Scalable Fuzzing of Program Binaries with E9AFL

Xiang Gao®
National University of Singapore
Singapore
gaoxiang @comp.nus.edu.sg

Abstract—Greybox fuzzing is an effective method for software
testing. Greybox fuzzers, e.g.,, AFL, use instrumentation to
collect path coverage information to guide the test generation.
The instrumentation is usually inserted by a modified compiler
toolchain, meaning that the program must be recompiled in
order to be compatible with greybox fuzzing. When source
code is unavailable, or for projects with complex build systems,
recompilation is not always feasible. In this paper, we present
E9AFL, a fast and scalable tool that inserts AFL instrumentation
to program binaries. E9AFL is built on top of the E9Patch
static binary rewriting tool. To combat the overhead caused by
binary instrumentation, EOAFL develops a set of optimization
strategies. Evaluation results show that E9AFL outperforms
existing binary instrumentation tools and achieves comparable
performance with the compile time instrumentation.

Open source tool: https://github.com/GJDuck/e9afl
Tool demo video: https://youtu.be/bVyADCGZInw

Index Terms—Fuzzing, binary rewriting

I. INTRODUCTION

Greybox fuzzing is a proven and effective method for soft-
ware testing. Popular greybox fuzzing tools, such as AFL [1],
work by inserting instrumentation into the program in order
to collect path coverage information for guiding the fuzzing
process. The instrumentation can be inserted at compile-
time using a specially modified compiler (e.g., afl-gcc).
However, in scenarios where the source code is unavailable,
compile-time instrumentation is not possible, meaning that the
instrumentation must be inserted directly into binary code.
Existing techniques instrument binaries either dynamically,
such as with AFL-qemu [2], or statically using binary rewrit-
ing, such as AFL-dyninst [3]. However, each approach has
its drawbacks. For example, dynamic binary instrumentation
incurs high overheads due to the run-time translation—up to
5x slower for AFL-gemu. Static binary instrumentation may
also be inaccurate and introduce errors, which can manifest as
false positives during the fuzzing process. Either way, binary
fuzzing tends not to scale to very large/complex software.

To address the above limitations, we propose a fast and
scalable binary AFL instrumentation tool E9AFL, which is
based on the E9Patch [4] static binary rewriting system. Unlike
other static binary rewriting tools, E9Patch can rewrite stripped
binaries without heuristics, meaning that E9Patch can scale
to very large/complex software, such as Google Chrome [5]

$Equal contribution

Gregory J. Duck®
National University of Singapore
Singapore
gregory @comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore
Singapore
abhik @comp.nus.edu.sg

and Firefox. Specifically, E9Patch uses a trampoline-based
rewriting methodology combined with instruction punning [4],
[6] and extensions to insert instrumentation into arbitrary
locations. However, this methodology may incur significant
fuzzing overheads since trampolines break the code contiguity
and this can generate excess page faults. To alleviate the
overhead, E9AFL introduces three core optimization strate-
gies: Trampoline ordering, Instruction selection and Bad block
elimination that help mitigate fuzzing overhead. We evaluate
E9AFL on a set of subjects from the Fuzzbench benchmark.
Our experimental results show that EOAFL outperforms the ex-
isting AFL-gemu and AFL-dyninst tools in terms of speed and
coverage. Furthermore, we show that E9AFL runs at 77.0%
of the speed of afl-gcc with comparable code coverage.
Finally, we demonstrate the scalability of E9AFL by fuzzing
the Google Chrome binary.

II. TooL USAGE

The E9AFL tool is designed for ease-of-use. Most binaries
can be instrumented using a simple command:

$ e9afl program

This will generate an instrumented program.afl binary that
can be fuzzed using the standard AFL toolchain. For example,
we can instrument and fuzz the readelf binary as follows:

$ e9afl readelf
$ afl-fuzz -i in/ -o out/ -- ./readelf.afl -a @@

No other additional step or special set up is required.

