
Coverage-based Greybox Fuzzing as Markov Chain

Marcel Böhme Van-Thuan Pham Abhik Roychoudhury

School of Computing, National University of Singapore, Singapore
{marcel,thuan,abhik}@comp.nus.edu.sg

ABSTRACT
Coverage-based Greybox Fuzzing (CGF) is a random testing
approach that requires no program analysis. A new test
is generated by slightly mutating a seed input. If the test
exercises a new and interesting path, it is added to the set of
seeds; otherwise, it is discarded. We observe that most tests
exercise the same few “high-frequency” paths and develop
strategies to explore significantly more paths with the same
number of tests by gravitating towards low-frequency paths.

We explain the challenges and opportunities of CGF using
a Markov chain model which specifies the probability that
fuzzing the seed that exercises path i generates an input
that exercises path j. Each state (i.e., seed) has an energy
that specifies the number of inputs to be generated from that
seed. We show that CGF is considerably more efficient if en-
ergy is inversely proportional to the density of the stationary
distribution and increases monotonically every time that
seed is chosen. Energy is controlled with a power schedule.

We implemented the exponential schedule by extending
AFL. In 24 hours, AFLFast exposes 3 previously unreported
CVEs that are not exposed by AFL and exposes 6 previously
unreported CVEs 7x faster than AFL. AFLFast produces at
least an order of magnitude more unique crashes than AFL.

CCS Concepts:
•Security and privacy→Vulnerability scanners; •Software and

its engineering→Software testing and debugging;

1. INTRODUCTION
“Ultimately, the key to winning the hearts and minds
of practitioners is very simple: you need to show them
how the proposed approach finds new, interesting bugs
in the software they care about.” – Michal Zalewski [27]

Recently, there has been much debate about the efficiency
of symbolic execution-based fuzzers versus more lightweight
fuzzers. Symbolic execution is a systematic effort to stress
different behaviors and thus considerably more effective. Yet,
today most vulnerabilities are exposed by particularly light-
weight fuzzers that do not leverage any program analysis [27].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978428

It turns out that even the most effective technique is less
efficient than blackbox fuzzing if the time spent generating
a test case takes relatively too long [3]. Symbolic execution
is very effective because each new test exercises a different
path in the program. However, this effectiveness comes at
the cost of spending significant time doing program analysis
and constraint solving. Blackbox fuzzing, on the other hand,
does not require any program analysis and generates several
orders of magnitude more tests in the same time.

Coverage-based Greybox Fuzzing (CGF) is an attempt
to make fuzzing more effective at path exploration without
sacrificing time for program analysis. CGF uses lightweight
(binary) instrumentation to determine a unique identifier for
the path that is exercised by an input. New tests are gener-
ated by slightly mutating the provided seed inputs (we also
call the new tests as fuzz ). If some fuzz exercises a new and
interesting path, the fuzzer retains that input; otherwise, it
discards that input. The provided and retained seeds are
fuzzed in a continuous loop, contributing even more seeds.

Compared to symbolic execution, CGF does not require
program analysis which brings several benefits. There is no
imprecision, for instance, in the lifting of the control-flow
graph from the program binary or the encoding of the path
condition as SMT formula. CGF is more scalable because
the time to generate a test does not increase with the pro-
gram size. CGF is highly parallelizable because the retained
seeds represent the only internal state. AFL implements the
state-of-the-art of CGF, is behind hundreds of high-impact
vulnerability discoveries [21], has been shown to generate
valid image files (JPEGs) from an initial seed that is vir-
tually empty [24], and has also been integrated with sym-
bolic execution (which helps where AFL “gets stuck”) [19].
Clearly, increasing the efficiency of fuzzers, like AFL, has a
real and practical impact on vulnerability detection.

We discuss challenges of existing CGFs and opportunities
to boost their efficiency by an order of magnitude. Our key
observation is that most fuzz exercises the same few paths:
Existing CGFs generate too many inputs which stress the
same behavior. More efficient CGFs exercise more paths
with the same amount of fuzz. For instance, suppose we
want to expose vulnerabilities in libpng. Fuzzing a valid
image file, there may be a 90% chance that a mutated variant
exercises a path π which rejects invalid image files. Fuzzing
an invalid image file, there may be a 99.999% chance that a
mutated variant exercises the same path π. So, independent
of the initial seed image files, an above-average amount of
fuzz is bound to exercise that path π which rejects invalid
inputs. Informally, we call π a high-frequency path.

http://dx.doi.org/10.1145/2976749.2978428


In this paper, we propose several strategies to focus most
of the fuzzing effort on low-frequency paths so as to explore
more paths with the same amount of fuzz. The results are
very encouraging. Our AFL extension AFLFast discovered
9 vulnerabilities in GNU binutils which are now listed as
CVEs in the US National Vulnerability Database. AFLFast
exposes 6 CVEs up to 14 times faster than AFL and exposes
3 CVEs that are not exposed by AFL in eight runs of 24
hours. AFLFast reports an order of magnitude more unique
crashes than AFL.1 We will argue that our strategies have
no detrimental impact on the effectiveness of AFL. So, given
more than 24 hours, AFL is expected to report the same
unique crashes and expose the three remaining CVEs.

To explain the remarkable performance gains of AFLFast,
we model Coverage-based Greybox Fuzzing (CGF) as Markov
chain. The chain specifies the probability pij that fuzzing
the seed exercising path i generates an input exercising path j.
We let each state (i.e., seed) have an energy that specifies
the amount of fuzz that is generated by fuzzing that seed
when it is chosen next. For instance, the minimum energy
required to discover a new and interesting path j by fuzzing
the seed which exercises path i is expected to be p−1

ij . How-
ever, in practice pij is clearly unknown. The energy of a
state is controlled by a pre-defined power schedule.

AFL implements a power schedule that assigns an energy
that is constant in the number of times s(i) the seed has been
chosen for fuzzing. Almost every time the seed is chosen, the
same number of inputs are generated. In some cases, AFL
might assign significantly more than the minimum energy re-
quired to discover a new and interesting path; in other cases,
AFL might assign not enough energy. In contrast, AFLFast
implements a power schedule that assigns an energy that is
exponential in s(i). When the seed is fuzzed for the first
time, very low energy is assigned. Every time the seed is
chosen thereafter, exponentially more inputs are generated
up to a certain bound. This allows to rapidly approach the
minimum energy required to discover a new path.

In fact, AFL implements a power schedule that assigns
constantly high energy. Often, 80k inputs are generated for
each seed which takes about one minute. This addresses
the problem of rapid mixing : Independent of the initial seed
inputs, after a (burn-in) time some paths will always be ex-
ercised by significantly more fuzz than others. Assigning a
lot of energy to the inital seeds allows to discover many more
“neighbors” that exercise low -frequency paths. For instance,
it makes sense to fuzz a valid image file for the longest time
with the objective to generate many more valid image files.
It is also a good idea to assign a lot of energy to these neigh-
bors and their neighbors. However, after some time, as more
seeds are discovered, many seeds will start to exercise high-
frequency paths and AFL ends up assigning way too much
energy. The chance to generate a valid image file is signifi-
cantly lower if the latest seed is an invalid image file.

In contrast, AFLFast implements a power schedule that
assigns energy that is inversely proportional to the density
of the stationary distribution. In other words, it assigns low
energy to seeds exercising high-frequency paths and high
energy to seeds exercising low-frequency paths. We approx-
imate the density of the stationary distribution by counting
the number of fuzz f(i) that exercises path i.

1AFL reports an input that exercises a new and interesting
path and crashes the program (i.e., which would otherwise
be retained as new seed) as a unique crash.

AFL chooses seeds in the order they are added. Once all
seeds have been fuzzed, AFL resumes with the first. A new
cycle begins. AFLFast effectuates a different search strategy.
It chooses seeds in the order of their likely progressiveness
(while choosing a seed only once per cycle). In the same
cycle, AFLFast chooses seeds earlier i) that exercise lower-
frequency paths and ii) that have been chosen less often.
The search strategy allows to fuzz the best seeds early on.
However, independent of the search strategy and given the
same power schedule, when a cycle is completed the same
seeds will have been fuzzed.

We note that power schedules and search strategies merely
impact AFL’s efficiency (i.e., #paths explored per unit time),
not its effectiveness (i.e., #paths explored in expectation).
Since we do not modify the mutation operators2 that are
being used for fuzzing, the probability pij to discover path j
by fuzzing the input exercising path i does not change from
AFL to AFLFast. In other words, AFLFast exposes exactly
the same vulnerabilities as AFL – only significantly faster.

