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (POPL), pp. 351–363, 2005.

[108] Xie, Y., Chou, A., and Engler, D. R., “Archer: using symbolic, path-

sensitive analysis to detect memory access errors,” in Symposium on Founda-

tions of Software Engineering held jointly with European Software Engineering

Conference, (ESEC/FSE), pp. 327–336, 2003.

[109] Xu, B., Chen, Z., and Yang, H., “Dynamic slicing object-oriented programs

for debugging,” in IEEE International Workshop on Source Code Analysis and

Manipulation, p. 115, 2002.

[110] Zeller, A., “Isolating cause-effect chains from computer programs,” in ACM

SIGSOFT Symposium on the Foundations of Software Engineering (FSE),

pp. 1–10, 2002.

174

[111] Zeller, A. and Hildebrandt, R., “Simplifying and isolating failure-

inducing input,” IEEE Transactions on Software Engineering, vol. 28, no. 2,

pp. 183–200, 2002.

[112] Zhang, X., Gupta, N., and Gupta, R., “Locating faults through automated

predicate switching,” in IEEE/ACM International Conference on Software En-

gineering, pp. 272–281, 2006.

[113] Zhang, X., Gupta, N., and Gupta, R., “Pruning dynamic slices with confi-

dence,” in ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pp. 169–180, 2006.

[114] Zhang, X. and Gupta, R., “Cost effective dynamic program slicing,” in ACM

SIGPLAN conference on Programming language design and implementation,

pp. 94–106, 2004.

[115] Zhang, X. and Gupta, R., “Whole execution traces,” in IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pp. 105–116, 2004.

[116] Zhang, X., Gupta, R., and Zhang, Y., “Precise dynamic slicing algo-

rithms,” in ACM/IEEE International Conference on Software Engineering

(ICSE), pp. 319–329, 2003.

[117] Zhang, X., Gupta, R., and Zhang, Y., “Effective forward computa-

tion of dynamic slices using Reduced Ordered Binary Decision Diagrams,”

in ACM/IEEE International Conference on Software Engineering (ICSE),

pp. 502–511, 2004.

[118] Zhang, X., He, H., Gupta, N., and Gupta, R., “Experimental evalua-

tion of using dynamic slices for fault location,” in International Symposium on

Automated and Analysis-Driven Debugging (AADEBUG), pp. 33–42, 2005.

175

[119] Zhang, X., Tallam, S., and Gupta, R., “Dynamic slicing long running

programs through execution fast forwarding,” in ACM SIGSOFT Symposium

on the Foundations of Software Engineering (FSE), pp. 81–91, 2006.

[120] Zhang, Y. and Gupta, R., “Timestamped whole program path representation

and its applications,” in ACM SIGPLAN Conference on Programming Language

Design and Implementation, pp. 180–190, 2001.

[121] Zilles, C. B. and Sohi, G., “Understanding the backward slices of perfor-

mance degrading instructions,” in International Symposium on Computer Ar-

chitecture (ISCA), pp. 172–181, 2000.

[122] Ziv, J. and Lempel, A., “A universal algorithm for sequential data compres-

sion,” IEEE Transactions on Information Theory, vol. 23, no. 3, pp. 337–349,

1977.

176

APPENDIX A

PROOFS AND ANALYSIS FOR DYNAMIC

SLICING ALRITHM

A.1 Complexity Analysis of the RLESe Algorithm

In this appendix, we prove that the RLESe compression algorithm described in Section

3.1.3 is linear in both space and time.

A.1.1 Properties preserved by RLESe algorithm

Recall that RLESe constructs a context free grammar to represent a sequence, by

preserving three properties w.r.t. the grammar: (1) no contiguous repeated symbols

property, (2) digram uniqueness property, and (3) rule utility property (details can

be found in Section 3.1.3). Figure A.1 presents the algorithm. The RLESe algorithm

proceeds by iteratively reading a symbol from the input sequence (line 2 of Figure

A.1), appending a node 〈sym : 1〉 to the end of start rule (line 3 of Figure A.1),

and re-structuring the grammar by preserving the above three properties (line 4-18

of Figure A.1). When the algorithm checks whether any property is violated (lines

5, 7, and 15 of Figure A.1), it is sufficient to examine changed nodes or digrams,

instead of going through the entire grammar. For example, when the algorithm looks

for continuous repeated nodes (line 5 of Figure A.1), only nodes which have just been

inserted into the grammar are necessary to check. This is particularly important for

the efficiency of the algorithm. We explain how to re-construct the grammar when

any one of the three properties of RLESe are violated.

The first property (i.e. no contiguous repeated symbols property) is preserved by

177

line 5 and 6 of Figure A.1. If two nodes 〈sym : n〉 and 〈sym : n′〉 are adjacent in

the grammar, line 6 merges the two nodes. That is we delete node 〈sym : n′〉, and

change node 〈sym : n〉 to 〈sym : n + n′〉. Clearly, this merge operation can save one

node in the grammar size.

