
Interactive Patch Generation and Suggestion

Xiang Gao
National University of Singapore, Singapore

gaoxiang@comp.nus.edu.sg

Abhik Roychoudhury
National University of Singapore, Singapore

abhik@comp.nus.edu.sg

ABSTRACT

Automated program repair (APR) is an emerging technique that can

automatically generate patches for fixing bugs or vulnerabilities. To

ensure correctness, the auto-generated patches are usually sent to

developers for verification before applied in the program. To review

patches, developers must figure out the root cause of a bug and

understand the semantic impact of the patch, which is not straight-

forward and easy even for expert programmers. In this position

paper, we envision an interactive patch suggestion approach that

avoids such complex reasoning by instead enabling developers to

review patches with a few clicks. We first automatically translate

patch semantics into a set of what and how questions. Basically, the

what questions formulate the expected program behaviors, while

the how questions represent how to modify the program to real-

ize the expected behaviors. We could leverage the existing APR

technique to generate those questions and corresponding answers.

Then, to evaluate the correctness of patches, developers just need

to ask questions and click the corresponding answers.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

ACM Reference Format:

Xiang Gao and Abhik Roychoudhury. 2020. Interactive Patch Generation

and Suggestion. In IEEE/ACM 42nd International Conference on Software

EngineeringWorkshops (ICSEW’20), May 23–29, 2020, Seoul, Republic of Korea.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3387940.3392179

1 INTRODUCTION

Automated program repair (APR) can reduce the cost of bug fixing.

One of the most challenging problems in today’s automated pro-

gram repair research is theweak specifications. Themost commonly

studied test-driven APR take a test suite 𝑇 as program oracles, and

find a change to a buggy program 𝑃 to make it pass𝑇 . However, the
automatically generated patch may overfit the test data, meaning

that the patched program 𝑃 ′ passes 𝑇 but still fail on program in-

puts/tests outside of 𝑇 . The overfitting problem is one of the main

obstacles that prevent APR being deployed in practice.

Patch suggestion & Challenges To overcome the overfitting issues,

instead of directly applying the patches on programs, existing tech-

niques integrate the APR into the development environment [1, 5, 6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392179

When a bug is triggered, APR tools generate patch candidates,

which will be then sent to developers for verification. Ideally, the

APR can help developers save precious time by fixing bugs with a

single click. However, it is not always true since developers usually

have struggled with understanding the cause of the software be-

havior [4], and hence the semantic impact of a patch. This situation

becomes worse if APR suggests more than one patches (APR usually

generates a set of plausible patches) for developers.

Debugging reinvented To save the programming time spent on

debugging, Ko et al. [4] propose a new program understanding and

debugging approach, which translates the program behaviors into

a set of why did and why didn’t questions according to program

code and execution. Developers are then enabled to speculate about

program behavior by selecting questions about program output,

such as “why did variable color=red at line 15?”. Then, this tool

generates explanations for the output in question via program

analysis and visually provides the answers to developers. This

technique can help developers find the underlying cause of a bug

more easily. This is because developers usually define program

correctness in terms of outputs, and they are usually better at

reasoning about program outputs. On the same debugging task,

their evaluation shows that novice programmers with this tool are

twice as fast as expert programmers without it. These successes

inspire us to extend this idea to bug-fixing.

Proposed technique We envision a new approach to allow de-

velopers to review and apply patches via a few clicks, instead of

directly analyzing the root cause of a bug and the semantic impact

of auto-generated patches. To realize it, we propose an algorithm

with two steps: offline patch generation and online patch sugges-

tion. In the first step, given the test suite 𝑇 and buggy program 𝑃 ,
we generate a set of patch candidates using existing APR tools, like

Fix2Fit [3]. The semantics of patches are then translated into a set

of what and how questions and answers. As complementary to the

why question, the what question asks for the expected output to

fix a bug, such as “what should the value of variable color be at line

15 to pass the failing test?”. The answer to those what questions

are a set of Angelic values [2], the values that fix the failing test

while do not break the passing tests. The how questions formulate

how to change the program to realize the correct answer to the

what questions, such as “how to change the value of variable color

to blue at line 15?”. The answers to those how questions are the

auto-generated patches that can realize the expected behaviors.

In the second step, we provide the pre-generated questions and

answers to developers in an interactive way. The users just need

to ask questions and select corresponding answers to review the

patches. With our approach, users avoid evaluating the semantic

effects of a large number of plausible patches. Instead, they review

the correctness of much fewer patches in a more direct way. Mean-

while, the slow patch generation is conducted offline, which enables

real-time online interactions with developers.

17

2020 IEEE/ACM 42nd International Conference on Software Engineering Workshops (ICSEW)

2 METHODOLOGY

The proposed approach could be applied in the continuous integra-

tion (CI) or the development process, e.g. IDE plugin. By regularly

building, testing, and deploying a program, CI provides the prereq-

uisites for APR tools that use test suites as correctness specifications.

Once a bug is detected, i.e. some tests fail, we will generate a set

of plausible patches in a form of questions and answers which are

then sent to developers via an interactive GUI. Ideally, developers

can figure out the correct patches with a few clicks. Overall, the

proposed approach consists of the following four main steps.

Offline PatchGenerationGiven a detected bug and a test suite,

we first use existing APR tools to generate a set of plausible patches.

Conceptually, we could use any kind of APR tool, either search-

based repair or semantic-based repair. Except for the patches, we

will also record some intermediate results, e.g. the value of the patch

expression on each test, which will be used to generate questions

and answers in the following steps.

