
Flaky Test Detection in Android via Event Order Exploration

Zhen Dong
National University of Singapore, Singapore

zhen.dong@comp.nus.edu.sg

Abhishek Tiwari
National University of Singapore, Singapore

dcsabhi@nus.edu.sg

Xiao Liang Yu
National University of Singapore, Singapore

xiaoly@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore, Singapore

abhik@comp.nus.edu.sg

ABSTRACT

Validation of Android apps via testing is difficult owing to the

presence of flaky tests. Due to non-deterministic execution environ-

ments, a sequence of events (a test) may lead to success or failure in

unpredictable ways. In this work, we present an approach and tool

FlakeScanner for detecting flaky tests through exploration of event

orders. Our key observation is that for a test in a mobile app, there

is a testing framework thread which creates the test events, a main

User-Interface (UI) thread processing these events, and there may

be several other background threads running asynchronously. For

any event 𝑒 whose execution involves potential non-determinism,

we localize the earliest (latest) event after (before) which 𝑒 must

happen. We then efficiently explore the schedules between the

upper/lower bound events while grouping events within a single

statement, to find whether the test outcome is flaky. We also cre-

ate a suite of subject programs called FlakyAppRepo (containing

33 widely-used Android projects) to study flaky tests in Android

apps. Our experiments on the subject-suite FlakyAppRepo show

FlakeScanner detected 45 out of 52 known flaky tests as well as 245

previously unknown flaky tests among 1444 tests.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging;

KEYWORDS

flaky tests, non-determinism, concurrency, event order

ACM Reference Format:

Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury.

2021. Flaky Test Detection in Android via Event Order Exploration. In

Proceedings of the 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’21),

August 23–28, 2021, Athens, Greece. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3468264.3468584

1 INTRODUCTION

Regression testing aims to discover the adverse effects of the re-

cently added code changes. Ideally, a test failure during regression

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468584

testing should reliably signal issues with recent code modifications.

However, some test failures are not due to the recent updates but

due to flaky tests. Recent research [6, 17, 30] establishes flaky tests

as tests that non-deterministically pass or fail when running on

the same code version. Unfortunately, the presence of flaky tests

significantly harms developers’ productivity [1, 25, 30].

Android is a reactive system, and its non-deterministic execution

environment often causes concurrency-related flaky tests. In An-

droid, a GUI test usually simulates user interactions to exercise the

app’s functionality. However, due to non-determinism, a test could

generate such interactions at “incorrect” timings. For example, a

test to download an image and then open it without considering the

internet’s speed could show non-deterministic behavior. A potential

reason for such concurrency issues is the lack of synchronization

among threads, e.g., in the failing run, a background thread would

still be downloading the image while the testing thread tries to

open it without synchronization with the background thread.

Recent studies [34, 42] confirm that such synchronization issues

lead to a significant number of flaky tests in Android apps. Thorve

et al. [42] studied 77 flakiness-related commits in Android projects

and discovered that 36% failures are due to synchronization issues

between testing thread and app under test, e.g., a test accesses

data in the app before the data is available. Similarly, Romano

et al.’s study [34] shows that 33% flaky test failures are caused

by threads’ synchronization issues (tests interacting with the UI

elements before the elements are fully loaded).

Challenges. Exposing a concurrency-related flaky test in a test

suite is challenging as such flakiness is only observed when events

get executed in a particular order. In Android, a test’s event execu-

tion order may show non-determinism due to the non-deterministic

execution environment. Some of such (irregular) event orders may

cause a test to fail/pass occasionally. Consequently, detecting such

a situation would require exploring such event orders deterministi-

cally; unfortunately, this poses a set of challenges for the existing

flaky test detection approaches, which we discuss below.

• RERUN. A typical way to detect a flaky test is to rerun (expressed

as RERUN) it multiple times. If it passes in some runs and fails in

others, the test is marked as flaky. However, this approach can

struggle to detect concurrency-related flaky tests because the

target’s execution environment may not introduce the needed

non-determinism. Besides, it may require too many runs to wit-

ness the flakiness.

• Noise Based. Several approaches [4, 38, 40, 48] run tests with

environmental perturbations (e.g., changing CPU load or test

execution orders) in the hope of observing unexpected behaviors.

367

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

Despite being simple and easy to be adopted in practice, adding

noise does not guarantee to explore different execution orders.

Consequently, they fail to detect many concurrency related flaky

tests, as observed during our experiments.

• Event Race. The concurrency-related flakiness may be caused

due to a synchronization problem on the testing thread. Besides,

a concurrency bug on the app under test could also cause a

non-deterministic test failure. Thus, in principle, approaches

identifying concurrency bugs should also detect a subset of such

flaky tests. Recent works [8, 18, 19, 24, 32] leverage program

analysis techniques to analyze possible races in Android apps.

For instance, EventRacer [8] records the execution trace of a

test and statically analyzes it to find potential races. However,

such approaches are prone to multiple false positives, which may

create more problems for the developers during the Continuous

Integration (CI) process.

Our Approach. We introduce a lightweight technique that auto-

matically detects a concurrency flaky test in Android apps within

few test runs. Our technique explores the possible event execution

orders in a test by scheduling a non-deterministic (async) event

such that each test run explores a different event execution order.

Besides, we identify and explore event orders in which the test

flakiness manifests such that a flaky test can be detected in a few

test runs.

Insight. Possible event execution orders are introduced by non-

deterministic execution of async events. Android apps use a con-

current event-driven model, in which only the main (UI) thread

can access GUI and processes user events. To keep GUI responsive,

the UI thread offloads a long-running task (e.g., internet accessing)

to a background thread. Once the task is finished, the background

thread sends an event (called async event) to the UI thread to per-

form a GUI update. In a test run, the testing thread and background

threads send events to the UI thread simultaneously, resulting in

races among the events; the test may pass for some event orders and

fail in others. For the example mentioned earlier, the testing thread

simulates the “open the image” event, and the background thread

downloads the image and sends an update event after completing

the download. A race may occur between these two events. If the

internet is fast, the update event reaches the UI thread before the

“open the image” event, and the test passes. Otherwise, the “open

the image” event is processed first, and the test fails.

Event Order Exploration. Leveraging these insights, our approach

explores possible event execution orders by scheduling an async

event in a test run. Our approach first identifies the schedule space

for each async event with dynamic analysis and schedules the async

event in its schedule space to avoid infeasible orders. To manifest

a flaky test failure quickly, our approach schedules events at posi-

tions where the test is more likely to fail. Specifically, it schedules

an async event at a statement boundary position. The statement

boundary position is between the last event that a test statement

triggers and the first event that the next statement triggers. We

note that the tests are often flaky due to missing an appropriate

synchronization operation between two test statements, e.g., the

synchronizing operation after clicking a download button. Thus we

are more likely to trigger a test failure if an async event is executed

after executing certain test statements.

Instrumentation-free Tool.We implement our approach into a tool

called FlakeScanner , which leverages the debug mode supported in

the Android framework to perform dynamic analysis based event

scheduling. Thus FlakeScanner requires no instrumentation in ei-

ther Android apps or the Android framework and works on both

Android emulators and devices. According to the study [41], code in-

strumentation often disrupts test executions and prevents the man-

ifestation of flaky test failures. Moreover, FlakeScanner supports

multiple widely-used testing frameworks with which developers

write tests such as Espresso [2] or Robotium [13].

Experiment.We evaluated FlakeScanner on 33 widely-used An-

droid projects. Our experiments show that FlakeScanner success-

fully detected 45 out of 52 known flaky tests. On average, it detected

a flaky test within three test runs. FlakeScanner outperformed the

recently published flaky test detection technique Shaker [40] and

the baseline tool RERUN in terms of both the number of detected

flaky tests and average execution time. FlakeScanner also detected

245 flaky tests that were previously unknown. Out of these 245

unknown flaky tests, we reported 20 to developers; 13 out of these

20 have been confirmed and addressed by developers.

Contributions. Our contributions can be summarized as follows:

• We present an event scheduling approach that explores dif-

ferent event execution orders for each test run to detect

concurrency-related flaky tests in Android apps. To avoid

exploring all possible event orders, our approach adopts

heuristics to identify and explore event orders in which the

test flakiness is likely to occur.

• We implement our approach into an instrumentation-free

tool that works on Android emulators and physical devices

while supporting widely-used Android testing frameworks.