We note the ease-of-use compared to AFL’s source-level
instrumentation. To instrument a program at source-level, it is
necessary to create a correct compiling environment and build
it using a specially modified compiler (e.g., afl-gcc). For
software with complex build systems, e.g., Chrome, creating
a compilation environment and modifying the build system can
be a non-trivial task. In contrast, E9AFL is “push-button”, and
can instrument pre-built binaries via a single command.

III. TooL DESIGN

E9AFL is designed to be an easy-to-use tool that automat-
ically inserts AFL instrumentation into existing binary code.

Static Binary Rewriting: E9AFL is built on top of the
E9Patch [4] static rewriting system for Linux x86_64 bina-
ries. E9Patch uses a trampoline-based rewriting methodology,
meaning that selected instructions are replaced by jumps to
“trampolines” that implement the AFL instrumentation. An

example is illustrated in Figure 1. Here, selected instructions
that are highlighted in Figure 1 (a) are replaced by jump
instructions that divert control to the trampolines illustrated in
Figure 1 (b). The trampolines implement the instrumentation
(as well as displaced instruction), before returning control-flow
back to the main program. For short instructions, E9Patch
will use instruction punning [4] to insert the jump. The
trampoline-based methodology of E9Patch has shown to be
general purpose and highly scalable, and can be used to rewrite
very large/complex software, including the Chrome/Firefox
web browsers [4] with a >100MB binary size.

The main disadvantage of trampoline-based rewriting is
performance, since the extra jumps to/from trampolines incur
additional runtime overheads. An alternative is “inline” binary
rewriting, which attempts to insert the instrumentation directly
into existing the instruction stream [7], [8]. However, the inline
rewriting has known limitations, such as requiring offsets to
be corrected in the rewritten binary—which is an undecidable
problem in the general case.

E9AFL is implemented as a plugin to the E9Patch frontend.
The E9AFL plugin takes as input a disassembly of the input
binary (from the frontend), and outputs an AFL instrumen-
tation trampoline template, the AFL runtime, and a set of
instrumentation locations. This information is then passed to
E9Patch, which then generates the AFL instrumented binary.

Trampoline template: The basic trampoline template used
by E9AFL is as follows:

Save state

mov prev_loc,%eax # Load prev_loc

xor $cur_loc,eax
incb AREA(Yeax) # AREA[cur_loc prev_loc]++
movl $Cur_1oc>>1,prev_loc # Set prev_loc

. # Restore state
The trampoline template implements the classic AFL in-
strumentation (i.e., AREA[cur_loc ~ prev_loc]++). Here:
AREA is the AFL shared trace map, prev_loc is the previous
location (Thread Local Storage), and cur_loc is the current
location (a trampoline-specific constant). The trampoline also
includes some boiler-plate code for saving/restoring the CPU
flags and the %rax register, which are used by the instrumen-
tation. This boilerplate is similar to code inserted by afl-gcc
for the same purpose. The instrumentation itself is essentially
counting edge transitions (prev_loc, cur_loc), which are
stored in a memory region (AREA) shared with the afl-fuzz
tool. This allows AFL to detect path coverage necessary for
greybox fuzzing.

Runtime injection: The AFL runtime, including the fork
server and AREA initialization, must also be injected into the
instrumented binary. For this, we use an E9Patch feature
that allows for user code to be injected into the rewritten
binary during program initialization (i.e., before main() is
called). The injected runtime is derived from the standard AFL
runtime, with some minor modifications.

Determining instrumentation locations: As per source-level
AFL, the instrumentation ought to be inserted once per basic-
block. To find the set of basic-blocks, E9AFL implements a
lightweight control-flow recovery analysis that finds all likely

< Jjnz BB_error

v
BB_prehdr:
xor %eax, %eax
test Y%esi, Yesi
jz BB_exit

\“*Trampoline_entry:
instrumentation(...)
test $0x100, Jecx
jmpq BB_entry+6

Trampoline_loop:
instrumentation(...)
add $4, %rdi
jmpq BB_loop+6

(b)

BB_loop:
addl

add 84, %irdi]

dec %esi
jnz BB_loop

BB_exit:
ret

!
(@)

Fig. 1. Example of trampoline-based binary rewriting (a)original Control Flow
Graph, and (b) trampolines that instrument selected instructions (highlighted).

jump targets from the input binary, including all direct targets,
and all likely indirect targets by analyzing the data segments
for jump tables and code pointers.