What Questions & Answers Generation Once the plausible

patches are generated, we then set the patched expressions at each

location as holes𝐻={ℎ1,ℎ2, ...ℎ𝑖 ,...ℎ𝑛 }. For each holeℎ𝑖 , we draw up

a what question which asks "what is the expected output of the hole

that can make the failing test pass?". These questions formulate the

expected behaviors of these holes. For the what question at hole

ℎ𝑖 , we then generate the answers by iterating the angelic values
𝑉={𝑣1, 𝑣2, ... 𝑣𝑖 ,... 𝑣𝑚 }. The angelic values are the produced values
by plausible patches applied at ℎ𝑖 . For instance, replacing ℎ𝑖 with
either plausible patches 𝑝1 or 𝑝2 can pass the failing test 𝑡 . Under 𝑡 ,
the values produced by patch 𝑝1 and 𝑝2 are 2 and 3, respectively.
Then, the answers to this what questions will be 2 or 3. Note that,

there could be multiple what questions and answers. The task of

picking the correct one (indicate the expected program behaviors)

is left to developers. To help developers understand the program

behaviors, we could also integrate the why question [4].

How Question & Answer Generation Once developers select

the correct answer (𝑣𝑖) to the what questions, we then draw up

how questions to realize the expected behaviors. Typically, the

how question asks how to fill the holes such that the program can

behave as expected. We then select the plausible patches that can

generate the expected values (𝑣𝑖). The plausible patches will be then
translated into the answers to the how questions. Just like the what

questions, there could be multiple answers (𝑝1, 𝑝2, 𝑝3 ...) to these
how questions. The developer will play the role of selecting the

correct answer from multiple plausible patches.

Patch Suggestion The generated questions and answers will be

sent to developers in an interactive way (e.g. interactive GUI). The

role of developers is twofold: (1) ask what question and select the

corresponding answer to indicate the expected program behaviors

(2) ask how questions and choose correct answers to select patches.

This will finally lead developers to find a correct patch.

3 AN EXAMPLE

Listing 1 shows a FFmpeg buffer overflow vulnerability 1 which was

reported by OSS-Fuzz in 2017. This vulnerability is caused by incor-

rect bound checking when parsing media files. If remaining_space

is equal to width (line 3), an invalid buffer access will occur at line

1https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=1345

1 int rema in ing_space = frame_end−f rame − 3 ;
2 //correct patch: "frame_end-frame-3" → "frame_end-frame-4"
3 if (r ema in ing_space < width)
4 return AVERROR_INVALIDDATA ;
5 frame [0] = frame [1] = frame [width] =
6 frame [width +1] = by t e s t r e am_ge t _byte (gb) ;
7 frame += 2 ;
8 frame [0] = frame [1] = frame [width] =
9 //buffer overflow location
10 frame [width +1] = by t e s t r e am_ge t _byte (gb) ;
11 frame += 2 ;

Listing 1: Buffer overflow vulnerability in FFmpeg

10, since it will overwrite the memory locations after frame_end.

One correct patch for this vulnerability could be modifying the

assignment at line 2 from frame_end-frame-3 to frame_end-frame-4.

Given the failing test case that can trigger this bug, we first

use existing APR tools, e.g. Fix2Fit, to generate a set of patch

candidates. For instance, replacing the assignment at line 2 with

frame_end−frame−4, frame_end−frame−5, or frame_end−frame−6

can fix the failing test. Then, we set the right expression at line 2

as a hole and draw up the what question: “What is the expected

value of the hole to make the failing test pass?”. The answers to the

what question are the angelic values produced by plausible patches.

In this case, the angelic values are 8, 7 or 6, all of which can make

the failing test pass. If developers indicate 8 is the expected value,

we then create the how question: “How to fill the hole to generate

the expected value (8)?”. The answer to the how question is the

patch candidates (in this case, only frame_end−frame−4) that can

realize the expected value. Developers will play the role of selecting

the correct patches from those candidates. The proposed approach

provides a way to alleviate the over-fitting problem. Instead of

directly applying the patches, we involve developers in the patch

generation process in an interactive way, such that, the overfitted

patches (e.g. frame_end−frame−5) can be filtered out.

4 CONCLUSION

Automated program repairmay generate low-quality patches, which

prevents them being directly applied in the program. Usually, patches

are sent to developers to review. In this project, we envision an

interactive patch suggestion approach, which enables developers

to select and review patches via a few clicks. The potential benefits

of this approach include increasing the efficiency of auto-generated

patch review and reducing the burden of developers. We invite

the community to consider the deployment of automated program

repair in the interactive setting proposed in this position paper.

REFERENCES
[1] Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix:

Learning to Fix Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA (2019).
[2] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. Angelic

debugging. In International Conference on Software Engineering. 121–130.
[3] Xiang Gao, Sergey Mechtaev, and Abhik Roychoudhury. 2019. Crash-avoiding

program repair. In Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 8–18.

[4] Andrew Ko and Brad Myers. 2008. Debugging reinvented. In 2008 ACM/IEEE 30th
International Conference on Software Engineering. IEEE, 301–310.

[5] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-end
repair at scale. In ICSE-SEIP (2019). IEEE, 269–278.

[6] Martin Monperrus, Simon Urli, Thomas Durieux, Matias Martinez, Benoit Baudry,
and Lionel Seinturier. 2019. Repairnator patches programs automatically. Ubiquity
2019, July (2019), 1–12.

18

