
Anti-patterns in Search-Based Program Repair

Shin Hwei Tan
∗ , †

Hiroaki Yoshida
‡

Mukul R. Prasad
‡

Abhik Roychoudhury
†

†National University of Singapore, Singapore
‡Fujitsu Laboratories of America, Inc., Sunnyvale, CA, USA

{shinhwei,abhik}@comp.nus.edu.sg
{hyoshida,mukul}@us.fujitsu.com

ABSTRACT

Search-based program repair automatically searches for a
program fix within a given repair space. This may be ac-
complished by retrofitting a generic search algorithm for pro-
gram repair as evidenced by the GenProg tool, or by build-
ing a customized search algorithm for program repair as in
SPR. Unfortunately, automated program repair approaches
may produce patches that may be rejected by programmers,
because of which past works have suggested using human-
written patches to produce templates to guide program re-
pair. In this work, we take the position that we will not
provide templates to guide the repair search because that
may unduly restrict the repair space and attempt to overfit
the repairs into one of the provided templates. Instead, we
suggest the use of a set of anti-patterns — a set of generic
forbidden transformations that can be enforced on top of
any search-based repair tool. We show that by enforcing
our anti-patterns, we obtain repairs that localize the correct
lines or functions, involve less deletion of program function-
ality, and are mostly obtained more efficiently. Since our set
of anti-patterns are generic, we have integrated them into
existing search based repair tools, including GenProg and
SPR, thereby allowing us to obtain higher quality program
patches with minimal effort.

CCS Concepts

•Software and its engineering → Software testing
and debugging; Search-based software engineering;
•Computing methodologies → Genetic programming;

Keywords

Debugging, fault localization, and repair

1. INTRODUCTION
Automated program repair techniques have gained promi-

nence in recent years [7, 11, 28, 27]. These techniques bear

∗This author was an intern at Fujitsu Laboratories of Amer-
ica during part of this work.

the promise of automatically suggesting fixes to “easy-to-
fix” programming errors, thereby relieving substantial bur-
den from programmers on the manual effort of debugging
and generating fixes.

A major challenge in automated program repairs arises
from the “incomplete specification” of intended behavior.
Indeed, any repair technique tries to patch errors so as to
achieve the intended behavior. Yet, in reality, the intended
behavior is incompletely specified, often through a set of test
cases. Thus, repair methods attempt to patch a given buggy
program, so that the patched program passes all tests in a
given test-suite T . Unsurprisingly, this may not only lead to
incomplete fixes but the patched program may also end up
introducing new errors, because the patched program may
fail tests outside T , which were previously passing [26].

Several recent research articles have pointed out the pit-
falls of using test-suites as specification to drive program re-
pair [23, 26]. Furthermore, if the test oracles of the tests in
the test-suite are not strong enough, simple program modifi-
cations, such as deletion of program functionality, have been
shown to be sufficient to repair programs [23]. The situation
presents us with an unenviable dilemma — we want to avoid
incomplete or incorrect fixes but it is not practical to assume
the presence of formal specifications to drive program repair
towards correct fixes.

In this paper, we propose to use anti-patterns to help al-
leviate the problem of incorrect or incomplete fixes resulting
from program repair. We present our technique in the con-
text of search-based program repair systems, also referred
to as “generate-and-validate” systems in the literature [11].
These repair tools seek to repair a buggy program (one fail-
ing at least one test in a given test-suite T) by searching
among possible fixes by applying fix templates. A proposed
fix is “validated” if it passes all the tests in the given test-
suite T . One key problem faced in the resulting fixes is that
they often boil down to program modifications like deletion
of functionality — which, though sufficient to pass tests in
given test-suite T , may fail tests outside T and can be un-
acceptable to developers in general.

Our main idea is simple — for any search-based repair
technique which is searching for a plausible repair, we de-
fine a set of anti-patterns that essentially capture disallowed
modifications to the buggy program. In other words, even if
such a modification results in the modified program passing
all tests in the given test-suite, we do not count them as re-
pairs. Our set of anti-patterns is generic and does not vary
across application domains.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950295

727

Conceptually, our idea is different from the strategy of
using human patch templates to guide program repair [7].
Generally speaking, the use of human patch templates is
geared towards producing patches close to human patches
— the underlying assumption being that by going close to
human patches, we will avoid incorrect or incomplete fixes.
However, this requires providing human patch templates,
which is limited by a fixed set of templates, and hence the
produced repair may overfit the provided set of templates.
Furthermore, there is a strong assumption that by fitting
patches to human patch templates, we have a greater chance
of the fix being accepted by developers — an assumption
that may or may not be true (e.g., [16] argues that “fix
acceptability may be an unanswerable question”).
Instead of gearing our repair towards human patches by

providing human patch templates, we ask ourselves the fol-
lowing research question — is it possible to drive the repair
search towards correct and complete fixes, simply by pro-
viding a generic set of anti-patterns? Many of our anti-
patterns are at the level of the control flow graph — for-
bidding certain manipulations to the control flow graph. A
few of the anti-patterns involve assignments affecting branch
outcomes and one anti-pattern forbids adding tautologies as
branch conditions. Overall, our anti-patterns are generic.
Furthermore, and more importantly, we are not proposing

a separate repair method based on anti-patterns. Our pro-
posed set of anti-patterns can be integrated into any existing
search-based repair tool, and we can then compare the re-
pair produced after enforcing anti-patterns with the original
repairs produced by the search-based repair tool. Indeed, we
propose a small set of anti-patterns and we have integrated
them into two existing search based program repair tools:
GenProg [28] and SPR [11].
Any automated program repair system is driven by a cor-

rectness criterion (to which we repair to), and since formal
specifications are usually absent, test-suites are used as cor-
rectness criteria. As a fully automated derivation of a formal
correctness criterion is often impossible, our anti-patterns
are not meant to solve the problem of deriving better cor-
rectness criteria. Instead, the value of our anti-patterns lies
in their ability to provide more precise repair hints to de-
velopers [6], which is illustrated through our evaluation on
patch quality. We evaluated our anti-patterns on 86 real
bugs obtained from 12 subjects. Results from our exper-
iments indicate that anti-patterns could lead search-based
program repair tools to producing patches that localizes bet-
ter by isolating either the correct line or the correct function.
Moreover, anti-patterns could also reduce the destructive ef-
fect of search-based repair tools by producing patches that
removes less functionality. Our anti-patterns also provide
considerable amount of speedup in obtaining the final repair
because our anti-patterns prune the repair search space. All
experimental data are available at the following web site:
https://anti-patterns.github.io/search-based-repair/ .

2. RELATED WORK
Search-based Repair. One of the earliest and most well-
known representative of search-based repair systems, Gen-
Prog [10], uses genetic programming to search its repair
space. Its repairs consist of code snippets copied from else-
where in the program. RSRepair [22] searches a similar re-
pair space but using random search instead. AE [28] uses
a deterministic search strategy but exploits program equiv-

alence relations to prune equivalent patches. However, re-
cent work [23] has shown that the vast majority of patches
produced by GenProg, RSRepair, and AE are semantically
equivalent to functionality deletion and that their Kali repair
tool, that exclusively relies on a small set of functionality
deletion repair schemas, can achieve similar results. PAR [7]
re-uses GenProg’s basic search strategy but proposes a set
of 10 specialized repair templates manually derived from
human-written patches and show that they are more suc-
cessful in identifying correct and meaningful patches than
GenProg. relifix [27] addresses the repair of software re-
gression errors in a search-based repair framework. It pro-
poses the use of previous versions of a buggy program and a
set of novel contextual repair operators, operating on mul-
tiple versions of the program, to define the repair space.
SPR [11] recognizes bug-fixes based on manipulation or in-
sertion of conditional statements as an important subset of
machine-generatable patches. It proposes a heuristic strat-
egy to search the repair space defined by its rich set of repair
schemas (patch patterns instead of anti-patterns). A key in-
novation is the use of abstract repair conditions to evaluate
and prune away the vast majority of condition repair can-
didates (staging) before concretizing and evaluating them
against the full test suite. The recent work of Prophet [13]
uses machine learning to characterize previously-known cor-
rect human patches, and uses the learned characterization
to prioritize candidate repairs, in an effort to avoid plausible
patches — incorrect patches that pass the test suite. How-
ever, for the majority of bugs, when the correct repair is
outside the search space of the tool, such plausible patches
might still be generated.