In summary, we argue that the effectivness of symbolic ex-
ecution stems from the systematic enumeration of paths in
the program. This allows to expose vulnerabilities that hide
deep in the program. Unfortunately, most fuzzers trade this
systematic path coverage for scalability. However, coverage-
based greybox fuzzers maintain some of this effectiveness by
retaining fuzz that exercises paths that have previously not
been exercised. Each new seed results in progress towards
generating even more seeds that exercise even“deeper”paths.
Still, even coverage-based fuzzers tend to visit certain paths
with high frequency, generating too much fuzz that exer-
cises the same few paths. Our main conceptual contribution
is to smartly control the amount of fuzz generated from a
seed, thereby veering the search towards paths that are ex-
ercised with low frequency, towards paths where vulnerabil-
ities may lurk. Technically, we achieve this enhanced path
coverage using power schedules and search strategies that do
not require program analysis. Since CGF is highly paralleliz-
able, an efficiency improvement of one order of magnitude
for one AFL instance should result in an improvement of
about 1 + log10(N) orders of magnitude for N instances.

Specifically, our paper makes the following contributions:

• Markov Chain Model. We model coverage-based
greybox fuzzing as a systematic exploration of the state
space of a Markov chain. We provide insight about the
machinery that drives AFL, which is arguably the most
successful vulnerability detection tool to date. We uti-
lize the model to explain the challenges of AFL and the
remarkable performance gains of our tool AFLFast.

• Power Schedules. We introduce and evaluate several
strategies to control the number of inputs generated
from a seed, with the objective to exercise a larger
number of low-frequency paths in the same time.

• Search Strategies. We devise and evaluate several
strategies to control the order in which seeds are chosen
for fuzzing, with the same objective.

• Tool. We publish AFLFast as a fork of AFL. AFLFast
was used by Team Codejitsu who came in 2nd in terms
of number of bugs found3 at the DARPA Cyber Grand
Challenge: https://github.com/mboehme/aflfast

2AFL’s mutation operators include bit flips, boundary value
substitution, simple arithmetics & block deletion/insertion.
3See red result bar for Galactica at http://bit.do/cgcresults.

https://github.com/mboehme/aflfast
http://bit.do/cgcresults


2. BACKGROUND

2.1 Coverage-based Greybox Fuzzing
Fuzz – an automated random testing tool was first devel-

oped by Miller et al. [13] in early 1990s to understand the re-
liability of UNIX tools. Since then, fuzzing has evolved sub-
stantially, become widely adopted into practice, and exposed
serious vulnerabilities in many important software programs
[23, 25, 26, 22]. There are three major categories depend-
ing on the degree of leverage of internal program structure:
black-box fuzzing only requires the program to execute [23,
25, 28] while white-box fuzzing [5, 11, 8, 9] requires binary
lifting and program analysis, for instance, to construct the
control-flow graph. Greybox fuzzing is situated inbetween
and uses only lightweight binary instrumentation to glean
some program structure. Without program analysis, grey-
box fuzzing may be more efficient than whitebox fuzzing.
With more information about internal structure, it may be
more effective than blackbox fuzzing.

Coverage-based greybox fuzzers (CGF) [22] use lightweight
instrumentation to gain coverage information. For instance,
AFL’s instrumentation captures basic block transitions, along
with coarse branch-taken hit counts. A sketch of the code
that is injected at each branch point in the program is shown
in Listing 1:� �

1 cur_location = <COMPILE_TIME_RANDOM >;
2 shared_mem[cur_location ^ prev_location ]++;
3 prev_location = cur_location >> 1;� �

Listing 1: AFL’s instrumentation.

The variable cur_location identifies the current basic block.
Its random identifier is generated at compile time. Variable
shared_mem[] is a 64 kB shared memory region. Every byte
that is set in the array marks a hit for a particular tuple
(A,B) in the instrumented code where basic block B is ex-
ecuted after basic block A. The shift operation in Line 3
preserves the directionality [(A,B) versus (B,A)]. A hash
computed over the elements in shared_mem[] is used as the
path identifier.

A CGF uses the coverage information to decide which gen-
erated inputs to retain for fuzzing, which input to fuzz next
and for how long. Algorithm 1 provides a general overview
of the process and is illustrated in the following by means of
AFL’s implementation. If the CGF is provided with seeds
S, they are added to the queue T ; otherwise an empty file
is generated as a starting point (lines 1–5). The seeds are
choosen in a continuous loop until a timeout is reached or
the fuzzing is aborted (line 7). AFL classifies a seed as a
favorite if it is the fastest and smallest input for any of
the control-flow edges it exercises. AFL’s implementation of
chooseNext mostly ignores non-favorite seeds.

For each seed input t, the CGF determines the number
of inputs that are generated by fuzzing t (i.e., #fuzz for t;
line 8). AFL’s implementation of assignEnergy uses the
execution time, block transition coverage, and creation time
of t. Then, the fuzzer generates p new inputs by mutating t
according to defined mutation operators (line 10). AFL’s im-
plementation of mutate input uses bit flips, simple arith-
metics, boundary values, and block deletion and insertion
strategies to generate new inputs.4

4https://lcamtuf.blogspot.sg/2014/08/
binary-fuzzing-strategies-what-works.html

Algorithm 1 Coverage-based Greybox Fuzzing

Input: Seed Inputs S
1: T7 = ∅
2: T = S
3: if T = ∅ then
4: add empty file to T
5: end if
6: repeat
7: t = chooseNext(T )
8: p = assignEnergy(t)
9: for i from 1 to p do

10: t′ = mutate input(t)
11: if t′ crashes then
12: add t′ to T7

13: else if isInteresting(t′) then
14: add t′ to T
15: end if
16: end for
17: until timeout reached or abort-signal
Output: Crashing Inputs T7

If the generated input t′ is considered to be “interesting”,
it is added to the circular queue (line 14). AFL’s implementa-
tion of isInteresting returns true depending on the num-
ber of times the basic block transitions, that are executed
by t′, have been executed by other seeds in the queue. More
specifically, t′ is interesting if t′ executes a path where tran-
sition b is exercised n times and for all other seeds t′′ ∈ T
that exercise b for m times, we have that blog2 nc 6= blog2mc
where b·c is the floor function. AFL uses this “bucketing” to
address path explosion [19]. Intuitively, AFL retains inputs
as new seeds that execute a new block transition or a path
where a block transition is exercised twice when it is nor-
mally exercised only once. At the same time, AFL discards
inputs that execute a path where some transition is exer-
cised 102 times when it has previously been exercised 101
times. If the generated input t′ crashes the program, it is
added to the set T7 of crashing inputs (line 12). A crashing
input that is also interesting is marked as unique crash.

Binary instrumentation. AFL supports both, source code
instrumentation and binary instrumentation via QEMU [1].
While QEMU does the instrumentation during interpreta-
tion at runtime, AFLDynInst [20] injects the instrumenta-
tion shown in Listing 1 directly into the binary.

Modifications. Our changes of AFL concern only the func-
tions chooseNext which implements the search strategy
and assignEnergy which implements the power schedules.

2.2 Markov Chain
A Markov chain is a stochastic process that transitions

from one state to another [14]. At any time, the chain can
be in only one state. The set of all states is called the chain’s
state space. The process transitions from one state to an-
other with a certain probability that is called the transition
probability. This probability depends only upon the current
state rather than upon the path to the present state.

More formally, a Markov chain is a sequence of random
variables {X0, X1, . . . , Xn} where Xi describes the state of
the process at time i. Given a set of states S = {1, 2, . . . , N}
for some N ∈ N, the value of the random variables Xi are
taken from S. The probability that the Markov chain starts
out in state i is given by the initial distribution P(X0 = i).

https://lcamtuf.blogspot.sg/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.sg/2014/08/binary-fuzzing-strategies-what-works.html


The probability matrix PPP = (pij) specifies the transition
rules. If |S| = N , then PPP is a N×N stochastic matrix where
each entry is non-negative and the sum of each row is 1. The
conditional probability pij defines the probability that the
chain transitions to state j at time t+ 1, given that it is in
state i at time t,

pij = P(Xt+1 = j | Xt = i)

A Markov chain is called time-homogeneous if the proba-
bility matrix (pij) does not depend on the time n. In other
words, every time the chain is in state i, the probability of
jumping to state j is the same.

