
1

Beyond Tests: Program Vulnerability Repair via
Crash Constraint Extraction

XIANG GAO, National University of Singapore, Singapore
BO WANG

∗†
, Peking University, China

GREGORY J. DUCK, National University of Singapore, Singapore
RUYI JI

†
, Peking University, China

YINGFEI XIONG, Peking University, China
ABHIK ROYCHOUDHURY, National University of Singapore, Singapore

Automated program repair is an emerging technology which seeks to automatically rectify program errors and
vulnerabilities. Repair techniques are driven by a correctness criterion which is often in the form of a test-suite.
Such test-based repair produces over-fitting patches, where the patches produced may fail on tests outside the
test-suite driving the repair. In this work, we present a repair method which fixes program vulnerabilities
without the need for a voluminous test-suite. Given a vulnerability as evidenced by an exploit, the technique
extracts a general constraint representing the vulnerability from sanitizers. The extracted constraint serves as
a proof obligation which our synthesized patch should satisfy. The proof obligation is met by propagating
the extracted constraint to locations which are deemed to be "suitable" fix locations. An implementation of
our approach (ExtractFix) on top of the KLEE symbolic execution engine shows its efficacy in fixing a wide
range of vulnerabilities on subjects taken from CVEs and Google’s Open-source-systems OSS Fuzz framework.
Ours is the first work to propose analysis based fix localization for repair. We believe that our work presents a
way forward for the over-fitting problem in program repair, by generalizing observable hazards/vulnerabilities
(as constraint) from a single failing test or exploit.

ACM Reference Format:
Xiang Gao, Bo Wang, Gregory J. Duck, Ruyi Ji, Yingfei Xiong, and Abhik Roychoudhury. 2019. Beyond Tests:
Program Vulnerability Repair via Crash Constraint Extraction. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1
(December 2019), 22 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Automated program repair [24] is an emerging area for automated rectification of programming
errors. In the most commonly studied problem formulation, the goal is to find a (minimal) change
to a given buggy program P so it passes a test-suite T—i.e., test-suite driven program repair. As the
goal is to find changes that merely passes the test-suite T , the automatically generated patch may
over-fit the test data, meaning that the patched program P ′ may still fail on program inputs/tests
outside of T . The problem is particularly dangerous in the case of software vulnerabilities. Namely,
∗Corresponding Author
†The second and fourth author contributed to this work while visiting National University of Singapore.

Authors’ addresses: Xiang Gao, National University of Singapore, Singapore, gaoxiang@comp.nus.edu.sg; Bo Wang, Peking
University, China, wangbo_15@pku.edu.cn; Gregory J. Duck, National University of Singapore, Singapore, gregory@
comp.nus.edu.sg; Ruyi Ji, Peking University, China, jiruyi910387714@pku.edu.cn; Yingfei Xiong, Peking University, China,
xiongyf@pku.edu.cn; Abhik Roychoudhury, National University of Singapore, Singapore, abhik@comp.nus.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1049-331X/2019/12-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

if the correctness specification driving the repair of P is incomplete (such as a test-suite T)—the
automatically generated patch may not completely fix the vulnerability meaning that the patched
program is still vulnerable. It has been shown in the past that even for manually generated fixes,
9% of the fixes are incomplete or incorrect [53]. For automatically generated fixes of program
vulnerabilities, we need a stronger level of assurance about the quality of patches.

Automatically generating high quality fixes is one of the key challenges in program repair
research today. Low quality fixes which over-fit the given test result from weak specifications
driving the repair. The fundamental reason for the existence of over-fitting patches is that the patch
space is under-constrained due to the incomplete specification given by test suites [39].
To combat the issue of over-fitting in program repair, several approaches propose program

repair driven by static analysis and verification techniques. However, these approaches are usually
designed to fix certain bug classes, e.g. memory/resource leak [41], null pointer de-reference [50],
memory de-allocation errors [25] or concurrency bugs [27]. In addition, the static-based approaches,
e.g. Phoenix [1], may introduce false positive or false negative because of the fact that they need
off-the-shelf static analyzer as oracles.
In this paper, we propose a general approach to combat the over-fitting problem, specifically

for fixing security vulnerabilities. Our key insight is that information about the underlying cause
of a vulnerability can be automatically extracted, and this information can then be used to guide
Automated Program Repair (APR). The information could be extracted in the form of a constraint
that all program states must satisfy at the buggy location in order to avoid repeating the vulnerability.
Then, the goal of repair is to ensure the constraint is always satisfied under any program states.

Our workflow begins with the detection of an exploitable vulnerability in the form of a crash,
and we assume that the failing test or exploit is available. After witnessing a crash in an exploit, a
constraint representation of the violated condition—i.e., the crash constraint or its negation, the crash-
free constraint—can then be extracted from either the program itself (e.g. user assertion failure), or
API documentation, or hardware fault (e.g., null pointer dereference), or safety properties enforced
by dynamic analysis tools such as sanitizers. Sanitizers, such as AddressSanitizer (ASAN) [38] and
UndefinedBehaviourSanitizer (UBSAN) [45], typically implement one or more security policies (such
as memory safety) using an instrumentation framework. If the program violates the security policy,
the sanitizer induces a crash and the corresponding constraint can be extracted. For example, a
buffer overflow can be formalized as violation of constraint:

access(buffer) < base(buffer) + size(buffer)

This constraint is extracted at run-time when the crash is witnessed, and represents the precise
condition that all patched programs must satisfy in order to avoid repeating the same underlying
crash. Crucially, the crash constraint is not specific to the test input (also called exploit in security
terminology) which witnessed the violation! Thus, we can use the crash constraint to guide program
repair. To do so, we propagate the extracted constraint backwards from the crash location to one or
more suitable fix locations by calculating theweakest precondition. The fix locations are decided using
a fix localization algorithm that examines the data and control dependencies with the crash location.
Next, we synthesize a patch so that weakest precondition, the extension of crash-free constraint,
cannot be violated, thereby guaranteeing that the patched program cannot repeat the same crash,
and thus resolving the vulnerability. Our workflow also allows the program repair system to decide
between single line and multi-line fixes as shown by our experiments. We instantiate the proposed
approach in a prototype named ExtractFix.

The contributions of this paper can be summarized as follows.
• Conceptual Contribution:We alleviate the over-fitting problem in program repair [39], albeit
only for security vulnerabilities, by generating patches that generalize beyond tests. Our main

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:3

insight is to extract symbolic constraints from violations in an exploit trace witnessed by sani-
tizer. The constraint extraction from sanitizers is made possible by automatically symbolizing
variables/memory relevant to the crash.

• Technical Contribution: Our constraint-based program repair method has several technical
novelties over and above the existing works on test-based semantic repair (e.g., [33, 35, 51]),
and the recent work on SENX [14]. First of all, we provide an effective constraint/dependency
based fix localization instead of relying on statistical fault localization, as in almost all existing
works on test-based program repair. Secondly, we only need a single exploit trace to generalize
the vulnerability whereas existing program repair works usually need a test-suite. Last but
not the least, unlike existing vulnerability repair works like SENX, we are able to synthesize
non-trivial patches at locations far off from the crash location, since our technique is endowed
with the power of scalable constraint propagation.

• Utilitarian Contribution: We implement our security vulnerability repair approach in a tool
named ExtractFix, and we plan to make our tool available open-source for usage by the
community. We evaluate ExtractFix on 30 CVEs and show that ExtractFix can generate more
correct patches than start-of-the-art program repair tools based on test-suites. The generated
patches can be found in https://extractfix.github.io.