Our approach shares PAR’s goal of generating more mean-
ingful patches and SPR and Prophet’s goal of avoiding plau-
sible but incorrect patches. However, it is in essence orthog-
onal to all of the above search-based repair approaches in
that it seeks to analyze a repair schema, as instantiated,
in the context of a specific program and bug, and disallow
ones that result in “unreasonable” changes to the original
program’s behavior. Our anti-patterns form a simple set of
“do-not” rules (in the style of software development or soft-
ware design anti-patterns[8]), which can guide an automated
repair tool. Thus, our approach is rather independent of the
repair schemas and search strategies being used and can be
integrated into any of the above repair tools.
Oracle-based Repair. SemFix [17] uses symbolic execu-
tion to capture and implicity express the values that an ex-
pression under repair must assume under various test exe-
cutions. It then uses program synthesis to synthesize a re-
paired statement compatible with this“oracle”. MintHint [6]
also uses symbolic execution to synthesize an oracle but
then uses statistical analysis to guide the choice for a re-
pair. NOPOL [3] addresses the repair of branch conditions
and uses instrumented test-suite executions to synthesize
an oracle, which is then converted into a suitable SMT for-
mula representing feasible repairs and solved to generate a
patch. DirectFix [14] generates minimal repairs to obtain
human-readable and comprehensible repairs. The idea is
to encode the problem as a partial maximum satisfiability
problem over SMT formulas (partial maxSAT) and solve it
using a suitably modified SMT solver. Angelix [15] solves
the scalability problems of DirectFix by using a lightweight
repair constraint. Since the above techniques do not directly
tackle the problem of the incompleteness of the repair speci-

728

https://anti-patterns.github.io/search-based-repair/

Table 1: Prevalence of Anti-patterns in Plausible Patches

Anti-delete CFG exit node Anti-delete Control Statement
Anti-delete

Single-statement CFG

Anti-delete

Set-Before-If

Anti-delete

Loop-Counter Update
Anti-append Early Exit

Anti-append

Trivial Conditions

Delete

exit

Delete

return

Delete

goto

Delete

error code

Delete

if-statement

Delete

loop

Delete only

statement within if

Delete

condition

Delete loop

counter update

Insert

early return

Insert

early exit

Insert

early goto

Insert

Tautology

Insert

Contradiction

GenProg 4.00% 8.00% 2.00% 14.00% 28.00% 6.00% 4.00% 4.00% 2.00% 2.00% 0% 2.00% 0% 0%

SPR 0% 7.14% 7.14% 14.29% 10.71% 21.43% 7.14% 7.14% 3.57% 7.14% 3.57% 3.57% 7.14% 39.29%

Average 2.00% 7.57% 4.57% 14.14% 19.36% 13.71% 5.57% 5.57% 2.79 % 4.57% 1.79% 2.79% 3.57% 19.65%

fication, i.e., the test-suite, they could in theory benefit from
our technique. However, the appropriate integration of our
technique in these tools is non-obvious and would require
further investigation.
Specification-based Repair. AutofixE [19] uses developer-
provided software contracts (e.g., invariants, pre-conditions,
and post-conditions) to automatically repair faulty Eiffel
classes. Gopinath et al.’s approach encodes constraints on
program behavior derived from a specification as a SAT for-
mula and uses the SAT solution to construct a repair [5].
More recently, Samanta et al. proposed the notion of cost-
aware program repair whereby repairs are generated on a
Boolean abstraction of a C program, based on a cost model,
and then concretized back to a repaired C program [24].
However, human intervention is required to define the cost
model and for the concretization. As in the case of oracle-
based techniques, our ideas could benefit specification-based
repair techniques as well but would require further research.
Domain-Specific Repair. Automatic repair techniques
have also been developed for specific application domains
such as for data-structure repair [4], the Vejovis system for
repairing DOM-related faults in JavaScript code [18], and
the ClearView system to fix security vulnerabilities [20].
Patterns and Anti-patterns. Anti-patterns are “com-
monly occurring solutions to a problem that generate de-
cidedly negative consequences” [2]. We refer to our pro-
posed set of forbidden transformations as anti-patterns be-
cause they capture transformations which are solutions to
the repair problem, but generate decidedly negative conse-
quences, such as introducing regressions. One notable dif-
ference between repair patterns in Pattern-based Automatic
program Repair (i.e, PAR [7]) and our anti-patterns is that
repair patterns are derived from common bug fix patterns
in human generated patches, wheareas our anti-patterns are
derived from machine generated patches. Nevertheless, as
a subset of SPR “transformation schemas” (e.g., “Add Ini-
tialization”) are essentially repair patterns, as in PAR [7],
checking the effectiveness of anti-patterns in SPR helps us
to understand the characteristic of patches produced by a
pattern-based approach. Prior studies on the common pat-
terns of incorrect human fixes [21, 25, 29] are orthogonal to
our work, as our study focuses on the common problems in
machine-generated patches.

3. PREVALENCE OF ANTI-PATTERNS
Although various search-based program repair techniques

[22, 27, 28] show promising results in generating a large
number of patches, prior studies show that most of these
patches are often only plausible but incorrect [23]. Specif-
ically, SPR generates 28 out of 40 (i.e, 70%) plausible but
incorrect patches, while GenProg generates 50 out of 53 (i.e.,
94.33%) plausible patches, for the GenProg benchmarks [10].
To better understand the nature of the plausible patches

(see Definition 2 for definition of plausible patches), we per-
formed a manual inspection on all the machine-generated

patches produced by SPR and GenProg (including plausible
and correct patches) as well as on the correct developer-
provided patches for these bugs. Specifically, we manually
analyzed each patch and attempted to answer two questions:
Q1: What makes a given patch plausible? Why is it incor-
rect (i.e., does not capture the semantics of the developer-
provided patch)?

Q2: Do the plausible patches, as a whole, share any com-
mon syntactic features that explain their “plausibility” as
well as distinguish them from the pool of correct patches
(human as well as machine generated)?
The aim was to find a compact set of syntactic features that
are independent of the repair templates used by the tool.
Table 1 shows the results of our manual inspection. Inter-
estingly, our manual inspection identified a set of 14 simple
features, shown in the second row of Table 1, one or more of
which appear in each of the plausible patches produced by
SPR and GenProg and almost none of the correct patches 1.
They correspond to various modifications to the control flow
or the data flow of the program. Each column corresponds
to a specific feature and denotes the percentage of plausi-
ble patches bearing that feature. Note that our calculation
considers the fact that one plausible patch may exhibit sev-
eral features. For example, Delete if-statement (column 6)
deletes an if statement and appears in 28% of plausible Gen-
Prog patches and 10.71% of plausible SPR patches. Simi-
larly, Insert Tautology (column 14) inserts a trivial tauto-
logical condition into the program and appears in 7.14% of
the plausible SPR patches but none of the plausible Gen-
Prog patches. We further generalize and consolidate these
14 features into 7 transformations, shown in the first row of
Table 1, which we chose to further develop as anti-patterns
in our approach.