If a Markov chain is time homogeneous, then the vector πππ
is called a stationary distribution of the Markov chain if for
all j ∈ S it satisfies

0 ≤ πj ≤ 1

1 =
∑
i∈S

πi

πj =
∑
i∈S

πipij

Informally, a Markov chain {X0, X1, . . . , Xn} is called rapidly
mixing if Xn is “close” to the stationary distribution for a
sufficiently low number of steps n. In other words, rapidly
mixing Markov chains approach the stationary distribution
within a reasonable time – independent of the initial state.

Random walkers sample the distribution that is described
by a Markov chain. A walker starts at a state according to
the initial distribution and transitions from one state to the
next according to the transition probabilities. The state at
which the walker arrives after n steps is considered a sample
of the distribution. There may be an ensemble of walkers
that move around randomly.

For instance, the crawling of web pages can be modelled
as Markov chain. Pages are the states while the links are
the transitions. Given page i with qi links where one link
goes to page j, the probability pij that a random surfer
reaches j from i in one click is pij = 1/qi. A crawler, like
Google, seeks to index the important pages of the internet.
Brin and Page [4] developed an algorithm, called PageRank
that assigns an importance score to each page. Intuitively,
the PageRank value of a page measures the chance that
a random surfer will land on that page after a sequence
of clicks. More formally, the PageRank approximates the
density of the stationary distribution of the Markov chain
where important pages are located in high-density regions.

3. MARKOV CHAIN MODEL
In this paper, we model the probability that fuzzing a seed

which exercises program path i generates a seed which exer-
cises path j as transition probability pij in a Markov chain.
This allows us to discuss the objective of greybox fuzzing
as the efficient exploration of the chain’s state space and
to explain the challenges and opportunities of CGF and of
AFL specifically. We argue that a coverage-based greybox
fuzzer exercises more distinct paths per unit time if it does
focus on inputs in low-density regions of the Markov chain.
Hence, we devise several strategies to bias the traversal to-
wards visiting more states in low-density regions and less
states in high-density regions of the stationary distribution.
Before discussing these strategies, we introduce the Markov
chain model.

3.1 Coverage-based Fuzzing as Markov Chain
Time-inhomogeneous model. Suppose, after providing the

fuzzer with an initial seed input t0 that exercises path 0, the
fuzzer immediately explores path i + 1 by randomly mu-
tating the previous input ti which exercises path i. Every
input that is generated is directly chosen as next seed. The
sequence of paths that the fuzzer exercises is described by
a Markov chain. The transition probability pij is defined as
the probability to generate an input that exercises path j
by randomly mutating the previous input ti that exercises
path i. Clearly, this Markov chain is not time-homogeneous.
The transition probability pij depends on the path in the
Markov chain by which the state i was reached. Say, a
different input t′i is fuzzed that also exercises path i, the
probability pij to generate an input that exercises path j
might be very different. While this is still a Markov chain,
it is not time-homogeneous. The analysis is difficult and the
existence of a stationary distribution is not guaranteed.

Time-homogeneous model. A stationary distribution does
exist for the following model of coverage-based fuzzing. The
state space of the Markov chain is defined by the discovered
paths and their immediate neighbors. Given seeds T , let S+

be the set of (discovered) paths that are exercised by T and
S− be the set of (undiscovered) paths that are exercised by
inputs generated by randomly mutating any t ∈ T .5 Then
the set of states S of the Markov chain is given as

S = S+ ∪ S−

The probability matrix P = (pij) of the Markov chain is de-
fined as follows. If path i is a discovered path exercised by
ti ∈ T (i.e., i ∈ S+), then pij is the probability that ran-
domly mutating seed ti generates an input that exercises the
path j. Else if path i is an undiscovered path that is not ex-
ercised by some t ∈ T (i.e., i ∈ S−), then pii = 1−

∑
tj∈T pji

and pij = pji for all tj ∈ T . In other words, without loss
of generality we make the following two assumptions. We
assume that generating an input that exercises path j from
(undiscovered) seed ti is as likely as generating from seed
tj an input that exercises (undiscovered) path i. We also
assume that i ∈ S− has no other undiscovered neighbors.

The stationary distribution πππ of the Markov chain gives
the probability that a random walker that takes N steps
spends roughly Nπi time periods in state i. In other words,
the proportion of time spent in state i converges to πi as
N goes to infinity. We call a high-density region of πππ a
neighborhood of paths I where µi∈I(πi) > µtj∈T (πj) and µ is
the arithmetic mean. Similarly, we call a low-density region
of πππ a neighborhood of paths I where µi∈I(πi) < µtj∈T (πj).
It is not difficult to see that a greybox fuzzer is more likely
to exercise paths in a high-density region of πππ than in a low-
density region. Note that we get a new Markov chain once
an undiscovered path i ∈ S− is discovered.

Energy & Power Schedules. We let each state s ∈ S+ have
an energy. The energy of state i determines the number of
inputs that should be generated by fuzzing the seed ti when
ti is next chosen from the queue T . The energy of a state is
controlled by a pre-defined power schedule. Note that energy
is a local property specific to a state (unlike temperature in
simmulated annealing). In Algorithm 1, the power schedule
is implemented by the function assignEnergy.

5An input ti is randomly mutated using mutate_input on
ti in Algorithm 1.



●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

mean =  1288

100

101

102

103

104

105

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280
Path Index

N
um

be
r 

of
 T

es
t C

as
es

Figure 1: #Fuzz exercising a path (on a log-scale)
after running AFL for 10 minutes on the nm-tool.

Long tails. In our experiments, we observe several notable
properties of the Markov chain model of coverage-based grey-
box fuzzing. For one, the stationary distribution has a large
number of very-low-density regions and a small number of
very-high-density regions. As shown in Figure 1, 30% of
the paths are exercised by just a single generated test input
while 10% of the paths are exercised by 1k to 100k generated
test inputs. In other words, most inputs exercise a few high-
frequency paths. Often, these inputs are invalid while the
few inputs exercising the low-frequency paths are valid and
interesting. Basically, almost each valid input would exercise
different behavior. Hence, in this paper we devise strategies
to explore such low-density regions more efficiently.

Rapid mixing. Moreover, such Markov chains are mostly
rapidly mixing. Given our exploration objective, this is most
unfortunate. It takes only a few transitions to “forget” the
initial state and arrive in a high-density region that is visited
by most walkers. After a few transitions, the probability
that the current state corresponds to a high-frequency path
is high, no matter whether the walker started with an initial
seed that exercises a low-frequency path or not, or whether
the walker started with a valid or an invalid input.

Benefits. The Markov chain model of coverage-based grey-
box fuzzing has several benefits. For example, it opens
fuzzing for the efficient approximation of numerical program
properties, such as the worst-case or average execution time
or energy consumption. There exist several Markov Chain
Monte Carlo (MCMC) methods, like Simulated Annealing
[12] that offer guarantees on the convergence to the actual
value. In the context of vulnerabilty research, the Markov
chain model allows to explain the challenges and opportuni-
ties of existing coverage-based fuzzers, such as AFL.

3.2 Running Example
On a high level, we model the probability that fuzzing a

test input t ∈ T which exercises some path i generates an
input which exercises path j as transition probabilities pij
in a Markov chain. We illustrate this model using the simple
program in Listing 2 which takes as input a 4-character word
and crashes for the input “bad!”.� �

1 void crashme (char* s) {
2 if (s[0] == ’b’)
3 if (s[1] == ’a’)
4 if (s[2] == ’d’)
5 if (s[3] == ’!’)
6 abort();
7 }� �

Listing 2: Motivating example.

The program has five execution paths. Path 0 (****) is
executed by all strings that do not start with the letter ’b’.
Path 1 (b***) is executed by all strings starting with“b”that
do not continue with the letter ’a’. Path 2 (ba**) is executed
by all strings starting with“ba”that do not continue with the
letter ’d’. Path 3 (bad*) is executed by all strings starting
with “bad” that do not continue with the letter ’ !’. Finally,
Path 4 is executed only by the input “bad!”.

Now, let us specify the implementation of mutate input
(MI ) in Algorithm 1 to modify a seed input s = 〈c0, c1, c2, c3〉
to generate new inputs. MI chooses with equal probability
a character c from s and substitutes it by a character that is
randomly chosen from the set of 28 ASCII characters. For
example, the word “bill” exercises Path 1. With probability
1/4, MI chooses the second character c1 and with probabil-
ity 1/28 it chooses the letter ’a’ for the substitution. With a
total probability of 210, MI generates the word “ball” from
“bill” as the next test input which exercises Path 2.

