
Time-travel Testing of Android Apps
Zhen Dong

National University of Singapore

zhen.dong@comp.nus.edu.sg

Marcel Böhme

Monash University, Australia

marcel.boehme@monash.edu

Lucia Cojocaru

Politehnica University of Bucharest

lucia.cojocaru@stud.acs.upb.ro

Abhik Roychoudhury

National University of Singapore

abhik@comp.nus.edu.sg

ABSTRACT
Android testing tools generate sequences of input events to exer-

cise the state space of the app-under-test. Existing search-based

techniques systematically evolve a population of event sequences

so as to achieve certain objectives such as maximal code coverage.

The hope is that the mutation of fit event sequences leads to the

generation of even fitter sequences. However, the evolution of event

sequences may be ineffective. Our key insight is that pertinent app
states which contributed to the original sequence’s fitness may not

be reached by a mutated event sequence. The original path through

the state space is truncated at the point of mutation.

In this paper, we propose instead to evolve a population of states

which can be captured upon discovery and resumed when needed.

The hope is that generating events on a fit program state leads to

the transition to even fitter states. For instance, we can quickly

deprioritize testing the main screen state which is visited by most

event sequences, and instead focus our limited resources on testing

more interesting states that are otherwise difficult to reach.

We call our approach time-travel testing because of this ability

to travel back to any state that has been observed in the past. We

implemented time-travel testing into TimeMachine, a time-travel

enabled version of the successful, automated Android testing tool

Monkey. In our experiments on a large number of open- and closed

source Android apps, TimeMachine outperforms the state-of-the-

art search-based/model-based Android testing tools Sapienz and

Stoat, both in terms of coverage achieved and crashes found.

1 INTRODUCTION
Android app testing has been gaining in importance. In 2020, there

is a smart phone for every third person (2.9 billion users) while

app revenue will double from 2016 (US$ 88 to 189 billion).1 The
number of bugs and vulnerabilities in mobile apps are growing. In

2016, 24.7% of mobile apps contained at least one high-risk security

flaw [1]. The Android testing market is also expected to double in

five years from US$ 3.21 billion in 2016 to US$ 6.35 billion in 2021.
2

1
https://www.statista.com/statistics/269025/worldwide-mobile-app-revenue-forecast/

2
https://www.businesswire.com/news/home/20170217005501/en/

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7121-6/20/05. . . $15.00

https://doi.org/10.1145/3377811.3380402

(a) Excerpt of the map of Maridia

where pink marks explored rooms.

(b) Samus discovering the Spazer

weapon

Figure 1: Super Metroid on an Android Emulator

To illustrate the challenges of existing Android testing tools, take

for example Super Metroid (Fig. 1), one of the best games for the

NES gaming console, now available for Android. Super Metroid is

played on a large map of rooms that can be explored in any order.

By pushing the right buttons on the controller, the main character

Samusmoves from one room to the next, finding secrets and gaining

in strength by fighting enemies. Today, Android app testing is like

playing a game of Super Metroid, albeit without the ability to save

after important milestones and to travel back in time when facing

the consequences of a wrong decision.

One possible approach is to generate a single, very long sequence
of events in a random fashion [3]. However, the testing tool may

ultimately get stuck in dead ends. For instance, Samus may fall into

pits or get lost in a particularly complex part of the labyrinth. This

problem is overcome only partially by restarting the Android app

because (i) we must start from the beginning, (ii) there is no clean

slate, e.g., database entries remain, and (iii) how to detect when we

are stuck is still an open question. For Android testing, the ability

to save and travel back to the most interesting states goes a long

way towards a more systematic exploration of the state space.

Another Android app testing approach [36] is to evolve a popula-
tion of event sequences in a search-based manner. In each iteration,

the fittest event sequences are chosen for mutation to generate the

next generation of event sequences. An event sequence is mutated

by adding, modifying, or removing arbitrary events. However, this

approach does not allow for systematic state space exploration by

traversing the various enabled events from a state. If ei in the se-

quence E = ⟨e1, . . . , ei , . . . en⟩ is mutated, then the suffix starting

in ei+1 may no longer be enabled. For instance, when Samus stands

next to an enemy or a ledge after event ei−1 and the event ei is
turned from a press of the [⇐]-button to a press of the [⇒]-button,

Samus may be killed or get stuck. The remaining events starting

from ei+1 become immaterial; rooms that were reached by E may

not be reached by its mutant offspring.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

In this paper, we propose instead to evolve a population of states
which can be captured upon discovery and resumed when needed.

By capturing and resuming an app’s states, we seek to achieve a

systematic state space exploration (without going to the extent of

exhaustive exploration as in formal verification). Due to the ability

to travel back to any past state, we call this as time-travel testing.

Our novel time-travel testing approach systematically resets the

entire system—the Android app and all of its environment—to the

most progressive states that were observed in the past. A progressive
state is one which allows us to discover new states when different

input events are executed. Once the tool gets stuck, it goes back in

time and resumes a progressive state to execute different events.

We implement time-travel testing for Android apps into Time-
Machine3 a time-travel-enabled variant of the automated Android

testing tool Monkey [3]. In our example, one can think of Time-
Machine as an automatic player that explores the map of Super

Metroid through very fast random actions, automatically saves after

important milestones, and once it gets stuck or dies, it travels back

to secret passages and less visited rooms seen before in order to

maximize the coverage of the map. Compared to tools that evolve

event sequences, such as Sapienz [36], TimeMachine does not mu-

tate the sequence prefix which is required to reach the fittest, most

progressive state, and instead generates only the sequence suffix
starting from that state. Compared to tools that generate a single,

very long event sequence, such as Monkey [3] or Stoat [40], Time-
Machine automatically detects when it gets stuck (i.e., there is a

lack of progress) and resumes that state for further testing which is

most promising for finding errors. In our experiments with Sapienz,

Stoat, and Monkey on both open-source and closed-source Android

apps TimeMachine substantially outperformed the state-of-the-art

in terms of both, coverage achieved and errors found.

TimeMachine can be seeded with a set of initial event sequences.

At the beginning of a testing session, TimeMachine takes a snapshot
of the starting state. During test execution, TimeMachine takes a
snapshot of every interesting state and adds it to the state corpus,
travels back to the interesting state and executes the next test.

For each transition from one state to another, TimeMachine also
records the shortest event sequence. If no initial test set is provided,

TimeMachine only adds the starting state to the state corpus.

TimeMachine is an automatic time-travelling-enabled test gener-

ator for Android apps that implements several heuristics to choose

the most progressive state from the state corpus to explore next.

Intuitively, a state reaching which covered new code and that has

been difficult to reach has more potential to trigger new program be-

havior. TimeMachine dynamically collects such feedback to identify

the most progressive state. TimeMachine identifies a progressive
state as one which itself was infrequently visited and the k nearest

neighbors
4
were visited relatively infrequently.

Our experiments demonstrate a substantial performance increase

over our baseline test generation tool—Monkey extended with

system-level event generator of Stoat [40]. Given the 68 apps in

the AndroTest benchmark [23], our time-travel strategy enables

the baseline tool to achieve 1.15 times more statement coverage

and to discover 1.73 times more unique crashes. Given 37 apps

3
Named after the celebrated fictional work by H.G. Wells more than a century ago.

4
The k nearest neighbors are states reachable along at most k edges.

in the benchmark of industrial apps, around 900 more methods

are covered on average and 1.5 times more unique crashes are dis-

covered. Our time-travel strategy makes TimeMachine so efficient

that it outperforms the state-of-the-art test generators Sapienz [36]

and Stoat [40] both in terms of coverage as well as errors found,

detecting around 1.5 times more unique crashes than the next best

test generator. TimeMachine tested the Top-100 most popular apps

from Google Play and found 137 unique crashes.

In summary, our work makes the following contributions:

• We propose time-travel testing for Android which resumes

the most progressive states observed in the past so as to

maximize efficiency during the exploration of an app’s state

space. The approach identifies and captures interesting states

as save points, detects when there is a lack of progress, and

resumes the most progressive states for further testing. For

instance, it can quickly deprioritize the main screen state

which is visited by most sequences, and resume/test difficult-

to-reach states. We propose several heuristics that guide

execution to a progressive state when progress is slow.