Table 2 lists the anti-patterns that we identified through
our manual inspection [2]. In each example patch in Ta-
ble 2 and in patches presented throughout the paper, code
with a leading “ ” denotes statements deleted by the patch,
while code with a leading“ ”marks statements added. Code
without any leading symbol denotes unchanged statements.

4. HOW ANTI-PATTERNS MAY HELP
We illustrate how anti-patterns can improve program re-

pair by showing two examples of fixes in two projects. The
first example shows the effect of applying anti-patterns for
improvement in fix localization, while the second example
demonstrates the benefit of anti-patterns in reducing patch
generation time.
Example 1: Improving fix localization. Listing 9 shows
the GenProg patch for findutils-84aef0ea-07b941b1
generated by GenProg. The GenProg patch deletes the
only return statement in parse_noop(...). This patch
violates our Anti-delete CFG exit node pattern. In con-
trast, our version of GenProg modified with anti-patterns,

1Except for one PHP defect and one Python defect.

729

Table 2: Our proposed set of anti-patterns with examples that illustrate the usage of each antipattern
Anti-patterns Example
A1: Anti-delete CFG exit node. This pat-
tern disallows removal of return statements,
exit calls, functions with the word “error” (i.e.,
ignoring letter case), and assertions.

Ex1: The example below shows a patch generated by GenProg for
libtiff-8f6338a-4c5a9ec. The patch removes the erroneous exit call.

static void BadPPM(char* file) {

fprintf(stderr, "%s: Not a PPM file.\n", file);

exit(-2);

}

Listing 1: Example patch for Anti-delete CFG exit node

A2: Anti-delete Control Statement
This pattern disallows removal of control state-
ments, e.g., if-statements, switch-statements,
and loops.

Ex2: The example below shows a patch generated by GenProg
for php-307931-307934. The patch removes the whole if-then-
else statement that checks for the return value of a function call.

call_result = call_user_function_ex(...);

if (call_result == SUCCESS && retval != NULL && ...) {

if (SUCCESS == statbuf_from_array(...))

ret = 0;

} else if (call_result == FAILURE) {

php_error_docref(...);

}

Listing 2: Example patch for Anti-delete Control Statement

A3: Anti-delete Single-statement CFG
This pattern disallows deletion of the state-
ment within a CFG node that has only one
statement.

Ex3: The example below presents a candidate patch generated by GenProg for
libtiff-90d136e4-4c66680f. The patch removes the statement that assigns the
return value of 1 which indicates a failure.

fail:{

ret = 1;

}

Listing 3: Example patch for Anti-delete Single-statement CFG

A4: Anti-delete Set-Before-If
This pattern disallows deletion of a variable
definition if the variable in the definition is
used in subsequent if-statement.

Ex4: The example shows a GenProg generated candidate patch for
libtiff-d13be72c-ccadf48a. The patch removes the statement that stores the
value of the expression EstimateStripByteCounts(...)<0.

tmp = EstimateStripByteCounts(tif, dir, dircount)<0;

if(tmp!=0)

goto bad;

Listing 4: Example patch for Anti-delete Set-Before-If

A5:Anti-delete Loop-Counter Update
Although more sophiscated techniques are
needed to ensure termination in patched pro-
gram, we implement an approximation of this
pattern by disallowing deletion of an assign-
ment statement inside a loop if the set of vari-
ables used in the terminating condition inter-
sects with the set of variables used in the LHS
of the assignment statement.

Ex5: The example belows shows a patch that delete the increment statement within
a loop.

while(x> 5)

x++;

Listing 5: Example: Anti-delete Loop-Counter Update

A6: Anti-append Early Exit
This pattern disallows insertion of return
statement and goto statement at any location
except for after the last statement in a CFG
node.

Ex6: The example shows a SPR’s patch for php-308262-308315. The patch
adds a conditional return statement before a function call that throws an error.

if ((type != 0))

return;

zend_error((1<<3L),"Uninitialized string offset:",...);

Listing 6: Example patch for Anti-append Early Exit

A7: Anti-append Trivial Conditions
This expression-level pattern disallows inser-
tion of trivial conditions. A condition is trivial
iff (1) it is either true or false constant (e.g., if
(0), if (1)), (2) it is evaluated to true or false by
any assignment of the program variables (e.g.,
if(x || y || !y)), and (3) it is always evaluated to
true or false by any values that program vari-
ables can take according to results of static
analysis (e.g., if(x || y != 0) in which y is ini-
tialized).

Ex7: The following example shows two SPR patches for lighttpd-2661-2662.
The patch in Listing 7 appends the condition !(1) to the existing condition, which
is semantically equivalent to disabling the branch containing the continue statement.
The patch in Listing 8 loosens the original condition with the expression 1, which is
semantically equivalent to deleting the condition (fields->size==0).

if ((fmap[j].key != format->ptr[i + 1]))

if ((fmap[j].key != format->ptr[i + 1]) && !(1))

continue;

Listing 7: Example patch with contradiction for Anti-append Trivial Conditions

if ((fields->size == 0)) {

if ((fields->size == 0) || (1)) {

fields->size = 16;

fields->used = 0;

fields->ptr = malloc(fields->size * sizeof(format_field *));

}

Listing 8: Example patch with tautology for Anti-append Trivial Conditions

730

Table 3: Problems in search-based program repairs and the corresponding anti-patterns aim to solve these problems
Problem Anti-patterns

Weak Oracle. Instead of checking for the actual output of a program, developers may validate
the outcome of a failing test by relying on the exit status or assertions of the program. Such
statements serve as proxies for verifying the correctness of a program, and thus, they should not
be manipulated by machine-generated patches. However, such restrictions are not imposed on
automatically generated patches. In fact, patches that simply remove such statements may be
more preferable for test-driven program repair techniques as they can be generated faster [23].

A1: Anti-delete CFG exit node.

Inadequate Test Coverage. If the program under test has low code coverage, test-driven
program repair tools could incorrectly remove a logical block of statements as they are seen as
redundant code to the test suite. This may lead to regressions in the patched program [26]

A2: Anti-delete Control Statement

A3: Anti-delete Single-statement CFG

A4: Anti-delete Set-Before-If

Mask Existing Vulnerabilities. A patched program may mask previously exposed vulnera-
bility by removing certain branches through implicit data-flow.

A4: Anti-delete Set-Before-If

Non-termination. Program repair tools may incorrectly remove a loop update statement,
causing infinite loop in the patched program. If no timeout is specified, search-based repair
tools may spend the entire repair session to validate the patched program. Worst still, such
patches could be mistakenly treated as a repair if the test only checks if an error is thrown
within a time limit.

A5:Anti-delete Loop-Counter Update

Trivial Patch. An incorrectly patched program may bypass an important functionality or
an error check through insertions of premature exit calls. The worst scenario happens when
repair tools produce trivial patches that simply insert return-statements based on the value
of the expected output of the failing test (e.g., a trivial patch that insert if(test1) return

expected-out;)

A6: Anti-append Early Exit

Functionality Removal Repair tools like SPR may produce patches that are semantically
equivalent to functionality removal by inserting tautological condition or contradition. A tau-
tology will cause the elimination of the check condition while a contradiction will cause the
entire branch to be removed.