2 OVERVIEW
For our purposes, a crash is broadly defined to be any program termination due to control flow
reaching some illegal states where some conditions/properties are violated. A crash can be caused
by the violation of an explicit user assertion (e.g., assert(C)), an implicit assertion enforced
by hardware/operating-system (e.g., illegal memory access), or instrumented check inserted by
sanitizers to enforce some safety properties. Typical sanitizers, such as AddressSanitizer (ASAN) [38]
and UndefinedBehaviorSanitizer (UBSAN) [45], instrument the program with implicit assertions
that enforce additional properties, such as memory safety, type safety, integer overflows protection,
etc. If a sanitizer assertion is violated, the program will abort (i.e., “crash”), usually with an error
message indicating the problem. The underlying cause of a crash can be automatically extracted in
the form of a crash-free-constraint (CFC). The CFC represents the constraint that all program states
must satisfy at the crashing location in order to avoid repeating the crash. For example, for a user
assertion violation (assert(C)) the CFC is C itself, for a NULL-pointer de-reference on p the CFC is
(p,0), and for an array bounds overflow error on a[i] the CFC is (i<SIZE) where SIZE is the size of
array a.If the crashing program is patched so that the CFC is always satisfied, then the same crash
cannot be repeated for any program input.
Our basic approach of using crash-free-constraints to guide program repair faces several chal-

lenges. This first challenge is the extraction of the CFC from an observable crash. The observable
program crash is a concrete property violation when executing a failing test or exploit, while
CFC should capture the properties forall possible inputs. The CFC is actually symbolic constraint
extracted from concrete violations. The second challenge concerns fix localization (FL) in order to
find one (or more) suitable fix location(s). Typically, existing FL approaches, e.g. spectrum-based
FL [36], rely on test cases, and FL results depend on the quality of the tests. However, high-quality
tests are not always available. In a very common scenario, there is only one test in the form of
an exploit when security vulnerabilities are found. The third challenge is that the fix location(s)
could be different from the crash location, meaning that the extracted CFC must be propagated
and possibly transformed to guide patch generation at fix location(s). Conceptually, the CFC at the
crash location is propagated to a CFC ′ at a given fix location satisfying the following Hoare triple:

{CFC ′} P {CFC} (CFC-Propagation)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://extractfix.github.io

1:4 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

Here, P represents the program statements between fix location and crash location. CFC ′ is the
least restrictive (weakest) precondition that will guarantee the postcondition CFC [4]. Finding
CFC ′ involves solving CFC-Propagation. For multi-line repair, the approach is generalized and
propagation is applied to multiple fix locations. The final challenge is to use synthesis to generate
candidate patches that enforce CFC ′ and (by extension) CFC. Conceptually, this involves rewriting
the fix location statement ρ into an alternative f such that the following Hoare logic holds:

{true} [ρ 7→ f] {CFC ′} P {CFC} (CFC-Repair)

Once repaired, the program can never again enter a state where CFC is violated at the crash location,
thereby resolving the crash for all program inputs regardless of origin.

2.1 Workflow
Our basic workflow consists of several components/steps, including:
(1) Constraint Extraction. Given a program and a single input that exercises the crash, the first

step is to extract the “crash-free constraint” (CFC). CFC is extracted according to predefined
templates which formulate the underlying cause of the defect.

(2) Fix Localization. Once theCFC is generated, one (or more) candidate fix locations are generated
using a dependency-based fix localization algorithm. Unlike the widely used spectrum-based
fault localization (SBFL) [36], our workflow use the crash location as a starting point and find
candidate fix locations using control/data dependency analysis.

(3) Constraint Propagation. The CFC is a constraint over the program state at the crash location.
We must propagate the CFC to an equivalent constraint CFC ′ at the fix location, conceptually
by solving the Hoare triple (CFC-Propagation).

(4) Patch Synthesis. Once the fix location and propagated CFC ′ have been decided, the next
step is to generate patch candidates. The generated patch is guaranteed to ensure that CFC ′

is satisfied, meaning that the CFC condition at the crash location can not be violated in the
patched program.

Workflow Example. To illustrate our workflow, we consider the buggy from Coreutils. The buggy
code snippet is shown in Figure 1a. Here, the snippet attempts to fill a buffer r with a pattern
determined by variable bits using repeated calls to memcpy. The length of each memcpy operation
is doubled inside the for-loop, and the final memcpy handles any remaining unfilled space in the
buffer. Unfortunately, this contains a bug 1. For some input (e.g., size=13, i.e., “unlucky thirteen”),
the source and destination regions for the final memcpy will overlap—undefined behaviour under
the memcpy specification. This bug may cause program crash on some platforms. Specifically, when
size=13, the for-loop will terminate in the second iteration with i=6 and size/2=6 (integer division).
Then, at line 7, the source and destination of memcpy overlap because r+(13−6)>r+6. Using an
appropriate sanitizer (UBSAN), this program will crash on the final memcpy call.
Figure 1b shows the overall workflow of our approach. We start with the single crashing input

(size=13) that triggers the crash on line 7 (highlighted). Step (1) generates the CFC correspond-
ing to the crash according to predefined template. The CFC template (shown in Section 4.1) of
memcpy(p, q, s) is defined as p+s ≤ q ∨ q+s ≤ p. In this case, CFC is

(r+i+size−i≤r ∨ r+size−i≤r+i) ≡ (size ≤ 0 ∨ size≤2*i)

Since size is an unsigned integer (size_t) value, we only focus on the second clause size≤2*i in this
example. Step (2) determines candidate fix locations. One promising fix location is the for-condition
on line 4 (highlighted) since there exists a control dependency with an assignment (i *= 2, line 4)
1https://debbugs.gnu.org/cgi/bugreport.cgi?bug=26545

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:5

1 void fillp (char *r, size_t size){
2 ...
3 r[2] = bits & 255;

4 for (i = 3; i < size / 2 ; i *= 2)
5 memcpy(r + i, r, i);
6 if (i < size)

7 memcpy(r + i, r, size - i) ;
8 ...
9 }

(a) Buggy code snippet.

failing test
size=13

prog.c
prog.exe

input
compile +
sanitize

constraint extraction

CFC
size <= 2*i

propagate

propagated
CFC'

fix
localization

fix
location * synthesis

(1)

(2)
(3)

patch
i <= size/2

(4)

(b) ExtractFix workflow overview.

Fig. 1. Workflow example from Coreutils

that has a data dependency with the crash location. Step (3) propagates the CFC to the fix location
along all feasible paths. In this case, the CFC is propagated along one path with path constraint
i<size , and CFC remains unmodified. Step (4) synthesizes a patch f to replace the for-condition.
To completely fix the bug, we should ensure size≤2*i is always satisfied after applying f . In this
case, the synthesizer gives i <= size/2. Thus, the program can be patched as follows:
- for (i = 3; i < size / 2; i *= 2)
+ for (i = 3; i <= size / 2; i *= 2)

The resulting patch is equivalent to the developer patch. In contrast, test-driven program repair
approaches may produce over-fitting patches. For example, the following patch fixes the bug for
size=13, but does not generalize to other crashing inputs such as size=7:
+ for (i = 3; i < size / 2 || i == 6; i *= 2)

3 BACKGROUND ON SYNTHESIS
Given a set of specifications, program synthesis generates a program satisfying the specifications.
Program synthesis is formalized to be a second-order constraint solving problem in the recent work
on SE-ESOC [29]. We build our program synthesizer on top of the approach proposed by SE-ESOC.
Given a set of componentsC , this approach first constructs the set of terms and represents them via
a tree. Specifically, each leaf of the tree corresponds to components without input, and intermediate
node has as many subnodes as the maximal number of inputs of a component. For each node i
with sub-node {i1,i2,...,ik }, the output and inputs are represented by outi and {outi1 ,outi2 ,...,outik },
respectively. In addition, boolean variables s ji is the j-th selector of node i , which means j-th
component is used in this node, Fj represents the semantics of j-th component, and N is the number
of nodes in the tree. The well-formedness constraint is encoded as φwf p := φnode ∧ φchoice , such
that:

φnode :=
N∧
i=1

|C |∧
j=1

(
s ji ⇒

(
outi = Fj

(
outi1,outi2, ...,outik

)))
(1)

φchoice :=
N∧
i=1

exactlyOne
(
s1i , s

2
i , ..., s

C
i

)
(2)

For a node, φnode describes the semantic relations of each node between its output and inputs,
where the inputs are the outputs of its sub-nodes. φchoice restricts that only exactly one component
is selected inside each node. Using the above encoding, the output of root node represents a function
f that connects inputs and outputs of components. Finally, given n input-output pairs {αk , βk |

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:6 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

1 ≤ k ≤ n}, the synthesis goal is to generate function f by traveling the abstract tree and make
φcorrect satisfied.

φcorrect :=
n∧

k=1
βk = f (αk) (3)

4 METHODOLOGY
Our workflow involves constraint extraction, propagation and patch synthesis. In this section, we
present each step in more detail.

4.1 Crash-Free Constraint Extraction
Our workflow begins with a vulnerable program and a single crashing input. The first step is to
extract both (1) the crashing location (e.g., filename/lineno), and (2) the crash-free constraint (CFC)
representing the condition that was violated and the underlying cause of the crash. For (1), the crash
location is extracted according to debugging information when the crash is triggered, which needs
us to compile the program with debugging option. For (2), the CFC extraction is template-based,
and is instantiated from the crashing expression/statement. Our tool chain currently considers
three basic classes of crash:

(1) Developer-induced crashes, i.e., assert(C) failure;
(2) Sanitizer-induced crashes caused by the program violating a sanitizer-enforced safety property

(e.g., memory safety, type safety, etc.); or
(3) Hardware-induced crashes due to the program executing an illegal operation (e.g., null-pointer

access, divide-by-zero, etc.).
A summary of the different kinds of crashes and the corresponding CFC-templates are shown in
Table 1. Here, the crash expression is matched against the corresponding crashing expression/state-
ment from the buggy program, and the CFC-template is instantiated accordingly. We choose those
templates because they cover the common errors and vulnerabilities in C/C++ programs, e.g. null
pointer deference, integer/buffer overflow. In this paper, we restrict to fix the bugs supported by
these templates. Our tool can also fix other kinds of bugs by extending the templates.