• We curate a suite of subject programs containing 33 widely-

used Android projects with developer tests, called FlakyAp-

pRepo for evaluating flaky test detection techniques. To facil-

itate future research on flaky tests, we make our prototype

FlakeScanner and subject-suite FlakyAppRepo available at

https://github.com/AndroidFlakyTest

2 BACKGROUND

Android Concurrency Model. Figure 1 depicts Android’s event-

driven concurrency model. Each Android app has a main thread

(also called UI thread); this thread processes events generated by

users or the Android system. As shown in Figure 1, the UI thread

maintains an event queue and an event looper. The queue is used to

store received events, and the looper sequentially dequeues events

from the queue and dispatches them to corresponding handlers

for processing. Android adopts a single-UI-thread model in which

only the main thread can access GUI objects. To achieve rapid UI

responsiveness, the UI thread offloads long-running tasks such

as network access to background threads, called async threads

since they communicate with the UI thread asynchronously. Once

tasks are completed, async threads post an event (called async

event marked in blue in Figure 1) to the UI thread, and the UI

thread updates the results to GUI. Event races may occur in this

model. The UI thread and async threads run concurrently. The du-

ration that an async thread will take to complete a task and post

368

Flaky Test Detection in Android via Event Order Exploration ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Figure 1: Android concurrency model & testing framework.

an async event is non-deterministic, depending on the current exe-

cution environment. Thus, a race might occur among posted async

events and others, leading to non-deterministic execution orders.

In the example in Figure 1, there are multiple event orders which

might occur in the execution, for instance, 〈𝑒1, 𝑒2, 𝑒6, 𝑒3, 𝑒4, 𝑒5, 𝑒7〉
and 〈𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7〉.

Instrumented Tests & Testing Frameworks. Instrumented tests are

tests that run on physical devices and emulators, and they can

invoke the Android framework APIs to control app under test at

runtime. These tests are often executed in a separate thread (called

testing thread) to simulate user interactions, as shown in Figure 1.

The Android system supports multiple testing frameworks to help

developers write tests, e.g., Espresso [2]. To achieve reliable tests,

these frameworks provide mechanisms to synchronize user inter-

actions with app under test. For instance, when method onView()
is invoked in a test, Espresso waits to perform the corresponding

UI action or assertion until the event queue is empty, background

threads are terminated, and user-defined resources are idle.

3 A MOTIVATING EXAMPLE

To set the stage for our event order exploration technique for flaky

test detection, we first illustrate the characteristics of a flaky test

and then exemplify current approaches’ inadequacy through List-

ings 1-3. These listings show parts of CaptureLocationActivityTest,

a flaky test taken from RapidPro Surveyor app. This test intends

to validate whether the app can successfully obtain the location

data using Google APIs. As shown in Listing 1, the test launches

CaptureLocationActivity (Line 2), the activity to capture the location

data (Listing 2). Later, the test emulates a button click to fetch the

location at line 5 in Listing 1, and validates whether the location is

successfully fetched at line 7 in Listing 1.

Despite appearing straightforward, the test displays non-determi-

nistic behavior, i.e., it is flaky. As explained earlier, the test runs

in a testing thread, and the activity under test runs in the app’s

UI thread. The activity (CaptureLocationActivity) offloads fetching

location data via Google API client to an async thread (Listing 3).

After obtaining the location data, the async thread updates the

result to the UI thread, and then the UI thread updates this result

to CaptureLocationActivity. Due to the lack of synchronization be-

tween the testing thread and async thread, the async thread might

send the location data before or after the testing thread validates it.

If the validation occurs before the location data is received, the test

fails, else it passes.

Detecting concurrency-related flaky tests is non-trivial as such

failures manifest when the events are executed in a specific order.

The traditional approach RERUN blindly executes the test many

times in the hope of witnessing the flaky test failures. However, this

approach becomes ineffective when the environment under which

the test runs does not produce the required non-determinism. For

example, RERUN failed to witness the flaky test failure in Capture-

LocationActivityTest during our experiments. Another approach

is to add noise in the execution environment to increase the like-

lihood of observing such errors. However, such approaches do

not proactively explore different event execution orders and are

prone to miss crucial event orderings. In our evaluations, the recent

(noise-based) related work Shaker [40] failed to detect many con-

firmed flaky tests, including CaptureLocationActivityTest. We also

evaluated EventRacer , a dynamic analysis based technique for de-

tecting event races in Android apps. However, such approaches are

prone to report many races. For example, in our evaluation, Even-

tRacer reported over 200 data races for CaptureLocationActivityTest.

Unfortunately, none of these reported data races from EventRacer

involve events originated from the testing thread, and hence do not

demonstrate the specific flakiness we are illustrating in this section.

Besides, EventRacer does not validate whether reported races can

cause the test failure.

4 OVERVIEW OF OUR APPROACH

This section describes the main components of our framework

and lists the principles that make event exploration suitable for

detecting concurrency-related flaky tests. First, the category of

flaky tests should be well defined. It is acceptable to give up on all

classes of flaky tests and focus on one; concurrency-related flaky

tests. Second, using only one test run, we explore (all) possible

scheduling space of an async event. Third, we execute these new

schedulings to observe the flaky behavior, i.e., there exist at least

two executions for which a test depicts different outcome (pass/fail).

4.1 Basic Concepts

Before diving into details of our approach, we define a miniature

domain-specific syntax extended from [20] for an Android test.

Test T ::=
−→
𝑆

Statement 𝑆 ::= post (−→𝑒) | assertions | sync | other

Event 𝑒 ::=
−→
𝑀UIThread |

−→
𝑀backgroundThread |

−→
𝑀OS

Synchronize SYNC ::= SYNC(
−→
𝑆)

Message M

A test 𝑇 is composed of a series of program statements 𝑆 . For
concurrency-related flaky tests, we are interested in exploring the

scheduling space of events, and thus for ease of representation, we

categorize a test statement into four parts; statements posting an

event, assertion statements, testing framework-specific synchro-

nizing statements, and all other Android-specific statements. An

event, denoted as 𝑒 , is a message object created in the UI thread

369

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

Listing 1: CaptureLocationActivityTest (Testing Thread)

1 @Rule

2 public ActivityTestRule <CaptureLocationActivity> rule = new

ActivityTestRule<>(CaptureLocationActivity . class) ;

3 @Test

4 public void capture () {

5 onView(withId(R.id . button_capture))

. check(matches(isDisplayed ())) .perform(click ()) ;

6 Instrumentation . ActivityResult result =

rule . getActivityResult () ;

7 assertThat (result . getResultData () , is (not(nullValue ()))) ;

8 ...

9 }

Listing 2: CaptureLocationActivity (UI Thread)

1 @Override

2 protected void onCreate(Bundle bundle) {

3 connectGoogleApi();

4 ...

5 }

6 protected void connectGoogleApi() {

7 googleApiClient = new GoogleApiClient.Builder (this) ...

8 googleApiClient . connect () ;

9 }

Listing 3: Zaau (Worker Thread)

1 //Worker thread asynchronous to the UI thread

2 @WorkerThread

3 public void run() {

4 zaak.zac(this . zagj) . lock () ;

5 ...

6 }

(
−→
𝑀UIThread), background threads (

−→
𝑀backgroundThread), or Android

framework (
−→
𝑀OS). Each event specifies a specific action to per-

form, e.g., a button click registers an on-click event. Synchronizing

statements (SYNC) are testing framework-specific methods and

are used to achieve synchronization among UI Thread and testing

thread, e.g., Espresso uses onView() method to achieve synchro-

nization among testing thread and UI Thread1. Based on above

constructs, we define an async event 𝑒𝑎𝑠𝑦𝑛𝑐 as the event generated

from a background thread, i.e, 𝑒𝑎𝑠𝑦𝑛𝑐 ∈
−→
𝑀backgroundThread .

Definition 4.1 (Scheduling Space of Events). Let𝑇 be a test contain-

ing a set of statements
−→
𝑆 , −→𝑒 be the sequence of events generated

by
−→
𝑆 . Let −→𝑒 contains 𝑛 async events and −→𝑒 ′ be a new sequence

of events created by reordering an async event in −→𝑒 . Then, the

scheduling space of events
−→
E is a set of all possible −→𝑒 ′.

Given a test, Definition 4.1 formally defines scheduling spaces of

events. Intuitively, in a test, the order of an async event is not fixed,

and thus, creating new event orders by reordering async events

will provide all potential event orders. However, these event orders

may also contain (infeasible) orders that will not be realized in

practice. One of the critical challenges is to avoid such orders. An

infeasible event ordering can be explored by ignoring the events’

dependencies during the execution. For instance, an async event 𝑒1
may depend on another event 𝑒2, where event 𝑒1 will not complete

1https://developer.android.com/training/testing/espresso#sync

before 𝑒2 in practice. Based on this observation, we define infeasible

event orders as:

Definition 4.2 (Infeasible Scheduling Space). Let −→𝑒 be a sequence

of events and −→𝑒 ′ be a new sequence created by reordering an async

event 𝑒𝑎𝑠𝑦𝑛𝑐 in −→𝑒 from the position 𝑖 to a new position 𝑗 . Then,
−→𝑒 ′ will be infeasible if ∃𝑒𝑘 ∈ −→𝑒 ′ after the position 𝑗 and 𝑒𝑎𝑠𝑦𝑛𝑐
depends on 𝑒𝑘 .