A7: Anti-append Trivial Conditions

// GenProg AE patch for findutils-84aef0ea-07b941b1

static boolean parse_noop (const struct parser_table*
entry, char **argv, int *arg_ptr)

{

(void) entry;

return parse_true(get_noop(), argv, arg_ptr);

}

Listing 9: Example patch generated by GenProg

// mGenProg patch for findutils-84aef0ea-07b941b1

static boolean

insert_regex (char **argv, int *arg_ptr, const struct

parser_table *entry, int regex_options)

{...

if (error_message)

error (1, 0, "%s", error_message);

(*arg_ptr)++;

our_pred->est_success_rate =

estimate_pattern_match_rate(argv[*arg_ptr], 1);

return true;

// Developer patch for findutils-84aef0ea-07b941b1

insert_regex (char **argv, int *arg_ptr, const struct

parser_table *entry, int regex_options)

{...

if (error_message)

error (1, 0, "%s", error_message);

(*arg_ptr)++;

our_pred->est_success_rate =

estimate_pattern_match_rate(argv[*arg_ptr], 1);

(*arg_ptr)++;

return true;

Listing 10: Example patches generated by mGenProg and

Findutils developer

called mGenProg, removes the statement that assigns the
return value of estimate_pattern_match_rate to the
field our_pred->est_success_rate. Meanwhile, Find-
utils developer moved the statement (*arg_ptr)++ to the
location after the problematic statement our_pred->est_-
success_rate=estimate_pattern_match_rate(...);

that throws “Segmentation fault” error due to out-of-bound
access of the argv array (Listing 10). We argue that in this
example, our mGenProg patch is preferable to GenProg’s
because (1) mGenProg localizes the correct function com-
pared to the GenProg patch, which is applied inside a com-
pletely different function parse_noop(); (2) mGenProg

// GenProg, mGenProg & Developer patch for php

-309111-309159

if ((p = memchr(s, ’?’, (ue - s)))) {

pp = strchr(s, ’#’);

if (pp && pp < p) {

if (pp - s) {

ret->path = estrndup(s, (pp-s));

php_replace_controlchars_ex(ret->path, (pp - s));

}

p = pp;

goto label_parse;

}

}

Listing 11: Example patch generated by GenProg, mGenProg

and PHP developers

correctly pinpoints the function call that causes the error,
while the GenProg patch completely removes the functional-
ity encapsulated by the parse_noop() function. This ex-
ample shows that anti-patterns can improve fix localization
and eliminate nonsensical patches that remove functionality.
Example 2: Accelerating program repair. Listing 11
shows a patch that inserts a conditional statement that can
be copied from other places within the same file. While
both GenProg and mGenProg generate the patch in listing
11 that is in fact equivalent to the correct patch, mGenProg
takes only 13.7 hours compared to 20.6 hours taken by Gen-
Prog (i.e., mGenProg achieves a 20.6/13.7 = 1.5x speedup).
Thus, if the correct repair can be found within the repair
space, our anti-patterns can serve as a search-space pruning
mechanism that reduces the time taken to find the correct
repair through filtering of invalid patches.

Table 3 shows the common problems in the patches gen-
erated by search-based program repair tools together with
the anti-patterns that solve these problems.

5. INTEGRATING ANTI-PATTERNS
We integrate our anti-patterns directly into two search-

based repair tools (i.e., GenProg AE [28] and SPR [11]).
Procedure isAntipattern shows our anti-patterns filtering

algorithm. The function isSingleCFGStmt(E.stmtk) corre-
sponds to the Anti-delete Single-Statement CFG pattern.
Similarly, isSetBefIf (E.stk) checks for the Anti-delete Set-

731

Procedure isAntipattern

Input: P’: Program
Input: M: Transformations functions
Output: isAnti: indicates if M violates any anti-paterns

1 isAnti← false;
2 if M.type == delete then
3 if isSingleCFGStmt(M.stmtk) then
4 isAnti← true;
5 else if isExitNode(M.stk) || isCondition(M.stk) then
6 isAnti← true;
7 else if isAssignment(M.stmtk) then
8 isAnti← isSetBfIf(M.stk) || isSetInLoop(M.stk);
9 end

10 else if M.type == append then
11 isAnti← isExitNode(M.stk) ∧ ¬isLastStmt(M);
12 end
13 return isAnti

M.stk: the AST node type of M.
M.type: the edit type of M

Before-If pattern, while isSetInLoop(E.stk) corresponds to
the Anti-delete Loop-Counter Update pattern. The func-
tion isCondition(E.stk) indicates whether an edit E involves
a conditional statement, which is used in the Anti-delete
Control-Statement. The function isExitNode(E.stk) checks
if the statement in Edit E is a CFG exit node. Both Anti-
Delete CFG exit node and Anti-append Early Exit use this
function. The function isLastStmt(E) checks if a statement
will be inserted as the last statement in a CFG block to ful-
fill the requirement for the Anti-append Early Exit pattern.
As many search-based approaches [7, 11, 27, 28] are based
on evolutionary algorithm [9] in which a population is repro-
duced, evaluated, and selected, we recommend integrating
our anti-patterns filtering algorithm before the initial pop-
ulation is generated to reduce the time spent in evaluating
each individual in a population.
Modification of SPR and GenProg. Algorithm 1 shows
the pseudo-code of the mSPR repair generation algorithm.
We implement our anti-patterns on two parts of mSPR: (1
– first box). For candidate repairs that do not require con-
dition synthesis, we apply similar modifications to mSPR
and mGenProg (refer to Procedure isAntipattern). (2 –
second box). For candidate repairs that require condition
synthesis in mSPR, we apply the Anti-append Trivial Con-
ditions pattern to each synthesized condition. The function
isTrivialCondition(c) checks if the given condition c is a
trivial condition (refer to Table 2 for definition of trivial
conditions). As our modifications on GenProg is similar to
the changes on mSPR for repairs that do not require condi-
tion synthesis, we leave out the details for mGenProg.

6. EXPERIMENTS
We compare the effectiveness of anti-patterns on GenProg

and SPR using two sets of benchmarks: (1) the CoREBench
benchmarks [1] and (2) the GenProg benchmarks [10]. We
use the CoREBench benchmarks for the evaluation set be-
cause it contains real errors in widely used C programs. Al-
though our manual inspection for deriving anti-patterns in
Section 3 was based on plausible patches from the GenProg
benchmarks, this study used just one generated patch per
buggy program. A recent study has shown that the typical
repair search space for these bugs contains up to thousands
of plausible patches [12]. Thus, we feel it is still meaningful
to study the impact of anti-patterns on the complete repair

Algorithm 1: mSPR Repair generation algorithm

Input: P: Program
Input: positive and negative test cases NegT and PosT
Input: M : Transformation functions.
Output: the repaired program P’ or ∅ if failed

1

for P’ in M(P) do
if ¬isAntipattern(P,M) then

M ′ ←M ′ ∪ P ;
end

end

2 for P’ in M’(P) do
3 if p’ contains abstc then
4 C ← CondSynthesis(P ′, NegT, PosT);

5

for c in C do
if ¬isTrivialCondition(c) then

C ← C/c;
if Test(P’[c/abstc],NegT, PosT) then

return P’[c/abstc]
end

end
end

6 else if Test(P ′, NegT, PosT) then
7 return P ′

8 end
9 end

CondSynthesis(P,NegT, PosT): searches for a sequence of values in
P that pass all tests in NegT and PosT. The output of this function
is C — the set of all synthesized conditions in the repair space.
P [c/abstc]: the result of replacing every occurrence of abstc in P with
the condition c.
Test(P,NegT, PosT) : check if the program P passes all tests.

space of these bugs. Our evaluation studies the following
research questions:
RQ1 How do anti-patterns affect the quality of patches gen-
erated by search-based program repair tools?