• We implement the time-travel testing framework and an

automated, feedback-guided, time-travel-enabled state space

exploration technique for Android apps. The framework and

testing technique are evaluated on both open-source and

closed-source Android app benchmarks, as well as top-100

popular apps from Google Play. We have made our time-

travel Android app testing tool TimeMachine publicly avail-

able on Github: https://github.com/DroidTest/TimeMachine

2 TIME-TRAVEL FRAMEWORK
We design a general time-travel framework for Android testing,

which allows us to save a particular discovered state on the fly

and restore it when needed. Figure 2 shows the time-travel infra-

structure. The Android app can be launched either by a human

developer or an automated test generator. When the app is inter-

acted with, the state observer module records state transitions and

monitors the change of code coverage. States satisfying a prede-

fined criteria are marked as interesting, and are saved by taking a

snapshot of the entire simulated Android device. Meanwhile the

framework observes the app execution to identify when there is a

lack of progress, that is, when the testing tool is unable to discover

any new program behavior over the course of a large number of

state transitions. When a “lack of progress” is detected, the frame-

work terminates the current execution, selects, and restores the

most progressive one among previously recorded states. A more

progressive state is one that allows us to discover more states quickly.

When we travel back to the progressive state, an alternative event

sequence is launched to quickly discover new program behaviors.

The framework is designed as easy-to-use and highly-configurable.

Existing testing techniques can be deployed on the framework by

implementing the following strategies:

• Specifying criteria which constitute an “interesting” state, e.g.,

increases code coverage. Only those states will be saved.

• Specifying criteria which constitute “lack of progress”, e.g., when

testing techniques traverse the same sequence of states in a loop.

• Providing an algorithm to select the most progressive state for

time-travelling when a lack of progress is detected.

Time-travel Testing of Android Apps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Automated test
generators, e.g. Monkey

State
identification

Coverage
monitor

State
recorder

State
manager

Snapshot
creator

Lack of progress
detection

Snapshot
restorer

Snapshot Pool

Interesting state
detection

Progressive
state selection

State transition

State graph

A snapshot

Android OS

State observer

A snapshot

Developer

Figure 2: Time travel framework. Modules in grey are configurable, allowing users to adjust strategy according to scenarios.

2.1 Taking Control of State
State identification. In order to identify what constitutes a state, our

framework computes an abstraction of the current program state.

A program state in Android app is abstracted as an app page which

is represented as a widget hierarchy tree (non-leaf nodes indicate

layout widgets and leaf nodes denote executable or displaying wid-

gets such as buttons and text-views). A state is uniquely identified

by computing a hash over its widget hierarchy tree. In other words,

when a page’s structure changes, a new state is generated.

To mitigate the state space explosion problem, we abstract away

values of text-boxes when computing the hash over a widget hier-

archy tree. By the above definition, a state comprises of all widgets

(and their attributes) in an app page. Any difference in those widgets

or attribute values leads to a different state. Some attributes such as

text-box values may have huge or infinite number of possible values

that can be generated during testing, which causes a state space

explosion issue. To find a balance between accurate expressiveness

of a state and state space explosion, we ignore text-box values for

state identification. Our practice that a GUI state is defined without

considering text-box values is adopted by previous Android testing

works as well [21, 22].

State saving & restoring. We leverage virtualization to save and

restore a state. Our framework works on top of a virtual machine

where Android apps can be tested. A virtual machine (VM) is a

software that runs a full simulation of a physical machine, including

the operating system and the application itself. For instance, a VM

with an Android image allows us to run Android apps on a desktop

machine where related hardware such as the GPS module can be

simulated. App states can be saved and restored with VM.

Our framework records a program state by snapshotting the

entire virtual machine state including software and emulated hard-

ware inside. States of the involved files, databases, third-party li-

braries, and sensors on the virtual device are kept in the snapshot

so that the state can be fully resumed by restoring the snapshot.

This overcomes the challenge that a state may not be reached from

the initial state by replaying the recorded event sequence due to

state change of background services.

2.2 Collecting State-Level Feedback
To identify whether a state is “interesting”, our framework monitors

the change in code coverage. Whenever a new state is generated,

code coverage is re-computed to identify whether the state has

potential to cover new code via the execution of enabled events.

Our framework supports both open-source and close-source apps.

For open-source apps, we collect statement coverage using the

Emma coverage tool [9]. For closed-source, industrial apps, we

collect method coverage using the Ella coverage tool [8]. For closed-

source apps, statement coverage is difficult to obtain.

Our framework uses a directed graph to represent state tran-

sitions, where a node indicates a discovered state and an edge

represents a state transition. Each node maintains some informa-

tion about the state: whether there is a snapshot (only states with

snapshots can be restored), how often it has been visited, how often

it has been restored, and so on. This information can be provided

to testing tools or human testers to evaluate how well a state has

been tested and to guide execution.

3 METHODOLOGY
We develop the first time-travel-enabled test generator Time-

Machine for Android apps by enhancing Android Monkey [3] with

our framework. TimeMachine’s procedure is presented in Algo-

rithm 1. TimeMachine’s objective is to maximize state and code

coverage. TimeMachine starts with a snapshot of the initial state

(lines 1-4). For each event that Monkey generates, the new state

is computed and the state transition graph updated (lines 5-9). If

the state isInteresting (Sec. 3.1), a snapshot of the VM is taken

and associated with that state (lines 10-13). If Monkey isStuck and

no more progess is made (Sec. 3.2), TimeMachine finds the most

progressive state (selectFittestState; Sec. 3.3) and restores the

associated VM snapshot (lines 14-17). Otherwise, a new event is

generated and loop begins anew (lines 5-18).

3.1 Identifying Interesting States
TimeMachine identifies an interesting state based on changes in

GUI or code coverage (Line 10 in Algorithm 1). The function isIn-

teresting(state) returns true if (1) state is visited for the first time,

and (2) when state was first reached new code was executed.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

Algorithm 1: Time-travel testing (TimeMachine).

Input: Android App, Sequence generatorMonkey
1: State curState ← launch(App)
2: Save VM snapshot of curState
3: Interesting states states ← {curState}
4: State Transition Graph stateGraph ← initGraph(curState)
5: for each Event e inMonkey.generateEvent() do
6: if timeout reached then break; end if
7: prevState ← curState
8: curState ← executeEvent(App, e)
9: stateGraph ←updateGraph(prevState, curState)
10: if isInteresting(curState, stateGraph) then
11: Save VM snapshot of curState
12: states ← states ∪ {curState}
13: end if
14: if isStuck(curState, stateGraph) then
15: curState ← selectFittestState(states, stateGraph)
16: Restore VM snapshot of curState
17: end if
18: end for
Output: State Transition Graph stateGraph

The intuition behind our definition of “interesting" states is that

the execution of new code provides the evidence that a functionality

that has not been tested before is enabled in the discovered state.

More new code related to the functionality might be executed by ex-

ploring this state. For instance, suppose clicking a button on screen

S1 leads to a new screen S2, from where a new widget is displayed

(increasing code coverage). The new widget comes with its own

event handlers that have not been executed. These event handlers

can be covered by further exploring screen S2. This heuristic not
only accurately identifies an interesting state (S2 in this case) but

also significantly reduces the total number of saved states (since

only interesting states are saved during testing).

3.2 Identifying Lack of Progress
The testing process can stay unprogressive without discovering any

new program behavior for quite some time. As reasons for Monkey

getting stuck, we identified loops and dead ends.

Loops. A loop is observed when the same few (high-frequency)

states are visited again and again. To easily perform routine activ-

ities, app pages are typically organized under common patterns,

e.g., from the main page one can reach most other pages. This de-

sign leads to a phenomenon where random events tend to trigger

transitions to app pages which are easy to trigger. Moreover, apps

often browse nested data structures, it is difficult to jump out from

them without human knowledge. For example, let us consider the

AnyMemo [7] app, a flashcard learning app we tested. Monkey

clicks a button to load a CSV file and arrives at an app page that

browses system directories. It keeps on exploring directories and

cannot leave this app page until it finds a CSV file to load (or by press-
ing the “Back” button many times in a row). In our experiments,

Monkey could not jump out of the loop within 5000 events.

Algorithm 2: Detecting loops and dead-ends (isStuck).