For Example 2.1, the crashing statement memcpy(r+i, r, size−i) is matched against the template
from Table 1 using the substitution p=r+i, q=r, and s=size−i. This yields the following CFC
after substitution and simplification:

(r+i+size−i≤r ∨ r+size−i≤r+i) ≡ (size ≤ 0 ∨ size≤2*i)

We shall discuss the CFC generation in more detail.

4.1.1 User-Assertion/Hardware Constraint Extraction. The CFC for user assertions and hardware-
induce crashes is relatively straightforward to generate. Assuming the crash is caused by a user
assertion failure assert(C), the CFC can be read directly from the assertion statement itself, i.e.,
CFC=C . Crashes can be caused by hardware faults such as NULL-pointer dereference and divide-by-
zero are detected using an appropriate signal handler, e.g., SIGSEGV with si_addr=0 and SIGFPE
with si_code=FPE_INTDIV respectively. The correspondingCFC ensures that the crashing symbolic
pointer/divisor is not zero.

4.1.2 Sanitizer Constraint Extraction. For our purposes, a sanitizer is any dynamic analysis tool that
instruments/modifies the program with additional runtime checks enforcing some safety properties,
such as memory safety, preventing integer overflows, or other undefined behavior avoidance.
Typically, sanitizers insert instrumented checks/assertions before relevant operations. For example,
as shown in the following figure, the instrumentation of most spatial memory safety sanitizers
(a.k.a., bounds-check sanitizers) track object bounds information (i.e., the size and base address of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:7

Table 1. Basic crash classes, crash expressions/statements, and the corresponding Crash-Free Constraint

CFC-template. We consider seven types of crash: explicit developer assertion violation, sanitizer-induced crash

for buffer overflows/underflows, integer overflows, API constraint violation (e.g. non-overlapping regions for

memcpy), and hardware-induced crashes such as NULL-pointer dereference.

Class Expression CFC Template
developer assert(C) C

sanitizer
*p

p+sizeof(*p) ≤ base(p)+size(p)
p ≥ base(p)

a op b MIN ≤ a op b ≤ MAX (over Z)
memcpy(p, q, s) p+s ≤ q ∨ q+s ≤ p

hardware *p (for p=0) p , 0
a / b (for b=0) b , 0

each allocated object) using a disjoint metadata store or related method. At run-time, this metadata
is used to look up the object bounds corresponding to the dereferenced pointer, and this pointer
is checked against these bounds. If the instrumented check fails, the program is terminated, i.e.,
“crashes”.

meta-dataobject
Memory space

0xffb0(base), 5(size)
Instrumentation-time

meta-dataobject

Run-time

Memory space

access access<0xffb0+5?

Sanitizers can only detect “crashes” on concrete program state, e.g. specific values of size and base
on a certain test. We then symbolize the safety condition that sanitizer enforces by mapping the
concrete state back to variables/memory relevant to the crash. For Example 2.1, a sanitizer detects
source/destination memory regions overlap when size=13. We then generate CFC by mapping the
concrete value of source/destination back to program variables r and r+i , respectively. To map
concrete crashing state back to symbolized variables, we extend the meta data by also restoring
the corresponding program variable information (e.g. variable name, type) representing size and
base. When the crash is detected, we can simply construct the crash-free constraints using the
symbolized program states (program variables). However, in some cases, we may fail to symbolize
constraints because some variables used to construct CFC are not accessible at the crashing points,
i.e. the variables stored in metadata have already been killed at the crashing points. In the general
case, we could symbolize the CFC using an extended program state.

Sanitizer Constraint Language. Some sanitizer-inserted instrumented checks enforce conditions
over an extended state that is managed by a runtime library or additional instrumentation. This
extended state is not part of the original program itself. As such, the sanitizer assertion is over an
extended program state that includes the sanitizer runtime. To handle sanitizer-extended state, we
allow the generated CFC to include functions/types/variables that do not necessarily appear in
the original program. For example, in the case of bounds-check sanitizers, we introduce two new
abstract functions:
- base(p): the base address of the object referenced by p; and
- size(p): the size (in bytes) of the object referenced by p.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:8 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

ALGORITHM 1: Fix localization algorithm
Input: A crash location (crashLoc) and an Inter-procedure Control Flow Graph (ICFG)
Output: A set of candidate fix locations (fixLocs)

1 fixLocs := {crashLoc};
2 repeat
3 fixLocsPrev := fixLocs;
4 foreach fixLoc ∈ fixLocsPrev, loc ∈ ICFG − FixLocsPrev do
5 if depends(loc, fixLoc) ∧ dominates(CFG, loc, crashLoc) then
6 fixLocs := fixLocs ∪ {loc};
7 end
8 end
9 until fixLocsPrev = fixLocs;

10 rFixLocs := rank(fixLocs);
11 return rFixLocs;

The generated CFC will be over these extended functions (see Table 1). Another example is integer-
overflow sanitizers, where the generated CFC (e.g., a+b ≤ MAX) is over arbitrary precision integers
(Z) rather than the original 32bit integer type. For the purpose of CFC-generation, we extract the
extended-language constraints “as-is”, and defer further simplification/handling to the latter stages
of our workflow.

4.2 Dependency-based Fix Localization
Once the crash location and CFC have been determined, the next step is to decide one (or more) fix
location(s) where the patch(es) are to be applied. Typically, existing FL approaches, e.g. spectrum-
based FL [36], find candidate fix locations by analyzing the execution trace of passing and failing
tests. The FL results depend on the quality of the tests, but high-quality tests are not always
available. Unlike traditional FL approaches, we make a minimal assumption that only one failing
test (exploit) is available, which is a very common scenario when security vulnerabilities are found.
The main intuition of our dependency-based fix localization is that the fix location(s) ought

to exhibit a control or data-dependency with the crash location. Such that, the statement at fix
location can influence the truth value of the CFC. Just like spectrum-based FL, our second intuition
is that the fix location(s) should intersect with the execution path of the crashing test. As a practical
realization of the above intuitions, our tool chain uses the crash location as the starting point and
performs backward control and data-dependency analysis along with crashing path. Algorithm 1
summarizes the fix localization algorithm to decide candidate fix locations. Here, the algorithm
takes as input an Inter-procedure Control Flow Graph (ICFG) and a crash location (crashLoc). Since
the ICFG may be large in practice, partial ICFG is constructed by considering locations visited by
the failing test (exploit) and dependency analysis is performed with the crashing statement as the
slicing criterion. The algorithm iteratively builds a set of potential fix locations (fixLocs) by adding
nodes that (1) have a (transitive) dependency with the crash location, and (2) dominate the crash
location. Finally, the algorithm generates a set of sorted fix location candidates, which is ranked
according to the distance to the crashing location.

Dependency Closure. Our algorithm also considers the transitive closure of static data and control
dependencies [40] of the crashing statement to compute potential fix locations. Data dependencies
are determined using the standard def-use-chain traversal algorithm over a Single Static Assignment
(SSA) representation of the program. We detect control dependencies using the standard Control

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:9

fix location

P1 P2 P3 ... Pn
Pother

crash location

Fig. 2. Illustration of the fix localization algorithm. The algorithm attempts to find a node (fix location) that

(1) is a dependency of, and (2) dominates the (crash location). All paths from the entry point to the crash

location must pass through the fix location. There can be more than one path (Pi) between the fix and crash

locations. It is allowable that some paths, including loops, from the fix location do not pass through the crash

location (Pother).

Dependence Graph (CDG) [5] program analysis as part of the LLVM compiler infrastructure. Con-
sidering Figure 1a once more, the for-condition (line 4) is a control dependency on the assignment
statement (i *= 2, also line 4), and the crash location (line 7) is data dependent on this assignment.
Thus, the for-condition is a potential fix location.