****

b***

ba**

bad*

bad!

1− 2−10

2−10

3
4

2−10

1
2

+ 2−10

2−10

1
4

+ 2−9

2−10

2−8

1
4
− 2−10

Figure 2: Markov chain for motivating example

Figure 2 represents the simplified transition matrix pij as
a state diagram.6 For example, if the current input is the
word “bill”, the Markov Chain is in the state b***. The like-
lihood to transition to the state ba** is 2−10 as explained
earlier. In other words, on average it takes 210 = 1024 exe-
cutions of MI on the word“bill” to exercise Path 3 and reach
state ba**. Given the word “bill”, the likelihood to transi-
tion to the same state b*** is 0.75 because MI may choose
the first letter and ’b’ as substitute or the second letter and
any letter except ’a’ as substitute with a total probability
of 0.25 and it may choose the third or fourth letter with
a total probability of 0.5. The probability to transition to
state **** is

(
1/4− 2−10

)
because MI may choose the first

of four letters and substitute it with any letter except ’b’.
Notice that there is a very high probability density in state

****. Most 4-character words do not start with ’b’ such
that the initial distribution is heavily biased towards that
state. The random walker can transition to the next state
only with probability 2−10, stays in b*** with probability
3/4 and comes back to the state **** with the approximate
probability 1/4. Many inputs will be generated until the
walker reaches the state bad!.

6For simplicity, we ignore some low probability transitions,
e.g., from state **** to state bad!.



3.3 Challenges of Coverage-based Fuzzers
A coverage-based greybox fuzzer is an ensemble of random

walkers in the Markov chain. There is one walker for each
seed t ∈ T . The objective is to discover an interesting path
s ∈ S− that is not exercised by any t ∈ T while generating
a minimal number of inputs. Conceptually, all walkers can
move simultaneously. Technically, resources are limited and
we need to choose which walker can move and how often. In
a sequential setting, the fuzzer chooses the next input to fuzz
t ∈ T according to chooseNext and generates as many in-
puts as determined by p = assignEnergy(t) in Algorithm 1.
Usually, p < M where M ∈ N gives an upper bound on the
number of generated inputs. In AFL, M ≈ 160k.

More Energy Than Needed. AFL implements a schedule
that assigns energy that is constant in the number of times
the corresponding seed has been chosen from the queue. Let
Xij be the random variable that describes the minimum
energy that should be assigned to state i ∈ S+ so that the
fuzzer discovers the new state j ∈ S− where pij > 0. Then,

E[Xij ] =
1

pij

Now, AFL’s constant schedule might assign significantly more
or significantly less energy than is actually required.

Example. Let AFL’s power schedule assign an energy of
p(i) = 216 = 64k to a state i every time ti is chosen. Since
most 4-character words do not start with ’b’, the first input
t0 likely exercises Path 0. After 216 inputs have been gener-
ated by fuzzing t0, several inputs are expected to begin with
the letter ’b’. One input that exercises Path 1 is retained
as seed t1. After another 216 inputs have been generated by
fuzzing t1, at least one input is expected to exercise Path 2
and is retained as t2. Figure 3 shows how the procedure con-
tinues. After a total of 256k inputs were generated from the
four seeds that were retained for each path, the crashing in-
put is found. A more efficient fuzzer would need to generate
no more than E[X01]+E[X12]+E[X23]+E[X34] = 4·210 = 4k
inputs to expose the same vulnerability.

#Total Tests State Explored States
1 **** ****

216 + 1 b*** ****, b***
2 · 216 + 1 ba** ****, b***, ba**
3 · 216 + 1 bad* ****, b***, ba**, bad*
4 · 216 + 1 bad! ****, b***, ba**, bad*, bad!

Figure 3: The crash is found after 218 = 256k inputs
were generated by fuzzing when p = 216 is constant.

Excessive Energy for High-Density Regions. AFL’s power
schedule also assigns constantly high energy : Fuzzing a seed
input often takes about a minute on our machine. This
addresses the problem of rapid mixing. Initial seeds are of-
ten provided such that they exercise interesting paths in
a low-density region in the stationary distribution of the
Markov chain. Assigning high energy to the inital seeds and
the seeds in the immediate neighborhood allows to discover
many more neighbors in the same low-density region. How-
ever, as the retained inputs exercise paths in high-density
regions – and there is a natural tendency – too much energy
is assigned to these states. By definition, the higher the den-
sity of the stationary distribution of the Markov chain for
the given state i, the higher the proportion of inputs gener-
ated by fuzzing ti that will exercise high-frequency paths.

State **** b*** ba** bad* bad!

1 ba** 1 · 27 1 · 27 2 · 27 0 0
2 **** 5 · 27 1 · 27 2 · 27 0 0
3 b*** 6 · 27 4 · 27 2 · 27 0 0
4 ba** 7 · 27 5 · 27 4 · 27 1 0
5 **** 11 · 27 5 · 27 4 · 27 1 0
6 b*** 12 · 27 8 · 27 4 · 27 1 0
7 bad* 13 · 27 9 · 27 5 · 27 1 · 27 0
8 ba** 14 · 27 10 · 27 7 · 27 1 · 27 0
9 **** 18 · 27 10 · 27 7 · 27 1 · 27 0

10 b*** 19 · 27 13 · 27 7 · 27 1 · 27 0
11 bad* 20 · 27 14 · 27 8 · 27 2 · 27 1

Figure 4: Total #fuzz exercising the corresponding
path when fuzzing the given state. Too much energy
assigned to state **** and not enough to state bad*

once it is discovered. Lines indicate new cycles.

Example. Let the initial seed input be the word ball

and let AFL’s power schedule assign an energy of p(i) =
29 = 512 to a state i every time ti is chosen. This allows
us to discuss the case where the next state is not found
in a single fuzzing iteration and several cycles through the
circular queue might be required. Recall that AFL chooses
the seeds in the order they are added. Figure 4 elaborates
the example. After fuzzing the initial seed input for 29 times,
two new seeds are discovered. About one quarter of the fuzz
(i.e., 27 inputs) exercises paths **** and b***, respectively
(see Fig. 2 and Fig. 4, Row 1). Fuzzing the first discovered
seed (Row 2), all fuzz exercises the same path. Fuzzing
the second discovered seed (Row 3), a quarter of the fuzz
exercises path **** and three quarters exercises path b***.
Since no new seeds are discovered, a new cycle begins with
the initial seed (Row 4). This procedure continues until the
vulnerability is exposed (Row 11). In each row we see that
most fuzz exercises path ****. Evidently, the fuzzer spends
way too much time exercising this high-frequency path. The
same time would be better spent fuzzing the seed exercising
the low-frequency path bad*.

In summary, two challenges of existing coverage-based
greybox fuzzers are: Their power schedules

1. may assign more energy than is required in expectation
to discover a new and interesting path and

2. may assign too much energy to states in high-density
regions of the chain’s stationary distribution and not
enough energy to states in low-density regions.

4. BOOSTING GREYBOX FUZZING
A more efficient coverage-based greybox fuzzer discovers

an undiscovered state in a low-density region while assigning
the least amount of total energy. More specifically,

1. Search Strategy. The fuzzer chooses i ∈ S+ such
that ∃j ∈ S− where πj is low and E[Xij ] is minimal.

2. Power Schedule. The fuzzer assigns the energy p(i) =
E[Xij ] to the chosen state i in order to limit the fuzzing
time to the minimum that is required to be expected
to discover a path in a low-density region.

In this paper, we propose monotonous power schedules
that first assign low energy which monotonously increases
every time the corresponding seed is chosen from the queue.
This allows to rapidly approach E[Xij ]. Moreover, our power
schedules assign energy that is inversely proportional to the
density of the stationary distribution of the Markov chain.



Intuitively, as soon as a new path is discovered, we want to
swiftly explore its general neighborhood expending only low
energy. This allows us to get a first estimate of whether i
lives in a high-density region. Every time i is chosen there-
after, it is assigned more energy. Intuitively, after the neigh-
borhood is explored and it is established that i lives in a low-
density region, the fuzzer can invest significantly more en-
ergy trying to find paths in the low-density neighborhood of i.