Input: Queue length l
Input: Lack-of-progress thresholdmaxNoProдress
Input: Max. top (α · 100)% most frequently visited states

Input: Max. proportion β of repeated plus frequent states

1: FIFO Queue ← empty queue of length l
2: noProдress = 0 // #events since last state transition
3:

4: procedure isStuck(State curState , Graph stateGraph) {
5: prevStateID = Queue .top()
6: if prevStateID == curState .ID then
7: noProдress ← noProдress + 1
8: else
9: Queue .push(curState .ID)
10: noProдress = 0

11: end if
12: if noProдress > maxNoProдress then
13: return true // detect dead ends
14: end if
15: if Queue .length == l then
16: nRepeated ←countMaxRepeatedStates(Queue)
17: nFrequent ←countFreqStates(Queue, stateGraph,α)
18: if (nRepeated + nFrequent)/l > β then
19: return true // detect loops
20: end if
21: end if
22: return false
23: }

Dead ends. A dead end is a state which is difficult to exit. Some

pages require specific inputs which are very unlikely to be randomly

generated. Monkey can be trapped by them and can keep on gener-

ating events without making any “progress". For instance, consider

an app page in AnyMemo [7] where a form needs to be filled and

submitted. Yet, the “Submit” button is located at the bottom of the

page, and does not even appear on screen. Monkey would need to

correctly fill in certain parameters, scroll all the way to the bottom,

and then generate a “Click” event on the button to transition to exit

the page. This is quite unlikely. Monkey gets stuck in a dead end.

When TimeMachine gets stuck, the most progressive state is

traveled back to (lines 14-17 in Algorithm 1). The function isStuck

is sketched in Algorithm 2 and realizes a sliding window algorithm.

Firstly, four parameters must be specified, which are explained

later. There are two global variables, a queue of specified length l
and a counter which keeps track how often the same state has

been observed (lines 1-3). Given the current app state and the state

transition graph, if the current state is the same as the previous

state the no-progress counter is incremented (lines 4-7). Otherwise,

the counter is reset (lines 8-11). If the counter exceeds the specified
maximum (maxNoProдress), then a dead end is detected (lines 12-

14). If the fixed-length queue is filled and the proportion of “easy”

states in the queue surpasses the specified threshold β , then a loop

is detected. Two kinds of states in the queue are considered easy:
states occurring multiple times in the queue, and states among the

top α percentage of the most frequently visited states.

Time-travel Testing of Android Apps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Algorithm 3: Selecting the next state

(selectFittestState)

Input: Path length k
1: procedure selectFittestState(states , stateGraph) {
2: bestFitness ← 0

3: for each state in states do
4: stateFitness ← 0

5: paths ← all paths in stateGraph of length k from state
6: for each path in paths do
7: for each Node s in path do
8: stateFitness ← stateFitness + f (s) // see Eq. (1)
9: end for
10: end for
11: stateFitness ← stateF itness

|paths |
12: if stateFitness > bestFitness then
13: bestState = state
14: bestFitness = stateFitness
15: end if
16: end for
17: return bestState
18: }

3.3 Progressive State Selection
In order to select a state to travel back to once Monkey isStuck,

we assign a fitness to each state which evaluates its potential to

trigger new program behavior (lines 14-17 in Alg. 1). The fitness

f (s) of a state s is determined by the number of times the state has

been visited and the number of “interesting” states generated from

it. Concretely, the fitness function is defined as:

f (s) = f0 ∗ (1 + r)
w (s) ∗ (1 − p)v(s)−w (s) (1)

where v(s) is the number of times state s is visited andw(s) is the
number of “interesting states” generated from state s ; r is a reward
of finding an interesting state and p is a penalty of transiting to

a state that has already been discovered; f0 is the initial value. In
TimeMachine, the initial value of an interesting state is set as 6

times of that of an uninteresting state, and r as well asp are set as 0.1.
When a state is repeatedly being visited and no interesting states

are discovered, its fitness keeps on being reduced due to penalty p
so that other state will be selected and restored eventually.

Maximizing benefit of time travel. The definition of state

fitness in Equation (1) does not account for the fact that events

executed on that state may quickly trigger a departure from that

state, again advancing through unprogressive states. To maximize

benefit of time-travel, we develop an algorithm that selects the

state with a high-fitnees “neighborhood”, i.e., the state which has

neighboring states which also have a high fitness.

Algorithm 3 outlines the process of selecting the most progres-

sive state for time travel. It takes as input the interesting states

that have an associated VM snapshot and the state transition graph

that is maintained by our time-travel framework. The number of

transitions k which determines a state’s “neighborhood” must be

specified by the user. In our experiments, we let k = 3. For each

interesting state , TimeMachine computes the average fitness of a

State
Identification

ADB Daemon

ADB ServerCov. Data Collector

Guided Event Generator

Virtualbox Manager

Monkey UIautomator

Sys Event
Generator

Coverage
Monitor

TimeMachine

Android Virtual Machine (Android OS)

Docker container (Host OS)

State Corpus

VM Controller

Figure 3: Architecture of TimeMachine implementation.

state in the k-neighborhood of the state. The state with the maxi-

mum average state fitness in its k-neighborhood is returned. The

k-neighborhood of state are all states s in stateGraph that are reach-

able from state along at most k transitions. The fitness f (s) of a
state s is computed according to Equation (1). With this algorithm,

Monkey not only travels in time to the state with the highest fitness

value but also continues to explore states with high fitness values

within k transitions, which maximizes the benefit of time travel.

4 IMPLEMENTATION
Our time travel framework is implemented as a fully automated

app testing platform, which uses or extends the following tools:

VirtualBox [4], the Python library pyvbox [11] for running and

controlling the Android-x86 OS [6], Android UI Automator [10] for

observing state transitions, and Android Debug Bridge (ADB) [5] for

interacting with the app under test. Figure 3 gives an architectural

overview of our platform. Components in grey are implemented

by us while others are existing tools that we used or modified.

For coverage collection, our framework instruments open-source

apps using Emma [9] (statement coverage) and closed-source apps

using Ella [8] (method coverage). Ella uses a client-server model

sending coverage data from the Android OS to the VM host via a

socket connection. Unfortunately, this connection is broken every

time a snapshot is restored. To solve this issue, we modified Ella to

save coverage data on the Android OS to actively pull as needed.

On top of the time travel framework, we implement TimeMachine.
To facilitate the analysis of all benchmarks, we integrated Time-
Machine with two Android versions. TimeMachine works with the

most widely-used version, Android Nougat with API 25 (Android

7.1). However, to perform end-to-end comparison on AndroTest

benchmark [23], we also implement TimeMachine on Android

KitKat version with API 19 (Android 4.4). The publicly available

version of Sapienz [36] (a state-of-the-art/practice baseline for our

experiments) is limited to Android API 19 and cannot run on An-

droid 7.1. To collect state-level feedback, we modified Android

Monkey and UI Automator to monitor state transition after each

event execution. TimeMachine also includes a system-level event

generator taken from Stoat [40] to support system events such as

phone calls and SMSs.

5 EMPIRICAL EVALUATION
In our experimental evaluation, we seek to answer the following

research questions.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

RQ1 How effective is our time-travel strategy in terms of achieving

more code coverage and finding more crashes? We compare

TimeMachine to the baseline into which it was implemented.

RQ2 How does time-travel testing (i.e., TimeMachine) compare to

state-of-the-art techniques in terms of achieved code cover-

age and found crashes?

RQ3 How does time-travel testing (i.e., TimeMachine) perform on

larger, real-world apps, such as industrial apps and Top-100

apps from Google Play?

5.1 Experimental Setup
To answer these research questions, we conducted three empirical

studies on both open-source and closed-source Android apps.

Study 1. To answer RQ1, we evaluate TimeMachine and baseline
tools onAndroTest [23] and investigate how achieved code coverage

and found faults are improved by using the time-travel strategy. We

chose AndroTest apps as subjects because AndroTest has become

a standard testing benchmark for Android and has been used to

evaluate a large number of Android testing tools [16, 20, 23, 34–

37, 40, 44]. It was created in 2015 by collecting Android apps that

have been used in evaluations of 14 Android testing tools.

TimeMachine applies time-travel strategy to a baseline tool; the
baseline tool is Monkey extended with Stoat’s system-level event gen-
erator. To accurately evaluate effectiveness of time-travel strategy,

we set Monkey extended with the system-level event generator

from Stoat as baseline (calledMS). We chose MS instead of Monkey

as a baseline tool to make sure that the improvement achieved by

TimeMachine completely comes from time-travel strategy, not from

system event generation.