Intuitively, depends specifies the Happens-before relation. In prac-

tice, avoiding infeasible event orders would require computing

the dependencies among events in the test execution. However,

computing event dependencies is challenging for multiple reasons.

First, a test can trigger many events (more than 500 events for some

cases). Computing dependencies among them can be complex as

one event’s execution may depend onmultiple other events. Second,

event dependencies are not specified in the events but handed over

to the components that respond to the events. These components

may belong to Android frameworks or third-party libraries, making

event dependency analysis difficult. We propose a dynamic analysis

to explore various event execution orders to address this challenge.

Given an async event 𝑒 in a test run, the analysis identifies the

scheduling space 〈𝑒𝑙𝑜 , 𝑒𝑢𝑝 〉, where 𝑒𝑙𝑜 is lower bound event and 𝑒𝑢𝑝
is upper bound event, i.e., 𝑒 cannot be executed earlier than 𝑒𝑙𝑜 or

later than 𝑒𝑢𝑝 for all execution environments. Consequently, we

can explore event execution orders by scheduling the async event

𝑒 at various positions between 𝑒𝑙𝑜 and 𝑒𝑢𝑝 .

4.2 Identifying the Scheduling Space

The successful realization of the scheduling space requires noticing

two crucial points. First, the scheduling space needs to reflect some

level of determinism, i.e., there need to be some non-async events.

Second, each async event’s scheduling space should be well defined.

Observation 1. For a statement 𝑠 in a test 𝑇 , the first event it
generates will not be an async event, i.e., its order will not change for

all runs.

Android is a reactive system, and tests in an Android app in-

vokes the functionality of Android’s components (e.g., an activity)

by simulating user events. For example, a test would emulate a

button click to invoke some functionality provided by an activity.

The concept of background threads in Android is trivial, and An-

droid’s components utilize them to offload long-running tasks in

the background. Notably, a background thread is always created by

an Android component (via UI Thread). Thus, the interaction from

a test (via a statement) to an Android component would always

follow a sequence where the test would invoke the component, and

then the component may invoke a background thread. Considering

such event chaining, the first event of a test statement will always

belong to
−→
𝑀UIThread or

−→
𝑀OS . Based on this observation, we define

anchor events as:

Definition 4.3 (Anchor Events). Let 𝑠 ∈
−→
𝑆 be a program statement

in a test 𝑇 , and it generates 𝑛 events in the following order: <
𝑒1, ..., 𝑒𝑛 >. Then, we define 𝑒1 as the anchor event for 𝑠 .

To localize anchor events, we execute a test, statement by state-

ment; we record all events triggered by each statement, and build

370

Flaky Test Detection in Android via Event Order Exploration ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

a map between them. According to this map, we identify anchor

events for the test. Defining the lower bound of an async event is

now straightforward. Intuitively, for a given statement, the lower

bound of an async event would always be the anchor event of this

statement, as the anchor event will always happen-before async

event (Observation 1).

Localizing the upper bound event of an async event 𝑒𝑎𝑠𝑦𝑛𝑐 is

more involved and requires identifying events that depend on

𝑒𝑎𝑠𝑦𝑛𝑐 , i.e., events that occur only after 𝑒𝑎𝑠𝑦𝑛𝑐 . Such event depen-

dence is maintained by thread synchronization operations. For

instance, the testing framework Espresso uses onView() operation

to synchronize the testing thread and app under test. The testing

thread waits until specific threads or resources are idle to ensure

that a widget specified by onView() shows up on the screen. For-

mally, we define the upper bound of an async event as:

Definition 4.4 (Upper Bound Event). Let 𝑇 be a test containing a

set of statements
−→
𝑆 . We define 𝑒 𝑗 as the upper bound event for an

async event 𝑒𝑎𝑠𝑦𝑛𝑐 , where 𝑒 𝑗 is the first event that cannot happen-
before 𝑒𝑎𝑠𝑦𝑛𝑐 .

We propose a what-if analysis to localize the upper bound event

of 𝑒𝑖 . Specifically, after the test is launched, we hook the async

thread that posts 𝑒𝑖 at runtime and suspend it, keeping other threads

free. Meanwhile, we monitor the testing thread to check at which

statement the testing thread stops and waits for the suspended

thread to be completed. Suppose that the testing thread stops at a

statement 𝑠 on executing the event 𝑒 𝑗 . We then deem operations

in 𝑠 to depend on 𝑒𝑖 , and these operations will not be executed

until 𝑒𝑖 is processed. Thus, the anchor event 𝑒 𝑗 triggered by 𝑠 is
upper bound event of 𝑒𝑖 . The idea behind the analysis is what-if it

takes forever to complete the long-running task that corresponds

𝑒𝑖 ; operations in a test that depend on 𝑒𝑖 will not be executed due

to thread synchronization, and those that do not depend on 𝑒𝑖 will
be executed.

4.3 Scheduling Events

Next, we explore the scheduling strategies for an async event 𝑒𝑎𝑠𝑦𝑛𝑐 .
Given the lower and upper bound events of 𝑒𝑎𝑠𝑦𝑛𝑐 , the anchor

events that lie between this interval are identified. Then, 𝑒𝑎𝑠𝑦𝑛𝑐 is
scheduled before each of these anchor events. To manifest flaky

test failures as soon as possible, we prioritize positions closer to the

upper bound event (maximizing the runtime of the async event),

i.e., we first schedule 𝑒𝑎𝑠𝑦𝑛𝑐 just before its upper bound and then

move towards its lower bound.

For two reasons, we only explore positions before anchor events

in the scheduling space of an async event instead of all possible

positions. First, for non-anchor events in the scheduling space,

their execution orders may change from run to run. Using them as

hooks for event scheduling may introduce infeasible orders. Second,

anchor events are boundary events of test statements. Scheduling

an async event before them is likely to trigger a flaky test failure.

5 METHODOLOGY

Figure 2 shows the workflow of our approach. For a given test, our

framework performs a concrete execution to trace all the generated

events. Next, a map between the statements in the test and their

Tracing &
mapping events

Identifying
schedule space

Scheduling
events

An event map Event orders

Figure 2: Workflow of exposing flaky tests through system-

atic schedule exploration.

corresponding events is created. The test is executed multiple times

to compute possible schedules for async events. Consequently, a

set of event orders that might occur in execution environments are

created. Finally, we explore these possible event execution orders; if

a test failure is detected during the exploration, the test is identified

as a flaky test (since we have already seen passing runs of the test).

5.1 Event Tracing and Mapping

Event tracing is often used in the dynamic analysis of Android apps.

It can be achieved by simply logging events that are generated at

runtime. However, such techniques cannot fulfill our task. Event

information (e.g., event id) produced in logs is dynamically gener-

ated by Android runtime and changes in each run. Our approach

requires an event identifier to identify an event uniquely across

different test runs. Async events that are identified during event

tracing need to be hooked and scheduled in runs that are performed

for event order exploration.

Event Identification. We identify an event based on interactions

between the event and app under test at runtime. Two events trig-

gered in different test runs are considered identical if: (1) they are

triggered by the same test statement; (2) they are processed by the

same sequence of methods at runtime. For instance, a pressDown
event is associated with an identifier constructed using the line

number of the statement that triggers the event and signatures of a

sequence of methods that process it. This practice of event identifi-

cation comes from our investigation of the Android framework.

Tracing and Mapping. Algorithm 1 outlines the procedure of

event tracing and mapping. First, it launches the app under test

and takes control of the Android runtime with a module called

ARTHandler. Given a test 𝑇 consisting of a series of statements,

ARTHandler runs the test𝑇 in the testing thread and executes state-

ments one by one (via the Android debugger). When one statement

is executed, ARTHandlers monitors the event queue of the UI thread

and hooks injected events. For each event, ARTHandler records the

tuple 〈𝑖𝑠𝐴𝑠𝑦𝑛𝑐, 𝑠𝑞𝑚〉 where 𝑖𝑠𝐴𝑠𝑦𝑛𝑐 denotes whether it is an async

event and 𝑠𝑞𝑚 denotes the signatures of a sequence of methods that

have processed the event. This tuple and the line number of the

statement being executed form the event’s identifier and get stored

in a list (Line 11-14). As stated before, a statement in the test might

perform long-running tasks, which are executed in async threads.