We also propose and evaluate search strategies that are
aimed at the fuzzer expending most energy for paths in low-
density regions. For instance, to establish whether a state
is in a low-density region, we prioritize such t ∈ T that have
been chosen from the circular queue least often and such t
that exercise paths that have least often been exercised by
other generated test inputs.

4.1 Power Schedules
A power schedule regulates the energy p(i) of a state.

More specifically, a power schedule decides how many in-
puts are generated by fuzzing the seed ti ∈ T which exer-
cises path i when ti is selected next. In general, p(i) is a
function of a) the number of times s(i) that ti has previ-
ously been choosen from the queue T and b) the number of
generated inputs f(i) that exercise i. In fact, f(i) serves as
approximation of the distribution’s density. We discuss and
evaluate several power schedules.

The exploitation-based constant schedule (EXPLOIT)
is implemented by most greybox fuzzers. After some burn-
in, the assigned energy is fairly constant every time s(i) that
ti is being chosen from the circular queue. The energy p(i)
for state i is computed as

p(i) = α(i) e.g., for AFL (1)

where α(i) is the CGF’s present implem. of assignEnergy in
Algorithm 1 and remains constant as s(i) or f(i) varies. For
instance, AFL computes α(i) depending on the execution
time, block transition coverage, and creation time of ti. The
example in Figure 3 is derived using a constant schedule.

The exploration-based constant schedule (EXPLORE)
is a schedule that assigns constant but also fairly low energy.
The energy p(i) for state i is computed as

p(i) =
α(i)

β
(2)

where α(i)/β maintaints the fuzzer’s original judgement α(i)
of the quality of ti and where β > 1 is a constant.

Cut-Off Exponential (COE) is an exponential schedule
that prevents high-frequency paths to be fuzzed until they
become low-frequency paths. The COE increases the fuzzing
time of ti exponentially each time s(i) that ti is chosen from
the circular queue. The energy p(i) is computed as

p(i) =

{
0 if f(i) > µ

min
(
α(i)
β
· 2s(i),M

)
otherwise.

(3)

where α(i) maintaints the fuzzer’s original judgement and
β > 1 is a constant that puts the fuzzer in exploration mode
for ti that have only recently been discovered (i.e., s(i) is
low), and where µ is the mean number of fuzz exercising a
discovered path

µ =

∑
i∈S+ f(i)

|S+|

where S+ is the set of discovered paths. Intuitively, high-
frequency paths where f(i) > µ that receive a lot of fuzz
even from fuzzing other seeds are considered low-priority
and not fuzzed at all until they are below the mean again.
The constant M provides an upper bound on the number of
inputs that are generated per fuzzing iteration.

#Tests State Explored States
1 **** ****

210 b*** ****, b***
2 · 210 ba** ****, b***, ba**
3 · 210 bad* ****, b***, ba**, bad*
4 · 210 bad! ****, b***, ba**, bad*, bad!

Figure 5: The crash is found after 212 = 4k inputs
were generated by fuzzing with a power schedule.

Example. Figure 5 depicts the states that a greybox fuzzer
explores with the COE power schedule with α(i)/β = 1. The
first test input is chosen at random from the program’s input
space. Since most 4-character words do not start with ’b’,
the first input t0 likely exercises path 0 which corresponds
to state ****. The first time that t0 is fuzzed, s(0) = 0
and f(0) = µ = 1 so that α(0) = 20. Next time, s(0) = 1
and f(0) = µ = 2 so that α(0) = 21. When s(0) = 9
and α(0) = 29, 210 test inputs will be generated so that
one generated test input t1 is expected to start with the
letter ’b’ and the state b*** is discovered (see Fig. 2). Now,
the newly discovered state is assigned low energy α(1) =
20. However, f(0) > µ so that soley t1 will be fuzzed in
a similar fashion as t0 until s(1) = 9, α(1) = 29 and 210

test inputs have been generated by fuzzing t1. Again, one
test input is expected to start with “ba” and the state ba**

is discovered. Table 5 shows how the procedure continues.
After 4k test inputs were generated from the four inputs
that were retained for each path, the crashing input is found.
The random generation of the same string would require five
orders of magnitude more inputs on average (4·106k random
inputs) while the constant schedule in Figure 3 would require
one order of magnitude more test inputs on average (256k).

The exponential schedule (FAST) is an extension of COE.
Instead of not fuzzing ti at all if f(i) > µ, the power sched-
ule induces to fuzz ti inversely proportional to the amount
of fuzz f(i) that exercises path i. The energy p(i) that this
schedule assigns to state i is computed as

p(i) = min

(
α(i)

β
· 2s(i)

f(i)
,M

)
(4)

Intuitively, f(i) in the denominator allows to exploit ti that
have not received a high number of fuzz in the past and is
thus more likely to be in a low-density region. The expo-
nential increase with s(i) allows more and more energy for
paths were we are more and more confident that they live
in a low-density region.

The linear schedule (LINEAR) increases the energy of a
state i in a linear manner w.r.t. the number of times s(i) that
ti has been chosen from T , yet is also inversely proportional
to the amount of fuzz f(i) that exercises path i.

p(i) = min

(
α(i)

β
· s(i)
f(i)

,M

)
(5)



The quadratic schedule (QUAD) increases the energy of
a state i in a quadratic manner w.r.t. the number of times
s(i) that ti has been chosen from T , yet is also proportional
to the amount of fuzz f(i) that exercises path i. The energy
p(i) for state i is computed as

p(i) = min

(
α(i)

β
· s(i)

2

f(i)
,M

)
(6)

4.2 Search Strategies
While a power schedule regulates the time spent fuzzing a

seed, a search strategy decide which seed is chosen next. The
decision is purely based on the number the number of times
a seed has been fuzzed before and the amount of fuzz exer-
cising the same path as the seed. An efficient coverage-based
greybox fuzzer prioritizes inputs that have not been fuzzed
very often and inputs that exercise low-frequency paths.

Prioritize small s(i)s(i)s(i). This strategy chooses ti ∈ T such
that the number of times s(i) that ti has been fuzzed is mini-
mal. However, the fuzzer may still decide to skip the choosen
test input, for instance if it is not a designated favourite. In
that case, the search strategy is applied again until the fuzzer
does not skip the input. Effectively, the queue is reordered
using the search strategy. Intuitively, the fuzzer can estab-
lish early whether or not path i is a low-frequency path and
whether it should invest more energy into fuzzing ti.

Prioritize small f(i)f(i)f(i). This strategy chooses ti ∈ T such
that the number f(i) of generated inputs that exercise path
i is minimal. The fuzzer may skip the chosen test input, for
instance if it is not a designated favourite, until finally an
input is chosen according to the search strategy and accepted
for fuzzing. Intuitively, fuzzing an input that exercises a
low-frequency path might generate more inputs exercising
low-frequency paths.

4.3 Implementation of AFLFast
AFL is a coverage-based greybox fuzzer that collects infor-

mation on the basic block transitions that are exercised by
an input. AFL’s binary instrumentation is discussed in Sec-
tion. 2.1. In our experiments, we extended version 1.94b.
AFL implements certain strategies to select “interesting” in-
puts from the fuzz to add to the queue. We did not change
this functionality. AFL addresses path explosion by “buck-
eting” – the grouping of paths according to the number of
times all executed basic block transitions are exercised. We
did not change this functionality either. All changes were
made to assignEnergy and chooseNext in Algorithm 1.

Changes for Power Schedule. We changed the computation
of the amount of fuzz p(i) that is generated for an input ti.
Firstly, AFL computes p(i) depending on execution time,
transition coverage, and creation time of ti. Essentially, if it
executes more quickly, covers more, and is generated later,
then the number of fuzz is greater. We maintain this eval-
uation in the various power schedules discussed above. Sec-
ondly, AFL executes the deterministic stage the first time ti
is fuzzed. Since our power schedules assign significantly less
energy for the first stage, our extension executes the deter-
ministic stage later when the assigned energy is equal to the
energy spent by deterministic fuzzing. Lastly, AFL might
initially compute a low value for p(i) and then dynamically
increase p(i) in the same run if “interesting” inputs are gen-
erated. Since our implementation controls p(i) via a power
schedule, we disabled this dynamic increase for AFLFast.