Lines 7-14 of Figure A.1 preserve the second property of RLESe (i.e., the digram

uniqueness property). Recall that two digrams are similar if their nodes contain

the same pair of symbols. Two digrams are identical if they have the same pairs

of symbols and counters. Line 7 checks whether there are similar digrams in the

grammar. If so, the algorithm can obtain two identical digrams, and replace both

identical digrams with a non-terminal node for a rule (possibly already in existence)

that has the identical digram as its right side. Note that, when there are two similar

digrams 〈sym1 : n1, sym2 : n2〉, and 〈sym1 : n′
1, sym2 : n′

2〉, it may require splitting

nodes (line 9 of Figure A.1) to obtain identical digrams as 〈sym1 : min(n1, n
′
1), sym2 :

min(n2, n
′
2)〉, where min(n1, n

′
1) is the minimum of n1 and n′

1. Splitting one node will

introduce one more node into the grammar. Line 9 of Figure A.1 checks whether one

of the two identical digrams is exactly the right side of an existing rule. If so, the

algorithm replaces another identical digram with a non-terminal node for the rule

(line 11 of Figure A.1). We change the grammar rules

A → · · · sym1 : n1, sym2 : n2, · · · B → sym1 : n1, sym2 : n2

to

A → · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

This can save one node in the resultant grammar. If not, a new rule is introduced,

and the algorithm replaces both identical digrams with a non-terminal node for the

new rule (line 13-14 of Figure A.1). That is, we change the grammar rule

A → · · · sym1 : n1, sym2 : n2, · · · sym1 : n1, sym2 : n2, · · ·

178

to

A → · · ·B : 1, · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

This operation does not introduce more nodes nor save any node, but introduces one

more rule in the resultant grammar.

Lines 15-17 of Figure A.1 preserve the third property — the rule utility property.

RLESe eliminates a rule referenced only once by replacing the reference with the right

side of the rule. That is, we change the grammar rules

A → · · ·B : 1, · · · B → sym1 : n1, sym2 : n2

to

A → · · · sym1 : n1, sym2 : n2, · · ·

This operation can save one node in the resultant grammar.

A.1.2 Operations in the RLESe algorithm

We proceed to prove that the complexity of the RLESe algorithm in Figure A.1 is

linear in both space and time w.r.t. the length of input sequence. The proof is similar

to the proof for SEQUITUR in [78], where we do not put a bound on each operation

to re-construct the grammar. Instead we calculate the amortized costs, that is, we

obtain a bound on the total amount of work done re-constructing the grammar. Our

analysis of RLESe also uses an assumption made in SEQUITUR’s analysis in [78]

— given a digram, the average time to look for its similar digram is bounded by a

constant. This can be achieved by indexing digrams with a hash table [56].

Table A.1 shows variables which will be used later for complexity analysis, as

well as descriptions of these variables. The third column shows line number of the

RLESe algorithm in Figure A.1 in which each variable is used; the last column shows

corresponding operations for each line. Clearly, the time to perform each operation in

Table A.1 is constant. For example, it needs constant time to check whether a specific

179

1 while (input sequence is not empty)
2 sym= read next symbol from input;
3 append node 〈sym : 1〉 to the end of start rule s
4 do
5 if (there are continuous repeated nodes)
6 merge the two nodes;
7 if (there are two similar digrams)
8 if (the two digrams are not identical)
9 split nodes to get two identical digrams;
10 if (one of the identical digrams is a complete rule)
11 replace another digram with a non-terminal node for the rule
12 else
13 create a new rule, where the right side of the rule is the identical digram;
14 replace both digrams with a non-terminal node for the new rule;
15 if (rule R is referenced only once)
16 replace the use of R with the right side of R;
17 remove the rule R;
18 while (any of the three properties is violated)

Figure A.1: The RLESe compression algorithm

node has the same symbol with its neighboring nodes (line 5 of Figure A.1). Thus,

the total time cost to execute line 5 is proportional to m2, the number of times to

check the first property. Some lines of the compression algorithm are always executed

together (e.g. lines 13 and 14 of Figure A.1). They are considered as one operation

during complexity analysis, so they are put in the same entry in this table. The size

of the RLESe grammar (i.e. m) denotes the nodes in the right-hand side of grammar

rules, because nodes in the left-hand side of grammar rules can be recreated according

to the order in which these rules appear.

A.1.3 Space Complexity

We derive an equation describing the size of the final grammar. Operations 3,7,10 in

Table A.1 refer to merging nodes, using an existing rule and removing a rule; these

operations save the number of nodes in the grammar. On the other hand, operation

6 (splitting a grammar node), increases the grammar size. Thus, we get the following

equation relating the grammar size (m) and the length of the input sequence (n).

180

Var. Description Line in Fig. A.1 Operation
n the size of the input sequence
m # of nodes in the final grammar
r # of rules in the final grammar

m1 # of times to read a symbol from input 2, 3 1: read
m2 # of times to check the first property 5 2: check the 1st property
m3 # of times to merge two nodes 6 3: merge
m4 # of times to check the second property 7 4: check the 2nd property
m5 # of times two similar digrams are found 8, 10 5: check digrams
m6 # of split nodes 9 6: split
m7 # of times an existing rule is used 11 7: use an existing rule
m8 # of times a new rule is introduced 13, 14 8: introduce a new rule
m9 # of times to check the third property 15 9: check the 3rd property
m10 # of times a rule is removed 16, 17 10: remove a rule

Table A.1: Operations in the RLESe algorithm

n−m = m3 + m7 + m10 −m6 (A.1)

In addition, we can only split nodes which have been merged. Note that if a

node was not produced by any merging, its run-length must be 1, so the question of

splitting does not arise. We get:

m6 ≤ m3 (A.2)

From the two formulas, we can conclude that

n−m ≥ m7 + m10 > 0 (A.3)

This shows that the size of the final grammar (i.e. the variable m) is bound by

the length of the input sequence (i.e. the variable n), and the algorithm is linear in

space.