RQ2 How many nonsensical patches can our anti-patterns
eliminate to reduce manual inspection costs?

RQ3 When our modified tools produce the same patch,
what is the speedup that we achieve?

RQ4 How does the use of anti-patterns compare to an ap-
proach that simply prohibits deletion?

Table 6: Subject Programs and Their Basics Statistics
Subjects Description kLoC Tests
coreutils File, Shell and Text manipulation Utility 83.1 4772
findutils Directory Searching Utility 18.0 1054
grep Pattern Matching Utility 9.4 1582
make Program executable generation utilities 35.3 528

php Programming Language 1046 8471
libtiff Image Processing Library 77 78
python Programming Language 407 35
gmp Math Library 145 146
gzip Data Compression Utility 491 12
wireshark Network Packet Analyzer 2814 63
fbc Compiler 97 773
lighthttpd Web Server 62 295

6.1 Experimental Setup
We evaluate the effects of anti-patterns on 49 defects from

the CoREBench benchmarks and at least 37 defects from the
GenProg benchmarks. We exclude some versions in our eval-
uation due to specific technical difficulties, such as bench-
marks that require specific system configurations to be built.
Specifically, we exclude 21 defects from the CoREBench
benchmarks. For the GenProg benchmarks, we manage to
reproduce the bugs for 42 defects in the original GenProg
experiment and 37 defects in the original SPR experiments.

732

Table 4: Overall Results on GenProg (AE) versus mGenProg (mAE)

Subjects Same Patch

Different Patch
Localizes Better

Less Functionality
Removal

No Repair Others
Average Speedup

Localizes Correct
Line

Localizes Correct
Function but
Incorrect Line

(Same Patch)

AE mAE AE mAE AE mAE AE mAE

coreutils 0 0 0 4 4 5 0 0 5 0 -
findutils 4 0 4 2 1 1 0 1 5 0 1.11
grep 4 0 2 3 2 1 0 0 2 0 1.30
make 2 0 1 3 2 0 0 0 0 0 1.77

php 10 1 1 0 2 6 0 0 8 0 2.08
libtiff 3 0 4 3 1 5 0 3 10 0 1.13
python 1 0 0 0 0 0 0 0 0 0 0.98
gmp - - - - - - - - - - -
gzip 1 0 0 0 0 0 0 0 0 0 1.12

wireshark 0 0 3 0 0 0 0 0 3 0 -
fbc - - - - - - - - - - -

lighthttpd 1 0 0 0 0 1 0 0 1 0 1.85

Total 10+16=26 0+1=1 7+8=15 12+3=15 9+3=12 7+12=19 0+0=0 1+3=4 12+22=34 0+0=0 1.39+1.43=1.42

Table 5: Overall Results on SPR versus mSPR

Subjects Same Patch

Different Patch
Localizes Better

Less Functionality
Removal

No Repair Others
Average Speedup

Localizes Correct
Line

Localizes Correct
Function but
Incorrect Line

(Same Patch)

SPR mSPR SPR mSPR SPR mSPR SPR mSPR

coreutils 6 0 0 2 2 3 0 0 3 0 1.56
findutils 6 1 2 1 0 1 0 0 1 0 1.62
grep 5 0 1 3 3 2 0 0 3 0 2.15
make 0 0 0 2 2 1 0 0 1 0 -

php 15 0 2 2 0 0 0 0 0 0 1.96
libtiff 2 1 1 1 0 1 0 1 1 0 2.10
python 2 0 0 1 1 0 0 0 0 0 1.50
gmp 2 0 0 0 0 0 0 0 0 0 1.42
gzip 1 0 1 0 0 0 0 0 1 0 1.08

wireshark 3 0 1 1 0 0 0 0 0 0 1.85
fbc - - - - - - - - - - -

lighthttpd 0 0 2 1 0 2 0 0 3 0 -

Total 17+25=42 1+1=2 3+7=10 8+6=14 7+1=8 7+3=10 0+0=0 0+1=1 8+5=13 0+0=0 1.78+1.65=1.69

Table 6 lists information about these subjects. The first
four rows of the table list the details for the four CoREBench
subjects while the remaining rows show relevant statistics
about the GenProg subjects. For each bug, we run GenProg,
mGenProg, SPR and mSPR to produce repairs.
Many of our anti-patterns block functionality deletion, so

it is natural to ask if the same effect could be achieved by
simply disallowing deletion in repair. To answer RQ4, we
implement a customized version of GenProg, called dGen-
Prog, where we disallow the usage of the deletion mutation
operator. We reuse the same parameters listed in previous
work [10] for running GenProg. One significant difference
is that we switch to the deterministic adaptive search algo-
rithm (AE) [28] to control potential randomness. Each run
of GenProg, mGenProg, dGenProg, SPR, and mSPR termi-
nates either after all candidate repairs have been evaluated
or when a patch is found (i.e., each tool runs to completion
without timeout). All experiments for GenProg, mGenProg,
and dGenProg were performed by distributing the load on
20 virtual machines with single-core Intel Xeon 2.40GHz
processor and 19GB of memory. All experiments for SPR
and mSPR were performed on a 12-core Intel Xeon E5-2695
2.40Ghz processor and 408GB of memory.
After collecting all the repairs, we manually inspect each

of these patches and compare the quality of patches gener-
ated by GenProg versus mGenProg, mGenProg versus dGen-
Prog, and SPR versus mSPR.
Definition 1. We measure the quality of patches generated
by search-based repair tools using the criteria defined below:

(Q1) Same Patch. A generated repair is considered“Same
Patch” if both the original tool and the modified tool gen-
erate exactly the same repair.

(Q2) Localizes Correct Line. A generated repair is con-
sidered“Localizes Correct Line” if both the generated patch
and the human patch generate repairs that modify the same
line. For example, we categorize the mGenProg patch in
Listing 10 as “Localizes Correct Line”.

(Q3) Localizes Correct Function but Incorrect Line.
A generated repair is considered a patch that localizes the
correct function if both the generated patch and the human
patch modify statements within the same function.

(Q4) Removes Less Functionality. A generated repair
is considered a repair that removes less functionality if the
repair removes or skips over (e.g., by inserting return) fewer
lines of source code from the original program.

(Q5) No Repair. We label a benchmark as “No Repair”
when the original tool generates a repair but the modified
tool has iterated through the entire repair space and pro-
duce no final patch.
We categorize the patch quality of each repair according

to the order listed above (i.e, we first check if a patch is
“Same Patch” and only categorize a patch as “Removes Less
Functionality” if it does not satisfy other more preferable cri-
teria (e.g, “Localizes Correct Function but Incorrect Line”).
We eliminate the potential discrepancies on categorization by
ensuring that each defined criteria can be measured through
comparisons of the syntactic differences between two patches.