Changes for Search Strategy. We changed the order in
which AFL chooses the inputs from the queue and how AFL
designates “favourite” inputs that are effectively exclusively
chosen from the queue. Firstly, for all executed basic block
transitions b, AFL chooses as favourite the fastest and small-
est inputs executing b. AFLFast first chooses the input ex-
ercising b with the smallest number of time s(i) that it has
been chosen from the queue, and if there are several, then
the input that exercises a path exercised by the least amount
of fuzz f(i), and if there are still several, then the fastest and
smallest input. Secondly, AFL chooses the next favourite in-
put which follows the current input in the queue. AFLFast
chooses the next favourite input with the smallest number of
time s(i) that it has been chosen from the queue and if there
are several, it chooses that which exercises a path exercised
by the least amount of fuzz f(i).

5. EVALUATION

5.1 Vulnerabilities
We chose GNU binutils as subject because it is non-trivial

and widely used for the analysis of program binaries. It con-
sists of several tools including nm, objdump, strings, size,
and c++filt. We zoom into some results by discussing the
results for nm in more detail.7 Binutils is a difficult subject
because the fuzzer needs to generate some approximation
of a program binary in order to exercise interesting behav-
iors of the programs. We found a large number of serious
vulnerabilities and several bugs (listed in Table 1).

Table 1: CVE-IDs and Exploitation Type
Vulnerability Type
CVE-2016-2226 Exploitable Buffer Overflow
CVE-2016-4487 Invalid Write due to a Use-After-Free
CVE-2016-4488 Invalid Write due to a Use-After-Free
CVE-2016-4489 Invalid Write due to Integer Overflow
CVE-2016-4490 Write Access Violation
CVE-2016-4491 Various Stack Corruptions
CVE-2016-4492 Write Access Violation
CVE-2016-4493 Write Access Violation
CVE-2016-6131 Stack Corruption
Bug 1 Buffer Overflow (Invalid Read)
Bug 2 Buffer Overflow (Invalid Read)
Bug 3 Buffer Overflow (Invalid Read)

All vulnerabilities were previously unreported and rated
as medium security risk. We informed the maintainers, sub-
mitted patches, and informed the security community via
the ossecurity mailing list.8 Mitre assigned nine (9) CVEs.
At the time of writing, all but one patches have been ac-
cepted while one is still under review. These vulnerabilities
affect most available binary analysis tools including valgrind,
gdb, binutils, gcov and other libbfd-based tools. An at-
tacker might modify a program binary such that it executes
malicious code upon analysis, e.g., an analysis to identify
whether the binary is malicious in the first place or during
the attempt of reverse-engineering the binary.

Measure of #paths. AFL maintains a unique path inden-
tifier cksum for each input in the queue that is computed as
a hash over the shared memory region that has a bit set for
each basic block transition that is exercised by t. We imple-
mented a map {(cksum(i), f(i)) | ti ∈ T} that keeps track of
the number of generated (and potentially discarded) inputs
for each exercised path.
7Manual analysis and patching of 1.2k plus unique crashes
took much time and hence was done for one program.
8http://www.openwall.com/lists/oss-security/2016/05/05/3

http://www.openwall.com/lists/oss-security/2016/05/05/3


Measure of #crashes. AFL defines unique crash as follows.
If two crashing inputs exercise a path in the same “bucket”,
then both inputs effectively expose the same unique crash.

Experimental Infrastructure. We ran our experiments on
a 64-bit machine with 40 cores (2.6 GHz Intel R© Xeon R© E5-
2600), 64GB of main memory, and Ubuntu 14.04 as host
OS. We ran each experiment at least eight times for six
or 24 hours. We ran 40 experiments simultaneously, that
is, one experiment was run on one core. For each exper-
iment, only one seed input is provided — the empty file.
Time is measured using unix time stamps. We tested nm -C,
objdump -d, readelf -a, and the others without options.

5.2 General Results

c++filt nm objdump

readelf size strings

10

1000

10

1000

0 2 4 6 0 2 4 6 0 2 4 6
Time (in hours)

N
um

be
r 

of
 U

ni
qu

e 
C

ra
sh

es

Figure 6: #Crashes over time (on a log-scale) for
AFLFast (solid line) vs. AFL (dashed line)

Crashes over time. After 6h, AFLFast found one and
two orders of magnitude more unique crashes than AFL in
c++filt and nm, respectively.9 AFLFast found 30 unique
crashes in objdump where AFL found no crash at all. None
of the fuzzers found a crashing input for the remaining three
studied tools in any of eight runs of six hours. For each tool,
the number of crashes found over time is shown in Figure 6.
In what follows, we investigate the unique crashes generated
for nm with a 24 hour budget in more details.

Vulnerabilities in nm. On average, AFLFast exposes the
CVEs seven (7) times faster than AFL and exposes three (3)
CVEs that are not exposed by AFL in any of eight runs in 24
hours. AFLFast exposes all vulnerabilities in 2h17m, on av-
erage while AFL would require more than 12h30m. The first
three rows of Figure 7 show the results for the vulnerabilities
in the nm tool in more details. Each facet compares AFLFast
on the left hand-side and AFL on the right hand side using a
box plot with a jitter overlay. In all of eight runs, AFLFast
consistently and significantly outperforms classic AFL. The
average time to first exposure is shown in Figure 8. All
vulnerabilities are exposed within the first six hours. The
exponential power schedule and improved search strategies
clearly boost the efficiency of the state-of-the-art coverage-
based greybox fuzzer.

Bugs in nm. AFLFast finds two buffer overflows seven (7)
times faster than AFL. AFLFast also exposes a third bug
which is not exposed by AFL at all. The three overflows
are invalid reads and unlikely to be exploitable. The last
row of Figure 1 shows more details. Again, our extension
consistently outperforms the classic version of AFL.

9Notice the logarithmic scale in Figure 6.

●

●

●

●

● ● ●● ●●● ●
●

●

●●
●●

●
● ●

●

●

●● ●

●

●●● ●

●

●

●

●
●

● ●

●

●●

● ●
●●

●

●

●

●

●

●

●
●

●
●

●

●● ●● ● ●●●

●
●

●

●
●

●●●

●
●

●

●

●

●
●● ●● ●●

●

●

●

●

●

●
●

●

●

● ●
●●● ●●

●
●

●
●●

●●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

CVE−2016−2226 CVE−2016−4487 CVE−2016−4488

CVE−2016−4489 CVE−2016−4490 CVE−2016−4491

CVE−2016−4492 CVE−2016−4493 CVE−2016−6131

Bug 1 Bug 2 Bug 3

0

4

8

12

16

20

24

0

4

8

12

16

20

24

0

4

8

12

16

20

24

0

4

8

12

16

20

24

AFL−FAST AFL AFL−FAST AFL AFL−FAST AFL
 

T
im

e 
(in

 h
ou

rs
)

Figure 7: Time to expose the vulnerability.

Vulnerability AFL AFL-Fast Factor
CVE-2016-2226 > 24.00 h 3.85 h N/A
CVE-2016-4487 2.63 h 0.46 h 5.8
CVE-2016-4488 6.92 h 0.98 h 7.0
CVE-2016-4489 10.68 h 2.78 h 3.8
CVE-2016-4490 3.68 h 0.41 h 9.1
CVE-2016-4491 > 24.00 h 4.74 h N/A
CVE-2016-4492 12.18 h 0.87 h 14.1
CVE-2016-4493 4.48 h 1.00 h 4.5
CVE-2016-6131 > 24.00 h 5.48 h N/A
Bug 1 20.43 h 3.38 h 6.0
Bug 2 20.91 h 2.89 h 7.2
Bug 3 > 24.00 h 5.07 h N/A

Figure 8: Time to expose the vulnerability.

Independent Evaluation. We note that our collaborators,
Team Codejitsu at DARPA Cyber Grand Challenge (CGC),
evaluated both AFL and AFLFast on all 150 benchmark
programs that are provided as part of the CGC. On these
binaries, AFLFast exposes errors 19x faster than AFL, on
average. In one run, AFL exposed four errors that are not
exposed by our extension. However, AFLFast exposed seven
errors that are not exposed by AFL. Team Codejitsu inte-
grated AFLFast in their bot Galatica to prove vulnerabilities
in the other teams’ binaries. Galactica went on to take 2nd

place in the CGC finals in terms of number of bugs found.
A thorough discussion and reflection of the CGC experience
will not be covered in this article. However, we think that
Codejitsu’s success demonstrates the potential of AFLFast.



●●
●
●
●●●●
●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

AFL−FAST

mean =  382

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r 

of
 T

es
t C

as
es

●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

mean =  1288

AFL

100

101

102

103

104

105

0 50 100 150 200 250 300 350 400 450 500
Path Index

N
um

be
r 

of
 T

es
t C

as
es

Figure 9: #Fuzz exercising a path (on a log-scale)
after running AFL for 10 minutes on the nm-tool.