Crashing Path and Dominance. The set of all (transitive) data and control dependencies of the
crash location can be quite large, leading to many potential fix locations. To reduce the number of
potential fix locations, we restrict the fix location(s) should exist somewhere along the concrete
path belonging to the original crashing test case. Furthermore, in order to guarantee that the
patched program satisfies the CFC, our fix localization algorithm only considers statements that
dominate the crash location—i.e, all paths from the entry point to the crash location must also pass
through the fix location, as illustrated in Figure 2. Considering Example 2.1, the for-condition (line
4) dominates the crash location, since all paths from the entry will visit the for-condition at least
once. There are usually multiple nodes that dominate the crash location in real-world programs,
meaning there are multiple potential fix locations. Note that, there are always at least two nodes
that dominate the crash location: the entry point, and the crash location itself.

4.3 Crash-Free Constraint Propagation
Aweakest precondition is the least restrictive precondition that will guarantee the postcondition [4].
We consider the problem of backward propagation as finding the weakest precondition CFC ′ at fix
location l that necessarily drives program to the crash location and satisfies CFC. As shown in [15]
(Theorem 9), for all deterministic programs P and any desired post-conditionQ :wp(P,Q)=fwd(P,Q),
where wp represents the weakest precondition that drives program P to satisfy Q , while fwd is
the result generated by forward symbolically executing P from the first statement to the last and
substituting the used variables in Q with symbolic variables. In this paper, we follow this approach
and use forward symbolic execution to calculate the weakest precondition. Given a fix location l ,
crash location c , and CFC, we perform symbolic execution between l and c , and calculate weakest
precondition CFC ′ at l . Our symbolic execution starts concrete execution with a concrete input t
until the fix location l . The concrete input t can be the exploit of the vulnerability being fixed, or
any test that can drive program to l . From the fix location, we insert symbolic variables and start
symbolic execution to explore all the paths Π from fix location l to crash location c .

Symbolic Variables Insertion. At fix location, existing semantics-based repair techniques, e.g. Sem-
fix [35], Angelix [33] and [29], represent the to-be-repaired expression as (either a first-order or a
second-order) symbolic variable. Symbolic execution captures the constraint of passing a given

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:10 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

test t by exploring alternate paths from the fix location along which the execution of t could be
driven in the fixed program. In contrast, in our approach, symbolic execution computes the weakest
pre-condition of the crash-free constraintCFC , by exploring all paths between fix location and crash
location. Apart from generating a (second-order) symbolic variable ρ at the fix location capturing
the to-be-synthesized expression, we also set the live variables V , on which CFC is dependent, as
symbolic variables. With these symbolic variables, we can explore and navigate the paths between
fix and crash location.

Symbolic execution scope. To avoid exploring irrelevant paths, all the paths that never reach crash
location, e.g. Pother in Figure 2, are terminated early (whether a path can reach c is determined by
analyzing control flow graph). With the help of symbolic variable injection and early termination,
the explosion of paths is reduced. Furthermore, we do not suffer from the path explosion issue
common in symbolic execution, because fix location is usually close to the crash location.

Constraint collection. After symbolic exploration, we collect the path constraints pc j for each path
πj ∈ Π (all feasible path from l to c). Besides, following each πj , all the variables used in CFC can
be represented using the symbolic variables (V and ρ). By replacing the elements in CFC with the
symbolic representations of V and ρ, we rewrite CFC as CFC ′

j . Then, pc j ⇒ CFC ′
j will be exactly

same as the constraint by backward propagating CFC from crash location to fix location along path
πj . Consider the following program

input x, i; i f (i>0) y=x+1; else y=x−1; output y;

Suppose CFC is (y > 5), along the if-then branch, we will get the constraint (i>0 ⇒ x + 1 > 5).

Constraint Simplification (Optional). The propagated constraintsmay still contain extended sanitizer-
supplied functions (e.g., base(p)/size(p)) or types (e.g., Z for integer overflow). There are two basic
approaches to handling the extended constraint language: (1) Synthesize the patch “as-is”. If
necessary, extra functionality can be supplied using a suitable runtime library; or (2) translate the
extended constraints into the native language if possible.
Approach (1) is the most general. For example, runtime implementations of the base(p)/size(p)

are available using a suitable library such as [8], meaning these functions can be used in a patch.
The downside is that this introduces an additional dependency on the patched program, which
may be undesirable for some applications. The alternative (2) approach is to rewrite the extended
constraints back into the native language if possible. For example, using a simple static analysis,
our tool searches for a dominating CFG node where the object associated to p is first allocated, e.g.,
ptr=malloc(len). If such a node is found, then our tool can substitute base(p)=ptr and size(p)=len.
This approach is less general than (1) since it depends on a suitable substitution being found.

4.4 Patch Synthesis
After backward propagation of crash-free constraints, patch synthesis is used to rewrite the state-
ment at fix location and guarantee:

{true}[ρ 7→ f]{CFC ′}

Though our reasoning is performed on partial program (from fix to crash location), the synthesized
patch will be also effective for the whole program, because the precondition (true) is applied. Once
{true}[ρ 7→ f]{CFC ′} is satisfied, CFC ′ is guaranteed to be hold under any context.
Instead of satisfying input-output relations as shown in Equation 3, the synthesizer is used to

produce a patch satisfying a certain constraint. Suppose Π is the set of feasible paths between fix
and crash location, for each path πj ∈ Π, the generated patch f should imply CFC ′

j under all input

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:11

ALGORITHM 2: Extension of second-order synthesizer
Input: The original buggy expression e , the constraint φcorrect
Output: A patch f which satisfies φcorrect

1 hard := φwfp ;
2 soft := φsyn ;
3 patches := ∅ ;
4 while |patches | ≤ N and (timeout not reached) do
5 fc := pMaxSMT(hard, soft) ;
6 I := SMT(¬φcorrect [f 7→ fc]) ;
7 if I , None then
8 hard := hard ∧ φcorrect [V 7→ I] ;
9 else
10 patches := patches ∪ { fc } ;
11 end
12 end
13 return semSelect(patches) ;

space. Then, we change the definition of φcorrect defined in Section 3 to:

φcorrect B

|Π |∧
j=1

((
ρ = f (V) ∧ pc j

)
⇒ CFC ′

j

)
(4)

where f represents the to-be-synthesized function and V is the set of variables used by f . For the
example 2.1, φcorrect will be:

φcorrect = (ρ = f (size, i) ∧ ¬ρ ∧ i < size) ⇒ size ≤ i ∗ 2

Since f is a function and the implication should hold for all inputs, φcorrect is actually a second-
order formula. To solve this formula, ExtractFix uses the idea of second-order solver [30] to convert
φcorrect to a first-order formula, and then uses counter-example guided inductive synthesis (CEGIS) [16]
to find proper patches. By synthesizing f satisfying φcorrect , we can handle all bug-triggering inputs
that violate CFC ′, hence CFC.
Though the generated patch makes CFC hold, we may still have a wide choice of candidate

patches. For fixing the bug in example 2.1, several patches satisfying the φcorrect (equation 4) could be
generated, such as {1, i ≤ size/2}. Obviously, the second one is more likely to be correct. To further
improve the quality of patches, the intuition is that correct patch should be similar, both syntactically
and semantically, with the original program. To generate “similar” patches, ExtractFix extends
Second-order solver by further considering the distance between the patched and original program.
The overall workflow of our synthesizer is shown in Algorithm 2, which takes as input the

suspicious expression e and φcorrect , and generates a patch f . ExtractFix first generates a patch
candidate by solving combined hard and soft constraints using MaxSMT[10] (line 5 of Algorithm
2). The hard constraint is initialized as φwfp (refer section 3), which ensures the candidate is well-
formed. The soft constraint φsyn formulates the syntax distance between buggy expression e and
candidate patch. More formally, we build abstract tree Te for e , and Tc for the patch candidate, and
define

φsyn :=
|Te |⋃
k=1

{
T k
e == T

k
c

}
(5)

whereT k
e (T k

c) denotes the k-th node of treeTe (Tc). MaxSMT constructs a patch candidate fc which
strictly satisfies the hard constraint, and satisfies maximum number of soft constraints (shortest

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:12 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

distance). The candidate f is then validated by Satisfiability Modulo Theories (SMT) solver [6] to
check whether an input that violates φcorrect exists (line 6). If such a counter-example I exists (line
7-8), the counter-example I is first encoded into first-order logic and then added into hard constraint.
Consider the example shown in Figure 1a, in the first iteration, assume fc = λi . λsize . i<size/2 ,
then

φcorrect = (ρ = (λi . λsize . i < size/2) ∧
¬ρ(i, size) ∧ i < size) ⇒ size ≤ i ∗ 2

is violated when i = 6 and size = 13. Therefore, we add

(ρ = f ∧ ¬ρ(6, 13) ∧ 6 < 13) ⇒ 13 ≤ 12

i.e. f (6, 13) = true , into the hard constraints. With the refined hard constraints, the candidate fc
generated in the next iteration will ensure φcorrect must be satisfied under I , i.e. fc (6, 13) = true .
Eventually, a plausible patch fc is thereby generated, which will be added into the patches list (line
10). The process continues until timeout is reached or we find N plausible patches, where timeout
and N are defined by users.
Among N plausible patches, the most likely to be the correct one is selected according to its

semantic distance to the origin buggy expression e (semSelect line 13). Specifically, we (1) generate
a set of inputs In that can distinguish plausible patches in terms of their semantics (2) for each
in ∈ In, calculate the values of each plausible patch and expression e (3) calculate the value distance
between each patch with e (4) select the patch with the shortest distance.