733

Table 7: Patch Correctness Analysis Result on mGenProg and mSPR

Subjects
GenProg mGenProg SPR mSPR

Correct Plausible Correct Plausible Correct Plausible Correct Plausible
coreutils 0 9 0 9 0 11 0 11
findutils 0 11 0 10 0 9 0 9
grep 0 9 0 9 0 11 0 11
make 0 5 0 5 0 3 0 3

php 2 17 1 18 8 9 9 8
libtiff 0 16 0 13 1 4 1 3
python 1 0 1 0 1 2 1 2
gmp 0 0 0 0 1 1 1 1
gzip 0 1 0 1 1 1 1 1
wireshark 0 3 0 3 0 4 0 4
fbc 0 0 0 0 0 0 0 0
lighthttpd 0 2 0 2 0 4 0 4

Total 0+3=3 34+39=73 0+2=2 33+37=70 0+12=12 34+25=59 0+13=13 34+23=57

Each column in Tables 4, 5 and 9 corresponds to the cri-
teria defined above. The “Others” column denotes the cases
where the patch does not fulfill any of the defined criteria.
Numbers in the last row in Tables 4, 5, and 9 are of the form
x+ y = z, where x represents the number of patches in the
CoREBench benchmarks, y denotes the number of patches
in the GenProg benchmarks, and z is the total number of
patches in both benchmarks.
We also manually classify and compute the number of

correct repairs and the number of plausible repairs.
Definition 2. We use the definition below for our patch
correctness analysis:
Correct Repair. A repair r is a correct repair if (1) r

passes all test cases in the test suite and (2) r is semanti-
cally equivalent to the repair issued by the developer.

Plausible Repair. A repair r is a plausible repair if (1) r

passes all test cases in the test suite but (2) r is not se-
mantically equivalent to the repair issued by the developer.

6.2 Evaluation on CoREBench benchmarks
The first four rows of table 4, 5, 8, and 9 show the

evaluation results for the CoREBench benchmarks.

6.2.1 Patch Quality (RQ1)

Table 4 shows that both GenProg and mGenProg produce
the same patch for 10 defects in the CoREBench bench-
marks. mGenProg could localize the correct line in 7 more
defects than GenProg. mGenProg also generates patches
that remove less functionality in 7 defects.
Table 5 shows that both SPR and mSPR produce the

same patch in 17 defects. mSPR localizes the correct line
in 2 more defects than SPR. For 7 defects, mSPR generates
patches that removes less functionality.
Table 7 shows the overall patch correctness analysis results

for GenProg, mGenProg, SPR, and mSPR for each subject.
GenProg generates 34 plausible patches while mGenProg
produces 33 plausible patches for the CoREBench bench-
marks. Specifically, mGenProg does not produce any repair
for findutils-e8bd5a2c-66c536b because the patch vi-
olates our anti-patterns. Both SPR and mSPR generate 34
plausible patches for the CoREBench benchmarks.
Improvement on fix localization. Our results show that
anti-patterns could lead both mGenProg and mSPR to pro-
ducing patches that localize either the correct line or the cor-
rect function. Anti-pattern-enhanced techniques may achieve
this improvement because anti-patterns may filter all invalid
repairs on a given location, forcing fixes to be generated at
other locations. We claim that the ability to localize more
precisely is important because when the repair tools fail to
generate the correct repair, the next best thing is to check

whether they can still generate hints that may lead devel-
opers to the repair faster.

Less functionality removal. Under the presence of weak
oracles [23], search-based repair tools may generate patches
that pass the test suite by removing untested functional-
ity. Our results shows that anti-patterns help in producing
patches that remove less functionality and thus reduce the
potential destructive effects of generated patches.

Comparison between mGenProg and mSPR. Our anti-
patterns integration achieves greater improvement of patch
quality on GenProg compared to SPR. We think that this
difference may be due to SPR being innately restricted by
its set of transformation schemas, which contain transfor-
mations that are often used in human patches.

Predominance of Plausible Patches. Both GenProg and
SPR do not generate any correct patch for the CoREBench
benchmarks. One possible explanation is that the defects
in the CoREBench have higher error complexity than other
benchmarks. Thus more substantial patches are required to
fix the errors in these benchmarks [1]. These results also
agree with our earlier observation (in Section 3) that there
is a clear predominance of plausible but incorrect patches
among all automatically generated patches.✛

✚

✘

✙

RQ1: anti-patterns direct repair tools towards
generating patches that pinpoint the buggy location

more accurately. Anti-patterns also reduce the potential
destructive effect of automatically generated patches by

producing patches that remove less functionality.

6.2.2 Reducing Manual Inspection Cost (RQ2)

SPR may produce multiple patches in one repair session
due to the use of batch compilation and its staged repair
algorithm. Given several candidate repairs, developers need
to manually inspect and verify each individual patch.

Figure 1 shows the total number of patches generated by
SPR versus mSPR for the CoREBench subjects. As SPR
and mSPR can produce multiple patches for a given bug,
Figure 1 reports the total number of patches, while the data
in Tables 4, 5 and 7 uses a single, best patch (according to
the order in Definition 1) among all generated patches for
a particular bug. Overall, SPR generates 87 patches while
mSPR only generates 54 patches. Our patch analysis reveals
that all 33 additional patches generated by SPR (not gener-
ated by mSPR) are indeeed plausible but incorrect patches.
Discussion on Number of Plausible Patches. Though
prior evaluation of search-based repair [28] focuses on mea-
suring the number of successful repairs, our results show that
mSPR actually produces less number of candidate repairs
than SPR because some of the plausible patches produced
by SPR are actually nonsensical patches that are eliminated

734

coreutils findutils grep make

10

20

30

21

31

20

15

12

19
17

6

N
u
m
b
er

o
f
P
a
tc
h
es

SPR

mSPR

Figure 1: Number of Patches Found by SPR vs. mSPR

by our anti-patterns. Producing less plausible patches could
save the time spent on manual filtering of invalid patches,
which would eventually be rejected by developers.☛
✡

✟
✠

RQ2: Anti-patterns reduce manual inspection cost by
eliminating nonsensical candidate repairs.

6.2.3 Speedup (RQ3)

The“Average Speedup (Same Patch)”column in Tables 4,
5, and 9 denotes the average speedup obtained when we only
considered the subjects where both the original tool and the
modified tool produce the same patch. We use the formula
below for our speedup calculation (Repair Time is defined
as the time taken for a repair to be generated):

Repair T ime Speedup = Original Repair Time

Modified Repair Time
(1)

When GenProg and mGenProg produce the same patch,
mGenProg obtain an average repair time speedup of 1.39x
while mSPR obtain an average repair time speedup of 1.78x,
for the CoREBench benchmarks.

Table 8: Subject Programs and Repair Space Reduction
Results for mGenProg and mSPR

Subject
Repair Space Reduction(%)
mGenProg mSPR

coreutils 43 22
findutils 47 19
grep 38 32
make 37 36

php 37 20
libtiff 43 61
python 31 26
gmp - 9
gzip 43 31
wireshark 42 35
fbc - -
lighthttpd 41 15

Average 41, 40, 40 27, 28, 28

Table 8 shows the overall reduction in the total number of
repair candidates generated for mGenProg and mSPR. The
last row is of the form x, y, z where x denotes average for
CoREBench subjects, y denotes average for GenProg sub-
jects and z denotes the average for all subjects. We calcu-
late the “Repair Space Reduction” according to the formula
below (where TotC refers to the total number of repair can-
didates within the entire repair search space):

Repair Space Reduction = (1− Modified TotC

Orig TotC
) ∗ 100 (2)

On average, mGenProg achieves 41% repair space reduction
compared to GenProg while mSPR obtains 27% repair space
reduction compared to SPR for CoREBench subjects.
Discussion on Speedup. Tables 4 and 5 show that by en-
forcing anti-patterns, we produce patches faster due to repair
space reduction shown in Table 8. One conceptual argument
against the idea of anti-patterns may be that it might make

the repair search unduly inefficient. These results show that
it is not so. In fact, the anti-patterns skip “irrelevant” parts
of the repair space (i.e., repairs that causes undesirable be-
havior, such as the deletion of the symptoms of a bug).☛
✡

✟
✠

RQ3: Anti-patterns reduce the overall repair time by
pruning significant portion of the repair space.