Low-frequency Paths. In this paper, we argue that the
fuzzing time is better spent exploring low-frequency paths.
Firstly, we believe that low-frequency paths are more likely
to be exercised by valid inputs that stress different behav-
iors of the program. Secondly, less time is wasted fuzzing
high-frequency paths that are exercised by most fuzz any-
ways. Finally, it allows the coverage-based greybox fuzzer
to efficiently discover more paths per generated input. As
we can see in Figure 9, indeed our heuristics generate more
fuzz for low-frequency paths and less fuzz for high-frequency
paths. In 10 minutes, AFLFast discovered twice as many
paths as AFL. For AFLFast only 10% of the discovered
(low-frequency) paths are exercised by just one input while
for AFL, 30% are exercised by just one input. The mean
amount of generated test inputs per path is about three
times higher for AFLFast. This clearly demonstrates the ef-
fectiveness of our heuristics in exploring a maximal number
of (low-frequency) paths while expending minimum energy.

5.3 Comparison of Power Schedules
Earlier, we introduced two constant and four monotonous

power schedules. AFL adopts a constant power schedule and
assigns a fairly high amount of energy. Basically, the same
input will get the same performance score the next time it
is fuzzed. This is the exploitation-based constant schedule
(exploit). To understand the impact of our choice to start
with a reduced fuzzing time per input, we also investigate an
exploration-based constant schedule (explore) that assigns a
fairly low and constant amount of energy. The monotonous
schedules increase the fuzzing time in a linear, quadratic, or
exponential manner. Specifically, AFLFast implements an
exponential schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r 

of
 U

ni
qu

e 
C

ra
sh

es Schedule

afl−fast

coe

exploit (afl)

explore

linear

quad

Figure 10: #Crashes over Time (Schedules).

Results. The exponential schedule that is implemented
in AFLFast outperforms all other schedules. The cut-off ex-
ponential schedule (coe) performs only slightly worse than
AFLFast. After 24 hours, both schedules (fast and coe)
exposed 50% more unique crashes than the other three (lin-
ear, quad, and explore). Interestingly, the exploration-based
constant schedule (explore) starts off by discovering a larger
number of crashes than any of the other schedules; it fuzzes
each input quickly and swiftly moves on to the next. How-
ever, this strategy does not pay off in the longer run. After
24 hours, it performs worse than any of the other schedules
(except AFL’s exploitation-based constant schedule). The
quadratic schedule (quad) starts off revealing a similar num-
ber of unique crashes as AFLFast but at the end of the 24
hour budget it performs comparably to the other two (linear
and explore).

5.4 Comparison of Search Strategies
Our search strategies prioritize inputs that have not been

fuzzed very often (small s(i)) and inputs that exercise low-
frequency paths (small f(i)). In the following, we investigate
two strategies targeting the implementation of perf score
and chooseNext in Algorithm 1. Strategy 1 designates
as favourites ti ∈ T where s(i) and f(i) are small, and then
where execution time, transition coverage, and creation time
are minimal.10 Without Strategy 1, AFLFast (like AFL)
designates as favorites ti ∈ T where execution time, tran-
sition coverage, and creation time are minimal. Strategy 2
chooses the next input ti from the queue where s(i) and
f(i) are minimal and ti is a favourite. Without Strategy 2
AFLFast (like AFL) chooses the next input from the queue
that is marked as favourite. All strategies are run with the
exponential power schedule.

0

250

500

750

1000

1250

0 5 10 15 20 25
Time (in hours)

N
um

be
r 

of
 U

ni
qu

e 
C

ra
sh

es

Schedule

Both Strategies

No Strategy

Strategy 1

Strategy 2

Figure 11: #Crashes over Time (Search Strategies).

Results. The combination of both strategies is signifi-
cantly more effective than any of the strategies individually.
Until about 12 hours the other strategies perform very simi-
larly. After 24 hours as individual strategy, strategy 1 which
changes how AFL designates the favourite is more effective
than strategy 2 and no strategy in the long run. As indi-
vidual strategy, the strategy 2 which changes the order in
which test inputs are chosen from the queue seems to be not
effective at all. It performs similarly compared to running
AFLFast without any strategies (comparable to AFL but
with exponential power schedule). However, after 24 hours,
AFLFast with both strategies exposes almost twice as many
unique crashes as AFLFast with no strategy or with only
strategy 1.

10For more details see Section 4.3.



5.5 Result Summary
We evaluated AFLFast and several schedules plus search

strategies on the GNU binutils. The exponential schedule
outperforms all other schedules while our search strategies
turn out to be effective. In eight runs of six hours, AFLFast
with an exponential schedule found an average of more than
one order of magnitude more unique crashes than AFL for
the tools nm and c++filt; it found crashing inputs for obj-

dump where AFL did not expose any crashes at all. In eight
runs of 24 hours, AFLFast found 6 vulnerabilities in nm 7x
faster than AFL and exposed 3 vulnerabilities that were not
exposed by AFL. AFLFast also exposes two bugs in nm (that
are unlikely exploitable) about seven times faster than AFL
and exposed one bug that is not exposed by AFL. An in-
dependent evaluation of Team Codejitsu on all 150 binaries
that are provided in the benchmark for the Cyber Grand
Challenge establishes similar results. On average, AFLFast
exposes an error 19 times faster than AFL and also exposes
7 errors that are not found by AFL, at all.

6. RELATED WORK
Several techniques [30, 17, 6, 22] have been proposed to in-

crease the efficiency of automated fuzzing. An important op-
timization pertains to selecting the seed inputs wisely from a
wealth of inputs [17]. Our work makes no assumptions about
the existance seed inputs; we seeded our experiments with
the empty file. However, Coverage-based Greybox Fuzzing
(CGF) would clearly benefit from a smart seed selection if
many seed files are available. Others suggest to use program
analysis to detect dependencies among the bit positions of
an input [6]. For instance, the image width occupies four
bytes in the PNG image file format which are best modified
together. The dependency analysis allows to fuzz such de-
pendent bytes as a group. In our work, we do not change the
mutation operators or ratio. Woo et al. [30] recognize the
exploration-exploitation trade-off between fuzzing an input
for a shorter versus a longer amount of time. They proceed
to model blackbox fuzzing as a multi-armed bandit problem
where the seed’s “energy” is computed based on whether or
not it has exposed a (unique) crash in any previous fuzzing
iteration. So, the fuzzer is effectively biased towards gener-
ating more crashing inputs for already known errors. In our
work, there is no such bias. Instead, we direct the search
towards low-frequency paths in order to stress more of the
program’s behavior in the same time.

Symbolic execution-based whitebox fuzzers can generate
files that stress low-frequency paths. Probabilistic symbolic
execution [10] uses model counting to compute the proba-
bility that a random input exercises a given path. Symbolic
execution is very effective because it enumerates paths es-
sentially independent of their “frequency”and because it can
be directed towards “dangerous” program locations [5, 8, 11,
2]. It can generate the specific values that are needed in
order to negate an if-condition and exercise the alternative
branch. Taint-based fuzzing [9, 29] is a directed whitebox
fuzzing technique. It exploits classical taint analysis to lo-
calize parts of the input which should be marked symbolic.
For instance, it marks portions of the input file as sym-
bolic that control arguments of executed and critical system
calls. Model-based Whitebox Fuzzing [16] leverages an input
model to synthesize and “transplant” complete data chunks
to exercise so called critical branches that are only exercised
if a certain data chunk is present in the input file. However,

symbolic execution-based techniques rely on program anal-
ysis and constraint solving which hampers their scalability.
Imprecisions during lifting of the program binary and during
the encoding of the path constraints hamper their applica-
bility. In contrast, CGF completely relinquishes program
analysis for the sake of scalability with tremendous success
in the vulnerability detection practice [27].

Colleagues have combined lightweight blackbox/greybox
fuzzers and symbolic execution-based whitebox fuzzers to
get the best of both worlds [19, 15]. For instance, Hybrid-
Fuzz first runs symbolic execution to generate inputs leading
to “frontier nodes” and then passes these inputs to a black-
box fuzzer. In contrast, Driller [19] begins with AFL and
seeks help from symbolic execution when it “gets stuck”, for
instance, to generate a magic number. Our monotonous
power schedules allow to employ expensive symbolic execu-
tion for seeds/states with a sufficiently high energy.