A.1.4 Time Complexity

Next, we study the time complexity of the RLESe algorithm. When the algorithm

checks the ”no contiguous repeated symbols property”, the first property of RLESe

(operation 2), it is sufficient to look at the nodes inserted by operations 1, 7, 8, and

10 (refer Table A.1). That is,

m2 = m1 + m7 + 2m8 + 2m10 (A.4)

181

The coefficient 2 is used because both operations 8 and 10 insert two nodes.

Operations 1, 7, 8, and 10 introduce new digrams which necessitate check of the

digram uniqueness property, the second property of RLESe. We have

m4 = m1 + 2m7 + 4m8 + 2m10 (A.5)

When a new rule is introduced and two identical diagrams are removed (operation 8),

the number of references to a rule may be reduced, and the third property of RLESe

(the rule utility property) is checked. Therefore,

m9 = m8 (A.6)

In addition, the following formulas hold according to the structure of the algorithm,

m3 ≤ m2 and m5 ≤ m4

Now, let us look at the total time overhead for the compression algorithm in Figure

A.1, which is sum of time cost for each operation. The expression for the total time

overhead can be simplified as:

m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9 + m10 (A.7)

≤ m1 + 3m2 + 2m4 + m7 + 2m8 + m10

≤ m1 + 3(m1 + m7 + 2m8 + 2m10) + 2(m1 + 2m7 + 4m8 + 2m10) +

m7 + 2m8 + m10

= 6n + 8m7 + 16m8 + 11m10

For the number of rules r in the grammar, we have r = m8 − m10 since operation

8 introduces new rules, and operation 10 removes rules. Also, note the right side of

each rule has at least two nodes. Thus r < m.

The expression for the total time overhead in Formula A.7 can then be simplified

182

as

m1 + m2 + m3 + m4 + m5 + m6 + m7 + m8 + m9 + m10 (A.8)

= 6n + 8m7 + 16(r + m10) + 11m10

< 6n + 16m + 27(m7 + m10)

Recall from Formula A.3

0 < m7 + m10 ≤ n−m < n (A.9)

So the time complexity for the RLESe algorithm in Figure A.1 is O(n).

A.2 Analysis of the Dynamic Slicing Algorithm

In this appendix, we prove the lemmas used in the proof of Theorem 3.1, which proves

the correctness of the dynamic slicing algorithm in Figure 3.2.

Lemma A.1. Let ϕi be the ϕ set after i loop iterations of the dynamic slicing algo-

rithm in Figure 3.2. Then ∀i, j, 0 < i < j ⇒ ϕi ⊆ ϕj.

Proof. Let β be the bytecode occurrence encountered at the ith loop iteration. Ac-

cording to the algorithm, ϕi=ϕi−1 or ϕi=ϕi−1∪{β}. Thus, for all i we have ϕi−1 ⊆ ϕi,

and the lemma holds.

Lemma A.2. Let ϕi be the ϕ set, and frami be the fram after i loop iterations of the

dynamic slicing algorithm in Figure 3.2. Let framj
i represents a method invocation

in frami. Then ∀β′, ∃framj
i ∈ frami, β′ ∈ framj

i .γ, iff. β′ ∈ ϕi and the algorithm

has not found the bytecode occurrence which β′ is dynamically control dependent on

after i loop iterations.

Proof. Let Γi = ∪jframj
i .γ, i.e. the union of γ sets of all method invocations in

frami, after i loop iterations of the dynamic slicing algorithm in Figure 3.2.

183

To prove this lemma, it is equivalent to prove: ∀β′ ∈ Γi, iff. β′ ∈ ϕi and the

algorithm has not found the bytecode occurrence which β′ is dynamically control

dependent on after i loop iterations. Next we prove this by induction on loop iterations

of the slicing algorithm.

Base : Initially, ϕ0 and Γ0 are both empty, so the lemma holds.

Induction : Assume ∀β′′ ∈ Γi−1 iff. β′′ ∈ ϕi−1 and the algorithm has not found

the bytecode occurrence which β′′ is dynamically control dependent on after i−1 loop

iterations. Let β be the bytecode occurrence encountered at the ith loop iteration.

According to the algorithm in Figure 3.2, Γi = (Γi−1 − C) ∪ O, where,

• C is the set of bytecode occurrences in Γi−1 which are dynamically control

dependent on β. Note that if β is a method invocation bytecode occurrence,

C= last fram.γ (line 14 in Figure 3.2). If β is a branch bytecode occurrence,

C= BC (line 23 in Figure 3.2).

• O = {β} iff. β ∈ ϕi, and O = ∅ iff. β 6∈ ϕi (lines 32 and 33 in Figure 3.2).

We first prove the only if part of the lemma. For any β′ ∈ frami,

1. if β′ ∈ Γi−1−C ⊆ Γi−1, β′ ∈ ϕi−1 and the algorithm has not found the bytecode

occurrence which β′ is dynamically control dependent on after i − 1 loop iter-

ations according to the assumption. Lemma A.1 shows ϕi−1 ⊆ ϕi, so β′ ∈ ϕi.

Since β′ 6∈ C, β′ is not dynamically control dependent on β. This means that

the algorithm has not found the bytecode occurrence which β′ is dynamically

control dependent on after i loop iterations.