The accurate recovery of control-flow information is an
undecidable problem in the general case. However, for the
application of AFL instrumentation, the recovered control-
flow information need not be perfectly accurate. In the case
of an overapproximation (i.e., superfluous jump targets), this
may result in more instrumentation than is strictly needed,
resulting in higher overheads but is otherwise harmless. In the
case of an underapproximation (i.e., jump targets missed), this
may result in less accurate coverage information being passed
to the fuzzer, meaning that af1-fuzz may not detect some
new paths that could be detected otherwise. Nevertheless, the
fuzzing process can still generate useful results even with a
slight loss of accuracy. E9AFL uses a heuristic-based control-
flow recovery that is reasonably accurate for most programs
compiled using standard compilers (e.g. gcc). In the case
of Position Independent Executables (PIEs), the accuracy is
further improved, as the analysis can use ELF relocations to
accurately identify code pointers in data segments.

Once all jump targets are identified, the set of basic-blocks
can be derived. The instrumentation is inserted into each basic-
block entry by issuing E9Patch instruction patching commands
with the AFL instrumentation template. E9Patch completes the
rewriting process and outputs an instrumented binary.

IV. TooL OPTIMIZATION

The basic E9AFL design will suffer from poor fuzzing
throughput (execs/sec), meaning that some optimization is
necessary. We use insights from the recent FuZZan [9]
work, namely, that fuzzing performance is dominated by
startup/teardown costs after fork (), and optimize accordingly.

Startup/teardown costs: In normal operation, fuzzers such
as AFL create multiple instance executions of the target
program, one for each generated input. To do so, AFL uses
a fork server, which is essentially a Remote Procedure Call

(RPC) loop that is injected into the target program. Whenever
a new input is ready for testing, afl1-fuzz will instruct the
target program (via a RPC) to make a copy of itself using
the fork() system call. Here, fork() essentially duplicates
the calling process into a parent and child process.! The child
process executes the test case, collects coverage information
via AFL instrumentation, and either exits normally or abnor-
mally (i.e. crashes). The parent process will wait for the child
to complete, and then send the resulting exit status back to the
main afl-fuzz process before waiting for the next RPC.

The fork() system call is a relatively slow operation and
this one of the main bottlenecks for overall fuzzer throughput
(execs/sec). Modern versions of Linux attempt to optimize
fork() by avoiding the copying of memory, including page
table entries, as much as possible. For example, any page table
entry corresponding to a file mapping will not be explicitly
copied during a fork() operation. Rather, only if the child
process actually accesses the mapping, a page fault will be
generated, allowing the kernel to set up the corresponding page
table entries lazily. In the context of fuzz testing, these page
faults are a major contributing factor to the startup costs of
the child process, and this can be a dominant factor in overall
fuzzer performance [9].

Trampolines and page faults: With these insights, we can
optimize the basic EOAFL design. One of the major sources of
page faults in the rewritten binary are the trampolines used to
implement the AFL instrumentation. Thus, to minimize page
faults, our strategy will be to (1) make trampoline memory as
contiguous as possible, and (2) remove trampolines if possible.
To do so, we implement three main optimizations:

1) Trampoline ordering: allocate trampolines in order;

2) Instruction selection: select instructions which allow for
better trampoline ordering; and

3) Bad block elimination: attempt to eliminate redundant
instrumentation that will likely cause page faults.

Trampoline ordering: The idea of trampoline ordering is
very simple: we contiguously allocate trampolines in the same
order as the corresponding patched instructions. Thus, the
same code regions will be mapped to the same trampoline
memory, minimizing page faults.