Markov chains can model a variety of random processes in
fuzz testing. Markov Chain Monte Carlo Random Testing
(MCMC-RT) uses a Markov Chain Monte Carlo (MCMC)
method to leverage knowledge about an input’s probability
to reveal an error. However, MCMC-RT is not entirely scal-
able because it maintains this probability for every input in
the program’s input space. While CGF can be well explained
as Markov chain, it does not actually maintain the chain or
any probabilities in-memory. While MCMC-RT is biased to-
wards revealing suspected or known errors, CGF can expose
unknown errors that hide deep in the program. The bias of
boosted CGF is towards low-frequency paths. Chen et al.
[7] utilize MCMC to leverage knowledge about a mutation
operator’s effectiveness. Operators that have been shown to
be more effective in previous fuzzing iterations are chosen
with greater probability during fuzzing. Sparks et al. [18]
model program control-flow as Markov chain to prioritize
seeds that exercise less explored paths. In contrast, we use
Markov chains to explain why it is more efficient to smartly
control the time spent fuzzing a seed and which seed to fuzz
next without program analysis.

7. CONCLUSION
While symbolic execution-based techniques have gained

prominence, their scalability has not approached those of
blackbox or greybox fuzzers. While blackbox and greybox
techniques have shown effectiveness, the limited semantic
oversight of these techniques do not allow us to explain the
working of these techniques even when they are effective.

In this work, we take a state-of-the-art greybox fuzzer
AFL which keeps track of path identifiers. We enhance the
effectiveness and efficiency of AFL in producing crashes, as
evidenced by our experiments and those of our collabora-
tors. AFLFast, our extension of AFL exposes an order of
magnitude more unique crashes than AFL in the same time
budget. Moreover, AFLFast can expose several bugs and
vulnerabilities that AFL cannot find. Other vulnerabilities
AFLFast exposes substantially earlier than AFL.

More importantly, we provide an explanation of the en-
hanced effectiveness by visualizing CGF as the exploration
of the state space of a Markov chain. We observe that ex-
isting CGF tools much too often visit states in high-density
regions. We have devised and investigated several strategies
to force the CGF tool to visit more states that are otherwise
hidden in a low-density region and to generate less inputs
for states in a high-density region.



8. ACKNOWLEDGMENTS
This research was partially supported by a grant from

the National Research Foundation, Prime Minister’s Office,
Singapore under its National Cybersecurity R&D Program
(TSUNAMi project, No. NRF2014NCR-NCR001-21) and
administered by the National Cybersecurity R&D Directorate.

9. REFERENCES
[1] F. Bellard. Qemu, a fast and portable dynamic

translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, 2005.

[2] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury.
Regression tests to expose change interaction errors.
In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE
2013, pages 334–344, 2013.

[3] M. Böhme and S. Paul. A probabilistic analysis of the
efficiency of automated software testing. IEEE
Transactions on Software Engineering, 42(4):345–360,
April 2016.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh International Conference on World Wide Web
7, WWW7, pages 107–117, 1998.

[5] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 209–224, 2008.

[6] S. K. Cha, M. Woo, and D. Brumley.
Program-adaptive mutational fuzzing. In Proceedings
of the 2015 IEEE Symposium on Security and
Privacy, SP ’15, pages 725–741, 2015.

[7] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao.
Coverage-directed differential testing of jvm
implementations. In PLDI’ 16, pages 85–99, 2016.

[8] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: A
platform for in-vivo multi-path analysis of software
systems. In ASPLOS XVI, pages 265–278, 2011.

[9] V. Ganesh, T. Leek, and M. Rinard. Taint-based
directed whitebox fuzzing. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE ’09, pages 474–484, 2009.

[10] J. Geldenhuys, M. B. Dwyer, and W. Visser.
Probabilistic symbolic execution. In Proceedings of the
2012 International Symposium on Software Testing
and Analysis, ISSTA 2012, pages 166–176, 2012.

[11] P. Godefroid, M. Y. Levin, and D. Molnar. Sage:
Whitebox fuzzing for security testing. Queue,
10(1):20:20–20:27, Jan. 2012.

[12] S. Kirkpatrick, C. Jr. Gelatt, and M. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

[13] B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of unix utilities. Commun.
ACM, 33(12):32–44, Dec. 1990.

[14] J. R. Norris. Markov Chains (Cambridge Series in
Statistical and Probabilistic Mathematics). Cambridge
University Press, July 1998.

[15] B. S. Pak. Hybrid fuzz testing: Discovering software
bugs via fuzzing and symbolic execution. In Master’s
thesis, School of Computer Science, Carnegie Mellon
University, 2012.

[16] V.-T. Pham, M. Böhme, and A. Roychoudhury.
Model-based whitebox fuzzing for program binaries. In
Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ASE,
pages 552–562, 2016.

[17] A. Rebert, S. K. Cha, T. Avgerinos, J. Foote,
D. Warren, G. Grieco, and D. Brumley. Optimizing
seed selection for fuzzing. In Proceedings of the 23rd
USENIX Conference on Security Symposium, SEC’14,
pages 861–875, 2014.

[18] S. Sparks, S. Embleton, R. Cunningham, and C. Zou.
Automated Vulnerability Analysis: Leveraging
Control Flow for Evolutionary Input Crafting. In 23d
Annual Computer Security Applications Conference
(ACSAC), pages 477–486, 2007.

[19] N. Stephens, J. Grosen, C. Salls, A. Dutcher,
R. Wang, J. Corbetta, Y. Shoshitaishvili, C. Kruegel,
and G. Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS ’16, pages 1–16,
2016.

[20] Tool. Afl binary instrumentation. https://github.com/
vrtadmin/moflow/tree/master/afl-dyninst. Accessed:
2016-05-13.

[21] Tool. Afl vulnerability trophy case.
http://lcamtuf.coredump.cx/afl/#bugs. Accessed:
2016-05-13.

[22] Tool. American fuzzy lop (afl) fuzzer.
http://lcamtuf.coredump.cx/afl/technical details.txt.
Accessed: 2016-05-13.

[23] Tool. Peach Fuzzer Platform. http:
//www.peachfuzzer.com/products/peach-platform/.
Accessed: 2016-05-13.

[24] Tool. Pulling jpegs out of thin air.
https://lcamtuf.blogspot.com/2014/11/
pulling-jpegs-out-of-thin-air.html. Accessed:
2016-05-13.

[25] Tool. SPIKE Fuzzer Platform.
http://www.immunitysec.com. Accessed: 2016-05-13.

[26] Tool. Suley Fuzzer.
https://github.com/OpenRCE/sulley. Accessed:
2016-05-13.

[27] Tool. Symbolic execution in vulnerability research.
https://lcamtuf.blogspot.sg/2015/02/
symbolic-execution-in-vuln-research.html. Accessed:
2016-05-13.

[28] Tool. Zzuf: multi-purpose fuzzer.
http://caca.zoy.org/wiki/zzuf. Accessed: 2016-05-13.

[29] T. Wang, T. Wei, G. Gu, and W. Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic
software vulnerability detection. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP
’10, pages 497–512, 2010.

[30] M. Woo, S. K. Cha, S. Gottlieb, and D. Brumley.
Scheduling black-box mutational fuzzing. In
Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13,
pages 511–522, 2013.

https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
https://github.com/vrtadmin/moflow/tree/master/afl-dyninst
http://lcamtuf.coredump.cx/afl/#bugs
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://www.peachfuzzer.com/products/peach-platform/
http://www.peachfuzzer.com/products/peach-platform/
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
https://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html
http://www.immunitysec.com
https://github.com/OpenRCE/sulley
https://lcamtuf.blogspot.sg/2015/02/symbolic-execution-in-vuln-research.html
https://lcamtuf.blogspot.sg/2015/02/symbolic-execution-in-vuln-research.html
http://caca.zoy.org/wiki/zzuf

	Introduction
	Background
	Coverage-based Greybox Fuzzing
	Markov Chain

	Markov Chain Model
	Coverage-based Fuzzing as Markov Chain
	Running Example
	Challenges of Coverage-based Fuzzers

	Boosting Greybox Fuzzing
	Power Schedules
	Search Strategies
	Implementation of AFLFast

	Evaluation
	Vulnerabilities
	General Results
	Comparison of Power Schedules
	Comparison of Search Strategies
	Result Summary

	Related Work
	Conclusion
	Acknowledgments
	References