2. if β′ ∈ O and O 6= ∅, then β′ = β ∈ ϕi. Clearly, the slicing algorithm has not

found the bytecode occurrence β which β is dynamically control dependent on,

because backward traversal has not encountered β, which appears earlier than

β during trace collection.

184

Next, we prove the if part of the lemma. Note that ϕi = ϕi−1 or ϕi = ϕi−1 ∪ {β}

according to the slicing algorithm. For any β′ ∈ ϕi s.t. the slicing algorithm has not

found the bytecode occurrence which β′ is dynamically control dependent on after i

loop iterations, we need to show that β′ ∈ Γi. The following are the two possibilities.

1. if β′ ∈ ϕi−1, then β′ ∈ Γi−1 according to assumption. Since β′ is not dynamically

control dependent on β, β′ 6∈ C and β′ ∈ Γi.

2. if β′ = β, then β ∈ ϕi and O = {β}. So β′ ∈ Γi.

This completes the proof.

Lemma A.3. Let ϕi be the ϕ set, and δi be the δ set after i loop iterations of the

dynamic slicing algorithm in Figure 3.2. Then ∀v, v ∈ δi iff. variable v is used by a

bytecode occurrence in ϕi and the slicing algorithm has not found any assignment to

v after i loop iterations.

Proof. We prove the lemma by induction on loop iterations of the slicing algorithm.

Base : Initially, ϕ0 and δ0 are both empty, so the lemma holds.

Induction : Assume that ∀v′, v′ ∈ δi−1 iff. variable v′ is used by a bytecode

occurrence in ϕi−1 and the algorithm has not found any assignment to v′ after i−1 loop

iterations. Let β be the bytecode occurrence encountered at the ith loop iteration.

According to the algorithm, δi = (δi−1 − def vars) ∪ use vars, where

• def vars is the set of variables assigned by β (lines 28 and 29 in Figure 3.2).

• use vars is the set of variables used by β iff. β ∈ ϕi, and use vars=∅ iff.

β 6∈ ϕi. (lines 20, 25, 30, 32 and 34 in Figure 3.2)

We first prove the only if part of the lemma. For any v ∈ δi,

1. if v ∈ δi−1−def vars ⊆ δi−1, v is used by a bytecode occurrence in ϕi−1 and the

algorithm has not found any assignment to v after i−1 loop iterations according

185

to the assumption. Lemma A.1 shows ϕi−1 ⊆ ϕi. So, v is used by a bytecode

occurrence in ϕi. Since v 6∈ def vars, v is not defined by β. We can infer that

the algorithm has not found any assignment to v after i loop iterations.

2. if v ∈ use vars and use vars 6= ∅, then v is used by bytecode occurrence β and

β ∈ ϕi. Clearly, the slicing algorithm has not found any assignment to the vari-

able v after i loop iterations, because backward traversal has not encountered

these assignments, which appear earlier than β during trace collection.

Next, we prove the if part of the lemma. Note that ϕi = ϕi−1 or ϕi = ϕi−1 ∪ {β}

according to the slicing algorithm. Consider a variable v which is used by a bytecode

occurrence in ϕi, and the slicing algorithm has not found any assignment to v after i

loop iterations. For such a variable, we have the following two cases.

1. if v is used by a bytecode occurrence in ϕi−1, then v ∈ δi−1 according to as-

sumption. Since v is not defined by β, then v 6∈ def vars and v ∈ δi.

2. if v is used by bytecode occurrence β and β ∈ ϕi, then v ∈ use vars and

use vars ⊆ δi. Thus, v ∈ δi.

In both cases, we show that v ∈ δi. This completes the proof.

Lemma A.4. During dynamic slicing according to the algorithm in Figure 3.2, a

bytecode occurrence β pops an entry from op stack, which is pushed to op stack by

bytecode occurrence β′, iff. β′ uses an operand in the operand stack defined by β

during trace collection.

Proof. The op stack for slicing is a reverse simulation of the operand stack for compu-

tation during trace collection. That is, for every bytecode occurrence β′′ encountered

during slicing, the slicing algorithm pops entries from (pushes entries to) the op stack

iff. β′′ pushes operands to (pops operands from) the operand stack during trace col-

lection — as shown in the updateOpStack method in Figure 3.6. Consequently, a

186

bytecode occurrence β pops an entry from op stack, and this entry is pushed to

op stack by bytecode occurrence β′ during slicing, iff. β defines an operand in the

operand stack, and β′ uses the operand during trace collection.

Lemma A.5. Let ϕi be the ϕ set after i loop iterations of the dynamic slicing al-

gorithm in Figure 3.2, and β be the bytecode occurrence encountered at the ith loop

iteration. Then β ∈ ϕi − ϕi−1 iff. (1) β belongs to the slicing criterion, or, (2)

∃β′ ∈ ϕi−1, β′ is dynamically control or data dependent on β.

Proof. Note that β 6∈ ϕi−1. According to the slicing algorithm, β ∈ ϕi −ϕi−1 iff. any

of lines 19, 22 and 27 in Figure 3.2 is evaluated true so that any of lines 21, 26, and

31 in Figure 3.2 is executed. We next prove that any of lines 19, 22 and 27 in Figure

3.2 is evaluated true iff. (1) β belongs to the slicing criterion, or, (2) ∃β′ ∈ ϕi−1, β′

is dynamically control or data dependent on β.