We also implement another variant of Monkey as baseline to

evaluate effectiveness of “heavy components" such as state saving

and restoring on enhancing a test technique. This variant applies

only the lack of progress detection component of our time-travel

strategy without state saving and restoring components. When lack

of progress is detected, it simply restarts testing from scratch, i.e.,

re-launching app under test without resuming states (called MR).
In TimeMachine, parameters l ,maxNoProдress,α , β for isStuck

in Alg. 2 are set to 10, 200, 0.2, and 0.8, respectively. These values

were fixed during initial experiments of two authors with three

apps from AndroTest (Anymemo, Bites, aCal). We executed these

apps with Monkey for many rounds and recorded relevant data

such as the number of state transitions when a loop was observed

and the number of executed events when Monkey jumped out from

a dead end. Based on observed data and authors’ heuristics, we

came up with several groups of values and evaluated them on these

three apps, and eventually chose above data as default parameter

values. In the evaluation, TimeMachine used the default values

for all the three studies. Baseline tool MS and MR use the same

parameter values as in TimeMachine.
Study 2. To answer RQ2, we evaluate TimeMachine and state-

of-the-art app testing tools on AndroTest and compare them in

terms of achieved code coverage and found crashes. For state-of-

the-art tools, we chose Monkey [3], Sapienz [36], and Stoat [40].
Monkey is an automatic random event sequence generator for

testing Android apps and has been reported to achieve the best

performance in two works [23, 42]. Sapienz and Stoat are the most

recent techniques for Android testing. These testing tools have also

been adequately tested and are standard baselines in the Android

testing literature. To have a fair comparison, all techniques use their

default configuration.

Study 3. To answer RQ3, we evaluate TimeMachine, baseline
tools and all state-of-the-art techniques on large real-world Android

apps, and investigate whether they have a consistent performance

on both closed-source and open-source Android apps. In this eval-

uation, we use IndustrialApps [42] as subject apps. IndustrialApps
was a benchmark suite created in 2018 to evaluate the effectiveness

of Android testing tools on real-world apps. The authors sampled

68 apps from top-recommended apps in each category on Google

Play, and successfully instrumented 41 apps with a modified ver-

sion of Ella [8]. In our experiment, we chose to use the original

version of Ella and successfully instrumented 37 apps in Industrial

app-suite. On this benchmark, we could not compare with Sapienz
because the publicly available version of Sapienz is limited to an

older version of Android (API 19).

To further investigate the usability of TimeMachine, we evaluate
TimeMachine on Top-100 popular Android apps from Google Play

and investigatewhether TimeMachine can effectively detect crashes
in online apps, i.e., those available for download from Google Play

at the time of writing. Following the practice adopted by some

previous authors [36, 40] of applying the technique to top popular

apps on Google Play, we focus on analyzing detected crashes by

TimeMachine and do not compare TimeMachine with state-of-the-

art techniques on this data set. Top-100 popular apps were collected

by downloading the most highly ranked apps on Google Play and

instrumenting them with our coverage tool Ella until we obtained

100 apps that could be successfully instrumented by Ella.

Procedure. To mitigate experimenter bias and to scale our ex-

periments, we chose to provide no manual assistance during testing

in all studies. For all test generators, the Android testing is fully

automatic. None of the test generators is seeded with an initial set

of event sequences. The testing process is automatically started af-

ter installation. All data are generated and processed automatically.

We neither provide any input files, nor create any fake accounts.

Each experiment is conducted for six (6) hours and repeated five

(5) times totalling 35580 CPU hours (≈ 4.1 year). To mitigate the

impact of random variations during the experiments, we repeated

each experiment five times and report the average. In comparison,

the authors of Sapienz report one repetition of one hour while the

authors of Stoat report on five repetitions of three hours. We chose

a time budget of six hours because we found that the asymptotic

coverage was far from reached after three hours in many apps (i.e.,

no saturation had occurred).

Coverage & Crashes. We measure code coverage achieved and

errors discovered within six hours. To measure statement or method
coverage, we use Emma and Ella, the same coverage tools that are

used in Sapienz and Stoat. To measure the number of unique crashes
detected, we parse the output of Logcat,

5
an ADB tool that dumps

a log of system messages. We use the following protocol to identify

a unique crash from the error stack (taken from Su et al. [40]):

• Remove all unrelated crashes by retaining only exceptions

containing the app’s package name (and filtering others).

5
https://developer.android.com/studio/command-line/logcat

Time-travel Testing of Android Apps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 1: Results from AndroTest (68 open-source apps).

Subjects

TimeMachine Baselines State-of-the-art

%Cov #Cra #State %Coverage #Crashes %Coverage #Crashes

- - - MS MR MS MR ST SA MO ST SA MO

A2DP 46 1 222 42 35 0 0 47 44 39 1 4 0

aagtl 19 5 34 16 16 3 3 17 19 17 3 6 3

Aarddict 19 2 31 18 14 1 0 37 15 13 5 0 0

aCal 29 9 178 28 26 7 1 22 27 18 7 5 3

addi 19 2 63 19 19 3 4 14 20 19 3 1 4

adsdroid 39 2 23 32 36 4 2 31 36 30 2 1 1

aGrep 64 3 77 55 57 2 3 37 59 46 1 2 1

aka 83 1 166 62 77 2 1 81 83 65 1 8 1

alarmclock 65 4 41 69 65 5 0 65 75 70 3 5 5

aLogCat 81 0 114 74 65 0 0 - - 63 - - 0

Amazed 67 1 25 62 40 0 1 57 66 36 0 2 1

anycut 68 0 37 63 67 0 0 59 65 63 0 0 0

anymemo 47 12 311 40 36 5 2 36 53 32 7 7 2

autoanswer 23 3 45 19 17 1 0 20 16 13 2 0 0

baterrydog 67 2 32 63 70 1 1 54 67 64 1 1 0

battery 83 13 58 76 80 16 5 75 78 75 1 18 0

bites 49 8 68 37 40 5 0 38 41 37 2 1 1

blockish 73 0 71 50 49 0 0 36 52 59 0 2 0

bomber 83 0 32 80 80 1 0 57 75 76 0 0 0

Book-Cat 30 7 109 28 29 0 1 14 32 29 3 2 1

CDT 81 0 49 79 66 0 0 79 62 77 0 0 0

dalvik-exp 73 7 65 69 72 7 3 70 72 68 6 2 2

dialer2 47 3 47 38 51 0 0 33 47 38 3 0 0

DAC 88 2 39 85 88 0 0 53 83 86 0 5 0

fileexplorer 59 0 32 41 55 0 0 41 49 41 0 0 0

fbubble 81 0 15 81 81 0 0 50 76 81 0 0 0

gestures 55 0 29 36 55 0 0 32 52 36 0 0 0

hndroid 20 6 39 10 8 2 1 9 15 8 1 2 1

hotdeath 76 2 61 81 69 1 0 60 75 76 1 2 1

importcont 43 1 51 41 40 0 0 62 39 40 0 0 1

Jamendo 58 8 107 57 57 6 1 44 63 55 7 3 0

k9mail 9 15 50 8 8 16 1 8 7 7 16 2 1

LNM - - - - - - - - - - - -

LPG 80 0 101 76 77 0 0 68 79 76 0 0 0

LBuilder 31 1 102 28 28 0 0 25 27 27 0 0 0

manpages 75 1 189 69 72 0 0 63 73 39 1 0 0

mileage 52 21 136 46 43 14 2 39 49 39 13 9 3

MNV 46 6 292 39 42 0 2 45 63 40 3 0 3

Mirrored 66 9 88 45 46 1 0 51 59 59 6 8 5

multisms 66 1 68 58 59 0 0 45 61 33 1 0 0

MunchLife 77 0 47 67 75 0 0 65 72 69 0 0 0

MyExp 54 1 109 51 49 0 0 48 60 42 1 1 0

myLock 47 3 118 45 29 2 0 44 31 27 2 0 0

nectroid 62 3 53 36 34 0 0 64 66 33 3 1 0

netcounter 63 3 60 57 58 1 0 70 70 42 2 1 0

PWMG 58 4 56 50 43 1 3 62 58 53 6 4 3

PWM 18 0 80 12 7 0 0 6 8 7 0 0 0

Photos 38 2 29 29 24 1 2 30 34 30 2 1 1

QSettings 51 0 256 48 45 0 0 42 52 51 0 1 0

RMP 62 1 34 52 58 0 0 70 58 53 1 0 0

ringdroid 52 3 63 23 50 0 1 - 38 22 - 1 0

sanity 33 3 407 35 28 2 3 27 21 27 2 3 2

soundboard 63 0 27 42 61 0 0 42 51 42 0 0 0

SMT 79 0 34 80 38 0 0 80 80 18 0 0 0

SpriteText 61 0 23 59 60 0 0 59 60 59 0 0 0

swiftp 14 0 42 13 14 0 0 13 14 13 0 0 0

SyncMyPix 25 1 66 25 20 0 0 25 21 20 1 1 0

tippytipper 81 0 112 77 80 0 0 77 83 79 0 0 0

tomdroid 56 0 68 55 50 0 0 54 56 48 1 1 0

Translate 51 0 41 37 49 0 0 44 49 48 0 0 0

Triangle - - - - - - - - - - - - -

wchart 71 0 92 69 63 0 0 47 73 64 2 6 0

WHAMS 71 1 68 61 69 0 0 72 77 64 1 0 0

wikipedia 36 0 204 33 35 0 0 30 32 34 0 0 0

Wordpress 8 12 52 8 4 4 2 8 6 4 12 2 0

worldclock 92 1 99 90 91 0 0 92 91 90 1 0 0

yahtzee 60 2 46 48 33 0 0 60 58 52 1 0 2

zooborns 38 1 30 35 37 1 0 33 36 35 2 0 0

Ave/Sum 54 199 85 47 47 115 45 45 51 44 140 121 48

• Given the related crash information, extract only the crash

stack and filter out all information that is not directly rele-

vant (e.g., the message “invalid text. . . ”).