When these tasks are completed is non-deterministic, and the async

event might be posted after a long time. To not miss async events

that are triggered by a single statement, we keep hooking events

until two criteria are satisfied: (a) there are no new events and (b)

the event queue of the UI thread is empty, which often indicates

the system is not running tasks. This practice is also used in the

371

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

Algorithm 1: Event tracing and mapping.

1 Procedure runTest(App A, Test T, Android ART)
2 launchApp (𝐴, 𝐴𝑅𝑇);

3 𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 ← attachHandler (𝐴, 𝐴𝑅𝑇);

4 𝐿𝑖𝑠𝑡 ← ∅ ; // storing pairs of a statement and events

5 launchTest (𝐴,𝑇 , 𝐴𝑅𝑇);

// UI thread’s event queue

6 𝑒𝑣𝑒𝑛𝑡𝑄 ← getEventQ(𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟) ;

7 for s in𝑇 do

8 runStatement(𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟, 𝑠) ;

9 𝑛 ← getLineNum(𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟, 𝑠) ;

10 while True do

11 𝐸 〈𝑖𝑠𝐴𝑠𝑦𝑛𝑐, 𝑠𝑞_𝑚〉 ← getEvent(𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟) ;

12 if E != Null then

13 𝐿𝑖𝑠𝑡 ← 𝐿𝑖𝑠𝑡 ∪ {〈𝑖𝑠𝐴𝑠𝑦𝑛𝑐, 𝑠𝑞_𝑚,𝑛〉 }

14 else

15 if isEmpty(𝑒𝑣𝑒𝑛𝑡𝑄) then

16 break ;

17 end

18 end

19 end

20 end

21 return 𝐿𝑖𝑠𝑡

Espresso testing framework. Finally, a map between a statement

and its events is returned via the List, and the first event of each

statement is identified as an anchor event.

5.2 Identifying Event Schedule Space

To compute possible event execution orders, we perform a what-if

dynamic analysis to resolve event dependencies caused by thread

synchronization between apps and testing frameworks. Algorithm 2

shows the procedure of resolving event dependencies. It takes the

event trace 𝐿𝑖𝑠𝑡 generated in the previous step as input. For each

async event 𝑒𝑎𝑠𝑦𝑛𝑐 in 𝐿𝑖𝑠𝑡 , the algorithm launches the test and

starts to hook event 𝑒𝑎𝑠𝑦𝑛𝑐 (Line 4-8). Once hooked, the algorithm
suspends the thread that posts 𝑒𝑎𝑠𝑦𝑛𝑐 such that 𝑒𝑎𝑠𝑦𝑛𝑐 cannot be
posted (Line 9). Meanwhile, it keeps checking the status of the

testing thread (Line 10-14). If the testing thread’s status is WAITING,
it considers the testing thread is performing thread synchronization

with threads in the app and waiting for 𝑒𝑎𝑠𝑦𝑛𝑐 to be executed. Thus,
we consider the statement 𝑠 that is being executed in the testing

thread attempts to trigger an event (e.g., 𝑒 𝑗) which depends on

𝑒𝑎𝑠𝑦𝑛𝑐 . Therefore, the schedule space of 𝑒𝑎𝑠𝑦𝑛𝑐 is bounded by 𝑒 𝑗 , i.e.,
the first event that is triggered by 𝑠 . So statement 𝑠 is identified as

the upper bound of schedule space of async event 𝑒𝑎𝑠𝑦𝑛𝑐 . Statement

𝑠 is recorded and set as the upper bound of event 𝑒𝑎𝑠𝑦𝑛𝑐 and 𝑒𝑎𝑠𝑦𝑛𝑐
is restored to 𝐿𝑖𝑠𝑡 . Finally, schedule spaces for all async events in
𝐿𝑖𝑠𝑡 are recorded.

5.3 Scheduling Events

Schedule space of each async event in the event trace 𝐿𝑖𝑠𝑡 is iden-
tified in the previous steps. Next, we explore event orders during

test execution. An async event 𝑒𝑎𝑠𝑦𝑛𝑐 can be simply represented

by a triplet 〈𝑖𝑑, 𝑛,𝑚〉, where 𝑛 and𝑚 are bounds of the scheduling

space of 𝑒𝑎𝑠𝑦𝑛𝑐 . Specifically, 𝑛 is the index of the statement in the

Algorithm 2: Event scheduling exploration.

1 Procedure explore(App A, Test T, Android ART, EventMap List)
2 for e in 𝐿𝑖𝑠𝑡 do
3 if isAsync (e) then

4 launchApp (𝐴, 𝐴𝑅𝑇);

5 𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟 ← attachHandler (𝐴, 𝐴𝑅𝑇);

6 launchTest (𝐴,𝑇 , 𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟);

7 𝑇𝐻𝑡𝑒𝑠𝑡 ← getTestingThread (𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟);

8 𝑇𝐻𝑎𝑠𝑦𝑛𝑐 ← hookAsyncThread (𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟);

9 suspend (𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟,𝑇𝐻𝑎𝑠𝑦𝑛𝑐) ;

10 while True do

11 if isWaiting (𝑇𝐻𝑡𝑒𝑠𝑡) then

12 break ;

13 end

14 end

15 𝑚 ← getLineNum (𝐴𝑅𝑇𝐻𝑎𝑛𝑑𝑙𝑒𝑟,𝑇𝐻𝑡𝑒𝑠𝑡);

16 end

// 𝑚 is set as upper bound for 𝑒

17 setUpperBound (𝑒 ,𝑚) ;

// update event 𝑒 (with upper bound 𝑚) in List

18 updateEvent (𝐿𝑖𝑠𝑡 , 𝑒) ;

19 break ;

20 end

21 return 𝐿𝑖𝑠𝑡

test that triggers 𝑒𝑎𝑠𝑦𝑛𝑐 , and𝑚 is the index of the statement that

triggers the upper bound event of 𝑒𝑎𝑠𝑦𝑛𝑐 .
Similar to scheduling space identification, we can schedule 𝑒𝑎𝑠𝑦𝑛𝑐

by operating threads. We first hook event 𝑒𝑎𝑠𝑦𝑛𝑐 after the test is

launched and suspend the thread that posts 𝑒𝑎𝑠𝑦𝑛𝑐 . Then, we free
the testing thread and monitor whether the statement being exe-

cuted is statement 𝑚. Once statement𝑚 is reached, we suspend

the testing thread and free the suspended thread to post 𝑒𝑎𝑠𝑦𝑛𝑐 .
After the async thread is terminated or idle, i.e., event 𝑒𝑎𝑠𝑦𝑛𝑐 has
been posted, we free the testing thread. In such a way, event 𝑒𝑎𝑠𝑦𝑛𝑐
can be executed before statement𝑚. In next test run, we schedule

𝑒𝑎𝑠𝑦𝑛𝑐 to be executed prior to statement𝑚 − 1, until all statements

between 𝑛 and𝑚 are explored. This procedure is repeated for each

async event in 𝐿𝑖𝑠𝑡 .

6 IMPLEMENTATION

Our system is implemented in Scala and runs on a computer that

connects a physical Android device or an emulator. Unlike existing

techniques, it requires no instrumentation on apps or the Android

framework and can be adapted to different versions of Android.

Taking Control of Android Runtime. The Android framework

supports running an app in the debug mode, under which the

Android runtime can be fully controlled. Specifically, we connect

the Android runtime via Android Debug Bridge (ADB) and use

the Android debugger to execute the app under test. With the

debugger’s help, we can perform execution step by step andmonitor

the app state during thread manipulation.