First, line 19 in Figure 3.2 is evaluated to true iff. β belongs to the slicing criterion.

Next, we prove that line 22 in Figure 3.2 is evaluated to true iff. ∃β′ ∈ ϕi−1, β′

is dynamically control dependent on β. According to the slicing algorithm, the check

computeControlDependence(bβ, curr fram, last fram) in line 22 of the dynamic slic-

ing algorithm (see Figure 3.2) returns true iff:

• β is a branch bytecode occurrence, and ∃β′ ∈ curr fram.γ, curr fram ∈

frami−1 β′ is dynamically control on β, or

• β is a method invocation bytecode occurrence, and ∃β′ ∈ last fram.γ, last fram ∈

frami−1, β′ is dynamically control on β,

According to Lemma A.2, ∀β′, ∃framj
i−1 ∈ frami−1, β′ ∈ framj

i−1.γ only if

β′ ∈ ϕi−1. So, line 22 returns true only if ∃β′ ∈ ϕi−1, β′ is dynamically control

dependent on β.

On the other hand, if ∃β′ ∈ ϕi−1, β′ is dynamically control dependent on β, then

the algorithm has not found the bytecode occurrence which β′ is dynamically control

187

dependent on after i−1 loop iterations, because every bytecode occurrence is dynami-

cally control dependent on exactly one bytecode occurrence. So, ∃framj
i−1 ∈ frami−1

β′ ∈ framj
i−1.γ, according to Lemma A.2. If β is a branch bytecode occurrence,

then β′ ∈ curr fram.γ, curr fram ∈ frami−1, since β and β′ should belong to

the same method invocation. If β is a method invocation bytecode occurrence, then

β′ ∈ last fram.γ, last fram ∈ frami−1, since β′ should belong to last method invo-

cation, which is called by β. So line 22 in Figure 3.2 returns true if ∃β′ ∈ ϕi−1, β′ is

dynamically control dependent on β.

Finally, we prove that line 27 in Figure 3.2 is evaluated to true iff ∃β′ ∈ ϕi−1, β′ is

dynamically data dependent on β. Note that line 27 invokes the computeDataDepen-

dence method defined in Figure 3.7 to check dynamic data dependence. The check

computeDataDependence(β, bβ) returns true iff either of the following conditions holds:

• if β defines a variable in δi−1 (line 9 of Figure 3.7), where δi−1 represents the δ

set after i− 1 loop iterations.

• if one of the top def op(bβ) entries of the op stack is pushed by a bytecode

occurrence β′ ∈ ϕi−1 (line 12 of Figure 3.7), where def op(bβ) is the number of

operands defined by bytecode bβ of occurrence β during trace collection.

When the computeDataDependence method returns true: (a) if β defines a vari-

able v ∈ δi−1, then ∃β′ ∈ ϕi−1, v is used by β′ and the algorithm has not found any

assignment to v after i− 1 loop iterations according to Lemma A.3. So β′ is dynam-

ically data dependent on β. (b) if one of the top def op(bβ) entries of the op stack

is pushed by a bytecode occurrence β′ ∈ ϕi−1. Because all the top def op(bβ) en-

tries of the op stack will be popped by β (lines 2 and 3 of method updateOpStack

in Figure 3.6), β′ uses an operand in the operand stack defined by β during trace

collection according to Lemma A.4. Consequently, β′ is dynamically data dependent

on β. This proves that line 27 in Figure 3.2 is evaluated to true, only if ∃β′ ∈ ϕi−1,

188

β′ is dynamically data dependent on β.

On the other hand, if ∃β′ ∈ ϕi−1, β′ is dynamically data dependent on β, then

either (a) ∃v, β′, β′ ∈ ϕi−1, v is used by β′ and v is defined by β. According to

Lemma A.3, v ∈ δi−1; so the computeDataDependence method returns true and line

27 in Figure 3.2 is evaluated to true. (b) ∃β′, β′ ∈ ϕi−1, β′ uses an operand in

the operand stack defined by β during trace collection. According to Lemma A.4,

β should pop an entry from op stack, which is pushed into op stack by β′. Since β

pops top def op(bβ) entries from the op stack, line 12 in Figure 3.7 is evaluated to

true, and the computeDataDependence method returns true. This proves that line

27 in Figure 3.2 is evaluated to true, if ∃β′ ∈ ϕi−1, β′ is dynamically data dependent

on β.

A.3 Analysis of the Relevant Slicing Algorithm

In this appendix, we prove the correctness of the relevant slicing algorithm in Figure

4.7.

Lemma A.6. Let ϕi be the ϕ set after i loop iterations of the relevant slicing algorithm

in Figure 4.7. Then ∀i, j, 0 < i < j ⇒ ϕi ⊆ ϕj.

Proof. Proof of this lemma is the same as the proof of Lemma A.1 in Appendix A.2,

for the dynamic slicing algorithm.

Lemma A.7. Let ϕi be the ϕ set, and frami be the fram set after i loop itera-

tions of the relevant slicing algorithm in Figure 4.7. Let framj
i represents a method

invocation in frami. Then ∀β, ∃framj
i ∈ frami, β′ ∈ framj

i .γ iff. (1) β ∈ ϕi,

and (2) β belongs to slicing criterion or ∃β′ ∈ ϕi s.t. β′ is dynamically control/data

dependent on β, and (3) the algorithm has not found the bytecode occurrence which

β is dynamically control dependent on after i loop iterations.