• Compute a hash over the sanitized stack trace of the crash

to identify unique crashes. Different crashes should have a

different stack trace and thus a different hash.

0

10

20

30

40

50

60

Time in minutes

St
at

em
en

t
co

ve
ra

ge

TM

MS

MR

Figure 4: Progressive statement coverage for TimeMachine
(TM) and baseline tools on 68 benchmark apps. MS indicates
Monkey extended with Stoat’s system-level generator and
MR indicatesMonkeywith the ability to restart fromscratch
when lack of progress is detected.

Execution environment. The experiments were conducted on

two physical machines with 64 GB of main memory, running a

64-bit Ubuntu 16.04 operating system. One machine is powered

by an Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz with 56 cores

while the other features an Intel(R) Xeon(R) CPU E5-2660 v3 @

2.60GHz with 40 cores. To allow for parallel executions, we run our

system in Docker (v1.13) containers. Each Docker container runs

a VirtualBox (v5.0.18) VM configured with 2GB RAM and 2 cores

for the Android 4.4 and 2 cores and 4GB RAM for Android 7.1. We

made sure that each evaluated technique is tested under the same

workload by running all evaluated techniques for the same app on

the same machine.

5.2 Experimental Results
5.2.1 Study 1: Effectiveness of Time-travel Strategy.

Table 1 shows achieved coverages and found faults by each

technique on 68 Android apps. The highest coverage and most

found crashes are highlighted with the grey color for each app.

The results of TimeMachine and baseline techniques are shown in

column “TimeMachine " and "Baselines". Recall that MS indicates

Monkey extended with Stoat’s system-level event generator, and

MR indicates Monkey with the ability to restart testing from scratch

when lack of progress is detected.

Comparison between TimeMachine and MS. TimeMachine
achieves 54% statement coverage on average and detects 199 unique

crashes for 68 benchmark apps. MS achieves 47% statement cov-

erage on average and detects 115 unique crashes. TimeMachine
covers 1.15 times statements and reveals 1.73 times crashes more

than MS. To further investigate these results, Figure 4 presents

achieved code coverage over execution time for all 68 apps. As we

can see, TimeMachine has achieved higher coverage from around

the 20th minute onwards, finally achieving 7% more statement cov-

erage at the end of execution time. Figure 5 presents the box-plots

of the final coverage results for apps grouped by size-of-app, where

"x" indicates the mean for each box-plot. We see that coverage

improvement is substantial for all four app size groups.

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

TM MS MR TM MS MR TM MS MR TM MS MR

(a) <1k (33 Apps) (b) 1k ~ 3k (20 Apps) (c) > 3k (15 Apps) (d) All 68 Apps

Figure 5: Statement coverage achieved by TimeMachine
(TM), MS and MR.

(a) <1k (33 Apps) (b) 1k ~ 3k (20 Apps) (c) > 3k (15 Apps) (d) All 68 Apps

TM ST SA MO TM ST SA MO TM ST SA MO TM ST SA MO

Figure 6: Statement coverage achieved by TimeMachine
(TM), Stoat (ST), Sapienz (SA) and Monkey (MO).

Our time-travel strategy effectively enhances the existing testing

technique (MS) by achieving 1.15 times statement coverage and

detecting 1.73 times crashes on 68 benchmark apps.

Comparison between TimeMachine and MR. MR achieves

47% statement coverage on average and detects 45 unique crashes

for 68 benchmark apps. TimeMachine achieves 1.15 times statement

coverage and 4.4 times unique crashes more than MR. Similarly,

Figure 4 and Figure 5 shows TimeMachine covers more code in a

short time and substantially improves statement coverage for all

four app size groups compared to MR. This shows that it is not suffi-

cient to simply restart an app from scratch when lack of progress is

detected, though MR improves Monkey by 3% statement coverage

(Monkey’s statement coverage is shown in the third subcolumn of

column "State-of-the-art" of Table 1).

State saving and restoring as well as other components substan-

tially contribute to enhancing testing techniques, it is not suffi-

cient to simply restart app from scratch when lack of progress

is detected.

5.2.2 Study 2: Testing Effectiveness.
The results of state-of-the-art techniques are shown in column

“State-of-the-art" of Table 1 (ST, SA, and MO indicate Stoat, Sapienz

and Monkey, respectively). As can be seen, TimeMachine achieves
the highest statement coverage on average (54%) and is followed by

Sapienz (51%), Stoat (45%) and Monkey (44%). Figure 6 also shows

that TimeMachine achieves the highest statement coverage for all

15

199

140

0

50

100

150

200

250

TM ST

199

121

0

50

100

150

200

250

TM SA

11
29

199

48

0

50

100

150

200

250

TM MO

28

140
121

0

50

100

150

200

250

ST SA

9

140

48

0

50

100

150

200

250

ST MO

8

121

48

0

50

100

150

200

250

SA MO

Figure 7: Comparison of total number of unique crashes for
AndroTest apps. The dark grey areas indicate the proportion
of crashes found by both techniques.

four app size groups. TimeMachine detects the most crashes (199)

as well, followed by Stoat (140), Sapienz (121) and Monkey (48).

The better results from TimeMachine can be explained as follows:
state-level feedback accurately identifies which parts in app are

inadequately explored.Moreover an inadequately explored state can

be arbitrarily and deterministically launched for further exploration

via restoring a snapshot. Existing techniques typically observe

program behavior over an event sequence that often is very long

and goes through many states. Coverage feedback of an individual

state is unavailable. So our time travel framework enhances app

testing by providing fine-grained state-level coverage feedback.

TimeMachine achieves the highest statement coverage and de-

tects the most crashes on 68 benchmark apps compared to state-

of-the-art techniques. Promisingly, our time-travel framework

has a potential to enhance state-of-the-art app testing tools to

achieve better results.

To study performance across apps, for each technique under eval-

uation, we compute the number of apps on which the technique

achieves the best performance. In terms of statement coverage,

TimeMachine achieves the best performance on 45 apps, followed

by Sapienz (19 apps), Stoat (11 apps) and Monkey (1 app). For de-

tected crashes, TimeMachine achieves the best performance on

32 apps. For Stoat,Sapienz, and Monkey, there are 16, 15, and 4

apps, respectively. We further perform a pairwise comparison of

detected crashes among evaluated techniques. As shown in Figure 7,

there is less than ten percent overlap between the crashes found by

TimeMachine and Stoat, or TimeMachine and Sapienz, respectively.
The overlap with Monkey is reasonably high. About 60% of unique

crashes found by Monkey are also found by TimeMachine; how-
ever TimeMachine found many new crashes which are not found

by Monkey. This analysis shows that TimeMachine can be used

together with other state-of-the-art Android testing techniques to

jointly cover more code and discover more crashes.

TimeMachine complements state-of-the-art Android testing

techniques in terms of the ability to discover more crashes and

cover more code.

Time-travel Testing of Android Apps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Results from 37 closed-source industrial apps.