Hooking Events. Android adopts the event-driven model and

manages events using an event queue. Each event implements

an interface method called enqueueMessage() and Android puts

372

Flaky Test Detection in Android via Event Order Exploration ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 1: Subject Apps

App Name Version #LOC #Stars Category

Amaze File Manager 3.4.3 92.2k 2.8k Tools

Youtube Extractor 2.0.0 2.7k 519 Video Players

AntennaPod 1.8.1 102.6k 2.7k Music & Audio

Backpack Design 2.0.7 84.2k 363 Productivity

Barista 3.5.0 67.9k 1.2k Productivity

CameraView 2.6.1 40.5k 2.9k Photography

Catroid 0.9.69 457.5k 0 Education

City Localizer 1.1 4k 0 Travel & Local

ConnectBot 1.9.6 119.7k 1.4k Communication

DuckDuckGo 5.43.0 211.3k 1.2k Tools

Espresso 1.0 17.3k 1.1k Maps & Navigation

Firefox Focus 8.5.1 44.5k 1.6k Communication

Firefox Lite 2.18 1598.4k 212 Communication

FlexBox 2.0.1 29.2k 15.2k Libraries & Demo

GnuCash 2.4.0 90.1k 1k Finance

IBS FoodAnalyzer 1.2 26.1k 0 Health & Fitness

Google I/O 7.0.14 73.5k 19.6k Books & Reference

Just Weather 1.0.0 5.9k 65 Weather

Kaspresso 1.1.0 66.3k 774 Productivity

KeePassDroid 2.5.3 159.7k 1.2k Tools

KickMaterial 1.0 79.1k 1.6k Crowdfunding

KISS Launcher 3.11.9 27.2k 1.4k Personalisation

MedLog 1.0 65k 0 Medical

Minimal To Do 1.2 27.5k 1.8k Productivity

MoneyManagerEx 02.14.994 170k 265 Finance

My Expenses 3.0.7.1 1835.6k 248 Finance

NYBus 1.0 6.9k 272 Transport

Omni Notes 6.0.5 105.9k 2k Productivity

OpenTasks 1.2.4 448k 724 Productivity

ownCloud 2.14.2 333.7k 2.9k Productivity

Sunflower 0.1.6 5.3k 10.1k Gardening

Surveyor 13.3.0 290.4k 13 Communication

WordPress 14.2-rc-2 461.7k 2.3k Productivity

events to the queue by calling this method. We set a breakpoint at

method enqueueMessage() in the debug mode.Whenever an event

is generated and injected into the queue, we perform predefined

operations such as suspending the event-posting thread.

Operating Threads. We leverage the Android debugger to re-

trieve threads running in the app under test, including the testing

thread and UI thread. The Android debugger provides commands to

remotely operate threads, e.g., inspecting thread status and suspend-

ing a selected thread. It also allows us to obtain the current stack

frames of a running thread that are used for event identification.

With the Android debugger, we can execute a testing thread step

by step and observe execution at the statement level by inserting a

breakpoint at each statement in the test.

7 EVALUATION

We empirically evaluate FlakeScanner’s effectiveness in detecting

flaky tests in the test suites of large-scale Android projects.

7.1 Subject Apps

Our technique is designed for a test that runs on the Android frame-

work platform and checks whether it is flaky. To evaluate our tech-

nique, we need Android projects that contain such tests. Basically,

there are two types of tests in Android projects: instrumented tests

Table 2: Root causes of reproduced flaky test failures and

their categories.

Categories Description of root causes
Async Do not wait or wait not enough when accessing background

resources or services in an async manner for tasks such as
image rendering, downloading from internet, and invoking
third party libraries.

Event orders Expecting an implicit event execution order that may not
always occur in the test execution. The unexpected event
execution order leads to app misbehavior such as the soft
keyboard disappearing late.

Data race Checking unsynchronized data because checking occurs be-
fore the data being updated due to the lack of thread synchro-
nization.

Lifecycle Performing app-state-sensitive operations on the incorrect
state, e.g., the testing thread attempts to operate GUI widgets
when the app is resumed state, which is prohibited.

that run on a physical device or Android emulator and local unit

tests that run on local Java virtual machines. Thus, we need An-

droid projects that contain instrumented tests. Unfortunately, most

Android projects in existing benchmarks such as AndroTest [11],

industrial app benchmark [44], and data set that is used for flaky

test empirical study [42] have no instrumented tests.

Therefore, we built the first subject-suite FlakyAppRepo in which

eachAndroid project contains instrumented tests that arewritten by

developers. As shown in Table 1, FlakyAppRepo contains 33 Android

projects (majority of them are well-known, such as WordPress) and

over 5000 instrumented tests from developers.We collected Android

projects containing instrumented tests as follows: (1) searching

popular open-source Android projects such as Firefox and manually

checking their repositories to select projects with instrumented

tests (intuitively, popular projects are well maintained and more

likely have developer tests); (2) searching keywords such as flak,

flakiness, or intermit on the Github and manually checking searched

repositories to select Android projects containing instrumented

tests. Furthermore, we explored these keywords in the commit

history as well to include already fixed flaky tests. A few searched

projects have 0 star on the Github. To achieve diversity, we did not

exclude these projects and kept them in the subject-suite.

7.2 Research Questions

Our evaluation aims to address the following research questions.

RQ1 Can FlakeScanner detect known flaky tests that are reported

by developers?

RQ2 How does FlakeScanner compare with existing techniques in

terms of number of detected flaky tests?

RQ3 Can FlakeScanner be used to discover flaky tests in Android

projects that were previously unknown?

7.3 Experiment Setup

To answer the research questions, we conduct three empirical stud-

ies on test cases that are written by developers in real world Android

app projects.

7.3.1 Study 1. We first evaluate FlakeScanner’s effectiveness in

flaky test detection by running it on known flaky tests in Android

projects and checking how many of them are marked as flaky tests

by FlakeScanner .

373

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

Table 3: Dynamic analysis based tools for detecting flaky

tests or concurrency issues in Android apps.

Approach Categories Instrumentation Year Reason for not selected

RERUN Flaky tests No -

Shaker [40] Flaky tests No 2020

APEChecker [16] Async bugs No 2018 publicly unavailable

ERVA [20] Event race Yes 2016 Publicly unavailable

EventRacer [8] Event race Yes 2015

AsyncDroid [24] Async bugs Yes 2015 Incompatible instrument API

Data Set.We selected 52 known flaky tests from FlakyAppRepo

that are caused by concurrency or synchronization issues for Study

1. In Android projects, flaky tests reported by developers are marked

with a dedicated annotation @FlakyTest such that flaky tests can be
automatically filtered out during test execution. We identified 269

known flaky tests in FlakyAppRepo using @FlakyTest annotation.
We selected known tests from them in the following manner.

Concurrency We select concurrency related flaky tests by manu-

ally analyzing (1) details about reported flaky tests such as

the reason of why a test is flaky, which can be collected from

detail element 2 of @FlakyTest annotation; (2) commit

messages when flaky tests were introduced or fixed in a sub-

sequent version; (3) whether there exist statements in tests

that are commonly involved in concurrency or synchroniza-

tion execution, e.g., operations of Runnable or AsyncTask
objects.

Passing We ran each selected test in our execution environment

and ensured it passes in the initial run, avoiding failures due

to environment setup.

Reproducing We reproduce the flaky test failure for each selected

test by analyzing its commits messages and detailed descrip-

tion in the repository including root causes and failing sce-

narios. For cases lacking the description, we contacted de-

velopers to seek more insights on the failure reproduction.

A test is selected if its failures is reproduced.

In the end, 52 known flaky tests were selected for the evaluation.

Meanwhile, we also analyzed root causes of these flaky test failures

and classified them into four categories which are shown in Table 2.

7.3.2 Study 2. To answer RQ2, we evaluate FlakeScanner and exist-

ing tools on the data set used in Study 1. We reviewed most recent

works on flaky tests or event race detection for Android apps and

summarize them in Table 3. We selected the following approaches

for comparison.

• RERUN. In practice, developers often run a test many times

to check whether the test is flaky. Similarly, we run a test

100 times and check whether the flaky test failure manifests

during execution. We call the approach 100RUN and take it

as our baseline.

• Shaker [40] is the most recently reported state-of-the-art

technique for detecting concurrency-related flaky tests in

Android apps. Shaker attempts to manifest a flaky test failure

by adding noises in the execution environment to affect event

execution order, e.g., changing CPU workload.

• EventRacer [8] is a the-state-of-art dynamic technique of

detecting event races in Android apps, which infers races

2https://developer.android.com/reference/androidx/test/filters/FlakyTest

by analyzing runtime traces produced by an instrumented

Android framework.

7.3.3 Study 3. To answer RQ3, we run FlakeScanner on tests in

FlakyAppRepo without @FlakyTest annotation, i.e., tests that are
not reported as flaky tests. We first run these tests in our execution

environment and exclude tests that fail, then feed passing tests

to FlakeScanner and report tests that are labeled as flaky tests by

FlakeScanner .

Effect of Debug Mode. FlakeScanner runs apps in the debug mode.

The debug mode environment may affect flaky test detection by

impacting the Android event dispatching mechanism or increasing

execution workload. According to the official Android document3,

the difference between normal execution mode and debug mode is

that the Android virtual machine (VM) loads an additional Android

Runtime Tooling Interface (ARTTI) plugin that exposes runtime

internals (e.g., variable values). The ARTTI plugin runs as a VM-

level component and it is transparent to event dispatching that

occurs in the app’s main thread, i.e., running apps in debug mode

does not impact the mechanism of event dispatching.

However, running the ARTTI plugin and accessing runtime in-

ternals in the execution could increase the workload of the VM. Due

to the workload change, a test can manifest the flaky test failure. To

rule out such cases, for each test in our study, we pre-execute it to

ensure the test passes in the debug mode environment. To perform

end-to-end comparison in Study 2, we run 100RUN and Shaker in

the debug mode environment as well.