6.2.4 Comparison with dGenProg (RQ4)

Table 9 shows the results for dGenProg versus mGen-
Prog for the CoREBench benchmarks. While both mGen-
Prog and dGenProg produce 12 same patches, mGenProg
localizes better compared to dGenProg in seven more sub-
jects than dGenProg. Although dGenProg explicitly pro-
hibits deletions, our results show that mGenProg actually
removes less functionality in five subjects compared to dGen-
Prog. Our analysis reveals that dGenProg may produce
patches that skip over many source lines of code by in-
troducing early return. For make-73e7767f-d584d0c1,
mGenProg localizes the correct line while dGenProg do not
produce any repair.

When mGenProg and dGenProg produce the same patch,
mGenProg achieves an overall speedup of 1.20x over dGen-
Prog in the CoREBench benchmarks.
Improvement over dGenProg. Our results on the CoRE
Bench benchmarks show that GenProg with anti-patterns
produce patches of better quality and faster than GenProg
that simply prohibits deletions.☛
✡

✟
✠

RQ4: Anti-patterns produce patches of better quality
and faster than an tool that simply prohibits deletions.

6.3 Evaluation on GenProg benchmarks
The 5-12th rows of Tables 4, 5, 8, and 9 show the experi-

mental results for the GenProg benchmarks. Tables 4 and 5
illustrate that our anti-patterns achieve similar improvement
on patch quality on the GenProg benchmarks. In particu-
lar, mGenProg localizes better than GenProg in seven more
defects. mGenProg also removes less functionality in 12 de-
fects. In contrast, mSPR removes less functionality than
SPR in three defects on GenProg benchmarks.

Table 7 shows that GenProg produces 3 correct repairs
and 39 plausible repairs while mGenProg produces two cor-
rect repairs and 37 plausible repairs for the GenProg bench-
marks. mGenProg does not generate any repair for three
subjects due to their violations of anti-patterns. Instead of
producing correct repair as in GenProg, mGenProg only gen-
erates plausible repairs for php-309892-309910 because
the correct repair actually involves deletion of a if-statement,
which violates our Anti-delete Control Statement pattern.
In contrast, mSPR produces one more correct patch than
SPR and 23 plausible repairs. Specifically, mSPR produces
correct patch for php-308262-308315 while SPR only gen-
erates plausible patch for this version. For libtiff-086036
-1ba752, mSPR does not generate any repair while SPR
generates patch with trivial condition that disables a branch.
As the correct repair for this libtiff defect requires modifi-
cations of multiple statements, our analysis reveals that the
correct repair is indeed outside of SPR’s repair space.

We also achieve similar reduction on repair time on the
GenProg benchmarks, as in the CoREBench benchmarks.
Restrictiveness of anti-patterns. Another conceptual ar-
gument against the idea of anti-patterns may be that anti-

735

Table 9: Overall Results on mGenProg (mAE) versus dGenProg(dAE)

Subjects Same Patch

Different Patch
Localizes Better

Less Functionality
Removal

No Repair Others
Average Speedup

Localizes Correct
Line

Localizes Correct
Function but
Incorrect Line

(Same Patch)

dAE mAE dAE mAE dAE mAE dAE mAE

coreutils 4 0 0 1 1 3 0 0 3 0 1.80
findutils 3 0 5 1 1 0 0 0 5 0 1.03
grep 2 0 1 3 3 2 0 0 4 1 0.79
make 3 0 1 1 1 0 1 0 0 0 1.18

Total 12 0 7 6 6 5 1 0 12 1 1.20

patterns will be overly restrictive and will rule out any re-
pair in many cases whereas, if an existing search-based tool
produces some repair, it still helps the developers to some
extent. Our results on the GenProg benchmarks show that
anti-patterns are not overly restrictive and, in the few cases
where it ruled out any repair, indeed no valid repair existed.

Weak Proxies. Our experiments for SPR and mSPR use
the updated proxies in previous work [23], which modifies
the test harness and the developer test script for php and
libtiff. In contrast, we reuse the weak proxies for our ex-
periments on GenProg and mGenProg. We used the weak
oracles for GenProg and the strong oracles for SPR because
they are provided together with the original tool distribu-
tion. If we compare the row 5-6 of Tables 4 and 5 in which
different set of proxies are used, we observe that having a
stronger proxy does not help SPR substantially in terms
of fix localization. Indeed the improvement of mSPR over
SPR in terms of localizing the correct line, is similar to the
improvement of mGenProg over GenProg.
Discussion on Patch Correctness. Our results show that
enforcing anti-patterns does not necessarily lead to patches
that are exactly equivalent to the human patches. This is not
entirely unexpected, because we only mark a generated patch
as correct, if it is near identical to the developer provided
patch. Our repair method is driven by a suite of test cases
and aims to pass the test-suite while not inserting any of
the anti-patterns. It frees the developers from providing dif-
ferent human patch patterns for different defect classes, ex-
ception types, vulnerabilities, etc. Nevertheless, mSPR still
generates one more correct repair than SPR while mGen-
Prog generates one plausible repair that removes a branch
from the original program.☛
✡

✟
✠

Anti-patterns provides repair space reduction, yet are not
overly restrictive.

7. THREATS TO VALIDITY
We identify the threats to validity of our experiments.

Set of anti-patterns. Our anti-patterns merely represent
bug, tool, and language agnostic patterns that we found fre-
quently occurred in bad patches and seldom in correct ones.
Though our experimental results show that our proposed
anti-patterns are effective in eliminating invalid patches, we
do not claim that our proposed set is a “complete” set.

Search. We terminate the search for repairs in both Gen-
Prog and SPR after a repair has been found, due to limited
resources. While both tools support full exploration that
may generate similar patches as in our modified versions,
such exploration may also lead to increase in the number of
invalid patches and longer manual inspection time. As “we
use the deterministic adaptive search algorithm (AE) to con-
trol potential randomness” (Section 6.1), we will re-evaluate
the savings for the stochastic algorithm in future work.

Patch Correctness Analysis. While we tried to assess re-
pair quality across multiple dimensions, our check for se-
mantic equivalence is inherently incomplete and many fixes
exist for a particular fault. Our conservative patch analysis
classifies a patch as “correct” only when near identical to
the human patch. Hence, the number of repairs reported
as “correct” may be an underestimate because a plausible
patch marked as not correct could very well be semantically
equivalent to the developers’ provided patch.

Generality of anti-patterns. As we only evaluate the ef-
fect of anti-patterns on CoREBench benchmarks [1] and the
GenProg benchmarks [10], our anti-patterns may have dif-
ferent effects on other benchmarks. Nevertheless, our ex-
perimental results show that anti-patterns provide similar
benefits at least in both these benchmarks.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed integrating anti-patterns to

search-based program repair. Our experimental results show
that by enforcing anti-patterns, we produce patches with
more pleasant properties, such as patches that delete less
functionality, and localize better. Tools integrated with
anti-patterns also could generate patches faster due to re-
pair space reduction. A recent study [12] shows the abun-
dance of plausible patches and sparsity of correct patches —
thereby arguing for rich specifications (beyond test-suites)
to guide the repair process. Our results indicate that our
anti-patterns, while they are not correctness specifications,
form one such set of specifications whose enforcement can
improve patch quality.