Subject %Coverage #Crashes #State

Name #Method TM ST MO MS MR TM ST MO MS MR TM

AutoScout24 49772 34 25 29 31 29 18 0 1 12 0 915

Best Hairstyles 28227 14 20 13 15 14 1 0 0 1 0 34

Crackle 48702 22 9 19 22 22 21 0 8 10 8 905

Duolingo 46382 26 13 22 23 22 12 0 0 8 0 384

ES File Explorer 47273 28 15 18 24 21 9 0 0 8 0 594

Evernote 45880 11 10 7 11 8 0 0 0 0 0 45

Excel 48849 19 9 14 14 14 2 0 0 0 0 201

Filters For Selfie 17145 9 13 8 9 8 0 0 0 0 0 43

Flipboard 41563 30 17 24 28 25 0 0 0 0 0 308

Floor Plan Creator 23303 29 30 23 26 26 0 0 0 0 0 394

Fox News 42569 28 13 21 20 17 5 0 1 4 0 635

G.P. Newsstand 50225 7 6 5 6 5 0 0 0 0 0 14

GO Launcher Z 45751 13 9 11 11 12 0 0 0 0 0 81

GoodRx 48222 24 19 21 22 21 17 0 0 11 0 468

ibisPaint X 47721 16 16 10 12 12 0 1 0 0 1 655

LINE Camera 47295 17 15 14 15 15 22 1 1 19 1 413

Marvel Comics 43578 18 18 15 17 15 0 0 0 0 0 133

Match 50436 15 11 11 15 11 0 0 0 0 0 106

Merriam-Webster 50436 25 21 18 24 23 6 0 2 3 2 1018

Mirror 36662 8 8 8 8 8 0 0 0 0 0 23

My baby Piano 20975 7 7 7 7 7 0 0 0 0 0 4

OfficeSuite 45876 17 11 16 16 16 3 0 0 1 0 479

OneNote 50100 11 11 11 10 11 23 0 4 9 2 181

Pinterest 46071 21 10 16 15 8 0 0 0 0 0 382

Quizlet 48369 33 22 30 33 31 23 0 0 17 0 548

Singing 46521 10 6 5 8 6 14 0 0 12 0 77

Speedometer 47773 16 11 13 13 15 0 0 0 0 0 51

Spotify 44556 13 14 10 11 10 0 0 0 0 0 36

TripAdvisor 46617 26 22 21 23 22 1 1 0 0 0 1279

trivago 50879 16 9 8 14 10 7 0 0 6 0 139

WatchESPN 43639 26 22 23 25 24 0 0 0 0 0 395

Wattpad 44069 25 14 13 22 13 0 0 0 0 0 327

WEBTOON 47465 21 17 13 19 16 12 0 0 8 1 487

Wish 48207 16 15 17 15 14 4 0 0 4 0 55

Word 49959 16 9 14 14 14 0 0 0 0 0 146

Yelp 46903 24 16 17 20 17 69 0 0 37 0 395

Zedge 46799 24 23 22 23 21 12 0 3 13 0 911

Ave/Sum 44182 19 14 15 17 15 281 3 20 183 15 358

5.2.3 Study 3: Closed-source Apps.
Table 2 shows results of 37 closed-source benchmark apps. It is

clear that TimeMachine achieves the highest method coverage 19%

and the most found crashes 281 among all evaluated techniques.

Compared to baseline MS and MR, TimeMachine improves method

coverage to 19% from 17% and 15%, respectively. Note that the

improvement of 2% to 4% is considerable since each app has 44182

methods on average and around 900 to 1800 more methods are

covered for each app. In terms of number of crashes found, Time-
Machine detects 1.5 times and 18.7 times crashes more than MS

and MR, respectively. MS detects 183 crashes and MR detects 15

crashes.

Compared to state-of-the-art techniques, TimeMachine substan-
tially outperforms them on both method coverage and the number

of found crashes. Stoat achieves 14% method coverage and detects

3 crashes. Monkey achieves 15% method coverage and 20 crashes.

Unexpectedly, Stoat demonstrated the worst results, worse than

Monkey. A closer inspection revealed that these real-world apps use

complex UI containers (e.g., animations), which pose difficulties for

Stoat to build a model. Certain app pages might be missed entirely

because the event handlers associated with those widgets cannot be

triggered. However, both TimeMachine and Monkey overcome this

issue due to their independence from any UI models. We reported

this matter to the authors of Stoat who confirmed our insight.

Education
Book
Maps
Lifestyle
Travel
News
Entertainment
Board
Casual
Others

35
9
9
7
6
3
3
2
2

11

7

26 31 23

Old 2017 2018 2019

12

56

19

0-4 4.0-4.5 4.6-5.0

(c) Distribution of
last updated time

(b) Stars distribution

(a) Category distribution

ID Exception Type Number
1 NullPointerException 98
2 UnsatisfiedLinkError 10
3 IllegalArgumentException 9
4 OutOfMemoryError 8
5 IllegalStateException 7
6 IndexOutOfBoundsException 2
7 UnsupportedOperationException 1
8 CursorIndexOutOfBoundsException 1
9 InflateException 1

(d) Distribution of the detected crashes

Figure 8: Statistics of tested 87 apps from Google Play.

Our time-travel strategy substantially improve the existing tech-

nique (i.e., MS) by covering around 900 more methods and dis-

covering 1.5 times more crashes. TimeMachine also outperforms

state-of-the-art techniques (Stoat and Monkey) in terms of both

method coverage and the number of found crashes.

Out of Top-100 instrumented apps from Google Play, we success-

fully tested 87 apps. The remaining 13 apps kept crashing due to a

self-protection-mechanism (though they were successfully instru-

mented). As shown in Figure 8, the tested apps are quite diverse

being selected frommore than 10 categories. It comes as no surprise

that the majority of them are ranked with over 4 stars, and are being

actively maintained.

In the 87 apps, we found 137 unique crashes. These are all non-

native crashes, i.e., their stack traces explicitly point to the source

line of the potential faults in the tested app. The detected 137 crashes

were caused by 9 kinds of exceptions shown in Figure 8. The most

common type is NullPointerException.

In total, TimeMachine detects 137 unique crashes in 25 of Top-

100 Google Play apps.

5.2.4 Analysis on State Identification and Time-travel.
State identification. The evaluation shows GUI layout is ap-

propriate to identify an app state. This state abstraction generates

acceptable number of states for an app, at the same time sufficiently

captures features of a state. As we see column "#State" in Table 1

and Table 2, more states are discovered in apps with rich function-

ality and less states are discovered in simple apps. For instance, app

AnyMemo with plentiful activities has 311 found states and app

Frozenbubble with few activities has 15 found states. Similar results

can be found for industrial apps. Note that no login is provided

in the evaluation, such that TimeMachine might identify a small

number of states for some large scale apps, like K9Mail.

GUI layout sufficiently captures features of an app state. On

average, 85 states are found in an open source benchmark app

and 358 states are found in an industrial benchmark app.

Frequency. An automatic Android testing tool that generates a

very long event sequence, like Monkey, may get stuck in loops or

dead ends. We measure the number of times, our time-travelling

infrastructure is employed to understand how often Monkey gets

stuck. In six hours over all runs and apps, Monkey gets stuck with

a mean of 305.6 and a median of 308.5 times. As we can see in

the box plots of Figure 9, there are generally less restores as the

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

1k ~ 3k (20 Apps)<1k (33 Apps) > 3k (15 Apps) All 68 Apps

#R
es

to
re

s

Figure 9: Boxplots. Depending on app size how often does
TimeMachine travel back in time?

apps get bigger. This is due to an increasing state space. A greater

proportion of random actions lead to yet undiscovered states such

that progress is maintained. Smaller apps have a small state space

and Monkey may run more quickly into loops of states that have

already been observed.

On average, TimeMachine travels about 51 times per hour back

to more progressive states that were observed in the past—

because Monkey gets stuck in a loop or dead end.

Cost. The cost of time-travel is acceptable. TimeMachine spends
around 10 seconds taking a snapshot and 9 seconds restoring a

snapshot on an Android7.1 virtual machine with 4 GB memory. A

snapshot takes around 1 GB disk space. For large scale industrial

apps in the evaluation, a session typically generates less than 100

snapshots. So TimeMachine is able to run on a desktop in term

of consumed storage space. Besides, since one snapshot is stored

for each "interesting" state, storage can be potentially reduced by

re-configuring the definition of "interesting".

This is a reasonable cost for reaching a particular state in a de-

terministic way for Android testing, especially for large scale apps.

To reach a deep state, a human tester may need to perform dozens

of events and repeat them many times due to non-determinism of

Android apps. This is even more difficult for an automated test gen-

erators because it typically requires generating a very long event

sequence automatically. These tools thus spend more time reaching

hard-to-reach states than TimeMachine, which makes reachability

easier by recording and restoring snapshots of “interesting" states.

The cost of time-travelling is acceptable, and also reasonable for

testing stateful programs.

6 THREATS TO VALIDITY
We adopted several strategies to enhance internal validity of our

results. To mitigate risks of selection bias, we chose apps in a stan-

dard testing benchmark which has been used in previous studies

[16, 20, 23, 34–37, 40, 44]. In order to put no testing tool at a disad-

vantage, we used default configurations, provided the exact same

starting condition, and executed each tool several times and under

the same workload. To identify unique crashes, we followed the

Stoat protocol [40] and also manually checked the crashes found.