Execution Environment. We conducted experiments on a physical

machine with 64 GB RAM and a 56 cores Intel(R) Xeon(R) E5-2660

v4 CPU, running a 64-bit Ubuntu 16.04 operating system. Each

execution instance runs in a Docker container to minimize the

potential inference between running instances. App under test runs

on an Android 9 (x86) emulator. One execution instance is for one

test case for which the Android emulator is initialized to a fresh

state at the beginning to provide a clean testing environment.

7.4 RQ1: Efficacy

Table 4 shows results on each known flaky test for study 1. The

first column indicates known test Ids, the second column shows

app names and testing frameworks used in apps, and the third

column indicates test method names. Column “#Event” indicates the

number of events observed by FlakeScanner during detection. “#Run”

indicates the number of test runs in the event order exploration.

Column “Time” reports the time that is used to detect a flaky test.

Column “Succ” indicates whether the test is identified as a flaky test

by FlakeScanner . “-” indicates that a test is unable to be executed

due to library compatibility issues. Firefox-Lite marked with “*”

(rows 39-40) is a previous version (commit:465739510e). Note that

some test names in the table are shortened for readability.

Results. FlakeScanner successfully detected 45 out of 52 known

flaky tests that are from 10 Android projects (including a different

version of Firefox Lite). On average, FlakeScanner detected a flaky

test in 101 seconds. The maximum detection time is for test 20 from

app AntennaPod (691 seconds). The minimum detection time is for

3https://source.android.com/devices/tech/dalvik/art-ti

374

Flaky Test Detection in Android via Event Order Exploration ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 4: Results on known flaky tests by FlakeScanner, Shaker and 100RUN .

Id

App:

Framework
Method name

FlakeScanner Shaker 100Run

#Events #Run Time(s) Succ Time(s) Succ Time(s) Succ

1

Surveyor:

Espresso

capture 58 2 48 4301.76 80

2 twoQuestions 104 2 48 2639.1 1236

3 multimedia 233 8 542 1607.28 486

4 contactDetails 104 2 48 2819.93 1300

5
Youtube

Extractor:

JUnit4

testEncipheredVideo 4 2 24 112.136 9

6 testUnembeddable 7 3 22 151.783 103

7 testAgeRestrictVideo 5 3 12 103.136 78

8 testUsualVideo 5 3 14 107.094 77

9

MyExpenses:

Espresso

testScenarioForBug5b.. 861 2 100 583.922 704

10 editCommandKeeps.. 101 2 54 929.601 857

11 cloneCommandIncreases.. – – – – 949.274 879

12 changeOfFractionDigits.. 991 2 170 672.984 693

13 changeOfFractionDigitsWith.. 991 2 174 589.684 637

14

Firefox Lite:

Espresso

saveImageThenDelete.. 627 5 352 1954.07 1088

15 dismissMenu 165 2 76 1381 742

16 turnOnTurboMode.. 89 2 40 926.728 5

17 changeDisplayLang 189 3 72 3056.51 680

18

AntennaPod:

Robotium

testGoToPreferences 107 3 56 418.265 4

19 testClickNavDrawer 132 2 60 2279.01 5

20 PlaybackSonicTest#..On.. 177 10 691 3243.652 1128

21 PlaybackSonicTest#..Off.. 176 6 495 1233.66 1231

22 PlaybackTest#..Off..Episodes 175 2 142 1251.95 1237

23 PlaybackTest#..On..Episodes 162 2 140 1071.3 1128

24

FlexBox:

Espresso

testScrollToPosition..row 219 6 306 416.673 837

25 testAddViewHolders.. 46 2 17 142.923 196

26 testChangeAttributes.. 23 2 20 102.37 3

27 testMinHeight..minHeight 58 7 112 105.134 176

28 testJustifyContent..views 58 2 40 110.923 168

29 testJustifyContent_center 58 9 158 211.181 173

30 testFlexWrap..column 55 2 32 107.355 180

31 testFirstViewGone..column 58 2 32 106.491 168

32 testChangeOrder..Params 26 4 36 102.21 178

33 testAlignItems..column 58 2 32 107.798 180

34 testAlignContent..column 58 2 32 107.021 189

35 testAlignContent..column 58 2 32 105.902 198

36 testAlignContent..Padding 56 2 42 107.256 193

37 testFlexLines..row 74 3 32 246.254 344

38 testFlexLines..column 69 2 36 221.768 366

39 Firefox Lite(★):
Espresso

browsingWebsite.. 642 2 94 2192.65 159

40 saveImageThenDelete.. 661 3 96 1415.6 1117

41

BackPack:

JUnit4

test_with_description 41 2 11 146.354 289

42 test_with_title 40 2 11 150.643 303

43 test_bottom_sheet_style 32 4 30 149.486 207

44 test_alert_style 32 4 31 150.811 199

45 screenshotTestDialog.. 86 2 23 285.117 267

46 screenshotTestDialog 86 2 23 290.37 263

47 test_with_buttons 42 3 11 174.781 348

48
Barista:

JUnit4

overflowMenuClick_byTitle 130 3 82 240.39 309

49 openOverflowMenu_..Option 58 2 21 310.67 323

50 overflowMenuClick_byId 127 4 82 280.342 350

51 Kaspresso:

JUnit4

CommonFlakyTest#test 93 2 26 2232.77 1896

52 UiCommonFlakyTest#test 94 5 295 2048.74 1941

Avg/SUM 169 3 101 45 861 15 497 8

375

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

test 41, 42, and 47 from app BackPack (11 seconds). FlakeScanner

detected a flaky test within 3 test runs on average. The maximum

number of test runs is for test 20 from AntennaPod (10 runs). To

understand why FlakeScanner successfully detected failures within

a few test runs, we inspected source code of projects. The major

reason is that tests heavily use synchronization operations. For

instance, test 2 from Surveyor contains 21 test statements, 15 of

which use the synchronization operation provided by Espresso [2]

onView(). When onView() is called in the test statement, the test-

ing thread waits until background threads complete tasks. As de-

signed, FlakeScanner does not perform event scheduling for those

cases since async events are bounded in the execution of a test

statement by the synchronization operation. Then FlakeScanner

can focus on scheduling events for statements that lack synchro-

nization operations. Moreover, FlakeScanner prioritizes exploring

positions that are closer to the upper bound event, which likely

triggers flaky test failures (Section 4.3). Thus, FlakeScanner could

detect failures within a few test runs. The results also show FlakeS-

canner is a practical tool. It successfully detected flaky test failures

for test 12 and 13 from MyExpenses, for which 991 events were

generated in the execution. Meanwhile, FlakeScanner worked on

Android projects that adopt different testing frameworks such as

Espresso [2] and Robotium [3].

FlakeScanner successfully detected 45 out of 52 known flaky

tests in 10 Android projects. On average, it detected a flaky test

within 3 test runs.

7.5 RQ2: Comparison with Existing Techniques

As shown in Table 4, FlakeScanner outperforms Shaker and 100RUN

in terms of both the number of detected flaky tests and the average

execution time. Out of the 52 known flaky tests, FlakeScanner de-

tected the most flaky tests (45) and is followed by Shaker (15) and

100RUN (8). For execution time, FlakeScanner detected a flaky test

in 101 seconds on average, which is less than 861 seconds of Shaker

and 497 seconds of 100RUN . For most of tests, 100RUN could not

detect a flaky test failure in the first few runs and kept executing

them until reaching 100 times, which took a longer time.

Regarding the overlap between flaky tests detected by each tool,

FlakeScanner detected all the flaky tests detected by Shaker and

100RUN . But Shaker and 100RUN failed to detect the other flaky

tests that were detected by FlakeScanner . The better results from

FlakeScanner can be explained as follows: FlakeScanner can iden-

tify synchronization operations in the test execution and focus on

scheduling events for statements that lack synchronization oper-

ations. Unexpected event execution orders that cause flaky test

failures are more likely to explored by FlakeScanner .

We also evaluated EventRacer since it uses dynamic analysis to

infer event race for Android apps. EventRacer reported many possi-

ble races for each test run. On average, it reported 1237 races for a

test. This is because EventRacer focuses on detecting races in An-

droid apps and does not analyze races in which testing frameworks

are involved. Furthermore, EventRacer infers races by analyzing

recorded traces and cannot validate whether the reported races can

cause flaky test failures.

FlakeScanner outperforms Shaker and 100RUN in terms of both

the number of detected flaky tests and average execution time.