189

Proof. Proof of this lemma is the similar to the proof of Lemma A.2 in Appendix

A.2, for the dynamic slicing algorithm.

Lemma A.8. Let ϕi be the ϕ set, and δi be the δ set after i loop iterations of the

relevant slicing algorithm in Figure 4.7. Then ∀v, v ∈ δi iff. (1) variable v is used by

a bytecode occurrence β ∈ ϕi s.t. (a) β belongs to slicing criterion, or (b) ∃β′ ∈ ϕi

s.t. β′ is dynamically control/data dependent on β, and (2) the algorithm has not

found any assignment to v after i loop iterations.

Proof. Proof of this lemma is the similar to the proof of Lemma A.3 in Appendix

A.2, for the dynamic slicing algorithm.

Lemma A.9. Let ϕi be the ϕ set, and θi be the θ set after i loop iterations of the

relevant slicing algorithm in Figure 4.7. Then ∀v, ∃prop, v ∈ prop, and 〈 β′, prop〉 ∈

θi iff. (1) variable v is used by a bytecode occurrence β ∈ ϕi, where (a) β does

not belong to slicing criterion, and (b) there is no β′ ∈ ϕi s.t. β′ is dynamically

control/data dependent on β, and (2) the algorithm has not found any assignment to

v after i loop iterations.

Proof. The proof of this lemma is similar to the proof of Lemma A.8.

Indeed, the δ set (in Lemma A.8) includes variables used by bytecode occurrences

β s.t. β is added into ϕ when (1) β belongs to the slicing criterion, or (2) there is any

bytecode occurrence in ϕ which is dynamically control/data dependent on β. On the

other hand, the prop sets of θ (in Lemma A.9) includes variables used by bytecode

occurrences β s.t. β is added into ϕ when (1) there is any bytecode occurrence in ϕ

which is potentially dependent on β, and (2) β does not belong to slicing criterion,

and no bytecode occurrence in ϕ is dynamically control/data dependent on β.

Lemma A.10. During relevant slicing according to the algorithm in Figure 4.7, a

bytecode occurrence β pops an entry from op stack, which is pushed to op stack by

190

bytecode occurrence β, iff. β uses an operand in the operand stack defined by β during

trace collection.

Proof. Proof of this lemma is the same as the proof of Lemma A.4 in Appendix A.2,

for the dynamic slicing algorithm.

Lemma A.11. Let ϕi be the ϕ set after i loop iterations of the relevant slicing al-

gorithm in Figure 4.7, and β be the bytecode occurrence encountered at the ith loop

iteration. Then β ∈ ϕi − ϕi−1 iff.

1. β belongs to the slicing criterion, or,

2. ∃β′ ∈ ϕi−1, β′ is dynamically control dependent on β, and β′ was not introduced

into the relevant slice ϕ because of potential dependencies.1

3. ∃β′ ∈ ϕi−1, β′ is dynamically data dependent on β, or

4. none of above three conditions is satisfied, and ∃β′ ∈ ϕi−1, β′ is potentially

dependent on β.

Proof. Note that β 6∈ ϕi−1. According to the slicing algorithm, β ∈ ϕi −ϕi−1 iff. any

of lines 21, 26, 31 and 39 in Figure 4.7 is executed. Further,

I. line 21 in Figure 4.7 is executed iff. condition (1) in this lemma holds, which

checks the slicing criterion.

II. line 26 in Figure 4.7 is executed iff. condition (2) in this lemma holds, which

checks dynamic control dependencies.

III. line 31 in Figure 4.7 is executed iff. condition (3) in this lemma is satisfied,

which checks dynamic data dependencies.

1In other words, either there exists a bytecode β” ∈ ϕi−1 which is dynamically data/control
dependent on β′, or β′ belongs to the slicing criterion.

191

IV. line 39 in Figure 4.7 is executed iff. condition (4) in this lemma is satisfied,

which checks potential dependencies.

Proofs of I, II and III are similar to proof of Lemma A.5 in Appendix A.2, for the

dynamic slicing algorithm.

Next, we prove IV., that is line 39 in Figure 4.7 is executed iff. condition (4) in

this lemma is satisfied. According to the slicing algorithm, line 39 in Figure 4.7 is

executed iff. line 34 in Figure 4.7 is evaluated to false and line 38 in Figure 4.7 is

evaluated to true. Note that line 34 in Figure 4.7 is evaluated to false iff. lines 19,

22, and 27 are all evaluated to false, which are equivalent to that none of conditions

(1) (2) and (3) of this lemma holds. Note that line 38 invokes the computePoten-

tialDependence method defined in Figure 4.8 to check potential dependencies. The

check computePotentialDependence(β, bβ) returns true iff. either of following condi-

tions holds:

1. line 6 in Figure 4.8 is evaluated to true, or

2. line 9 in Figure 4.8 is evaluated to true.

We first prove that the computePotentialDependence method returns true only if

∃β′ ∈ ϕi−1, β′ is potentially dependent on β, assuming that line 34 in Figure 4.7 is

evaluated to false. We have the following two cases:

1. there exists v ∈ δi−1 which may be defined by evaluating the branch bytecode

occurrence β differently. The β refers to the bytecode occurrence encountered

at the ith loop iteration of the relevant slicing algorithm. According to Lemma

A.8, ∃β′ ∈ ϕi−1, v is used by β′. So, β′ is potentially dependent on β.