However, for short instructions <5 bytes (the size of a jmpq
instruction), E9Patch uses instruction punning to insert the
trampoline. This means that E9Patch does not have complete
control over trampoline placement, meaning that some tram-
poline fragmentation will still occur. To mitigate this, we can
optimize which instructions are selected for instrumentation.

Instruction selection: Traditionally, the AFL instrumenta-
tion is inserted at the start of each basic block. However, the
instrumentation can also be inserted elsewhere in the basic
block and preserve the same functionality. E9AFL applies a
simple instruction selection algorithm to choose an instruction
with size >5 bytes if available, allowing the frampoline
ordering optimization to be applied to more basic blocks.

ISee the manpage of fork.

Note, however, that not all basic blocks will have an
instruction with size >5 bytes. We define these to be bad
blocks, since the trampoline ordering optimization cannot be
applied, meaning that the corresponding trampoline is more
likely to generate a page fault and slow down fuzzing. To
mitigate this, we can attempt to eliminate the trampolines for
bad blocks altogether.

Bad block elimination: Sometimes the AFL instrumenta-
tion for a given basic-block is redundant, meaning that the
instrumentation can safely be eliminated without affecting path
coverage. For example, suppose that all paths through block A
must pass through block B, and vice versa. Then only one of
block A or B needs to be instrumented, since the path through
one implies the path through the other. This can be generalized
to the path differentiation problem, i.e., what is the minimum
number of Control Flow Graph (CFG) vertices (i.e. blocks)
that need to be marked (i.e. instrumented) such that all paths
through the CFG can still be differentiated? Tools such as
INSTRIM [10] use this idea to optimize fuzzing by removing
as much instrumentation as possible (as much as 80% can
be removed on average). However, in the E9AFL context,
our main insight is that “quality” is more important than
“quantity”. Specifically, we should preferentially eliminate the
instrumentation for bad blocks only, since these blocks are the
main source of additional page faults that slow down fuzzing.

The bad block elimination optimization uses an algorithm
with similar aims to that of INSTRIM [10]. First, the algorithm
builds the CFG from the recovered set of basic blocks.
Next, the algorithm marks each block as either optimized or
unoptimized, where optimized means that the block should
not be instrumented. Initially, the blocks will be marked as
follows:

1) Good blocks are initially marked as unoptimized.

2) Bad blocks that are potential indirect jump/call targets
are also initially marked as unoptimized.

3) All other bad blocks are initially marked as optimized.

Here, 2) is a simplification that removes the need for paths
to be traced over indirect jumps/calls. The remainder of
the algorithm attempts to find a solution to the path differ-
entiation problem, and works by constructing all sub-paths
o = (A— ... = B) though the CFG such that (1) A and B
are unoptimized, and (2) all intermediate blocks between A
and B are optimized. Note that loops (A=DB) are allowed, and
B can be considered an unoptimized pseudo-block in the case
where the last edge is an indirect call/jump, as per 2) from
above. The path differentiation property is violated if there
exists two (or more) distinct sub-paths:

o1 =(A— ... »B) and o9 ={(A— ... =»B)

for the same (A, B) pair. To restore the property, the algorithm
will mark an intermediate optimized block from oi/oo as
unoptimized. This process is repeated until no such sub-path
pairs (o1, 09) exist.

Example: An example of optimized code is illustrated in
Figure 1. Here, BB_entry is a good block (since the test

TABLE I
THE EXPERIMENTAL RESULTS. HERE speed IS THE FUZZING SPEED
(EXECUTIONS PER SECOND) AND cov (%) IS THE LINE COVERAGE.