4.5 Multiple-line Fix
The proposed work-flow can be easily extended to support bug-fixing in multiple locations. Fix
localization can be generalized as a set of nodes that collectively dominate the crash location, i.e.,
all paths must go through one of the nodes from the set. Suppose we are introducing patches at
location {l1, . . . , ln}, when propagating CFC, multiple second-order variables {ρ1, . . . , ρn} are intro-
duced to represent the to-be-synthesized expressions at {l1, . . . , ln}, respectively. Correspondingly,
the generated CFC ′ will involve multiple second-order variables {ρ1, . . . , ρn}. Then, the goal of
synthesizer is to generate a set of function { f1, . . . , fn} to satisfy:

φcorrect B

|Π |∧
j=1

((n∧
i=1

(
ρi = fi (Vi)

)
∧ pc j

)
⇒ CFC ′

j

)
(6)

5 EVALUATION
We evaluate the effectiveness and efficiency of ExtractFix and answer the following research
questions.
RQ1 Compared with state-of-the-art automated program repair tools, what is the overall effective-

ness of ExtractFix in fixing vulnerabilities?
RQ2 Can ExtractFix address the overfitting problem in automated program repair?
RQ3 What is the efficiency of ExtractFix in generating patches?

5.1 Implementation
We have implemented our approach in a tool named ExtractFix, whose architecture is shown in
Figure 3. ExtractFix takes as input the vulnerable program and corresponding exploit (test case)
to generate patches. ExtractFix is composed of four main components: constraint extractor, fix
locator, propagation engine and patch synthesizer.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:13

KLEE

Test case LLVM pass

Buggy
program

No

Patch

𝐶𝐹𝐶

Crash info
Fix locs Ingredients

𝐶𝐹𝐶′
LowFat,
UBSan

Verify

Runtime

Propagation
engine

Controller Second-order
synthesizer

Z3

Fix locator

Sanitizer

Fig. 3. Architecture of ExtractFix.

Constraint extractor takes as inputs the vulnerable program and exploit, generates crashing
location and crash-free constraint CFC. The constraint extractor is mainly implemented on top of
sanitizers: Lowfat [7, 9] for buffer overflow/underflow and UBSAN [45] for integer overflow.We also
considered ASAN [38] for buffer overflow detection, however the LowFat instrumentation more
closely corresponds to the CFC template, simplifying the extraction process. Although our prototype
supports a specific set of defects, other bugs can be supported by integrating new sanitizers and
corresponding templates. Once a crash is detected, the concrete crash condition is symbolized into
crash-free constraint CFC by mapping the concrete value back to program variables. To enable the
mapping, the programs should be compiled using clang with debug option.

Fix locator takes as inputs the buggy program and crash information, and produces a set of
ranked fix location candidates. The fix locator is actually a static analysis tool and is implemented
as a LLVM pass 2. We implement it on top of LLVM because LLVM provides a set of interfaces to
generate control flow graph and data dependency graph.

Propagation engine is built on top of KLEE [2]. For the purpose of generating weakest precon-
dition, we extends KLEE in the following two aspects. First, we change the constraint collection by
only considering the path constraints between fix and crash location. Second, we early terminate
the paths that cannot reach crash location. The execution scope is controlled by Controller.
Patch synthesizer is a second-order synthesizer which is implemented according to the ap-

proach proposed in [29]. Besides, ExtractFix implements three new features: (1) taking the CFC
as correctness criterion (2) combining with counter-example guided synthesis and (3) taking into
account the distance between patches and original buggy expression. In our implementation of
synthesizer, we use Z3 [6] as backend SMT solver.

5.2 Experimental Setup
To evaluate our approach, we choose vulnerabilities from a set of popular applications for Extract-
Fix to fix by searching the online databases [42–44]. Those databases provide a list of entries, and
each of them contains an identification number, a short description of the bug and optional repro-
ducer test case (exploit). We obtain our candidate bugs by searching for the bug types (including
buffer-overflow/underflow, integer-overflow, divide-by-zero, null pointer and developer assertion)
that our prototype supports. We just consider the bugs reported after 2010 because the earlier bugs
is harder to reproduce. Then, we randomly select and manually filter the subjects based on the
following four criteria:

2LLVM Pass: http://llvm.org/docs/WritingAnLLVMPass.html

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:14 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

Table 2. Subject programs and their statistics

Program #Vul Loc Description
Libtiff 11 81K library for processing TIFF files

Binutils 2 98K a set of programming tools for creating
and managing binary programs

Libxml2 5 299K XML C parser and toolkit
Libjpeg 4 58K C library for manipulating JPEG files
FFmpeg 2 617K library for processing audio & video
Jasper 2 29K library for coding & manipulating image
Coreutil 4 78K GNU core utilities
Total 30 — —

(1) exploit(s) to trigger the vulnerability are available or exploit(s) can be constructed from the
available information;

(2) the target vulnerability has already been fixed by developers so that we have the ground
truth on how to fix the bug;

(3) the target application can be compiled into LLVM [20] bitcode and executed by KLEE [2];
(4) the target vulnerability can be reproduced in our environment.

Finally, 30 unique vulnerabilities across seven applications are selected as our benchmark, which
includes 16 buffer-overflow/underflow, 4 integer-overflow, 5 divide-by-zero, 3 developer assertion
and 2 null pointer dereference. The exploits as well as the instructions to reproduce the bugs are
obtained from blogs of researchers, bug reports, exploit databases or the attachments along with
patch commit. The selected subjects are across seven applications, and their brief descriptions are
given in table 2. Column Loc represents their lines of source code, while column #Vul shows the
number of selected vulnerabilities for each project.
The experiment are directly conducted on these vulnerable applications on a device with Intel

Xeon CPU E5-2660 2.00GHz process (56 cores) 64G memory and 16.04 Ubuntu. We set timeout for
the symbolic execution and program synthesis as 30 minutes each.

5.3 Experimental Results
5.3.1 How effective is ExtractFix in fixing vulnerabilities?

To answer RQ1, we evaluate the effectiveness of ExtractFix in the following three aspects: 1)
extracting CFC 2) finding correct fix locations and 3) generating patches to fix vulnerabilities. Recall
that the vulnerabilities are formalized as violations of constraints, we first evaluate whether Ex-
tractFix can successfully extract such constraints for the given vulnerabilities. For each generated
constraint, we verify its correctness by manually investigating the source code and root cause
of the vulnerability. Given CFC, we then evaluate whether ExtractFix can find the correct fix
locations by referring to the developer patches. As our dependency-based fix localization creates a
set of ranked candidate fix locations, we retrieve how many candidates we need to inspect until
we hit the correct one. We set four levels of correctness: T-1, T-3, T-5 and T-10, where T-N means
the correct fix location is hit within top N candidates. Given CFC and fix location candidates, we
then evaluate the effectiveness of ExtractFix in generating fix, and compare it with existing auto-
mated program repair tools: Prophet [28], Angelix [33] and Fix2Fit [12]. Prophet is a search-based
automated program repair tool, which ranks patch candidates using a machine learning based
approach. Angelix is a state-of-the-art semantic-based program repair tool, which extracts patch
requirements from test cases and then directly synthesizes a patch. Fix2Fit proposes to generate

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:15

Table 3. Patch generated by ExtractFix

Subject Vulnerability ID Type CFC FL Patched Correct? Time (m)

Libtiff
CVE-2016-5321 BO ✓ T-1 ✓ Syntactic Equiv. 1.68
CVE-2014-8128 BO ✓ T-1 ✓ Semantic Equiv. 2.40
CVE-2016-5314 BO ✗ - ✗ — —
Bugzilla 2633 BO ✓ T-5 ✓ Plausible 4.03
CVE-2016-10094 BO ✓ T-3 ✓ Plausible 1.87
CVE-2016-3186 DL ✓ T-1 ✓ Syntactic Equiv. 32
CVE-2017-7601 IO ✓ T-3 ✓ Plausible 2.38
CVE-2016-9273 BO ✗ - ✗ — —
CVE-2016-3623 DZ ✓ T-10 ✓ Semantic Equiv. 2.05
CVE-2017-7595 DZ ✓ T-3 ✓ Semantic Equiv. 2.20
Bugzilla 2611 DZ ✓ T-1 ✓ Semantic Equiv. 2.13