7.6 RQ3: Real-World Flaky Test Detection

We ran 1444 passing tests from the 33 Android projects in FlakyAp-

pRepo which are not annotated as flaky tests (these tests may or

may not be flaky). Out of these 33 projects, FlakeScanner detected

at least one flaky test for 19 projects, and reported 245 flaky tests in

total. To validate previously unknown flaky tests that FlakeScanner

detected, we randomly selected 20 out of the detected 245 flaky

tests and reported them to developers. For each selected test, we

manually reproduced the failure that FlakeScanner witnessed dur-

ing detection and generated a detailed root-cause-analysis report,

and submitted the report on the Github. At the time of writing the

paper, we got responses on 15 test cases. Out of the 15 tests, 13

were confirmed as flaky tests and addressed by developers. For the

other two tests, developers replied that the reported failures were

not encountered yet or not reproduced at their end, without giving

us further explanation. Our experience with flaky test reporting

shows so far that developers are more interested in identifying

which tests are flaky. Once a flaky test is detected, they appear to

be more prone to removing them, rather than investigating why it

is flaky.

FlakeScanner detected 245 previously unknown flaky tests in 19

widely-used Android projects. Out of the reported 20 unknown

flaky tests, 13 were confirmed and addressed by developers.

7.7 Threats to Validity

External Validity: Threats to external validity relate to the gener-

alizability of the experimental results. FlakeScanner is evaluated so

far on 33 Android projects. Our results may not generalise beyond

the 33 Android projects to which we have applied FlakeScanner . To

mitigate this threat, we not only choose Android projects that are

popular and well maintained but also include less popular Android

projects (i.e., less stars on the Github) which were searched on the

Github via keywords.

Internal Validity: Threats to internal validity concern factors

in our experimental methodology that may affect our results. In

Study 1, we note that 52 concurrency or synchronization related

known flaky tests are chosen by manually analyzing their related

descriptions and commit messages, which might result in selection

bias. Similarly, we manually analyze failures detected by each tool

under evaluation and validate the results, which might introduce

bias as well. To mitigate these risks, two authors of this paper

independently performed the manual tasks, and cross-checked each

other’s results.

7.8 Data Availability

To facilitate future research on flaky tests, we make our prototype

FlakeScanner and subject-suite FlakyAppRepo available at link https:

//github.com/AndroidFlakyTest

376

Flaky Test Detection in Android via Event Order Exploration ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

8 RELATEDWORK

Flaky Test Detection. Bell et al. [6] use code coverage based dif-

ferential analysis to identify flaky tests. A test is deemed flaky if it

fails during regression testing and its execution does not reach any

code that was recently changed by developers. Lam et al. propose

iDFlakies [27], a framework for detecting order dependent flaky

tests, tests that fail when run in different orders. Dutta et al. [13]

develop an approach to detect random number related flaky tests,

tests that fail due to difference in the sequence of random numbers

generated in different runs. Shi et al. [39] propose an approach to

fix order-dependent flaky tests by leveraging passing tests. Shi et

al. [37] propose to rerun a test multiple times on each mutant and

obtain reliable coverage results such that the effects of flaky tests

on mutation testing can be mitigated. In contrast, FlakeScanner de-

tects concurrency or synchronization related flaky tests in Android

projects by exploring feasible event execution orders.

Event Race Detection. Another branch of works that are close

to ours is event race detection [8, 18–21, 31–33, 35, 36, 45]. In-

stead of detecting flaky tests, these works leverage dynamic and

static analysis to detect event races. For instance, ER Catcher [35],

DROIDRACER [32], EventRacer [8], CAFA [19], and nAdroid [18]

capture happens-before-relation among events and infer possible

event races. In addition, Ozkan et al. [24] propose to detect asyn-

chronous bugs by exploring different execution orders of event

handlers in Android apps. SARD [46] leverages happens-before

analysis to detect use-after-free issues in Android apps. These tech-

niques have the potential to be applicable for flaky test detection,

but face challenges to capture complete and precise happens-before

relations when a test is executed by a testing framework. Many false

positives can be reported by event-race detectors due to incomplete

happen-before relations being compute. In contrast, FlakeScanner

performs a system-level dynamic analysis to capture precise event

dependencies to avoid such false positives.

Empirical Studies on Flaky Tests. Multiple studies [14, 26, 30, 42]

confirm concurrency as the major cause of flaky tests. Luo et al. [30]

performed an empirical analysis of flaky tests in 51 open-source

projects. They identified Concurrency and Async wait as the most

common cause of flaky tests. They pointed out that the majority of

these cases arose because they do not wait for external resources.

Finally, they described the common fixing strategies the developers

use to fix flaky tests. In a separate study, Eck et al.[14] surveyed

21 professional developers to classify 200 flaky tests they fixed.

They identified four unreported causes of flaky tests, which are also

considered difficult to fix. Thorve et al. [42] conducted an empirical

study of flaky tests in Android apps. They searched 1000 projects

for the commits related to flakiness and found only 77 relevant

commits from 29 projects. They found 36% of commits occurred

due to concurrency related issues. Fan et al. [16] proposed a hybrid

approach towards manifesting asynchronous bugs in Android apps

with fault patterns.

Concurrency Bug Detection. There have been several testing

based approaches [10, 12, 22, 23, 28, 47] to identify concurrency

related bugs. Maple [47] proposed a coverage-driven approach to ex-

pose untested thread interleavings. Letko [28] proposed a combina-

tion of testing and dynamic analysis withmetaheuuristic techniques.

Choudhary et al. [10] presented a coverage-guided approach for

generating concurrency tests to detect bugs in thread-safe classes.

Multiple related works [5, 7, 9, 15, 29, 43] manipulated event or-

ders to control non-determinism in multi-threaded programs. Liu

et al. [29] proposed a deterministic multithreading system that re-

places pthreads library in C/C++ apps. Emmi et al. [15] proposed a

search prioritization strategy to discover concurrency bugs. They

add non-determinism to deterministic schedulers by delaying their

next-scheduled task. Adamsen et al. [5] presented an automated

program repair technique for event race errors in JavaScript. Given

a repair policy, they controlled the event handler scheduling in the

browser to avoid bad orderings.

9 DISCUSSION

Flaky tests pose a significant problem in validating mobile apps. In

this paper, we presented an approach for detecting flaky tests via

systematic event order exploration. We introduced FlakeScanner , a

tool to detect flaky tests for Android apps. FlakeScanner explores

the space of possible execution environments which may cause

relevant threads to interleave differently. Due to the lack of a test-

ing benchmark for flaky tests, we created the first subject-suite

FlakyAppRepo that is used to study test flakiness. FlakyAppRepo

contains 33 widely-used Android apps with around 2.5k stars on

average in GitHub. We applied FlakeScanner to tests from FlakyAp-

pRepo. Results show that FlakeScanner not only detected known

flaky tests but also reported 245 new flaky tests. We believe that

our tool and results hold out promise for tackling flaky tests, which

is a significant pain point in the practice of testing.

ACKNOWLEDGEMENTS

This work was partially supported by the National Research Foun-

dation Singapore (National Satellite of Excellence in Trustworthy

Software Systems).

REFERENCES
[1] 2016. Flaky Tests at Google and How We Mitigate Them. https://testing.

googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
[2] 2020. Espresso. https://developer.android.com/training/testing/espresso
[3] 2020. Robotium. https://github.com/RobotiumTech/robotium
[4] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. Sys-

tematic Execution of Android Test Suites in Adverse Conditions. In Proceed-
ings of the 2015 International Symposium on Software Testing and Analysis.
https://doi.org/10.1145/2771783.2771786

[5] C. Q. Adamsen, A. Møller, R. Karim, M. Sridharan, F. Tip, and K. Sen. 2017.
Repairing Event Race Errors by Controlling Nondeterminism. In 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE). https://doi.org/10.
1109/ICSE.2017.34

[6] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. 2018. DeFlaker:
Automatically Detecting Flaky Tests. In 2018 IEEE/ACM 40th International Con-
ference on Software Engineering (ICSE). https://doi.org/10.1145/3180155.3180164

[7] Tom Bergan, Luis Ceze, and Dan Grossman. 2013. Input-covering schedules for
multithreaded programs. (2013). https://doi.org/10.1145/2509136.2509508

[8] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2015. Scalable Race Detection
for Android Applications. (2015). https://doi.org/10.1145/2814270.2814303

[9] Ahmed Bouajjani, Michael Emmi, Constantin Enea, Burcu Kulahcioglu Ozkan,
and Serdar Tasiran. 2017. Verifying Robustness of Event-Driven Asynchronous
Programs Against Concurrency. https://doi.org/10.1007/978-3-662-54434-1_7