. AFL-gcc | AFL-gemu |AFL-dyninst| E9AFL-00| E9AFL

Subject

speed cov| speed cov|speed cov| speed cov| speed cov
FreeType| 1148 35.6| 279 31.3| 647 3438 71 30.2| 745 35.8
libjpeg| 1444 53| 455 48| nr nr| 420 49| 1273 51
libpng | 1465 27.4| 302 23.4| 885 23.4| 495 22.8| 1262 234
libxml2| 958 9.9 76 7.8| nr nr 152 5.7 601 9.9
Vorbis 1032 30.3| 252 27.7| 582 30.1| 300 29.8| 905 30.2
G.Mean |100% 17.3|19.8% 15.0 - -119.5% 14.2{77.0% 16.6
Chrome [n/a n/a] ar nr] nr__nr] 012 n/a] 051 n/a

instruction is >5 bytes) and is marked as unoptimized. The re-
maining BB_prehdr/BB_loop/BB_exit blocks are bad (since
all other instructions are <5 bytes) and are initially marked
as optimized. However, the path differentiation property is
violated by the following sub-paths:

o1 = (BB_entry — BB_prehdr — BB_exit)
09 = (BB_entry — BB_prehdr — BB_loop — BB_exit)

Path differentiation will be restored by the algorithm by mark-
ing BB_loop as unoptimized. The optimized Figure 1 code
only uses two trampolines, whereas four (non-contiguous)
trampolines would be required under the basic unoptimized
design (one for each basic block).

V. EXPERIMENTS

We evaluate the efficiency and effectiveness of E9AFL
against five subjects (FreeType, libjpeg, libpng, libxml
and Vorbis) from FuzzBench [11]. To test scalability, we
also evaluate E9AFL against the Google Chrome binary [5].
Our evaluation considers three comparable techniques: AFL-
gce, the original compile time AFL instrumentation; AFL-
gemu [2], a binary AFL implementation based on the QEMU
emulator [12]; and AFL-dyninst [3], a binary AFL instru-
mentation based on the Dyninst [13] binary rewriting tool.
In addition to EQAFL with full optimization enabled, we also
evaluate E9AFL-00 with optimization disabled. Except for
AFL-gcc, which requires source code, all other tools directly
instrument binaries. All experiments are run on an Intel Xeon
CPU E5-2660 2.00GHz processor with 64GB of memory, and
each experiment uses a timeout of 24 hours.

Our evaluation is shown in Table I with the main result
highlighted in bold. Here, speed is the number of executions
per second, cov (%) is the line coverage, and n.r. (no result)
means that the corresponding instrumentation/tool failed.

a) Fuzzing Efficiency: Overall we see that AFL-gemu
is quite slow, and only runs at 19.2% of the speed (execs/s)
of the baseline AFL-gcc. In contrast, with full optimization
enabled, EOQAFL runs at 77.0% of the speed. This means that
E9AFL achieves nearly the same performance as AFL-gcc
without the need for the program to be recompiled from source
code. Finally, AFL-dyninst proved to be less reliable, with two
test subjects failing (AFL-dyninst fails to instrument 1ibxml2,
and the instrumented 1ibjpeg would crash on some benign

inputs). Regardless, E9AFL still achieves a better performance
than AFL-dyninst for the non-failing test subjects.

b) Fuzzing Effectiveness: In terms of effectiveness, AFL-
gcc, AFL-gemu, and E9AFL achieve an overall 17.3%, 15.0%,
and 16.6% line coverage, respectively. Our results show that
E9AFL can generate comparable code coverage to that of
AFL-gcc. Compared with the other binary-only instrumen-
tation tools, including the non-failing AFL-dyninst subjects,
E9AFL achieves the overall best code coverage.

¢) Scalability: For scalability, we find that E9AFL is the
only tool that can successfully fuzz Chrome. Afl-gcc is not
applicable since the source code of Chrome is unavailable
(Chrome is closed source), AFL-gemu fails since the QEMU
emulator does not support some syscalls used by Chrome, and
AFL-dyninst fails because Dyninst fails to correctly disassem-
ble the Chrome binary. EQAFL can successfully instrument the
Chrome binary, which can then be fuzzed using AFL under
headless mode (i.e., no user interface):

$ afl-fuzz ... —- ./chrome.afl --headless @@

We remark that Chrome is a large multi-threaded binary with
high startup overheads, so it does not make an ideal fuzz target.
Nevertheless, afl-fuzz can fuzz the instrumented Chrome
with appropriate memory (-m) and timeout (-t) limits.

d) Optimization: Finally, we evaluate the fuzzing perfor-
mance before/after the optimization has been applied. Here,
the E9AFL-00 column from Table I represents the results
before optimization. Overall, we see that E9AFL-00 runs at
a mere 19.5% of the speed of AFL-gcc, which essentially
replicates the slow performance of AFL-gemu. In contrast, the
fully optimized E9AFL runs at 77.0% of the speed of AFL-
gcc, or nearly 4x the performance of the unoptimized version.
These results show that the optimization is not only effective,
but is also essential for achieving a good fuzzing performance
and code coverage result.