Binutils CVE-2018-10372 BO ✓ T-1 ✓ Plausible 16.57
CVE-2017-15025 DZ ✓ T-3 ✓ Semantic Equiv. 36.00

Libxml2

CVE-2016-1834 IO ✓ T-5 ✓ Plausible 5.97
CVE-2016-1839 UO ✗ - ✗ — —
CVE-2016-1838 BO ✓ T-1 ✓ Plausible 4.12
CVE-2012-5134 UO ✓ T-3 ✓ Syntactic Equiv. 40.83
CVE-2017-5969 ND ✓ T-1 ✓ Syntactic Equiv. 4.30

Libjpeg
CVE-2018-14498 BO ✓ T-3 ✓ Plausible 1.22
CVE-2018-19664 BO ✗ - ✗ — —
CVE-2017-15232 ND ✓ T-1 ✓ Semantic Equiv. 1.37
CVE-2012-2806 BO ✓ T-5 ✓ Semantic Equiv. 33.26

FFmpeg
CVE-2017-9992 BO ✓ T-3 ✓ Semantic Equiv. 9.27
Bugzilla-1404 IO ✓ T-3 ✓ Semantic Equiv. 7.20

Jasper
CVE-2016-8691 DZ ✓ T-3 ✓ Semantic Equiv. 1.08
CVE-2016-9387 IO ✓ T-10 ✓ Plausible 1.05

Coreutil Bugzilla-26545 DL ✓ T-3 ✓ Syntactic Equiv. 6.03
Bugzilla-25003 DL ✓ T-1 ✓ Syntactic Equiv. 4.30
GNUBug-25023 BO ✗ - ✗ — —
GNUBug-19784 BO ✗ - ✗ — —

Total 30 — 24 24 16 (avg) 9.31
BO: buffer overflow; BU : buffer underflow; IO: integer overflow; DZ : divide-by-zero;

DL: developer assertion; ND: null pointer dereference

additional test cases to filter out the overfitted patches. Since Prophet, Angelix and Fix2Fit are all
test-driven program repair tools, we run all the three tools with test cases which are composed
of 1) exploit that can trigger the vulnerability and 2) available developer tests. Note that, except
for one exploit, ExtractFix does not need additional test, developer tests are used to verify the
generated patches which is an optional step.

Table 3 shows our evaluation results for each defects. We represent the vulnerability id using its
CVE number, bug id in Bugzilla or GNU report, which is shown in column Vulnerability ID. Column
Vulnerability type gives the type of each vulnerability. The effectiveness of ExtractFix is shown
in column 4-6, where CFC shows whether the constraint is correctly extracted, FL represents fix
localization results, and Patched shows whether the vulnerability is patched by ExtractFix.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:16 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

Crash-free constraint extraction Out of 30 vulnerabilities, ExtractFix can successfully extract
correct constraints for 24 defects, and all of them are correct according to our manual investigation.
The results show that our constraint extraction can effectively extract crash-free-constraints,
especially for integer overflow, divide-by-zero and developer assertions. We cannot extract correct
constraint for six buffer overflow vulnerabilities because the debugging information is ambiguous
when symbolizing the condition enforced by sanitizer (the limitation of our prototype).

Fix localization For the cases that we can extract correct constraints, we further evaluate the
effectiveness of our fix localization. Out of 24 vulnerability, the correct fix locations of 9 defects
are exactly the first candidate T-1 recommended by our fix localization algorithm. The correct fix
locations of 19 defects are correctly localized by iterating the top three candidates, while 22 are
localized in the top 5 candidates. Instead of purely using the execution trace (e.g. spectrum-based
fault localization), our fix localization also considers the program dependency, so that we can
effectively localize the faulty statements that may affect the crashing state CFC.
Patch generation Once constraints are correctly extracted, ExtractFix then finds potential

fix locations and generates patches via constraint propagation and program synthesis. Out of
30 vulnerabilities, ExtractFix can generate 24 patches. Those patches fix the bug by changing
condition, modifying the right-value of assignment or inserting an if-guard checker. For instance,
to fix the Libtiff buffer overflow of CVE-2014-8128, developers add an if-checker at line 571 to
break the while-loop when nrows is equal to 256:

571 + if (nrows == 256) break;

Instead, ExtractFix fixes the bug by modifying the exit condition of while-loop, which is semanti-
cally equivalent to developer patch:

567 - while (err >= limit)
567 + while (err >= limit && nrows < 256)

With this patch, it is guaranteed that the vulnerability cannot be triggered again by the given
exploit.
Multi-line fix To fix the Libjpeg buffer overflow vulnerability of CVE-2012-2806, ExtractFix

generates multiple-line fixes by changing two for-loop conditions. All the generated patches can
be found in https://extractfix.github.io.

Comparison with state-of-the-art We then compare the repairability of ExtractFix with Prophet,
Angelix and Fix2Fit. We cannot run Angelix on some applications because the libraries (e.g. clang
2.9) used by Angelix no longer support the new versions of those applications. We did not run
Fix2Fit on Libjpeg since it does not support the compilation using cmake. Prophet fails to build
Binutils and FFmpeg. The columns 3-6 of Table 4 represent the number of patches generated by
Prophet, Angelix, Fix2Fit and ExtractFix, respectively. Compared with Prophet and Angelix,
ExtractFix generates same or more patches for all the applications. Compared with Fix2Fit,
ExtractFix generates more patches on Libtiff and Binutils, but less on Coreutils. Fix2Fit uses
fuzzing for ruling out patch candidates. In fact, our comparison with Fix2Fit is conservative in favor
of Fix2Fit, since Fix2Fit’s fuzzing campaigns have an 8 hour timeout, while our program analysis
based technique has a timeout of 1 hour (30 minutes for symbolic execution and 30 minutes for
program synthesis). Even then ExtractFix generates more plausible patches than Fix2Fit. More
importantly, as we will see later, the patches generated by ExtractFix are of significantly higher
quality than the patches from Fix2Fit.

Out of 30 vulnerabilities, ExtractFix extracts 24 correct constraints and generate 24 patches.
ExtractFix generates more patches than Prophet, Angelix and Fix2Fit.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://extractfix.github.io

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:17

Table 4. The number of patches and overfitting-free patches generated by Prophet, Angelix, Fix2Fit and

ExtractFix

Program #Vul Patched? Equivalence
Prophet Angelix Fix2Fit ExtractFix Prophet Angelix Fix2Fit ExtractFix

Libtiff 11 7 7 7 9 1 0 1 6
Binutils 2 - - 1 2 - - 0 1
Libxml2 5 3 0 4 4 0 0 1 2
Libjpeg 4 3 - - 3 1 - - 2
FFmpeg 2 - - 2 2 - - 1 2
Jasper 2 2 2 2 2 0 0 0 1
Coreutil 4 2 - 3 2 0 - 1 2
Total 30 17 9 19 24 2 0 4 16

5.3.2 Can ExtractFix address the overfitting problem?

The generated patch can definitely handle the bug-triggering exploit, but it may overfit to the given
exploit. To evaluate patch correctness, we take the developer patch as criteria and examine the
patch correctness by manually analyzing developer patch. For each generated patch by ExtractFix,
we check its syntactic and semantic equivalence with the developer patch by manually examining
if the patch change the program behavior in the same way as developer patch.
In Table 3, column Correct? shows the evaluation results. We mark a patch as Plausible if it

partially fixes the vulnerability or shows different behavior with developer patch. Out of the 24
patches, 16 patches are syntactically or semantically equivalent to developer patches, while 8 of
them are plausible patches. A patch is semantically equivalent to developer patches if it fixes the
specific crash (enforced by CFC) in the same way as developers. Plausible patches exist because
(1) the CFC ′ could be incomplete since backward propagation misses some paths between fix and
crash location (e.g. paths inside for, while loop) (2) ExtractFix knows how to completely fix the
vulnerability, but has narrow knowledge about the whole program. For instance, an integer overflow
CVE-2017-7601 occurs when performing shift operation (1L<<bitssample) with bitssample>=63
(maximal positive signed long integer is 263−1). To fix this vulnerability, developer insert an if-
checker (if (bitssample>16) return 0) before the crash line.With the guidance of crash free constraint
bitssample<63, ExtractFix fix the bug by inserting if (bitssample>=63) return 0. The generated
patch completely fixes the integer overflow, but may unintentionally modify the other program
behaviors.
We compare ExtractFix with Prophet, Angelix and Fix2Fit for patch quality (syntactically or

semantically equivalent to developer patch). The evaluation results are shown in Table 4, where
columns 7-10 represent the number of correct patches generated by Prophet, Angelix, Fix2Fit and
ExtractFix, respectively. The test suite provided to repair tools is composed of the exploit and all
available developer tests (only very few of them can cover the crash line). Prophet and Angelix
are test-driven program repair tool, so the quality of patches generated by them highly depends
on the quality of test suite. In our setting, the generated patches by these tools can easily overfit
the given tests. Specifically, by manually checking the top patches against developer patches, only
two patches generated by Prophet is correct and all the patches from Angelix overfit the failing
tests. Fix2Fit can filter out some over-fitted patches by test case generation, but the quality of the
patches is not high as found by our experiments. Even though Fix2Fit generate 20 patches, only
four of them are correct, while others still over-fit the given test suite. ExtractFix generates as

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:18 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

many as 16 correct patches. Instead of using tests to guide the patch generation, ExtractFix is
guided by constraints which formulate the root cause of the vulnerability.