2. there exists v, prop′′, v ∈ prop′′, ∃〈 β′′, prop′′〉 ∈ θi−1, and v may be defined by

evaluating the branch bytecode occurrence β differently. According to Lemma

A.9, ∃β′ ∈ ϕi−1, v is used by β′. So, β′ is potentially dependent on β.

192

In both cases, there exists one bytecode occurrence in ϕi−1 which is potentially

dependent on β.

Now we prove that the computePotentialDependence method returns true if ∃β′ ∈

ϕi−1, β′ is potentially dependent on β, assuming that line 34 in Figure 4.7 is evaluated

to false. The following are two possibilities:

1. there exists v used by a bytecode occurrence β′ ∈ ϕi−1, where β′ was not intro-

duced into the relevant slice ϕ because of potential dependencies. According to

Lemma A.8, v ∈ δi−1. So line 7 of Figure 4.8 is executed and the computePo-

tentialDependence method returns true.

2. there exists v used by a bytecode occurrence β′ ∈ ϕi−1, where β′ was intro-

duced into the relevant slice ϕ because of potential dependencies. According

to Lemma A.9, ∃prop′′, v ∈ prop′′, and ∃〈β′′, prop′′〉 ∈ θi−1. According to the

algorithm, β′ is (transitively) dynamically control dependent on β′′, so β′′ is not

dynamically control dependent on β. Thus, line 10 of Figure 4.8 is executed

and the computePotentialDependence method returns true.

The completes our proof that the computePotentialDependence method returns

true if ∃β′ ∈ ϕi−1, β′ is potentially dependent on β, assuming that line 34 in Figure

4.7 is evaluated to false. Consequently, line 39 in Figure 4.7 is executed iff. condition

(4) in this lemma is satisfied.

In all cases, we have shown that any of lines 21, 26, 31 and 39 in Figure 4.7 is

executed iff. any of the four conditions in the lemma is satisfied. Consequently, the

lemma holds.

Finally, we prove the correctness of the relevant slicing in Figure 4.7. Note that the

relevant slice defined in Definition 4.2 is based on the Extended Dynamic Dependence

Graph (EDDG). In the EDDG, two nodes in the graph may refer to the same bytecode

occurrence. In the following, we use nn(β) to represent the non-dummy node for

193

bytecode occurrence β in the EDDG, and dn(β) to represent corresponding dummy

node for bytecode occurrence β. Two nodes of the same bytecode occurrence do

not contribute to relevant slice together. This is because in the EDDG, non-dummy

nodes only have incoming edges representing dynamic control/data dependencies, and

dummy nodes only have incoming edges representing potential dependencies. Further,

the relevant slicing algorithm includes a bytecode occurrence β into the slice ϕ when

∃β′ ∈ ϕ s.t. β′ is dependent on β for any of dynamic control, dynamic data and

potential dependencies.

Theorem A.1. Given a slicing criterion, the relevant slicing algorithm in Figure 4.7

returns relevant slice defined in Definition 4.2.

Proof. Let ϕi be the ϕ set after i loop iterations of the relevant slicing algorithm

in Figure 4.7, ϕ∗ be the resultant ϕ set when the algorithm finishes, and β be the

bytecode occurrence encountered at the ith loop iteration. As mentioned in the above,

there may be two nodes nn(β′) and dn(β′) for a bytecode occurrence β′ in the EDDG.

So, we will prove this lemma by showing: ϕ∗={β′|nn(β′) or dn(β′) is reachable from

the slicing criterion in the EDDG}.

We first prove the soundness of the algorithm, i.e. for any β′, β′ ∈ ϕ∗, only if either

nn(β′) or dn(β′) is reachable from the slicing criterion in the EDDG. In particular, we

prove that: ∀β′ ∈ ϕ∗, (a) if β′ is added into ϕ∗ because of slicing criterion or dynamic

control/data dependencies, then nn(β′) is reachable from the slicing criterion in the

EDDG, and (b) if β′ is added into ϕ∗ because of potential dependencies, then dn(β′)

is reachable from the slicing criterion in the EDDG. We prove this by induction on

loop iterations of the slicing algorithm. Initially, ϕ0 = ∅, so the base case holds.

Induction : Assume that for any β′′ ∈ ϕi−1, (a) if β′′ is added into ϕi−1 because of

slicing criterion or dynamic control/data dependencies, then nn(β′′) is reachable from

the slicing criterion in the EDDG, and (b) if β′′ is added into ϕi−1 because of potential

dependencies, then dn(β′′) is reachable from the slicing criterion in the EDDG.

194

Note that ϕi = ϕi−1, or ϕi = ϕi−1 ∪ {β}. Then, ∀β′ ∈ ϕi, we have two cases:

1. if β′ ∈ ϕi−1, the induction hypothesis still hosts, since ϕi−1 ⊆ ϕi according to

Lemma A.6.

2. if β′ = β, where β is the bytecode occurrence encountered at the ith loop

iteration of the slicing algorithm, then β ∈ ϕi − ϕi−1. According to Lemma

A.11, we have following four possibilities to add β into ϕi:

I. if β belongs to the slicing criterion,then clearly nn(β) belongs to slicing

criterion,

II. if ∃β′′ ∈ ϕi−1, β′′ is dynamically control dependent on β, and β′′ was

not added into the relevant slice because of potential dependencies, then

nn(β′′) is reachable from the slicing criterion in the EDDG according to the

induction hypothesis. In addition, there is an dynamic control dependence

edge from nn(β′′) to nn(β) in the EDDG. Thus, nn(β) can be reached

from the slicing criterion.