To measure coverage, we used a standard coverage tool.

We realise that our results on Stoat versus Sapienz and those

reported in the Stoat paper [40] are vastly different. We checked

with the authors of Stoat [40] on this matter. The authors of Stoat

explain the disparity (i) by additional files they provided to the

Android Device via SDCard, and (ii) running of experiments at

their end on a different machine (Intel Xeon(R) CPU @ 3.50GhZ,

12 cores, 32GB RAM) with hardware acceleration.

Additionally, we took two measurements to rule out crashes that

might be caused by our technique itself (i.e., artificial crashes). First,

TimeMachine inserted a delay of 200 ms between two events to

avoid crashes due toMonkey generatingmany events in a extremely

short time. Second, we manually checked stack traces to filter out

crashes due to state restoring issues such as inconsistent states.

Finally, our technique tests apps in a virtual machine installed

with Android-x86 OS and does not support physical devices yet. For

apps interacting with a remote server, our technique saves/restores

only app states without considering remote server states.

7 RELATEDWORK
The stream of works most closely related to ours is that of time-
travel debugging [17, 28, 29, 32, 41]. Time-travel debugging allows

the user to step back in time, and to change the course of events.

The user can now ask questions, such as: “What if this variable had

a different value earlier in the execution”? Now, time-travel testing
has a similar motivation. The tester can test the state-ful app for

various, alternative sequences of events, starting in any state.

This work was originally inspired by existing work on coverage-
based greybox fuzzers (CGF)[2, 18, 19, 39]. A CGF, started with a

seed corpus of initial inputs, generates further inputs by fuzzing. If

a generated input increases coverage, it is added to the seed corpus.

Similar to CGF, our time-travel-enabled test generator maintains a

state corpus with states that can be restored and fuzzed as needed.

Search-based. The most closely related automatic Android test

generation techniques employ search-based methods. Mao et al. de-

veloped a multi-objective automated testing technique Sapienz [36].

Sapienz adopts genetic algorithms to optimize randomly generated

tests to maximize code coverage while minimizing test lengths. Evo-

Droid [35], the first search-based framework for Android testing,

extracts the interface model and a call graph from app under test

and uses this information to guide the computational search process.

Search-based approaches are easy to deploy and have attracted a

lot of attention from industry, e.g., Sapienz has been used to test

different kinds of mobile apps at Facebook. Our work TimeMachine
takes a search-based approach as well, but instead of a population

of input sequences it evolves a population of app states. Our work

proposes a new perspective of app testing as state exploration, and

provides a feedback-guided algorithm to efficiently explore an app’s

state space.

Random. One of the most efficient approaches for testing An-

droid apps is the random generation of event sequences [23]. Apps

are exercised by injecting arbitrary or contextual events. Mon-

key [3] is Google’s official testing tool for Android apps, which is

built into the Android platforms and widely used by developers.

Monkey generates random user events such as clicks, touches, or

gestures, as well as a number of system-level events. Dynodroid [34]

employs a feedback-directed random testing approach with two

Time-travel Testing of Android Apps ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea

strategies: BIASEDRANDOM favors events related to the current

context, and FREQUENCY is biased towards less frequently used

events. Although random testing has gained popularity because

of its ease of use, it suffers from an early saturation effect, i.e., it

quickly stops making progress, e.g., no new code is executed after

certain number of event executions. From this point of view, our

work powers random testing with the ability to jump to a progres-

sive state observed in the past when there is no progress. Thus, an

early saturation can be avoided.

Model-based. Another popular approach of Android apps test-

ing is model-based testing. App event sequences are generated

according to models which are manually constructed, or extracted

from project artefacts such as source code, XML configuration

files and UI runtime state. Ape [26] leverages runtime information

to evolve an initial GUI model to achieve more precise models.

Stoat [40] assigns widgets in a GUI model with different probabil-

ities of being selected during testing and adjusts them based on

feedback such as code coverage to explore uncovered models. An-

droidRipper [13] uses a depth-first search over the user interface to

build a model. A
3
E [15] explores apps with two strategies: Targeted

Explorationwhich prioritizes exploration of activities that are reach-
able from the initial activity on a static activity transition graph, and

Depth-first Exploration which systematically exercises user inter-

face in depth-first order. Droidbot [30], ORBIT [44] and PUMA [27]

use static and dynamic analysis to build basic GUI models from

app under test, on top of which different exploration strategies

can be developed. Model-based approaches have attracted a great

deal of attention in this field because they allow to represent app

behavior as a model on which various exploration strategies can

be applied. However, complex widgets (e.g, animation) commonly-

used inmodern apps pose difficulties onmodel construction, leading

to an incomplete model. Combining model-based approaches with

other techniques such as random testing can be a promising option

for Android apps testing.

Learning-based. A different line of work uses machine learn-

ing to test Android apps. Liu et al. [33] use a model learned from

a manually crafted data set (including manual text inputs and as-

sociated contexts) to produce text inputs that are relevant to the

current context during app testing. For instance, it would use a

name for an existing city when generating an input for a search box

if there is a nearby item labeled Weather. Wuji [45] employs evo-

lutionary algorithms and deep reinforcement learning to explore

the state space of a game under test. SwiftHand [20] uses machine

learning to learn a model of the user interface, and uses this model

to discover unexplored states. The technique by Degott et al. [24]

leverages reinforcement learning to identify valid interactions for

a GUI element (e.g., a button allows to be clicked but not dragged)

and uses this information to guide execution. Humanoid [31] takes

manual event sequences and their corresponding UI screens to learn

a model and uses the model to predict human-like interactions for

an app screen. Machine learning is typically applied to resolve spe-

cific challenge in the event sequence generation, such as generating

contextual text inputs or identifying possible types of input events

that can be executed upon a GUI element. In contrast, our work fea-

tures a fully automated Android event sequence generator. Some

components in TimeMachine such as identifying an interesting

state might benefit from machine learning since learning-based

approaches have shown to be effective for similar issues. It is worth

exploring this direction in future work.

Program analysis-based. Several existing approaches employ

program analysis when testing Android apps. ACTEve [14] uses

symbolic execution to compute enabled input events in a given

app state and systematically explores the state by triggering these

events. SynthesiSE [25] leverages concolic execution and program

synthesis to automatically generate models for Android library calls.

CrashScope [38] combines static and dynamic analysis to generate

an event sequence that is used to reproduce a crash. Similarly,

IntelliDriod [43] uses static and dynamic analysis to generate an

event sequence that leads execution to a specified API invocation.

Thor [12] executes an existing test suite under adverse conditions to

discover unexpected app behavior. Such program analysis provides

detailed information about the app, which can help to guide test

sequence generation. At the same time, intrinsic limitations of

program analysis such as poor scalability create an impediment

to easy and widely-applicable automation. In contrast, our work

TimeMachine requires little information from the app under test

and is widely applicable to variety of Android apps as shown by

our experiments.

8 CONCLUSION
Android app testing is a well-studied topic. In this paper, we develop

time-travel app testing which leverages virtualization technology

to enhance testing techniques with the ability to capture snapshots

of the system state— state of the app and all of its environment.

Capturing snapshots facilitates our time-travel-enabled testing tool

to visit arbitrary states discovered earlier that have the potential

to trigger new program behavior. State-level feedback allows our

technique to accurately identify progressive states and travel to

them for maximizing progress in terms of code coverage and state

space exploration.

Our time-travel strategy enhances a testing technique (Monkey

extended with Stoat’s system-level generator) by achieving 1.15

times more statement coverage and discovering 1.7 times more

crashes on the AndroTest benchmark. Moreover, TimeMachine
outperforms other state-of-the-art techniques (Sapienz and Stoat)

by achieving the highest coverage on average and the most found

crashes in total. On large, industrial apps, TimeMachine covers

around 900 more methods on average and discover 1.5 times more

unique crashes over the baseline tool, at the same time outper-

forms state-of-the-art techniques as well. Our tool TimeMachine
also reveals a large number of crashes, owing to a wide variety

of exceptions (nine different kinds of exceptions), in real-life top

popular apps from Google Play.

ACKNOWLEDGMENTS
This work was partially supported by the National Satellite of Excel-

lence in Trustworthy Software Systems, funded by NRF Singapore

under National Cybersecurity R&D (NCR) programme, and an AcRF

Tier1 project T1 251RES1708 from Singapore. This research was

partially funded by the Australian Government through an Aus-

tralian Research Council Discovery Early Career Researcher Award

(DE190100046).