VI. CONCLUSION

Several AFL binary instrumentation tools have been pro-
posed. Some tools are slow [2], use modified toolchains [14],
have limited binary support (e.g., position-independent-
executable only) [7], or may introduce false positives (or
other binary rewriting errors) [3], [8]. In this paper we
presented E9AFL—a new tool for automatically inserting
AFL instrumentation into existing binary code. We show that
E9AFL achieves 77.0% of the performance of AFL-gcc with
comparable code coverage. However, unlike AFL-gcc, EOAFL
does not require recompilation nor assume the availability of
source code. Compared to other binary AFL solutions, E9AFL
significantly improves the speed and code coverage, does not
introduce false positives or other rewriting errors, and can scale
to very large programs such as Chrome [5].

ACKNOWLEDGEMENTS

This work was partially supported by the National Satellite
of Excellence in Trustworthy Software Systems, funded by
the National Research Foundation (NRF) Singapore under
National Cybersecurity R&D (NCR) programme.

[1]
[2]

[3]
[4]

REFERENCES

M. Zalewski. (2021) American Fuzzy Lop.
https://lcamtuf.coredump.cx/afl

A. Griffiths and M. Zalewski. (2021) AFL QEMU Mode.
[Online]. Available: https://github.com/google/AFL/blob/master/qemu_
mode/README.qemu

Cisco Talos. (2021) AFL Dyninst.
//github.com/talos- vulndev/afl-dyninst
G. Duck, G. Xiang, and A. Roychoudhury, “Binary Rewriting without
Control Flow Recovery,” in Programming Language Design and Imple-
mentation. ACM, 2020.

Google. (2021) Google Chrome Web Browser. [Online]. Available:
https://www.google.com/chrome

B. Chamith, B. Svensson, L. Dalessandro, and R. Newton, “Instruction
Punning: Lightweight Instrumentation for x86-64,” in Program Design
and Implementation. ACM, 2017.

S. Dinesh, N. Burow, D. Xu, , and M. Payer, “RetroWrite : Statically
Instrumenting COTS Binaries for Fuzzing and Sanitization,” in Security
and Privacy. 1EEE, 2020.

[Online]. Available:

[Online]. Available: https:

[8]

[9]

[10]

[11]
[12]
[13]

[14]

S. Nagy, A. Nguyen-Tuong, J. D. Hiser, J. W. Davidson, and M. Hicks,
“Breaking Through Binaries: Compiler-quality Instrumentation for Bet-
ter Binary-only Fuzzing,” in Security Symposium. USENIX, 2021.

Y. Jeon, W. Han, N. Burow, and M. Payer, “FuZZan: Efficient Sani-
tizer Metadata Design for Fuzzing,” in Annual Technical Conference.
USENIX, 2020.

C. Hsu, C. Wu, H. Hsiao, and S. Huang, “Instrim: Lightweight instru-
mentation for coverage-guided fuzzing,” in NDSS, Workshop on Binary
Analysis Research. Internet Society, 2018.

Google. (2021) FuzzBench. [Online]. Available: https://github.com/
google/fuzzbench

F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in Annual
Technical Conference. USENIX, 2005.

A. Bernat and B. Miller, “Anywhere, Any-time Binary Instrumentation,”
in Workshop on Program Analysis for Software Tools, 2011.

Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “StochFuzz:
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental
and Stochastic Rewriting,” in Security and Privacy. 1EEE, 2021.