III. ∃β′′ ∈ ϕi−1, β′′ is dynamically data dependent on β, then either nn(β′′)

or dn(β′′) is reachable from the slicing criterion according to the induction

hypothesis. In the EDDG, there are dynamic data dependence edges from

nn(β′′) to nn(β), and from dn(β′′) to nn(β). Thus, nn(β) can be reached

from the slicing criterion.

IV. ∃β′′ ∈ ϕi−1, β′′ is potentially dependent on β, then either nn(β′′) or dn(β′′)

can be reached from the slicing criterion according to the induction hypoth-

esis. In the EDDG, there are potential dependence edges from nn(β′′) to

dn(β), and from dn(β′′) to dn(β). Thus, dn(β) can be reached from the

slicing criterion.

In all four cases, we show that (a) if β is added into ϕi because of slicing

195

criterion or dynamic control/data dependencies, then nn(β) is reachable from

the slicing criterion in the EDDG, and (b) if β is added into ϕi because of

potential dependencies, then dn(β) is reachable from the slicing criterion in the

EDDG.

Next, we prove the completeness of the slicing algorithm, i.e. for any β′, β′ ∈ ϕ∗,

if either nn(β′) or dn(β′) is reachable from the slicing criterion in the EDDG. Note

that there is no cycle in the EDDG, so we prove the completeness by induction on

structure of the EDDG.

Base : Consider a bytecode occurrence β′ where β′ belongs to the slicing crite-

rion. Clearly, nn(β′) is reachable from the slicing criterion in the EDDG. Let β′ be

encountered at the ith loop iteration of the slicing algorithm. By Lemma A.11 & A.6,

β′ ∈ ϕi ⊆ ϕ∗.

Induction : Assume that a set of bytecode occurrences β′′ ∈ ϕ∗, which satisfy (1)

if nn(β′′) is reachable from the slicing criterion in the EDDG, β′′ is added into the

relevant slice ϕ∗ because of slicing criterion or dynamic control/data dependencies,

and (2) if nn(β′′) is not reachable and dn(β′′) is reachable from the slicing criterion,

then β′′ is added into the relevant slice ϕ∗ because of potential dependencies.

Consider a bytecode occurrence β, which can be reached from the slicing criterion

by traversing only nodes of bytecode occurrences in ϕ∗. Clearly, ∃β′ ∈ ϕ∗, β is

dynamically control, or dynamically data, or potentially dependent on β′. Let β be

encountered at the ith loop iteration of the algorithm, and β′ be encountered at the

jth loop iteration of the algorithm. Because β appears earlier than β′ during trace

collection, backward traversal of the trace will encounter β after β′, i.e. j < i. Thus,

β′ ∈ ϕj ⊆ ϕi−1 according to Lemma A.6. We now show that β ∈ ϕi according to

the relevant slicing algorithm. In particular, (1) if nn(β) is reachable from the slicing

criterion in the EDDG, then β is added into the slice because of slicing criterion, or

dynamic control/data dependencies, and (2) if nn(β) is not reachable and dn(β) is

196

reachable from the slicing criterion, then β is added into the slice because of potential

dependencies. Note that the relevant slicing algorithm check dynamic control/data,

and potential dependencies in order. The following are three possibilities:

I. if (1) there is a dynamic control dependence edge from nn(β′) to nn(β), and

(b) nn(β′) is reachable from the slicing criterion, then β′ is added into the rele-

vant slice ϕ∗ because of slicing criterion or dynamic control/data dependencies,

according to the induction hypothesis. Thus, β ∈ ϕi and β is added into the

relevant slice ϕ∗ because of dynamic control dependencies, since condition (2)

of Lemma A.11 is satisfied.

II. if (a) condition of case I does not hold, and (b) there is a dynamic data de-

pendence edge from either nn(β′) (dn(β′)) to nn(β), and (c) nn(β′) (dn(β′))

is reachable from the slicing criterion. Note that β′ is in the slice. So β ∈ ϕi

and β is added into the relevant slice ϕ∗ because of dynamic data dependencies,

since condition (3) of Lemma A.11 is satisfied.

III. if (a) conditions of cases I-II do not hold, and (2) there is a potential dependence

edge from nn(β′) (dn(β′)) to dn(β), and (c) nn(β′) (dn(β′)) is reachable from

the slicing criterion. Note that β′ is in the slice, so:

• nn(β) is not reachable (due to the conditions for cases I-II not being true)

and dn(β) is reachable from slicing criterion

• β is added into the relevant slice ϕ∗ because of potential dependencies, and

β ∈ ϕi since condition (4) of Lemma A.11 is satisfied.

In all possible cases, (1) if nn(β) is reachable from the slicing criterion in the

EDDG, then β is added into the slice because of slicing criterion, or dynamic con-

trol/data dependencies, and (2) if nn(β) is not reachable and dn(β) is reachable from

197

the slicing criterion, then β is added into the slice because of potential dependencies.

Consequently, β ∈ ϕi ⊆ ϕ∗. This completes the proof.

198