[10] Ankit Choudhary, Shan Lu, and Michael Pradel. 2017. Efficient Detection of
Thread Safety Violations via Coverage-Guided Generation of Concurrent Tests.
In IEEE/ACM International Conference on Software Engineering. https://doi.org/
10.1109/ICSE.2017.32

[11] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-
mated Test Input Generation for Android: AreWe There Yet?. In Proceedings of the

377

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Zhen Dong, Abhishek Tiwari, Xiao Liang Yu, and Abhik Roychoudhury

2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). https://doi.org/10.1109/ASE.2015.89

[12] James Davis, Arun Thekumparampil, and Dongyoon Lee. 2017. Node.fz: Fuzzing
the Server-Side Event-Driven Architecture. In European Conference on Computer
Systems. https://doi.org/10.1145/3064176.3064188

[13] Saikat Dutta, August Shi, Rutvik Choudhary, Zhekun Zhang, Aryaman Jain, and
SasaMisailovic. 2020. Detecting Flaky Tests in Probabilistic andMachine Learning
Applications. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. https://doi.org/10.1145/3395363.3397366

[14] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Un-
derstanding flaky tests: the developer’s perspective. In 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). https://doi.org/10.1145/3338906.3338945

[15] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-Bounded
Scheduling. In Proceedings of Symposium on Principles of Programming Languages.
https://doi.org/10.1145/1926385.1926432

[16] Lingling Fan, Ting Su, Sen Chen, GuozhuMeng, Yang Liu, Lihua Xu, and Geguang
Pu. 2018. Efficiently Manifesting Asynchronous Programming Errors in Android
Apps. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. https://doi.org/10.1145/3238147.3238170

[17] Martin Flower. 2020. Eradicating non-determinism in tests. https://martinfowler.
com/articles/nonDeterminism.html

[18] Xinwei Fu, Dongyoon Lee, and Changhee Jung. 2018. nAdroid: statically
detecting ordering violations in Android applications. In Proceedings of the
2018 International Symposium on Code Generation and Optimization. https:
//doi.org/10.1145/3168829

[19] Chun-Hung Hsiao, Jie Yu, Satish Narayanasamy, Ziyun Kong, Cristiano Pereira,
Gilles Pokam, Peter Chen, and Jason Flinn. 2014. Race Detection for Event-Driven
Mobile Applications. (2014). https://doi.org/10.1145/2594291.2594330

[20] Yongjian Hu, Iulian Neamtiu, and Arash Alavi. 2016. Automatically verifying
and reproducing event-based races in Android apps. In International Symposium
on Software Testing and Analysis. https://doi.org/10.1145/2931037.2931069

[21] Jeff Huang and Arun K. Rajagopalan. 2016. Precise and Maximal Race Detection
from Incomplete Traces. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications.
https://doi.org/10.1145/2983990.2984024

[22] Casey Klein, Matthew Flatt, and Robert Findler. 2010. Random Testing for Higher-
Order, Stateful Programs. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications. https://doi.org/10.1145/
1869459.1869505

[23] Bohuslav Krena, Zdenek Letko, Tomas Vojnar, and Shmuel Ur. 2010. A platform
for search-based testing of concurrent software. In International Workshop on
Parallel and Distributed Systems: Testing, Analysis, and Debugging. https://doi.
org/10.1145/1866210.1866215

[24] Burcu Kulahcioglu Ozkan, Michael Emmi, and Serdar Tasiran. 2015. Systematic
Asynchrony Bug Exploration for Android Apps. In International Conference on
Computer Aided Verification. https://doi.org/10.1007/978-3-319-21690-4_28

[25] Wing Lam, Patrice Godefroid, Suman Nath, Anirudh Santhiar, and Suresh Thum-
malapenta. 2019. Root causing flaky tests in a large-scale industrial setting. In
Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis. https://doi.org/10.1145/3293882.3330570

[26] Wing Lam, Kivanc Muslu, Hitesh Sajnani, and Suresh Thummalapenta. 2020. A
Study on the Lifecycle of Flaky Tests. In 42nd International Conference on Software
Engineering. https://doi.org/10.1145/3377811.3381749

[27] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. iDFlakies: A Framework
for Detecting and Partially Classifying Flaky Tests. In 12th IEEE Conference on
Software Testing, Validation and Verification. https://doi.org/10.1145/3238147.
3240465

[28] Zdeněk Letko. 2013. Analysis and Testing of Concurrent Programs. Information
Sciences and Technologies Bulletin of the ACM Slovakia (2013).

[29] Tongping Liu, Charlie Curtsinger, and Emery Berger. 2011. Dthreads: Efficient
deterministic multithreading. In Proceedings of the 23rd ACM Symposium on
Operating Systems Principles. https://doi.org/10.1145/2043556.2043587

[30] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
empirical analysis of flaky tests. In International Symposium on Foundations of
Software Engineering (FSE). https://doi.org/10.1145/2635868.2635920

[31] Pallavi Maiya and Aditya Kanade. 2017. Efficient Computation of Happens-before
Relation for Event-Driven Programs. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis. https://doi.org/10.

1145/3092703.3092733
[32] Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. 2014. Race Detection for

Android Applications. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. https://doi.org/10.1145/
2594291.2594311

[33] Arun K. Rajagopalan and Jeff Huang. 2015. RDIT: Race Detection from Incomplete
Traces. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. https://doi.org/10.1145/2786805.2803209

[34] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang.
2021. An Empirical Analysis of UI-based Flaky Tests. In IEEE/ACM International
Conference on Software Engineering. https://doi.org/10.1109/ICSE43902.2021.
00141

[35] Navid Salehnamadi, Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek.
2020. ER Catcher: A Static Analysis Framework for Accurate and Scalable Event-
Race Detection in Android. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. https://doi.org/10.1145/3324884.
3416639

[36] Anirudh Santhiar, Shalini Kaleeswaran, and Aditya Kanade. 2016. Efficient
Race Detection in the Presence of Programmatic Event Loops. In Proceedings
of the 25th International Symposium on Software Testing and Analysis. https:
//doi.org/10.1145/2931037.2931068

[37] August Shi, Jonathan Bell, and DarkoMarinov. 2019. Mitigating the effects of flaky
tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. https://doi.org/10.1145/3293882.
3330568

[38] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. 2016. Detecting Assumptions
on Deterministic Implementations of Non-deterministic Specifications. In 2016
IEEE International Conference on Software Testing, Verification and Validation.
https://doi.org/10.1109/ICST.2016.40

[39] August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
a framework for automatically fixing order-dependent flaky tests. In Proceedings
of the 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC-FSE). https:
//doi.org/10.1145/3338906.3338925

[40] Denini Silva, Leopoldo Teixeira, and Marcelo d’Amorim. 2020. Shake It! Detecting
Flaky Tests Caused by Concurrency with Shaker. In IEEE International Conference
on Software Maintenance and Evolution. https://doi.org/10.1109/ICSME46990.
2020.00037

[41] Valerio Terragni, Pasquale Salza, and Filomena Ferrucci. 2020. A Container-Based
Infrastructure for Fuzzy-Driven Root Causing of Flaky Tests. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas
and Emerging Results. https://doi.org/10.1145/3377816.3381742

[42] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An Empirical Study of
Flaky Tests in Android Apps. In International Conference on Software Maintenance
and Evolution. https://doi.org/10.1109/ICSME.2018.00062

[43] Ermenegildo Tomasco, Omar Inverso, Bernd Fischer, Salvatore La Torre, and
Gennaro Parlato. 2015. Verifying Concurrent Programs by Memory Unwinding.
In 21st International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. https://doi.org/10.1007/978-3-662-46681-0_52

[44] Wenyu Wang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang
Deng, and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools
in Industrial Cases. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering.

[45] D. Wu, J. Liu, Y. Sui, S. Chen, and J. Xue. 2019. Precise Static Happens-Before
Analysis for Detecting UAF Order Violations in Android. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST). https://doi.
org/10.1109/ICST.2019.00035

[46] Diyu Wu, Jie Liu, Yulei Sui, Shiping Chen, and Jingling Xue. 2019. Precise Static
Happens-Before Analysis for Detecting UAF Order Violations in Android. In
2019 12th IEEE Conference on Software Testing, Validation and Verification (ICST).
https://doi.org/10.1109/ICST.2019.00035

[47] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam. 2012. Maple: A
Coverage-Driven Testing Tool for Multithreaded Programs. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages, and Applications.
https://doi.org/10.1145/2384616.2384651

[48] Sai Zhang, Darioush Jalali, Jochen Wuttke, Kıvanç Muşlu, Wing Lam, Michael D.
Ernst, and David Notkin. 2014. Empirically revisiting the test independence
assumption. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis. https://doi.org/10.1145/2610384.2610404

378