ExtractFix outperforms Prophet, Angelix and Fix2Fit in generating patches that are both
syntactically and semantically equivalent to developer patches.

5.3.3 How efficient is ExtractFix in generating patches?

Scalability is one the most challenging problems of symbolic execution, hence semantic-based
program repair. In our evaluation, we show that our approach can scale to real-world large applica-
tions, e.g. FFmpeg with 617K lines of codes. Meanwhile, the execution time to generate patches is
given in Table 3. On average, we only need 9.31 minutes to generate a patch, with maximum of 41
minutes. Our approach is efficient because (1) our symbolic execution is only performed on a small
partial program (2) our second-order program synthesis takes into account the distance between
patch candidates with original expression and first evaluates candidates that are close to original
expression.

ExtractFix can scale to large programs, such as FFmpeg. On average, it takes 9.31 minutes
to generate patches.

5.4 Threats to Validity
Internal Validity The main threat to internal validity is that ExtractFix performs backward
propagation via symbolic execution which may miss some paths and result in incomplete constraint
propagation. Fortunately, we only perform symbolic execution on a very small part of program.
Another threat to internal validity is that we derive our CFC templates from frequently reported
bugs and vulnerabilities, we note that our set of templates is not exhaustive. By extending CFC
templates, ExtractFix can easily support fixing other kinds of bugs/vulnerabilities. The last
internal threat is that we perform manual inspection of the experimental results which might be
error-prone. To mitigate this, two authors of the paper double-checked the generated patches.
External Validity The main threat to external validity is that our selection of subjects may not
generalize to other programs. We cannot evaluate ExtractFix on dataset used in [14, 23, 41],
because FootPatch fixes resource/memory leak (C/C++) and null pointer dereference (Java), large
part of defects in ManyBugs are logic bugs, and the datasets (exploits) used by Senx are not open
available. Instead, we evaluate ExtractFix on a set of real programs and real CVEs to show its
usability. In future, it may be worthwhile to evaluate our approaches on more relevant CVEs and
bugs.

6 RELATEDWORK
In this section, we discuss the approaches that generate patches via semantic analysis and address the
over-fitting problem in program repair. For a general summarization of program repair techniques,
the readers could refer to the surveys [13, 34].

Semantic Program Repair Semantics-based techniques like SemFix [35], Nopol [51], Direct-
Fix [32], Angelix [33] and JFIX [21] generate patches in two steps. First, they formulate the re-
quirement to pass all given tests as constraints for the identified program statements. Second, they
synthesize a patch for these statements based on the inferred constraints. This type of approach
is related to ExtractFix because these approaches also involve constraint extraction and patch
synthesis. Semantics-based techniques extract constraints representing partial specifications to
pass the given tests. The inferred specification cannot be guaranteed to generalize to inputs outside
the test-suite. In contrast, the constraints extracted by ExtractFix represent the condition that was

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:19

violated and the underlying cause of the crash. Therefore, ExtractFix can alleviate the over-fitting
problem in automated program repair by generating patches that generalize beyond the given tests.
Specifically, ExtractFix only needs a single exploit trace to generalize the vulnerability, where
existing semantic repair techniques usually need a test-suite.

Patch Ranking One way of addressing over-fitting in program repair is to rank patches ac-
cording to statistical information learned from code repositories. Typical approaches learn from
existing patches [22, 28, 37], existing source code [49], or both [17, 46] to rank the patches in the
order of likelihood to be correct. On the other hand, Xiong, et al. [48] propose to filter out the
patches based on syntactic and semantic distance between patched and original program. Since
these approaches are based on statistical information or heuristics, there is no guarantee that the
generated patches can be generalized beyond tests. In contrast, our approach extracts crash-free
constraints and ensures the constraint is satisfied on all tests.

Patch Filtering Several approaches [12, 47, 52] generate new test inputs to test the generated
patches, and discard patches that result in crashes. Different from these approaches that perform a-
posteriori filtering, our approach directly considers the crash-free constraint in the patch generation
and ensures not to generate a patch violating the crash-free constraint.

Static Program Repair Instead of relying on test cases, several approaches propose program
repair driven by static analysis and verification techniques. These approaches generate patches for
static analysis violation by reasoning in separation logic [41] or learning repair strategies from the
wild [1]. These approaches need off-the-shelf static analyzer as oracles which may introduce false
positive or false negative. Specifically, the work of [41] generates patches that are guaranteed to
satisfy certain heap properties (this covers few common bug types such as memory leaks, resource
leaks or null de-reference). Different from our approach that is based on program synthesis to
generate a patch, their approach is still search-based, where semantic search [19] is used to identify
code snippets that satisfy the desired properties. Furthermore, the entire framework is based on
reasoning in separation logic and is used to fix only heap properties.

Reference Implementation In many development scenarios, there exists a reference implemen-
tation, and the developers try to be compatible with the reference implementation while optimizing
other aspects such as performance. For example, when implementing a Java compiler, OpenJDK
is the reference implementation, and other implementations such as Jikes JVM tries to optimize
the performance. Based on this observation, [31] proposes program repair with a reference imple-
mentation, where the reference implementation serves as an oracle to avoid overfitting. Compared
with this approach, our approach does not need a reference implementation.

Customized Program Repair Some program repair approaches are designed to repair a specific
type of bugs, such as fixing memory leaks [11, 26] or concurrency bugs [3, 18]. This type of work
is related to ours because these approaches also assume the existence of a bug constraint and try to
generate patches satisfying the constraint. In contrast, our work does not focus on a specific type
of bug but tries to derive a general approach that works for any bug types where a bug constraint
can be derived.

Vulnerability Repair The recent work SENX [14] aims to repair vulnerabilities using a combi-
nation of predicate generation, patch placement, and patch synthesis. The main difference with
SENX is that SenX does not have any analytical understanding of which fix locations are suitable
and what fixes to insert, and usually inserts trivial if-conditions to disable the crash at/near the
crash location ([14] Table III). Besides, SENX does not perform any constraint propagation. In the
absence of constraint propagation, SENX relies on heuristics to guide patch generation, which
limits it to specific classes of bugs. In contrast, ExtractFix is not limited to certain vulnerabilities.
Most of the patches generated by ExtractFix are more general, and modify expressions/statements
different from the crash location.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

1:20 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

7 CONCLUSION
Over-fitting of generated patches is a key challenge in automated program repair. Over-fitting
results from weak specifications, such as a test-suite, driving program repair. In this work, we
have sought to tackle over-fitting by directly extracting constraint specifications from an observed
vulnerability. Even though the vulnerability is observed on a specific test input (the so-called exploit),
our extracted constraint captures the "general reason" behind the vulnerability via symbolization.
By propagating the extracted constraint from the crash location to other potential fix locations,
we generate fixes via fix localization and patch synthesis. Our work thus goes beyond test-suite
driven repair and provides a workflow and tool for exploring the fix space of common software
security vulnerabilities as well. We plan to make our tool available open source for usage by the
wider research community.

ACKNOWLEDGMENTS
This research was partially supported by a grant from the National Research Foundation, Prime
Ministers Office, Singapore under its National Cybersecurity R&D Program (TSUNAMi project, No.
NRF2014NCRNCR001-21) and administered by the National Cybersecurity R&D Directorate.

REFERENCES
[1] Rohan Bavishi, Hiroaki Yoshida, and Mukul R Prasad. 2019. Phoenix: automated data-driven synthesis of repairs

for static analysis violations. In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM, 613–624.

[2] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs.. In OSDI, Vol. 8. 209–224.