While in this work we explicitly specified a set of anti-
patterns as prohibited code transformations, in future, it is
feasible to implicitly specify anti-patterns as selected “code
smells”. Thus, during the repair search, any program modifi-
cation that produces a program with a bad code smell could
be effectively prohibited.

Our work opens the possibility of adapting the idea of
anti-patterns to other search-based software engineering ac-
tivities beyond program repair. For example, specific code
anti-patterns identifying energy hot-spots may be employed
for energy reduction.

In future, we are unlikely to have programming environ-
ments that automatically patch all errors without sufficient
intervention or domain knowledge. Meanwhile, it might be
possible to have programming environments, which attempt
to patch programs so as to pass a given test-suite and point
the developers to likely error locations and likely fixes. Our
proposal of anti-patterns is a step in this direction.

Acknowledgments. This research is supported in part by
the National Research Foundation, Prime Minister’s Office,
Singapore under its National Cybersecurity R&D Program
(Award No. NRF2014NCR-NCR001-21) and administered
by the National Cybersecurity R&D Directorate.

736

9. REFERENCES
[1] M. Böhme and A. Roychoudhury. CoREBench:

Studying complexity of regression errors. In
Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages
105–115, New York, NY, USA, 2014. ACM.

[2] W. H. Brown, R. C. Malveau, and T. J. Mowbray.
AntiPatterns: refactoring software, architectures, and
projects in crisis. Wiley, 1998.

[3] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus.
Automatic repair of buggy if conditions and missing
preconditions with SMT. In Proceedings of the 6th
International Workshop on Constraints in Software
Testing, Verification, and Analysis, CSTVA 2014,
pages 30–39, New York, NY, USA, 2014. ACM.

[4] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant,
J. H. Perkins, and M. Rinard. Inference and
enforcement of data structure consistency
specifications. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis, ISSTA
’06, pages 233–244, New York, NY, USA, 2006. ACM.

[5] D. Gopinath, M. Z. Malik, and S. Khurshid.
Specification-based program repair using sat. In Tools
and Algorithms for the Construction and Analysis of
Systems, pages 173–188. Springer, 2011.

[6] S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso.
Minthint: Automated synthesis of repair hints. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 266–276, New
York, NY, USA, 2014. ACM.

[7] D. Kim, J. Nam, J. Song, and S. Kim. Automatic
patch generation learned from human-written patches.
In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 802–811,
Piscataway, NJ, USA, 2013. IEEE Press.

[8] A. Koenig. Patterns and antipatterns. Journal of
Object Oriented Programming, 8(1), 1995.

[9] J. R. Koza. Genetic Programming: On the
Programming of computers by Means of Natural
Selection. MIT Press, 1992.

[10] C. Le Goues, M. Dewey-Vogt, S. Forrest, and
W. Weimer. A systematic study of automated
program repair: Fixing 55 out of 105 bugs for $8 each.
In Software Engineering (ICSE), 2012 34th
International Conference on, pages 3–13. IEEE, 2012.

[11] F. Long and M. Rinard. Staged program repair with
condition synthesis. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 166–178, New
York, NY, USA, 2015. ACM.

[12] F. Long and M. Rinard. An analysis of the search
spaces for generate and validate patch generation
systems. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
702–713, New York, NY, USA, 2016. ACM.

[13] F. Long and M. Rinard. Automatic patch generation
by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16,
pages 298–312, New York, NY, USA, 2016. ACM.

[14] S. Mechtaev, J. Yi, and A. Roychoudhury. DirectFix:
Looking for simple program repairs. In Proceedings of

the 37th International Conference on Software
Engineering, ICSE 2015, pages 448–458. ACM, 2015.

[15] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix:
Scalable multiline program patch synthesis via
symbolic analysis. In Proceedings of the 38th
International Conference on Software Engineering,
ICSE ’16, pages 691–701, New York, NY, USA, 2016.
ACM.

[16] M. Monperrus. A critical review of ”automatic patch
generation learned from human-written patches”:
Essay on the problem statement and the evaluation of
automatic software repair. In Proceedings of the 36th
International Conference on Software Engineering,
ICSE 2014, 2014.

[17] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: Program repair via semantic
analysis. In Proceedings of the 2013 International
Conference on Software Engineering, pages 772–781.
IEEE Press, 2013.

[18] F. S. Ocariza, Jr., K. Pattabiraman, and A. Mesbah.
Vejovis: Suggesting fixes for javascript faults. In
Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 837–847, New
York, NY, USA, 2014. ACM.

[19] Y. Pei, C. Furia, M. Nordio, Y. Wei, B. Meyer, and
A. Zeller. Automated fixing of programs with
contracts. Software Engineering, IEEE Transactions
on, 40(5):427–449, May 2014.

[20] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe,
J. Bachrach, M. Carbin, C. Pacheco, F. Sherwood,
S. Sidiroglou, G. Sullivan, W.-F. Wong, Y. Zibin,
M. D. Ernst, and M. Rinard. Automatically patching
errors in deployed software. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 87–102, New
York, NY, USA, 2009. ACM.

[21] R. Purushothaman and D. E. Perry. Towards
understanding the rhetoric of small changes-extended
abstract. In International Workshop on Mining
Software Repositories (MSR 2004), International
Conference on Software Engineering, pages 90–94,
2004.

[22] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The
strength of random search on automated program
repair. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, New
York, NY, USA, 2014.

[23] Z. Qi, F. Long, S. Achour, and M. Rinard. An analysis
of patch plausibility and correctness for
generate-and-validate patch generation systems. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA 2015, pages
24–36, New York, NY, USA, 2015. ACM.

[24] R. Samanta, O. Olivo, and E. Emerson. Cost-aware
automatic program repair. In M. Müller-Olm and
H. Seidl, editors, Static Analysis Symposium, volume
8723 of Lecture Notes in Computer Science, pages
268–284. Springer International Publishing, 2014.

[25] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In Proceedings of the 2005
International Workshop on Mining Software

737

Repositories, MSR ’05, pages 1–5, New York, NY,
USA, 2005. ACM.

[26] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is
the cure worse than the disease? overfitting in
automated program repair. In Proceedings of the 10th
Joint Meeting of the European Software Engineering
Conference and ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE),
Bergamo, Italy, 2015.

[27] S. H. Tan and A. Roychoudhury. Relifix: Automated
repair of software regressions. In Proceedings of the
37th International Conference on Software
Engineering, ICSE 2015, pages 471–482. ACM, 2015.

[28] W. Weimer, Z. Fry, and S. Forrest. Leveraging
program equivalence for adaptive program repair:
Models and first results. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, Nov 2013.

[29] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs? In
Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 26–36,
New York, NY, USA, 2011. ACM.

738

	Introduction
	Related Work
	Prevalence of Anti-patterns
	How anti-patterns may help
	Integrating anti-patterns
	Experiments
	Experimental Setup
	Evaluation on CoREBench benchmarks
	Patch Quality (RQ1)
	Reducing Manual Inspection Cost (RQ2)
	Speedup (RQ3)
	Comparison with dGenProg (RQ4)

	Evaluation on GenProg benchmarks

	Threats To Validity
	Conclusions and Future Work
	References