ICSE ’20, May 23–29, 2020, Seoul, Republic of Korea Zhen Dong, Marcel Böhme, Lucia Cojocaru, and Abhik Roychoudhury

REFERENCES
[1] 2018. 2016 NowSecure Mobile Security Report. (2018). https://info.nowsecure.

com/rs/201-XEW-873/images/2016-NowSecure-mobile-security-report.pdf

[2] 2018. American Fuzzy Lop Fuzzer. (2018). http://lcamtuf.coredump.cx/afl/

[3] 2018. Monkey. (2018). https://developer.android.com/studio/test/monkey

[4] 2018. VMWare VirtualBox. (2018). https://www.virtualbox.org/

[5] 2019. Android Debug Bridge. (2019). https://developer.android.com/studio/

command-line/adb

[6] 2019. Android-x86. (2019). http://www.android-x86.org/

[7] 2019. Anymemo. (2019). https://anymemo.org/

[8] 2019. ELLA: A Tool for Binary Instrumentation of Android Apps. (2019). https:

//github.com/saswatanand/ella

[9] 2019. EMMA: a free Java code coverage tool. (2019). http://emma.sourceforge.net/

[10] 2019. Google UI Automator. (2019). https://developer.android.com/training/

testing/ui-automator

[11] 2019. A python library for VirtualBox. (2019). https://pypi.org/project/pyvbox/

[12] Christoffer Quist Adamsen, Gianluca Mezzetti, and Anders Møller. 2015. System-

atic execution of Android test suites in adverse conditions. In Proceedings of the
2015 International Symposium on Software Testing and Analysis, ISSTA 2015, Balti-
more, MD, USA, July 12-17, 2015. ACM, 83–93. https://doi.org/10.1145/2771783.

2771786

[13] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De

Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing

of Android applications. In IEEE/ACM International Conference on Automated
Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012. ACM, 258–261.

https://doi.org/10.1145/2351676.2351717

[14] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. 2012. Auto-

mated Concolic Testing of Smartphone Apps. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (FSE
’12). 59:1–59:11.

[15] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration

for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October
26-31, 2013. ACM, 641–660. https://doi.org/10.1145/2509136.2509549

[16] Young-Min Baek and Doo-Hwan Bae. 2016. Automated Model-based Android

GUI Testing Using Multi-level GUI Comparison Criteria. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). 238–249.

[17] Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. 2016.

Time-travel Debugging for JavaScript/Node.Js. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2016). 1003–1007.

[18] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.

2017. Directed Greybox Fuzzing. In Proceedings of the 24th ACM Conference on
Computer and Communications Security (CCS). 1–16.

[19] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2018. Coverage-

based Greybox Fuzzing as Markov Chain. IEEE Transactions on Software Engi-
neering (2018), 1–18.

[20] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided GUI Testing of

Android Apps with Minimal Restart and Approximate Learning. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications (OOPSLA ’13). 623–640.

[21] Wontae Choi, George C. Necula, and Koushik Sen. 2013. Guided GUI testing of

android apps with minimal restart and approximate learning. In Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis,
IN, USA, October 26-31, 2013. 623–640. https://doi.org/10.1145/2509136.2509552

[22] Wontae Choi, Koushik Sen, George Necula, and Wenyu Wang. 2018. DetReduce:

Minimizing Android GUI Test Suites for Regression Testing. In Proceedings of
the 40th International Conference on Software Engineering (ICSE ’18). ACM, New

York, NY, USA, 445–455. https://doi.org/10.1145/3180155.3180173

[23] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Auto-

mated Test Input Generation for Android: Are We There Yet? (E). In Proceedings
of the 2015 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE) (ASE ’15). 429–440. https://doi.org/10.1109/ASE.2015.89

[24] Christian Degott, Nataniel P. Borges Jr., and Andreas Zeller. 2019. Learning

user interface element interactions. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019. ACM, 296–306. https://doi.org/10.1145/3293882.3330569

[25] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android

Testing via Synthetic Symbolic Execution. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018). ACM,

New York, NY, USA, 419–429. https://doi.org/10.1145/3238147.3238225

[26] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao,

Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of Android

applications via model abstraction and refinement. In Proceedings of the 41st

International Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada,
May 25-31, 2019. IEEE / ACM, 269–280. https://doi.org/10.1109/ICSE.2019.00042

[27] Shuai Hao, Bin Liu, Suman Nath, William G. J. Halfond, and Ramesh Govindan.

2014. PUMA: programmable UI-automation for large-scale dynamic analysis

of mobile apps. In The 12th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys’14, Bretton Woods, NH, USA, June 16-19, 2014.
ACM, 204–217. https://doi.org/10.1145/2594368.2594390

[28] Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. 2013. Expositor: Script-

able Time-travel Debugging with First-class Traces. In Proceedings of the 2013
International Conference on Software Engineering (ICSE ’13). 352–361.

[29] Samuel T. King, George W. Dunlap, and Peter M. Chen. 2005. Debugging Operat-

ing Systems with Time-traveling Virtual Machines. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (ATEC ’05). 1–1.

[30] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: a

lightweight UI-guided test input generator for Android. In Proceedings of the
39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume. IEEE Computer Society, 23–26.

https://doi.org/10.1109/ICSE-C.2017.8

[31] Y. Li, Z. Yang, Y. Guo, and X. Chen. 2019. Humanoid: A Deep Learning-Based

Approach to Automated Black-box Android App Testing. In 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 1070–1073.
https://doi.org/10.1109/ASE.2019.00104

[32] Yun Lin, Jun Sun, Yinxing Xue, Yang Liu, and Jin Song Dong. 2017. Feedback-

based debugging. In Proceedings of the 39th International Conference on Software
Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE / ACM,

393–403. https://doi.org/10.1109/ICSE.2017.43

[33] Peng Liu, Xiangyu Zhang, Marco Pistoia, Yunhui Zheng, Manoel Marques,

and Lingfei Zeng. 2017. Automatic text input generation for mobile testing.

In Proceedings of the 39th International Conference on Software Engineering,
ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE / ACM, 643–653.

https://doi.org/10.1109/ICSE.2017.65

[34] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An Input

Generation System for Android Apps. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering (ESEC/FSE 2013). 224–234.

[35] Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. EvoDroid: Segmented

Evolutionary Testing of Android Apps. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). 599–
609.

[36] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective Automated

Testing for Android Applications. In Proceedings of the 25th International Sympo-
sium on Software Testing and Analysis (ISSTA 2016). ACM, New York, NY, USA,

94–105.

[37] Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and SamMalek.

2016. Reducing Combinatorics in GUI Testing of Android Applications. In Pro-
ceedings of the 38th International Conference on Software Engineering (ICSE ’16).
559–570.

[38] Kevin Moran, Mario Linares Vásquez, Carlos Bernal-Cárdenas, Christopher Ven-

dome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting and

Reproducing Android Application Crashes. In 2016 IEEE International Conference
on Software Testing, Verification and Validation, ICST 2016, Chicago, IL, USA, April
11-15, 2016. IEEE Computer Society, 33–44. https://doi.org/10.1109/ICST.2016.34

[39] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru R. Căciulescu,

and Abhik Roychoudhury. 2019. Smart Greybox Fuzzing. IEEE Transactions on
Software Engineering (2019), 1–17.

[40] Ting Su, GuozhuMeng, Yuting Chen, KeWu,Weiming Yang, Yao Yao, Geguang Pu,

Yang Liu, and Zhendong Su. 2017. Guided, Stochastic Model-based GUI Testing

of Android Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 245–256.

[41] Nicolas Viennot, Siddharth Nair, and Jason Nieh. 2013. Transparent Mutable

Replay for Multicore Debugging and Patch Validation. In Proceedings of the
Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’13). 127–138.

[42] WenyuWang, Dengfeng Li, Wei Yang, Yurui Cao, Zhenwen Zhang, Yuetang Deng,

and Tao Xie. 2018. An Empirical Study of Android Test Generation Tools in

Industrial Cases. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE 2018). ACM, New York, NY, USA, 738–748.

https://doi.org/10.1145/3238147.3240465

[43] Michelle Y. Wong and David Lie. 2016. IntelliDroid: A Targeted Input Generator

for the Dynamic Analysis of Android Malware. In NDSS. The Internet Society.
[44] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A Grey-box Approach for Au-

tomated GUI-model Generation of Mobile Applications. In Proceedings of the
16th International Conference on Fundamental Approaches to Software Engineering
(FASE’13). 250–265.

[45] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and C.

Fan. 2019. Wuji: Automatic Online Combat Game Testing Using Evolutionary

Deep Reinforcement Learning. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 772–784. https://doi.org/10.1109/ASE.

2019.00077