[3] Yan Cai and Lingwei Cao. 2016. Fixing deadlocks via lock pre-acquisitions. In ICSE. ACM, 1109–1120.
[4] Satish Chandra, Stephen J Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions.

In ACM Sigplan Notices, Vol. 44. ACM, 363–374.
[5] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark F. Wegman, and F. Kenneth Zadeck. 1991. Efficiently Computing

Static Single Assignment Form and the Control Dependence Graph. 13 (1991). Issue 4.
[6] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the

Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[7] Gregory J. Duck and Roland H. C Yap. 2016. Heap Bounds Protection with Low Fat Pointers. In Compiler Construction.
ACM.

[8] Gregory J. Duck and Roland H. C. Yap. 2018. An Extended Low Fat Allocator API and Applications. CoRR abs/1804.04812
(2018).

[9] Gregory J. Duck, Roland H. C. Yap, and Lorenzo Cavallaro. 2017. Stack Bounds Protection with Low Fat Pointers.. In
NDSS.

[10] Zhaohui Fu and Sharad Malik. 2006. On Solving the Partial MAX-SAT Problem. In Theory and Applications of
Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings. 252–265.
https://doi.org/10.1007/11814948_25

[11] Qing Gao, Yingfei Xiong, Yaqing Mi, Lu Zhang, Weikun Yang, Zhaoping Zhou, Bing Xie, and Hong Mei. 2015. Safe
Memory-Leak Fixing for C Programs. In ICSE (1). IEEE Computer Society, 459–470.

[12] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding program repair. In ISSTA. ACM, 8–18.
[13] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software Repair: A Survey. IEEE Trans.

Software Eng. 45, 1 (2019), 34–67.
[14] Zhen Huang, David Lie, Gang Tan, and Trent Jaeger. 2019. Using Safety Properties to Generate Vulnerability Patches.

In Proceedings of the 40th IEEE Symposium on Security and Privacy.
[15] Ivan Jager and David Brumley. 2010. Efficient directionless weakest preconditions.
[16] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program

synthesis. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010,
Cape Town, South Africa, 1-8 May 2010. 215–224. https://doi.org/10.1145/1806799.1806833

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/11814948_25
https://doi.org/10.1145/1806799.1806833

Beyond Tests: Program Vulnerability Repair via Crash Constraint Extraction 1:21

[17] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018. Shaping program repair space with
existing patches and similar code. In ISSTA. ACM, 298–309.

[18] Guoliang Jin,Wei Zhang, andDongdongDeng. 2012. Automated Concurrency-Bug Fixing. InOSDI. USENIXAssociation,
221–236.

[19] Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing Programs with Semantic Code Search
(T). In ASE. IEEE Computer Society, 295–306.

[20] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In Proceedings of the international symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

[21] Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser. 2017. JFIX: semantics-based repair of
Java programs via symbolic PathFinder. In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. ACM, 376–379.

[22] Xuan-Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program Repair. In SANER. IEEE Computer
Society, 213–224.

[23] Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar Devanbu, Stephanie Forrest, and Westley
Weimer. 2015. The ManyBugs and IntroClass benchmarks for automated repair of C programs. IEEE Transactions on
Software Engineering 41, 12 (2015), 1236–1256.

[24] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated Program Repair. Commun. ACM (2019).
[25] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. Memfix: static analysis-based repair of memory deallocation errors

for c. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. ACM, 95–106.

[26] Junhee Lee, Seongjoon Hong, and Hakjoo Oh. 2018. MemFix: static analysis-based repair of memory deallocation
errors for C. In ESEC/SIGSOFT FSE. ACM, 95–106.

[27] Huarui Lin, Zan Wang, Shuang Liu, Jun Sun, Dongdi Zhang, and Guangning Wei. 2018. PFix: fixing concurrency bugs
based on memory access patterns. In Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering. ACM, 589–600.

[28] Fan Long and Martin Rinard. 2016. Automatic patch generation by learning correct code. In ACM Symposium on
Principles of Programming Languages (POPL).

[29] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury. 2018. Symbolic Execution with
Existential Second-Order Constraints. In Proceedings of The 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM.

[30] Sergey Mechtaev, Alberto Griggio, Alessandro Cimatti, and Abhik Roychoudhury. 2018. Symbolic execution with
existential second-order constraints. In Proceedings of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,
USA, November 04-09, 2018. 389–399. https://doi.org/10.1145/3236024.3236049

[31] Sergey Mechtaev, Manh-Dung Nguyen, Yannic Noller, Lars Grunske, and Abhik Roychoudhury. 2018. Semantic
program repair using a reference implementation. In ICSE. 129–139.

[32] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking for simple program repairs. In
Proceedings of the 37th International Conference on Software Engineering. IEEE, 448–458.

[33] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable multiline program patch synthesis
via symbolic analysis. In Proceedings of the 38th International Conference on Software Engineering. ACM, 691–701.

[34] Martin Monperrus. 2018. Automatic Software Repair: A Bibliography. ACM Comput. Surv. 51, 1 (2018), 17:1–17:24.
[35] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chandra. 2013. Semfix: Program repair via

semantic analysis. In Proceedings of the 35th International Conference onSoftware Engineering. IEEE, 772–781.
[36] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. 1997. The use of program profiling for software maintenance

with applications to the year 2000 problem. In Software Engineering Esec/Fse’97. Springer, 432–449.
[37] Ripon K. Saha, Yingjun Lyu, Hiroaki Yoshida, and Mukul R. Prasad. 2017. ELIXIR: effective object oriented program

repair. In ASE. IEEE Computer Society, 648–659.
[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy Vyukov. 2012. AddressSanitizer: A fast

address sanity checker. In 2012 {USENIX} Annual Technical Conference ({USENIX}’12). 309–318.
[39] Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure worse than the disease? overfitting in

automated program repair. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
532–543.

[40] Frank Tip. 1995. A survey of program slicing techniques. Journal of Programming Languages 3 (1995). Issue 3.
[41] Rijnard van Tonder and Claire Le Goues. 2018. Static automated program repair for heap properties. In ICSE. ACM,

151–162.
[42] Website. [n.d.]. Bugzilla, http://bugzilla.maptools.org/. Accessed: 2019-07-20.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://doi.org/10.1145/3236024.3236049
http://bugzilla.maptools.org/

1:22 X. Gao, B. Wang, G.J. Duck, R. Ji, Y. Xiong, and A. Roychoudhury

[43] Website. [n.d.]. CVE, https://bugs.chromium.org/p/oss-fuzz. Accessed: 2019-05-22.
[44] Website. [n.d.]. CVE, https://cve.mitre.org/. Accessed: 2019-05-20.
[45] Website. [n.d.]. UndefinedBehaviorSanitizer, https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html. Accessed:

2019-07-20.
[46] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018. Context-aware patch generation for

better automated program repair. In ICSE. ACM, 1–11.
[47] Qi Xin and Steven P. Reiss. 2017. Identifying test-suite-overfitted patches through test case generation. In ISSTA. ACM,

226–236.
[48] Yingfei Xiong, Xinyuan Liu, Muhan Zeng, Lu Zhang, and Gang Huang. 2018. Identifying patch correctness in test-based

program repair. In ICSE. ACM, 789–799.
[49] Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and Lu Zhang. 2017. Precise condition

synthesis for program repair. In ICSE. IEEE / ACM, 416–426.
[50] Xuezheng Xu, Yulei Sui, Hua Yan, and Jingling Xue. 2019. VFix: value-flow-guided precise program repair for null

pointer dereferences. In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 512–523.
[51] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian Lamelas Marcote, Thomas Durieux, Daniel

Le Berre, and Martin Monperrus. 2016. Nopol: Automatic repair of conditional statement bugs in java programs. IEEE
Transactions on Software Engineering 43, 1 (2016), 34–55.

[52] Jinqiu Yang, Alexey Zhikhartsev, Yuefei Liu, and Lin Tan. 2017. Better test cases for better automated program repair.
In ESEC/SIGSOFT FSE. ACM, 831–841.

[53] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairavasundaram. 2011. How do fixes
become bugs?. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on Foundations of
software engineering. ACM, 26–36.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: December 2019.

https://bugs.chromium.org/p/oss-fuzz
https://cve.mitre.org/
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

	Abstract
	1 introduction
	2 Overview
	2.1 Workflow

	3 Background on Synthesis
	4 Methodology
	4.1 Crash-Free Constraint Extraction
	4.2 Dependency-based Fix Localization
	4.3 Crash-Free Constraint Propagation
	4.4 Patch Synthesis
	4.5 Multiple-line Fix

	5 Evaluation
	5.1 Implementation
	5.2 Experimental Setup
	5.3 Experimental Results
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

